
On the complexity of the D5 principle
X. Dahan?, M. Moreno Maza†, É. Schost? & Y. Xie†

LIX, École polytechnique, Palaiseau, France.
†: ORCCA, University of Western Ontario, London, Canada.

On the complexity of the D5 principle – p.1/28

What is the D5 principle ?

Model of computation for algebraic numbers developed by
J. Della-Dora, C. Discrescenzo and D. Duval. (1985)

easy case: f irreducible polynomial over Q, α1, . . . , αs its roots.
{

Computing over any Q(αi)
}

←→
{

Computing over Q[X]/f
}

f is not irreducible but squarefree: For the addition and the
multiplication computing over Q[X]/f still works. For the
division two possibilities:

factorize f(X) = f1(X) . . . ft(X), and work over Q[X]/fi as
above.
. . . or use the D5 principle as in this example:

On the complexity of the D5 principle – p.2/28

What is the D5 principle ?

Model of computation for algebraic numbers developed by
J. Della-Dora, C. Discrescenzo and D. Duval. (1985)

easy case: f irreducible polynomial over Q, α1, . . . , αs its roots.
{

Computing over any Q(αi)
}

←→
{

Computing over Q[X]/f
}

f is not irreducible but squarefree: For the addition and the
multiplication computing over Q[X]/f still works. For the
division two possibilities:

factorize f(X) = f1(X) . . . ft(X), and work over Q[X]/fi as
above.
. . . or use the D5 principle as in this example:

On the complexity of the D5 principle – p.2/28

What is the D5 principle ?

Model of computation for algebraic numbers developed by
J. Della-Dora, C. Discrescenzo and D. Duval. (1985)

easy case: f irreducible polynomial over Q, α1, . . . , αs its roots.
{

Computing over any Q(αi)
}

←→
{

Computing over Q[X]/f
}

f is not irreducible but squarefree: For the addition and the
multiplication computing over Q[X]/f still works. For the
division two possibilities:

factorize f(X) = f1(X) . . . ft(X), and work over Q[X]/fi as
above.

. . . or use the D5 principle as in this example:

On the complexity of the D5 principle – p.2/28

What is the D5 principle ?

Model of computation for algebraic numbers developed by
J. Della-Dora, C. Discrescenzo and D. Duval. (1985)

easy case: f irreducible polynomial over Q, α1, . . . , αs its roots.
{

Computing over any Q(αi)
}

←→
{

Computing over Q[X]/f
}

f is not irreducible but squarefree: For the addition and the
multiplication computing over Q[X]/f still works. For the
division two possibilities:

factorize f(X) = f1(X) . . . ft(X), and work over Q[X]/fi as
above.
. . . or use the D5 principle as in this example:

On the complexity of the D5 principle – p.2/28

Example of the D5 Principle

{

f(X) = X4 − 13X2 + 36 ∈ Q[X], reducible,

α1, α2, α3, α4 its roots.

Problem: gi(Z) := Z3 + 3αiZ
2 + 12Z + 4αi ∈ Q(αi)[Z], i = 1, . . . , 4

Are the gi’s squarefree ?

With factorization: f(X) = (X − 2)(X + 2)(X − 3)(X + 3), plug
each root in gi and check if the discriminant is zero.
With D5 principle: represent all Q(αi) using Q[X]/f

define g(X,Z) := Z3 + 3XZ2 + 12Z + 4X

Discr(g) = −432(X − 2)2(X + 2)2

α2
i 6= 4⇔ gi is squarefree

On the complexity of the D5 principle – p.3/28

Example of the D5 Principle

{

f(X) = X4 − 13X2 + 36 ∈ Q[X], reducible,

α1, α2, α3, α4 its roots.

Problem: gi(Z) := Z3 + 3αiZ
2 + 12Z + 4αi ∈ Q(αi)[Z], i = 1, . . . , 4

Are the gi’s squarefree ?
With factorization: f(X) = (X − 2)(X + 2)(X − 3)(X + 3), plug
each root in gi and check if the discriminant is zero.

