On the complexity of the D5 principle

X. Dahan^{*}, M. Moreno Maza[†], É. Schost^{*} & Y. Xie[†]

LIX, École polytechnique, Palaiseau, France. †: ORCCA, University of Western Ontario, London, Canada.

Model of computation for algebraic numbers developed by J. Della-Dora, C. Discrescenzo and D. Duval. (1985)

easy case: f irreducible polynomial over \mathbb{Q} , $\alpha_1, \ldots, \alpha_s$ its roots.

 $\{\text{Computing over any } \mathbb{Q}(\alpha_i)\} \longleftrightarrow \{\text{Computing over } \mathbb{Q}[X]/f\}$

Model of computation for algebraic numbers developed by J. Della-Dora, C. Discrescenzo and D. Duval. (1985)

easy case: f irreducible polynomial over \mathbb{Q} , $\alpha_1, \ldots, \alpha_s$ its roots.

{Computing over any $\mathbb{Q}(\alpha_i)$ } \longleftrightarrow {Computing over $\mathbb{Q}[X]/f$ }

• *f* is not irreducible but squarefree: For the addition and the multiplication computing over $\mathbb{Q}[X]/f$ still works. For the division two possibilities:

Model of computation for algebraic numbers developed by J. Della-Dora, C. Discrescenzo and D. Duval. (1985)

easy case: f *irreducible* polynomial over \mathbb{Q} , $\alpha_1, \ldots, \alpha_s$ its roots.

 $\{\text{Computing over any } \mathbb{Q}(\alpha_i)\} \longleftrightarrow \{\text{Computing over } \mathbb{Q}[X]/f\}$

- *f* is not irreducible but squarefree: For the addition and the multiplication computing over $\mathbb{Q}[X]/f$ still works. For the division two possibilities:
 - factorize $f(X) = f_1(X) \dots f_t(X)$, and work over $\mathbb{Q}[X]/f_i$ as above.

Model of computation for algebraic numbers developed by J. Della-Dora, C. Discrescenzo and D. Duval. (1985)

easy case: f irreducible polynomial over \mathbb{Q} , $\alpha_1, \ldots, \alpha_s$ its roots.

 $\{\text{Computing over any } \mathbb{Q}(\alpha_i)\} \longleftrightarrow \{\text{Computing over } \mathbb{Q}[X]/f\}$

- *f* is not irreducible but squarefree: For the addition and the multiplication computing over $\mathbb{Q}[X]/f$ still works. For the division two possibilities:
 - factorize $f(X) = f_1(X) \dots f_t(X)$, and work over $\mathbb{Q}[X]/f_i$ as above.
 - ... or use the D5 principle as in this example:

$$\begin{cases} f(X) = X^4 - 13X^2 + 36 \in \mathbb{Q}[X], \text{ reducible}, \\ \alpha_1, \alpha_2, \alpha_3, \alpha_4 \text{ its roots.} \end{cases}$$

Problem: $g_i(Z) := Z^3 + 3\alpha_i Z^2 + 12Z + 4\alpha_i \in \mathbb{Q}(\alpha_i)[Z], i = 1, \dots, 4$ Are the g_i 's squarefree ?

 $\begin{cases} f(X) = X^4 - 13X^2 + 36 \in \mathbb{Q}[X], \text{ reducible}, \\ \alpha_1, \alpha_2, \alpha_3, \alpha_4 \text{ its roots.} \end{cases}$

Problem: $g_i(Z) := Z^3 + 3\alpha_i Z^2 + 12Z + 4\alpha_i \in \mathbb{Q}(\alpha_i)[Z], \ i = 1, \dots, 4$ Are the g_i 's squarefree ?

• With factorization: f(X) = (X - 2)(X + 2)(X - 3)(X + 3), plug each root in g_i and check if the discriminant is zero.

