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What is the D5 principle ?

Model of computation for algebraic numbers developed by
J. Della-Dora, C. Discrescenzo and D. Duval. (1985)

easy case: f irreducible polynomial over Q, α1, . . . , αs its roots.
{

Computing over any Q(αi)
}

←→
{

Computing over Q[X]/f
}

f is not irreducible but squarefree: For the addition and the
multiplication computing over Q[X]/f still works. For the
division two possibilities:

factorize f(X) = f1(X) . . . ft(X), and work over Q[X]/fi as
above.
. . . or use the D5 principle as in this example:
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Example of the D5 Principle

{

f(X) = X4 − 13X2 + 36 ∈ Q[X], reducible,

α1, α2, α3, α4 its roots.

Problem: gi(Z) := Z3 + 3αiZ
2 + 12Z + 4αi ∈ Q(αi)[Z], i = 1, . . . , 4

Are the gi’s squarefree ?

With factorization: f(X) = (X − 2)(X + 2)(X − 3)(X + 3), plug
each root in gi and check if the discriminant is zero.
With D5 principle: represent all Q(αi) using Q[X]/f

define g(X,Z) := Z3 + 3XZ2 + 12Z + 4X

Discr(g) = −432(X − 2)2(X + 2)2

α2
i 6= 4⇔ gi is squarefree
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From one to many variables

Previous example −→ the problem has actually led to:

Q[X]/f ' Q[X]/X2 − 4 × Q[X]/( f
X2

−4)

A ' B × C

g is not squarefree g is squarefree
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From one to many variables

Previous example −→ the problem has actually led to:

Q[X]/f ' Q[X]/X2 − 4 × Q[X]/( f
X2

−4)

A ' B × C

A[Y ]/(h mod f) ' B[Y ]/(h mod X2 − 4) × C[Y ]/(h mod f
X2

−4)

where h ∈ Q[X,Y ] .

⇒ Generalization: use of Triangular sets. . .
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Triangular sets

Family of n monic polynomials
Finite number of solutions,
which are simple

∣

∣

∣

∣

∣

∣

∣

∣
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∣

∣

Tn(X1,X2, . . . ,Xn),
...
T2(X1,X2),

T1(X1)

Useful in polynomial systems solving (decomposition of
varieties, since the 90’s): Lazard, Kalkbrener, Moreno Maza,
Wang, Aubry, Dahan-Moreno Maza-Schost-Wu-Xie etc.

There is the following isomorphism:
k[X1, . . . ,Xn]/T'k[X1, . . . ,Xn]/m1 × · · · × k[X1, . . . ,Xn]/ms,
where m1, . . . ,ms are the primary ideals of T .
Primary decomposition −→ factorization.
Again, the D5 principle avoids the factorization.
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Motivation

Newton algorithm modulo a triangular set:
F = f1, . . . , fn a zero-dimensional radical polynomial system
over Q

Obtain a triangular decomposition modulo a prime p

Lift each triangular set with Newton-Hensel.
The Newton iterator uses the following computation:

Jac(T )Jac(F )−1 F mod T ,

which requires at least one division modulo a triangular set. Estima-

tion of the complexity ?
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Splitting during the D5 process

Quasi-inversion modulo a triangular set T :
T is split into triangular sets R1, . . . , R` and R`+1, . . . , Rm, with

α = 0 mod each Ri, i ≤ ` and α is a unit mod each Ri, i > `

Then one can continue the computations in “parallel”, modulo
R1, . . . , Rm (less costly than primary decomposition)

Problem raised: After a splitting, one needs to compute the map:

k[X1, . . . ,Xn]/T → k[X1, . . . ,Xn]/R1 × · · · × k[X1, . . . ,Xn]/Rm

In general, a good complexity estimate for that is not always obvi-

ous. . .
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Main result

No complexity results for algorithms relying on this principle.
What is missing: complexity of the quasi-inverse modulo a
triangular set T . (all algorithms rely on it)
Complexity measures used:

let T = (T1, . . . , Tn), denote di := degXi
(Ti),

M(d) is an upper bound for the cost of the multiplication of
two polynomials of degree at most d.
M(d) ∈ O(d log(d) log log(d)).