With D5 principle: represent all Q(αi) using Q[X]/f

define g(X,Z) := Z3 + 3XZ2 + 12Z + 4X

Discr(g) = −432(X − 2)2(X + 2)2

α2
i 6= 4⇔ gi is squarefree

On the complexity of the D5 principle – p.3/28

Example of the D5 Principle

{

f(X) = X4 − 13X2 + 36 ∈ Q[X], reducible,

α1, α2, α3, α4 its roots.

Problem: gi(Z) := Z3 + 3αiZ
2 + 12Z + 4αi ∈ Q(αi)[Z], i = 1, . . . , 4

Are the gi’s squarefree ?
With factorization: f(X) = (X − 2)(X + 2)(X − 3)(X + 3), plug
each root in gi and check if the discriminant is zero.
With D5 principle: represent all Q(αi) using Q[X]/f

define g(X,Z) := Z3 + 3XZ2 + 12Z + 4X

Discr(g) = −432(X − 2)2(X + 2)2

α2
i 6= 4⇔ gi is squarefree

On the complexity of the D5 principle – p.3/28

Example of the D5 Principle

{

f(X) = X4 − 13X2 + 36 ∈ Q[X], reducible,

α1, α2, α3, α4 its roots.

Problem: gi(Z) := Z3 + 3αiZ
2 + 12Z + 4αi ∈ Q(αi)[Z], i = 1, . . . , 4

Are the gi’s squarefree ?
With factorization: f(X) = (X − 2)(X + 2)(X − 3)(X + 3), plug
each root in gi and check if the discriminant is zero.
With D5 principle: represent all Q(αi) using Q[X]/f

define g(X,Z) := Z3 + 3XZ2 + 12Z + 4X

Discr(g) = −432(X − 2)2(X + 2)2

α2
i 6= 4⇔ gi is squarefree

On the complexity of the D5 principle – p.3/28

Example of the D5 Principle

{

f(X) = X4 − 13X2 + 36 ∈ Q[X], reducible,

α1, α2, α3, α4 its roots.

Problem: gi(Z) := Z3 + 3αiZ
2 + 12Z + 4αi ∈ Q(αi)[Z], i = 1, . . . , 4

Are the gi’s squarefree ?
With factorization: f(X) = (X − 2)(X + 2)(X − 3)(X + 3), plug
each root in gi and check if the discriminant is zero.
With D5 principle: represent all Q(αi) using Q[X]/f

define g(X,Z) := Z3 + 3XZ2 + 12Z + 4X

Discr(g) = −432(X − 2)2(X + 2)2

α2
i 6= 4⇔ gi is squarefree

On the complexity of the D5 principle – p.3/28

From one to many variables

Previous example −→ the problem has actually led to:

Q[X]/f ' Q[X]/X2 − 4 × Q[X]/(f
X2

−4)

A ' B × C

g is not squarefree g is squarefree

On the complexity of the D5 principle – p.4/28

From one to many variables

Previous example −→ the problem has actually led to:

Q[X]/f ' Q[X]/X2 − 4 × Q[X]/(f
X2

−4)

A ' B × C

A[Y]/(h mod f) ' B[Y]/(h mod X2 − 4) × C[Y]/(h mod f
X2

−4)

where h ∈ Q[X,Y] .

⇒ Generalization: use of Triangular sets. . .

On the complexity of the D5 principle – p.5/28

From one to many variables

Previous example −→ the problem has actually led to:

Q[X]/f ' Q[X]/X2 − 4 × Q[X]/(f
X2

−4)

A ' B × C

A[Y]/(h mod f) ' B[Y]/(h mod X2 − 4) × C[Y]/(h mod f
X2

−4)

where h ∈ Q[X,Y] .

⇒ Generalization: use of Triangular sets. . .

On the complexity of the D5 principle – p.5/28

Triangular sets

Family of n monic polynomials
Finite number of solutions,
which are simple

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Tn(X1,X2, . . . ,Xn),
...
T2(X1,X2),

T1(X1)

Useful in polynomial systems solving (decomposition of
varieties, since the 90’s): Lazard, Kalkbrener, Moreno Maza,
Wang, Aubry, Dahan-Moreno Maza-Schost-Wu-Xie etc.