 $\begin{cases} f(X) = X^4 - 13X^2 + 36 \in \mathbb{Q}[X], \text{ reducible}, \\ \alpha_1, \alpha_2, \alpha_3, \alpha_4 \text{ its roots.} \end{cases}$

Problem: $g_i(Z) := Z^3 + 3\alpha_i Z^2 + 12Z + 4\alpha_i \in \mathbb{Q}(\alpha_i)[Z], \ i = 1, \dots, 4$ Are the g_i 's squarefree ?

- With factorization: f(X) = (X 2)(X + 2)(X 3)(X + 3), plug each root in g_i and check if the discriminant is zero.
- With D5 principle: represent all $\mathbb{Q}(\alpha_i)$ using $\mathbb{Q}[X]/f$

 $\left\{ \begin{array}{l} f(X) = X^4 - 13X^2 + 36 \in \mathbb{Q}[X], \ \text{reducible}, \\ \alpha_1, \alpha_2, \alpha_3, \alpha_4 \ \text{its roots.} \end{array} \right. \label{eq:generalized_eq}$

Problem: $g_i(Z) := Z^3 + 3\alpha_i Z^2 + 12Z + 4\alpha_i \in \mathbb{Q}(\alpha_i)[Z], i = 1, \dots, 4$ Are the g_i 's squarefree ?

- With factorization: f(X) = (X 2)(X + 2)(X 3)(X + 3), plug each root in g_i and check if the discriminant is zero.
- With D5 principle: represent all $\mathbb{Q}(\alpha_i)$ using $\mathbb{Q}[X]/f$
 - define $g(X,Z) := Z^3 + 3XZ^2 + 12Z + 4X$
 - $\mathsf{Discr}(g) = -432(X-2)^2(X+2)^2$

 $\left\{ \begin{array}{l} f(X) = X^4 - 13X^2 + 36 \in \mathbb{Q}[X], \ \text{reducible}, \\ \alpha_1, \alpha_2, \alpha_3, \alpha_4 \ \text{its roots.} \end{array} \right. \label{eq:generalized_eq}$

Problem: $g_i(Z) := Z^3 + 3\alpha_i Z^2 + 12Z + 4\alpha_i \in \mathbb{Q}(\alpha_i)[Z], \ i = 1, \dots, 4$ Are the g_i 's squarefree ?

- With factorization: f(X) = (X 2)(X + 2)(X 3)(X + 3), plug each root in g_i and check if the discriminant is zero.
- With D5 principle: represent all $\mathbb{Q}(\alpha_i)$ using $\mathbb{Q}[X]/f$
 - define $g(X,Z) := Z^3 + 3XZ^2 + 12Z + 4X$
 - $\mathsf{Discr}(g) = -432(X-2)^2(X+2)^2$
 - $\alpha_i^2 \neq 4 \Leftrightarrow g_i$ is squarefree

From one to many variables

Previous example \longrightarrow the problem has actually led to:

$$\begin{split} \mathbb{Q}[X]/f &\simeq \mathbb{Q}[X]/X^2 - 4 &\times \mathbb{Q}[X]/(\frac{f}{X^2 - 4}) \\ A &\simeq B &\times C \\ g \text{ is not squarefree} & g \text{ is squarefree} \end{split}$$

From one to many variables

Previous example \longrightarrow the problem has actually led to:

$$\begin{split} \mathbb{Q}[X]/f &\simeq \mathbb{Q}[X]/X^2 - 4 &\times \mathbb{Q}[X]/(\frac{f}{X^2 - 4}) \\ A &\simeq B &\times C \\ A[Y]/(h \mod f) &\simeq B[Y]/(h \mod X^2 - 4) &\times C[Y]/(h \mod \frac{f}{X^2 - 4}) \\ \end{split}$$
where $h \in \mathbb{Q}[X, Y]$.

From one to many variables

Previous example \longrightarrow the problem has actually led to:

$$\begin{split} \mathbb{Q}[X]/f &\simeq \mathbb{Q}[X]/X^2 - 4 &\times \mathbb{Q}[X]/(\frac{f}{X^2 - 4}) \\ A &\simeq B &\times C \\ A[Y]/(h \mod f) &\simeq B[Y]/(h \mod X^2 - 4) &\times C[Y]/(h \mod \frac{f}{X^2 - 4}) \\ \end{split}$$
where $h \in \mathbb{Q}[X, Y]$.