Theorem 0 There exists a C > 0, such that for all triangular set T

and for all f ∈ k[X1, . . . ,Xn] with degXi
(f) < di, the computation of

the quasi-inverse of f modulo T requires at most:

Cn
∏n

i=1
M(di) log3(di) , (quasi− linear in d1 . . . dn)

operations over k. On the complexity of the D5 principle – p.9/28



The splitting problem

A quasi-inverse computation may lead to the following split:

T = (T1, T2) Decomposition

X2(X2 − 1)T2 = X2 − 1 X2 + X1 − 3

T1 = (X1 − 1)(X1 − 2) (X1 − 2)(X1 − 3)

X2

T = {T 1, T 2, T 3}

(X1 − 1)(X1 − 2)(X1 − 3) (X1 − 1)(X1 − 3)

Splitting an element p from T to T requires then to compute:

p mod (X1−1)(X1−2) , p mod (X1−1)(X1−3) , p mod (X1−2)(X1−3),

there are some redundancies→ bad for complexity estimation.

The main topic of this work is to remove this difficulty. . .
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Solving the splitting problem 1/2

A solution is to refine the triangular decomposition as follows:

T = (T1, T2) Decomposition

X2(X2 − 1)T2 = X2 − 1 X2 + X1 − 3

T1 = (X1 − 1)(X1 − 2) (X1 − 2)(X1 − 3)

X2

T = {T 1, T 2, T 3}

(X1 − 1)(X1 − 2)(X1 − 3) (X1 − 1)(X1 − 3)
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Solving the splitting problem 1/2

A solution is to refine the triangular decomposition as follows:

New decomposition T
′

of 6 triangular sets
X1 − 2X1 − 2X1 − 1 X1 − 3

(X1 − 1)(X1 − 2)(X1 − 3)T1 = (X1 − 1)(X1 − 2) (X1 − 2)(X1 − 3)

X2 − 1X2 − 1 X2 + X1 − 3 X2 + X1 − 3

X2(X2 − 1)T2 = X2 + X1 − 3X2 − 1 X2

(X1 − 1)(X1 − 3)

X2 X2

X1 − 1 X1 − 3

Now splitting p from T to T
′ requires only to compute:

p mod X1 − 1 , p mod X1 − 3 , p mod X1 − 2

No more redundancy. On the complexity of the D5 principle – p.12/28



Solving the splitting problem 2/2

The previous decomposition has the following property:
Definition 0 T 6= T ′ two triangular sets.
Let ` the least integer s.t. T` 6= T ′

`.
The pair T, T ′ is critical if (T`, T

′

`) 6= (1) in
k[X1, . . . ,X`−1]/(T1, . . . , T`−1)[X`].
A decomposition T of T is non-critical if T has no critical pairs.

Need to remove the critical pairs from any decomposition of
triangular sets.
Achieve this task with a good complexity→ use of “coprime
factorization” algorithm.
By definition, this requires to compute gcd modulo a triangular
set.
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The inductive process

Li := k[X1, . . . ,Xi]/(T1, . . . , Ti)

gcd in Ln−1[Xn]

in degree d

coprime factorization in Ln−1[Xn]

in degree d

split in Ln

coprime factorization in Ln[Xn+1]

in degree d

gcd in Ln[Xn+1]

in degree d

remove crit. pairs in Lnquasi-inverse in Ln
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Algorithm for Split

Input: A triangular set T ,
a non-critical decomposition T = {T 1, . . . , T s} of T ,
a polynomial f ∈ k[X1, . . . ,Xn] with degXi

(f) < di.
Output: The family of polynomials {f mod T i , i = 1 . . . s}.
Main idea: Works recursively on the number of variables,
generalizing the well-known “multi-reduction” algorithm in one
variable.
Complexity: Cn

∏n
i=1 M(di) log(di).