There is the following isomorphism:
k[X1, . . . ,Xn]/T'k[X1, . . . ,Xn]/m1 × · · · × k[X1, . . . ,Xn]/ms,
where m1, . . . ,ms are the primary ideals of T .
Primary decomposition −→ factorization.
Again, the D5 principle avoids the factorization.

On the complexity of the D5 principle – p.6/28

Motivation

Newton algorithm modulo a triangular set:
F = f1, . . . , fn a zero-dimensional radical polynomial system
over Q

Obtain a triangular decomposition modulo a prime p

Lift each triangular set with Newton-Hensel.
The Newton iterator uses the following computation:

Jac(T)Jac(F)−1 F mod T ,

which requires at least one division modulo a triangular set. Estima-

tion of the complexity ?

On the complexity of the D5 principle – p.7/28

Splitting during the D5 process

Quasi-inversion modulo a triangular set T :
T is split into triangular sets R1, . . . , R` and R`+1, . . . , Rm, with

α = 0 mod each Ri, i ≤ ` and α is a unit mod each Ri, i > `

Then one can continue the computations in “parallel”, modulo
R1, . . . , Rm (less costly than primary decomposition)

Problem raised: After a splitting, one needs to compute the map:

k[X1, . . . ,Xn]/T → k[X1, . . . ,Xn]/R1 × · · · × k[X1, . . . ,Xn]/Rm

In general, a good complexity estimate for that is not always obvi-

ous. . .

On the complexity of the D5 principle – p.8/28

Splitting during the D5 process

Quasi-inversion modulo a triangular set T :
T is split into triangular sets R1, . . . , R` and R`+1, . . . , Rm, with

α = 0 mod each Ri, i ≤ ` and α is a unit mod each Ri, i > `

Then one can continue the computations in “parallel”, modulo
R1, . . . , Rm (less costly than primary decomposition)

Problem raised: After a splitting, one needs to compute the map:

k[X1, . . . ,Xn]/T → k[X1, . . . ,Xn]/R1 × · · · × k[X1, . . . ,Xn]/Rm

In general, a good complexity estimate for that is not always obvi-

ous. . .

On the complexity of the D5 principle – p.8/28

Main result

No complexity results for algorithms relying on this principle.
What is missing: complexity of the quasi-inverse modulo a
triangular set T . (all algorithms rely on it)
Complexity measures used:

let T = (T1, . . . , Tn), denote di := degXi
(Ti),

M(d) is an upper bound for the cost of the multiplication of
two polynomials of degree at most d.
M(d) ∈ O(d log(d) log log(d)).

Theorem 0 There exists a C > 0, such that for all triangular set T

and for all f ∈ k[X1, . . . ,Xn] with degXi
(f) < di, the computation of

the quasi-inverse of f modulo T requires at most:

Cn
∏n

i=1
M(di) log3(di) , (quasi− linear in d1 . . . dn)

operations over k. On the complexity of the D5 principle – p.9/28

The splitting problem

A quasi-inverse computation may lead to the following split:

T = (T1, T2) Decomposition

X2(X2 − 1)T2 = X2 − 1 X2 + X1 − 3

T1 = (X1 − 1)(X1 − 2) (X1 − 2)(X1 − 3)

X2

T = {T 1, T 2, T 3}

(X1 − 1)(X1 − 2)(X1 − 3) (X1 − 1)(X1 − 3)

Splitting an element p from T to T requires then to compute:

p mod (X1−1)(X1−2) , p mod (X1−1)(X1−3) , p mod (X1−2)(X1−3),

there are some redundancies→ bad for complexity estimation.

The main topic of this work is to remove this difficulty. . .