 \Rightarrow Generalization: use of *Triangular sets*...

Triangular sets

- **•** Family of n monic polynomials
- Finite number of solutions, which are simple

```
T_n(X_1, X_2, \dots, X_n),

:

T_2(X_1, X_2),

T_1(X_1)
```

Useful in polynomial systems solving (decomposition of varieties, since the 90's): Lazard, Kalkbrener, Moreno Maza, Wang, Aubry, Dahan-Moreno Maza-Schost-Wu-Xie etc.

There is the following isomorphism:

- $k[X_1, \ldots, X_n]/T \simeq k[X_1, \ldots, X_n]/\mathfrak{m}_1 \times \cdots \times k[X_1, \ldots, X_n]/\mathfrak{m}_s$, where $\mathfrak{m}_1, \ldots, \mathfrak{m}_s$ are the primary ideals of *T*.
- Primary decomposition \longrightarrow factorization.
 Again, the D5 principle avoids the factorization.

Motivation

Newton algorithm modulo a triangular set:

- Obtain a triangular decomposition modulo a prime p
- Lift each triangular set with Newton-Hensel.

The Newton iterator uses the following computation:

```
\operatorname{\mathsf{Jac}}(T)\operatorname{\mathsf{Jac}}(F)^{-1}F \mod T,
```

which requires at least one division modulo a triangular set. Estimation of the complexity ?

Splitting during the D5 process

Quasi-inversion modulo a triangular set T:

 \square T is split into triangular sets R_1, \ldots, R_ℓ and $R_{\ell+1}, \ldots, R_m$, with

 $\alpha = 0 \mod \operatorname{each} R_i, \ i \leq \ell \quad \operatorname{and} \quad \alpha \text{ is a unit mod each } R_i, \ i > \ell$

• Then one can continue the computations in "parallel", modulo R_1, \ldots, R_m (less costly than primary decomposition)

Splitting during the D5 process

Quasi-inversion modulo a triangular set T:

• T is split into triangular sets R_1, \ldots, R_ℓ and $R_{\ell+1}, \ldots, R_m$, with

 $\alpha = 0 \mod \operatorname{each} R_i, \ i \leq \ell \quad \text{and} \quad \alpha \text{ is a unit mod each } R_i, \ i > \ell$

Then one can continue the computations in "parallel", modulo R_1, \ldots, R_m (less costly than primary decomposition)

Problem raised: After a splitting, one needs to compute the map:

$$k[X_1,\ldots,X_n]/T \to k[X_1,\ldots,X_n]/R_1 \times \cdots \times k[X_1,\ldots,X_n]/R_m$$

In general, a good complexity estimate for that is not always obvious...

Main result

- No complexity results for algorithms relying on this principle.
- What is missing: complexity of the quasi-inverse modulo a triangular set T. (all algorithms rely on it)
- Complexity measures used:
 - let $T = (T_1, ..., T_n)$, denote $d_i := \deg_{X_i}(T_i)$,
 - M(d) is an upper bound for the cost of the multiplication of two polynomials of degree at most d. $M(d) \in O(d \log(d) \log \log(d)).$

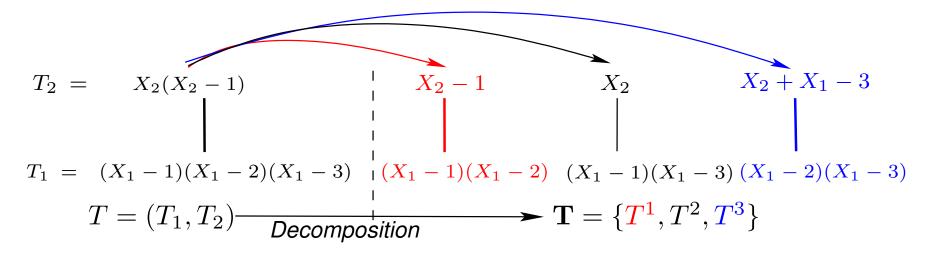
Theorem 0 There exists a C > 0, such that for all triangular set Tand for all $f \in k[X_1, ..., X_n]$ with $\deg_{X_i}(f) < d_i$, the computation of the quasi-inverse of f modulo T requires at most:

$$C^n \prod_{i=1}^n M(d_i) \log^3(d_i),$$
 (quasi – linear in $d_1 \dots d_n$)

operations over k.

