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Overview

The RegularChains library in Maple

Design goals

Solving polynomial systems over Q and Fp, including parametric
systems and semi-algebraic systems.

Offering tools to manipulate their solutions.

Organized around the concept of a regular chain, accommodating all
types of solving and providing space-and-time efficiency.

Features

Use of types for algebraic structures: polynomial ring,
regular chain, constructible set, quantifier free formula,
regular semi algebraic system.

Top level commands: PolynomialRing, Triangularize,
RealTriangularize SamplePoints, . . .

Tool kits: ConstructibleSetTools, ParametricSystemTools,
FastArithmeticTools, SemiAlgebraicSetTools, . . .

(CDMMXX) RealTriangularize ISSAC 2011 4 / 17



Overview

The RegularChains library in Maple

Design goals

Solving polynomial systems over Q and Fp, including parametric
systems and semi-algebraic systems.

Offering tools to manipulate their solutions.

Organized around the concept of a regular chain, accommodating all
types of solving and providing space-and-time efficiency.

Features

Use of types for algebraic structures: polynomial ring,
regular chain, constructible set, quantifier free formula,
regular semi algebraic system.

Top level commands: PolynomialRing, Triangularize,
RealTriangularize SamplePoints, . . .

Tool kits: ConstructibleSetTools, ParametricSystemTools,
FastArithmeticTools, SemiAlgebraicSetTools, . . .

(CDMMXX) RealTriangularize ISSAC 2011 4 / 17



Overview

Solving for the real solutions of polynomial systems

Classical tools

Isolating the real solutions of zero-dimensional polynomial systems:
SemiAlgebraicSetTools:-RealRootIsolate

Real root classification of parametric polynomial systems:
ParametricSystemTools:-RealRootClassification

Cylindrical algebraic decomposition of polynomial systems:
SemiAlgebraicSetTools:-CylindricalAlgebraicDecompose

New tools

Triangular decomposition of semi-algebraic systems:
RealTriangularize

Sampling all connected components of a semi-algebraic system:
SamplePoints

Set-theoretical operations on semi-algebraic sets:
SemiAlgebraicSetTools:-Difference
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Overview

Regular semi-algebraic system

Notation

Let T ⊂ Q[x1 < . . . < xn] be a regular chain with
y := {mvar(t) | t ∈ T} and u := x \ y = u1, . . . , ud .

Let P be a finite set of polynomials, s.t. every f ∈ P is regular
modulo sat(T ).

Let Q be a quantifier-free formula of Q[u].

Definition

We say that R := [Q,T ,P>] is a regular semi-algebraic system if:

(i) Q defines a non-empty open semi-algebra ic set S in Rd ,

(ii) the regular system [T ,P] specializes well at every point u of S

(iii) at each point u of S , the specialized system [T (u),P(u)>] has at
least one real solution.

ZR(R) = {(u, y) | Q(u), t(u, y) = 0, p(u, y) > 0, ∀(t, p) ∈ T × P}.
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Overview

Example

The system [Q,T ,P>], where

Q := a > 0, T :=

{
y2 − a = 0
x = 0

, P> := {y > 0}

is a regular semi-algebraic system.
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Overview

RealTriangularize applied to the Eve surface (1/2)
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Overview

RealTriangularize applied to the Eve surface (2/2)
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Solver verification

Are these two different output equivalent?

Given a triangle with edge lengths a, b, c
(denoting the respective edges a, b, c too)
the following two conditions S1, S2 are both
characterizing the fact that the external bi-
sector of the angle of a, c intersects with b
on the other side of a than the triangle:

S1 = a > 0 ∧ b > 0 ∧ c > 0 ∧ a < b + c ∧ b < a + c ∧ c < a + b ∧(
b2 + a2 − c2 ≤ 0

)
∨
(
c(b2 + a2 − c2)2 < ab2(2ac − (c2 + a2 − b2))

)
,

S2 = a > 0∧b > 0∧ c > 0∧ a < b+ c ∧b < a+ c ∧ c < a+b∧ c− a > 0.
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Branch cut analysis
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Branch cut analysis

Is this simplification correct?