On the complexity of the D5 principle – p.10/28

Solving the splitting problem 1/2

A solution is to refine the triangular decomposition as follows:

T = (T1, T2) Decomposition

X2(X2 − 1)T2 = X2 − 1 X2 + X1 − 3

T1 = (X1 − 1)(X1 − 2) (X1 − 2)(X1 − 3)

X2

T = {T 1, T 2, T 3}

(X1 − 1)(X1 − 2)(X1 − 3) (X1 − 1)(X1 − 3)

On the complexity of the D5 principle – p.11/28

Solving the splitting problem 1/2

A solution is to refine the triangular decomposition as follows:

New decomposition T
′

of 6 triangular sets
X1 − 2X1 − 2X1 − 1 X1 − 3

(X1 − 1)(X1 − 2)(X1 − 3)T1 = (X1 − 1)(X1 − 2) (X1 − 2)(X1 − 3)

X2 − 1X2 − 1 X2 + X1 − 3 X2 + X1 − 3

X2(X2 − 1)T2 = X2 + X1 − 3X2 − 1 X2

(X1 − 1)(X1 − 3)

X2 X2

X1 − 1 X1 − 3

Now splitting p from T to T
′ requires only to compute:

p mod X1 − 1 , p mod X1 − 3 , p mod X1 − 2

No more redundancy. On the complexity of the D5 principle – p.12/28

Solving the splitting problem 2/2

The previous decomposition has the following property:
Definition 0 T 6= T ′ two triangular sets.
Let ` the least integer s.t. T` 6= T ′

`.
The pair T, T ′ is critical if (T`, T

′

`) 6= (1) in
k[X1, . . . ,X`−1]/(T1, . . . , T`−1)[X`].
A decomposition T of T is non-critical if T has no critical pairs.

Need to remove the critical pairs from any decomposition of
triangular sets.
Achieve this task with a good complexity→ use of “coprime
factorization” algorithm.
By definition, this requires to compute gcd modulo a triangular
set.

On the complexity of the D5 principle – p.13/28

The inductive process

Li := k[X1, . . . ,Xi]/(T1, . . . , Ti)

gcd in Ln−1[Xn]

in degree d

coprime factorization in Ln−1[Xn]

in degree d

split in Ln

coprime factorization in Ln[Xn+1]

in degree d

gcd in Ln[Xn+1]

in degree d

remove crit. pairs in Lnquasi-inverse in Ln

On the complexity of the D5 principle – p.14/28

The inductive process

Li := k[X1, . . . ,Xi]/(T1, . . . , Ti)

quasi-inverse in Ln

gcd in Ln−1[Xn]

in degree d

coprime factorization in Ln−1[Xn]

in degree d

split in Ln

coprime factorization in Ln[Xn+1]

in degree d

gcd in Ln[Xn+1]

in degree d

remove crit. pairs in Ln

On the complexity of the D5 principle – p.15/28

The inductive process

Li := k[X1, . . . ,Xi]/(T1, . . . , Ti)

quasi-inverse in Ln
remove crit. pairs in Ln

gcd in Ln−1[Xn]

in degree d

coprime factorization in Ln−1[Xn]

in degree d

split in Ln

coprime factorization in Ln[Xn+1]

in degree d

gcd in Ln[Xn+1]

in degree d

On the complexity of the D5 principle – p.16/28

The inductive process

Li := k[X1, . . . ,Xi]/(T1, . . . , Ti)

quasi-inverse in Ln
remove crit. pairs in Ln

in degree d

gcd in Ln[Xn+1]

gcd in Ln−1[Xn]

in degree d

coprime factorization in Ln−1[Xn]

in degree d

split in Ln

coprime factorization in Ln[Xn+1]

in degree d

On the complexity of the D5 principle – p.17/28

The inductive process

Li := k[X1, . . . ,Xi]/(T1, . . . , Ti)

quasi-inverse in Ln
remove crit. pairs in Ln

in degree d

gcd in Ln[Xn+1]

gcd in Ln−1[Xn]

in degree d

coprime factorization in Ln−1[Xn]

in degree d

in degree d

coprime factorization in Ln[Xn+1]

split in Ln

On the complexity of the D5 principle – p.18/28

Algorithm for Split

Input: A triangular set T ,
a non-critical decomposition T = {T 1, . . . , T s} of T ,
a polynomial f ∈ k[X1, . . . ,Xn] with degXi

(f) < di.
Output: The family of polynomials {f mod T i , i = 1 . . . s}.
Main idea: Works recursively on the number of variables,
generalizing the well-known “multi-reduction” algorithm in one
variable.
Complexity: Cn

∏n
i=1 M(di) log(di).