References: Borodin & Moenck
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Quasi-inverse

Notation: K(T ) will denote the ring k[X1, . . . ,Xn]/(T )

Input: T a triangular set, f ∈ k[X1, . . . ,Xn] with degXi
(f) < di.

Output: A non-critical decomposition T = {T 1, . . . , T s}, a
family of elements hi ∈ K(T i), s.t.:

f mod T i ≡ 0⇒ hi = 0, and
(f mod T i) . hi = 1 in K(T i) else.

Main idea: Use the gcd, “remove critical pairs” and “split”
algorithms modulo triangular sets in n− 1 variables.
Complexity: CM(dn) log(dn) operations modulo (T1, . . . , Tn−1).
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Half-GCD

Input: A triangular set T . Two polynomials a, b ∈ K(T )[Y ], of
degree at most d.
Output: A non-critical decomposition T = {T 1, . . . , T s} of T , a
family {gi , i = 1 . . . s} of monic polynomials, where
gi ∈ K(T i)[Y ], s.t. gi is a gcd of a mod T i and b mod T i

Main idea (over a field): The quotient of two polynomials of
high degree depends only on their high degree part⇒ relies
on divide and conquer and is recursive.
. . . and modulo a triangular set: At each recursive call, there is
an Euclidean Division⇒ quasi-inversion of the leading
coefficient⇒ splittings, and “remove the critical pairs”.
Complexity: CM(d) log(d) operations modulo T

References: Knuth-Schönhage-Moenck
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Coprime factorization

Input (over a field): A = a1, . . . , as family of squarefree
polynomials in k[y]. d :=

∑n
i=1 deg(ai)

Output (over a field): B = b1, . . . , bt ∈ k[y] s.t.:
gcd(bi, bj) = 1 for i 6= j

each ai is a product of some bj ’s.
each bj divides one ai.

Modulo a triangular set: The input family A is in K(T )[y].
The algorithm uses gcd computations, hence splittings appear.
The output is a non-critical decomposition of T , where the
three conditions above make sense.

Main idea: Divide the family A in 2 sets, compute a coprime
factorization of the both two sets, take all the pairs of gcd

between the two coprime factorizations.
Complexity: CM(d) log3(d)

operations modulo T .
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Remove critical pairs

Input: A decomposition T = {T 1, . . . , T e} of a triangular set T .
Output: Family of decompositions T

1, . . . ,Te s.t.:
T

i is a decomposition of T i

the total family T
1 ∪ . . . ∪T

e has no critical pairs.
Main idea: coprime factorization of course. . . but it is tricky
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The inductive process

Li := k[X1, . . . ,Xi]/(T1, . . . , Ti)

quasi-inverse in Ln
remove crit. pairs in Ln

in degree d

gcd in Ln−1[Xn]

in degree d

coprime factorization in Ln−1[Xn]

in degree d

in degree d

coprime factorization in Ln[Xn+1]

CnM(d) log(d)
n−1
Q

i=1

M(di) log3(di) CnM(d) log3(d)
n−1
Q

i=1

M(di) log3(di))

split in Ln

Cn
n
Q

i=1

M(di) log(di)

gcd in Ln[Xn]
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Conclusion

The next goal is to obtain complexity statements for more general
dynamic evaluation questions:

If A is an “algorithm” that works over a field k in time T (A),
then one can deduce an “algorithm” that works over the
product of fields k[X1, . . . ,Xn]/(T1, . . . , Tn) in time

Cn(M(d1) log3(d1) · · ·M(dn) log3(dn))T (A).

The algorithm for gcd, coprime factorization rely on such results, but

the proofs are still ad-hoc.
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