The splitting problem

A quasi-inverse computation may lead to the following split:



Splitting an element p from T to T requires then to compute:

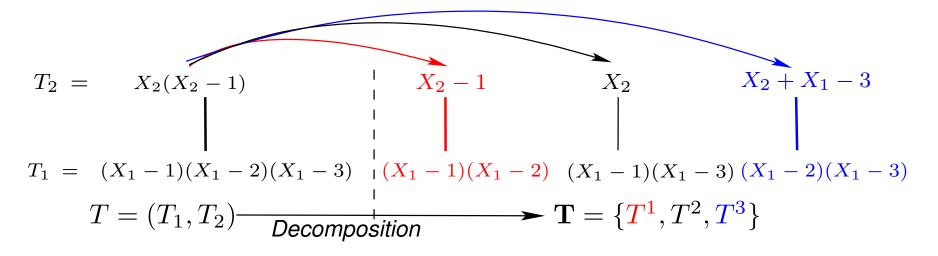
 $p \mod (X_1-1)(X_1-2)$, $p \mod (X_1-1)(X_1-3)$, $p \mod (X_1-2)(X_1-3)$,

there are some *redundancies* \rightarrow bad for complexity estimation.

The main topic of this work is to *remove* this difficulty...

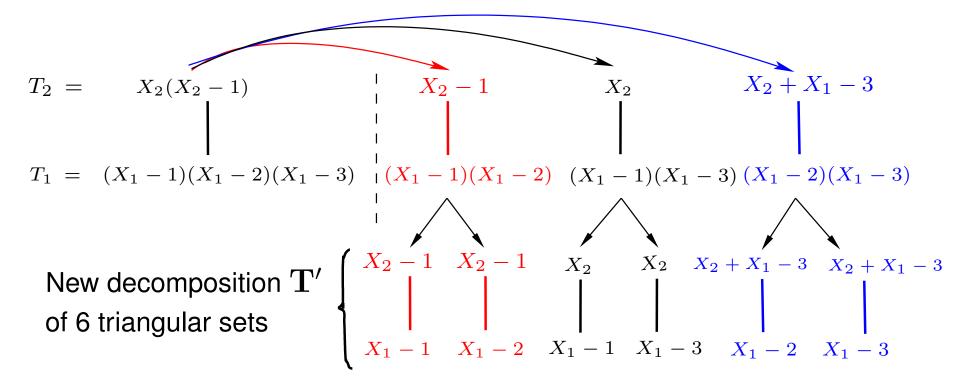
Solving the splitting problem 1/2

A solution is to *refine* the triangular decomposition as follows:



Solving the splitting problem 1/2

A solution is to *refine* the triangular decomposition as follows:



Now splitting p from T to T' requires only to compute:

 $p \mod X_1 - 1$, $p \mod X_1 - 3$, $p \mod X_1 - 2$

No more redundancy.

Solving the splitting problem 2/2

The previous decomposition has the following property:

Definition 0 $T \neq T'$ two triangular sets.

Let ℓ the least integer s.t. $T_{\ell} \neq T'_{\ell}$.

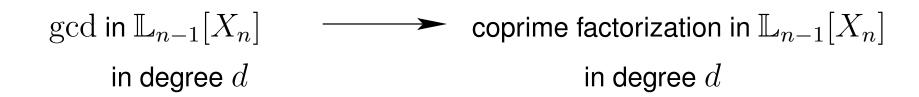
The pair T, T' is critical if $(T_{\ell}, T'_{\ell}) \neq (1)$ in $k[X_1, \dots, X_{\ell-1}]/(T_1, \dots, T_{\ell-1})[X_{\ell}].$

A decomposition T of T is non-critical if T has no critical pairs.