References: Borodin & Moenck

On the complexity of the D5 principle – p.19/28

Quasi-inverse

Notation: K(T) will denote the ring k[X1, . . . ,Xn]/(T)

Input: T a triangular set, f ∈ k[X1, . . . ,Xn] with degXi
(f) < di.

Output: A non-critical decomposition T = {T 1, . . . , T s}, a
family of elements hi ∈ K(T i), s.t.:

f mod T i ≡ 0⇒ hi = 0, and
(f mod T i) . hi = 1 in K(T i) else.

Main idea: Use the gcd, “remove critical pairs” and “split”
algorithms modulo triangular sets in n− 1 variables.
Complexity: CM(dn) log(dn) operations modulo (T1, . . . , Tn−1).

On the complexity of the D5 principle – p.20/28

Half-GCD

Input: A triangular set T . Two polynomials a, b ∈ K(T)[Y], of
degree at most d.
Output: A non-critical decomposition T = {T 1, . . . , T s} of T , a
family {gi , i = 1 . . . s} of monic polynomials, where
gi ∈ K(T i)[Y], s.t. gi is a gcd of a mod T i and b mod T i

Main idea (over a field): The quotient of two polynomials of
high degree depends only on their high degree part⇒ relies
on divide and conquer and is recursive.
. . . and modulo a triangular set: At each recursive call, there is
an Euclidean Division⇒ quasi-inversion of the leading
coefficient⇒ splittings, and “remove the critical pairs”.
Complexity: CM(d) log(d) operations modulo T

References: Knuth-Schönhage-Moenck

On the complexity of the D5 principle – p.21/28

Coprime factorization

Input (over a field): A = a1, . . . , as family of squarefree
polynomials in k[y]. d :=

∑n
i=1 deg(ai)

Output (over a field): B = b1, . . . , bt ∈ k[y] s.t.:
gcd(bi, bj) = 1 for i 6= j

each ai is a product of some bj ’s.
each bj divides one ai.

Modulo a triangular set: The input family A is in K(T)[y].
The algorithm uses gcd computations, hence splittings appear.
The output is a non-critical decomposition of T , where the
three conditions above make sense.

Main idea: Divide the family A in 2 sets, compute a coprime
factorization of the both two sets, take all the pairs of gcd

between the two coprime factorizations.
Complexity: CM(d) log3(d)

operations modulo T .

On the complexity of the D5 principle – p.22/28

Coprime factorization

Input (over a field): A = a1, . . . , as family of squarefree
polynomials in k[y]. d :=

∑n
i=1 deg(ai)

Output (over a field): B = b1, . . . , bt ∈ k[y] s.t.:
gcd(bi, bj) = 1 for i 6= j

each ai is a product of some bj ’s.
each bj divides one ai.

Modulo a triangular set: The input family A is in K(T)[y].
The algorithm uses gcd computations, hence splittings appear.
The output is a non-critical decomposition of T , where the
three conditions above make sense.
Main idea: Divide the family A in 2 sets, compute a coprime
factorization of the both two sets, take all the pairs of gcd

between the two coprime factorizations.
Complexity: CM(d) log3(d) operations modulo T .

On the complexity of the D5 principle – p.22/28

Remove critical pairs

Input: A decomposition T = {T 1, . . . , T e} of a triangular set T .
Output: Family of decompositions T

1, . . . ,Te s.t.:
T

i is a decomposition of T i

the total family T
1 ∪ . . . ∪T

e has no critical pairs.
Main idea: coprime factorization of course. . . but it is tricky

On the complexity of the D5 principle – p.23/28

The inductive process

Li := k[X1, . . . ,Xi]/(T1, . . . , Ti)

quasi-inverse in Ln
remove crit. pairs in Ln

in degree d

gcd in Ln−1[Xn]

in degree d

coprime factorization in Ln−1[Xn]

in degree d

in degree d

coprime factorization in Ln[Xn+1]