The original problem

The branch cut of
√
z is conventionally:

{z ∈ C | <(z) < 0 ∧ =(z) = 0}.

Do the following equations hold for all z ∈ C:

√
z − 1

√
z + 1 =

√
z2 − 1 and

√
1− z

√
1 + z =

√
1− z2.

Turning the question to sampling

The branch cuts of each formula is a semi-algebraic system S given as
the disjunction of 3 others S1, S2, S3 (one per

√
).

Consider CAD-cells C1, . . . ,Ce , forming an intersection-free basis
refining the connected components of S1, S2, S3.

By virtue of the Modromy Theorem, it is sufficient to check whether
the formula holds at a sample point of each of C1, . . . ,Ce .
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Biochemical network analysis
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Biochemical network analysis

Is there a unique positive equilibrium?

Allosteric enzym

E + S
k1−⇀↽−
k2

C

E + C
k3−⇀↽−
k4

F

1
2
C − 1

2
E + S − 1

2
C0 + 1

2
E0 − S0 = 0

1
2
C + 1

2
E + F − 1

2
C0 − 1

2
E0 − F0 = 0

k1 ES − k2 C − k3 EC + k4 F = 0
−2 k3 EC + 2 k4 F = 0

E , S,C ,F ,E0, S0,C0,F0, k1, k2, k3, k4 > 0.

Cascad of polymerisation

P1 + P1
k2−−⇀↽−−
k−

2

P2

P1 + P2
k3−−⇀↽−−
k−

3

P3

...

P1 + Pn−1
kn−−⇀↽−−
k−
n

Pn

Each system is viewed as parametric in the initial concentrations and
kinetic velocities.

We show that, generically, there is a unique positive equilibrium.

(CDMMXX) RealTriangularize ISSAC 2011 15 / 17



Biochemical network analysis

Is there a unique positive equilibrium?

Allosteric enzym

E + S
k1−⇀↽−
k2

C

E + C
k3−⇀↽−
k4

F

1
2
C − 1

2
E + S − 1

2
C0 + 1

2
E0 − S0 = 0

1
2
C + 1

2
E + F − 1

2
C0 − 1

2
E0 − F0 = 0

k1 ES − k2 C − k3 EC + k4 F = 0
−2 k3 EC + 2 k4 F = 0

E , S,C ,F ,E0, S0,C0,F0, k1, k2, k3, k4 > 0.

Cascad of polymerisation

P1 + P1
k2−−⇀↽−−
k−

2

P2

P1 + P2
k3−−⇀↽−−
k−

3

P3

...

P1 + Pn−1
kn−−⇀↽−−
k−
n

Pn

Each system is viewed as parametric in the initial concentrations and
kinetic velocities.

We show that, generically, there is a unique positive equilibrium.

(CDMMXX) RealTriangularize ISSAC 2011 15 / 17



Reachibility problem for hybrid systems
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Reachibility problem for hybrid systems

Which states can be reached from the intial one?

Hybrid systems with linear control

Given A ∈ Rn×n,B ∈ Rn×m consider ξ̇ = Aξ + Bu where ξ(t) ∈ Rn

is the state of the system at time t and u : R→ Rm is a piecewise
continuous function which is called the control input.

With x = ξ(0) and a control input u, we have:

ξ(t) = Φ(x , u, t) = eAtx +
∫ t

0 eA(t−τ)Bu(τ)dτ.

Question: Given x = ξ(0), which values ξ(t) can the reached?

The (Lafferriere et al. 2001) example

Φ(x1, x2, u, t) =
(
x1e

2t + 2
3u(−e2t + e

1
2
t), x2e

−t + 1
2u(et − e−t)

)
.

Let z = e
1
2
t , the problem reduces to compute the (y1, y2) such that:

∃u∃z(0 ≤ u ∧ z ≥ 1 ∧ p1 = 0 ∧ p2 = 0) where
p1 = y1 − 2

3u(−z4 + z) and p2 = y2z
2 − 1

2u(z4 − 1).
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