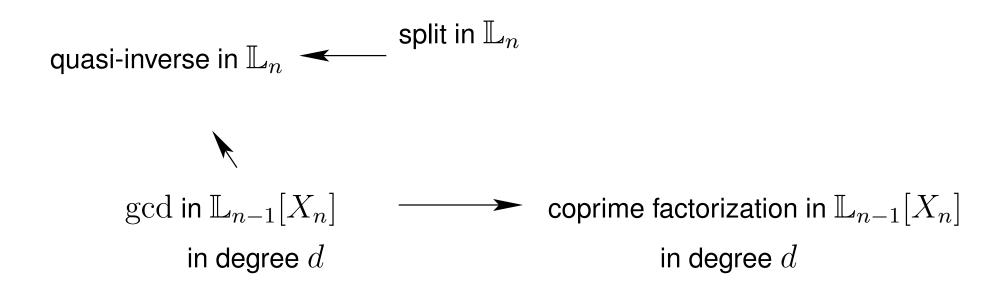
- Need to remove the critical pairs from any decomposition of triangular sets.
- Achieve this task with a good complexity \rightarrow use of "coprime factorization" algorithm.
- By definition, this requires to compute gcd modulo a triangular set.

$$\mathbb{L}_i := k[X_1, \dots, X_i]/(T_1, \dots, T_i)$$

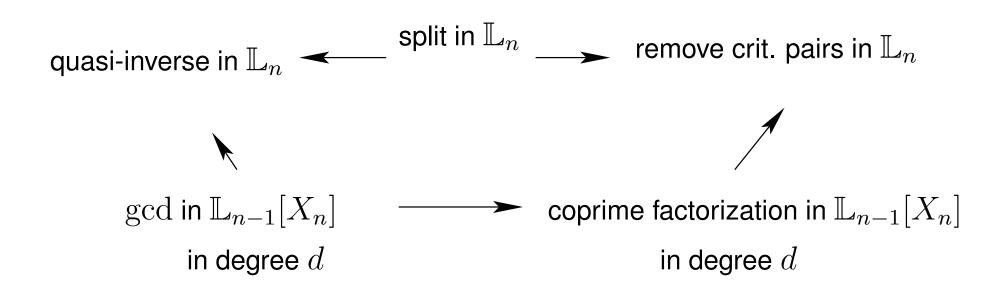
split in \mathbb{L}_n

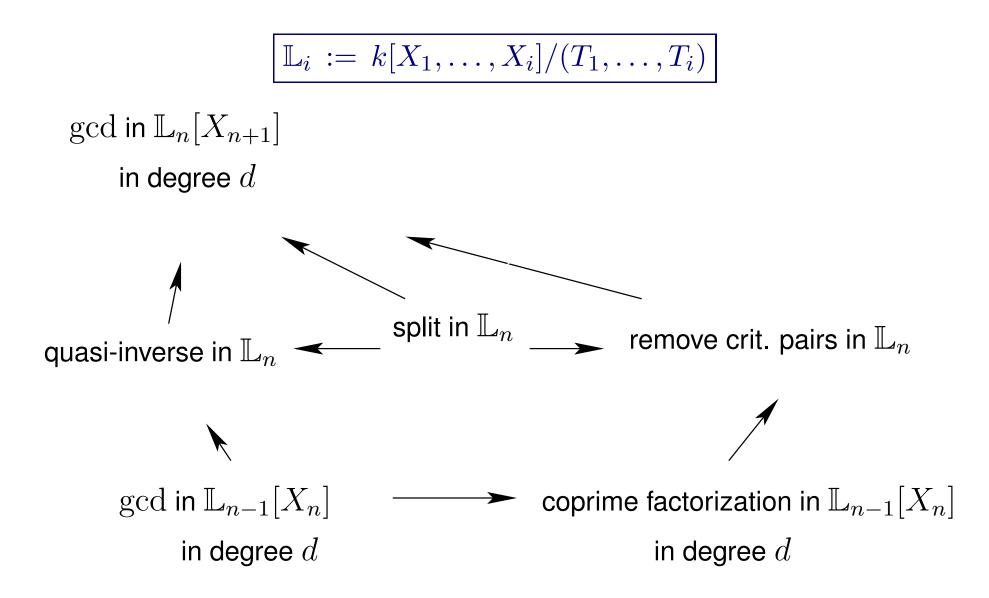


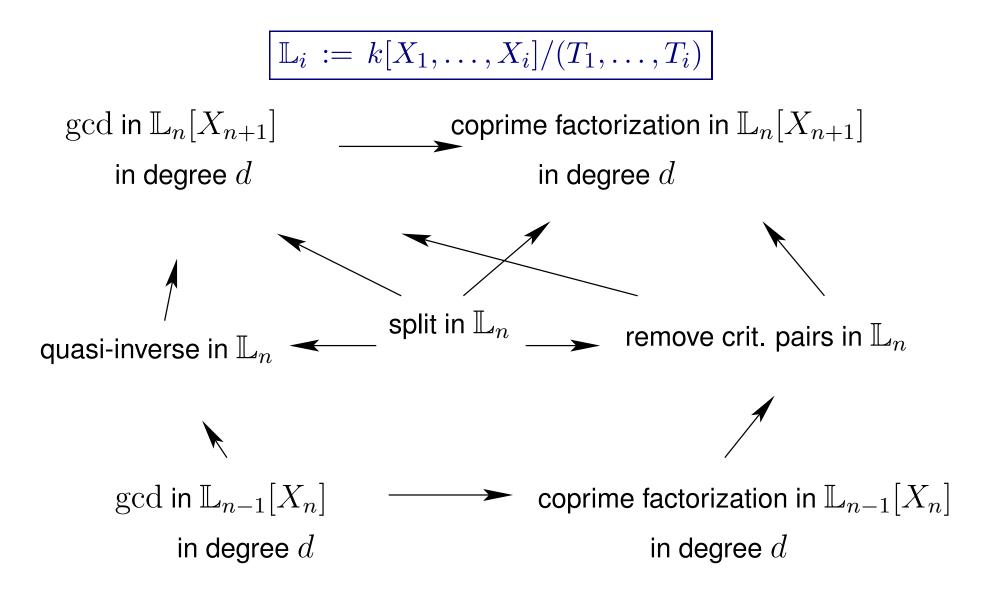
$$\mathbb{L}_i := k[X_1, \dots, X_i]/(T_1, \dots, T_i)$$



$$\mathbb{L}_i := k[X_1, \dots, X_i]/(T_1, \dots, T_i)$$







Algorithm for Split

Input: A triangular set *T*, a non-critical decomposition $T = \{T^1, ..., T^s\}$ of *T*, a polynomial *f* ∈ *k*[*X*₁, ..., *X_n*] with deg_{*X_i*}(*f*) < *d_i*.

- Output: The family of polynomials $\{f \mod T^i, i = 1 \dots s\}$.
- Main idea: Works recursively on the number of variables, generalizing the well-known "multi-reduction" algorithm in one variable.
- Complexity: $C^n \prod_{i=1}^n M(d_i) \log(d_i)$.
- *References:* Borodin & Moenck

Quasi-inverse

Notation: $\mathbb{K}(T)$ will denote the ring $k[X_1, \ldots, X_n]/(T)$

- Input: T a triangular set, $f \in k[X_1, \ldots, X_n]$ with $\deg_{X_i}(f) < d_i$.
- Output: A non-critical decomposition $T = \{T^1, ..., T^s\}$, a family of elements $h_i \in K(T^i)$, s.t.:

•
$$f \mod T^i \equiv 0 \Rightarrow h_i = 0$$
, and

•
$$(f \mod T^i) \cdot h_i = 1$$
 in $\mathbb{K}(T^i)$ else.