CnM(d) log(d)
n−1
Q

i=1

M(di) log3(di) CnM(d) log3(d)
n−1
Q

i=1

M(di) log3(di))

split in Ln

Cn
n
Q

i=1

M(di) log(di)

gcd in Ln[Xn]

On the complexity of the D5 principle – p.24/28

The inductive process

Li := k[X1, . . . ,Xi]/(T1, . . . , Ti)

quasi-inverse in Ln
remove crit. pairs in Ln

in degree d

gcd in Ln−1[Xn]

in degree d

coprime factorization in Ln−1[Xn]

in degree d

in degree d

coprime factorization in Ln[Xn+1]

CnM(d) log(d)
n−1
Q

i=1

M(di) log3(di) CnM(d) log3(d)
n−1
Q

i=1

M(di) log3(di))

split in Ln

Cn
n
Q

i=1

M(di) log(di)
Cn

n
Q

i=1

M(di) log3(di)
Cn

n
Q

i=1

M(di) log3(di)

gcd in Ln[Xn]

On the complexity of the D5 principle – p.25/28

The inductive process

Li := k[X1, . . . ,Xi]/(T1, . . . , Ti)

quasi-inverse in Ln
remove crit. pairs in Ln

in degree d

gcd in Ln−1[Xn]

in degree d

coprime factorization in Ln−1[Xn]

in degree d

in degree d

coprime factorization in Ln[Xn+1]

CnM(d) log(d)
n−1
Q

i=1

M(di) log3(di) CnM(d) log3(d)
n−1
Q

i=1

M(di) log3(di))

Cn+1M(d) log(d)
n
Q

i=1

M(di) log3(di)

split in Ln

Cn
n
Q

i=1

M(di) log(di)
Cn

n
Q

i=1

M(di) log3(di)
Cn

n
Q

i=1

M(di) log3(di)

gcd in Ln[Xn]

On the complexity of the D5 principle – p.26/28

The inductive process

Li := k[X1, . . . ,Xi]/(T1, . . . , Ti)

quasi-inverse in Ln
remove crit. pairs in Ln

in degree d

gcd in Ln−1[Xn]

in degree d

coprime factorization in Ln−1[Xn]

in degree d

in degree d

coprime factorization in Ln[Xn+1]

CnM(d) log(d)
n−1
Q

i=1

M(di) log3(di) CnM(d) log3(d)
n−1
Q

i=1

M(di) log3(di))

Cn+1M(d) log(d)
n
Q

i=1

M(di) log3(di) Cn+1M(d) log3(d)
n
Q

i=1

M(di) log3(di))

split in Ln

Cn
n
Q

i=1

M(di) log(di)
Cn

n
Q

i=1

M(di) log3(di)
Cn

n
Q

i=1

M(di) log3(di)

gcd in Ln[Xn]

On the complexity of the D5 principle – p.27/28

Conclusion

The next goal is to obtain complexity statements for more general
dynamic evaluation questions:

If A is an “algorithm” that works over a field k in time T (A),
then one can deduce an “algorithm” that works over the
product of fields k[X1, . . . ,Xn]/(T1, . . . , Tn) in time

Cn(M(d1) log3(d1) · · ·M(dn) log3(dn))T (A).

The algorithm for gcd, coprime factorization rely on such results, but

the proofs are still ad-hoc.

On the complexity of the D5 principle – p.28/28

	What is the D5 principle ?
	Example of the D5 Principle
	From one to many variables
	From one to many variables
	Triangular sets
	Motivation
	Splitting during the D5 process
	Main result
	The splitting problem
	Solving the splitting problem 1/2
	Solving the splitting problem 1/2
	Solving the splitting problem 2/2
	The inductive process
	The inductive process
	The inductive process
	The inductive process
	The inductive process
	Algorithm for Split
	Quasi-inverse
	Half-GCD
	Coprime factorization
	Remove critical pairs
	The inductive process
	The inductive process
	The inductive process
	The inductive process
	Conclusion