- Main idea: Use the gcd, "remove critical pairs" and "split" algorithms modulo triangular sets in n-1 variables.
- Complexity: $CM(d_n) \log(d_n)$ operations modulo (T_1, \ldots, T_{n-1}) .

Half-GCD

- *Input:* A triangular set *T*. Two polynomials $a, b \in \mathbb{K}(T)[Y]$, of degree at most *d*.
- Output: A non-critical decomposition $\mathbf{T} = \{T^1, \dots, T^s\}$ of T, a family $\{g_i, i = 1 \dots s\}$ of monic polynomials, where $g_i \in \mathbb{K}(T^i)[Y]$, s.t. g_i is a gcd of $a \mod T^i$ and $b \mod T^i$
- Main idea (over a field): The quotient of two polynomials of high degree depends only on their high degree part ⇒ relies on divide and conquer and is recursive.
- ... and modulo a triangular set: At each recursive call, there is
 an Euclidean Division ⇒ quasi-inversion of the leading
 coefficient ⇒ splittings, and "remove the critical pairs".
- Complexity: $CM(d) \log(d)$ operations modulo T
- References: Knuth-Schönhage-Moenck

Coprime factorization

- Input (over a field): $A = a_1, \ldots, a_s$ family of squarefree polynomials in k[y]. $d := \sum_{i=1}^n \deg(a_i)$
- Output (over a field): $B = b_1, \ldots, b_t \in k[y]$ s.t.:

•
$$gcd(b_i, b_j) = 1$$
 for $i \neq j$

- each a_i is a product of some b_j 's.
- each b_j divides one a_i .

Main idea: Divide the family A in 2 sets, compute a coprime factorization of the both two sets, take all the pairs of gcd between the two coprime factorizations.

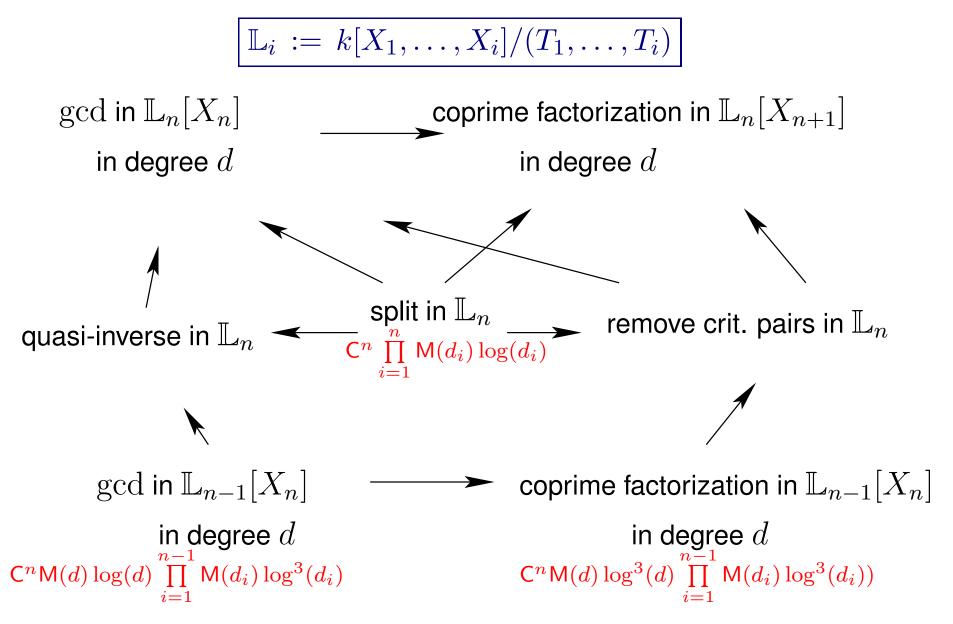
• Complexity: $CM(d) \log^3(d)$

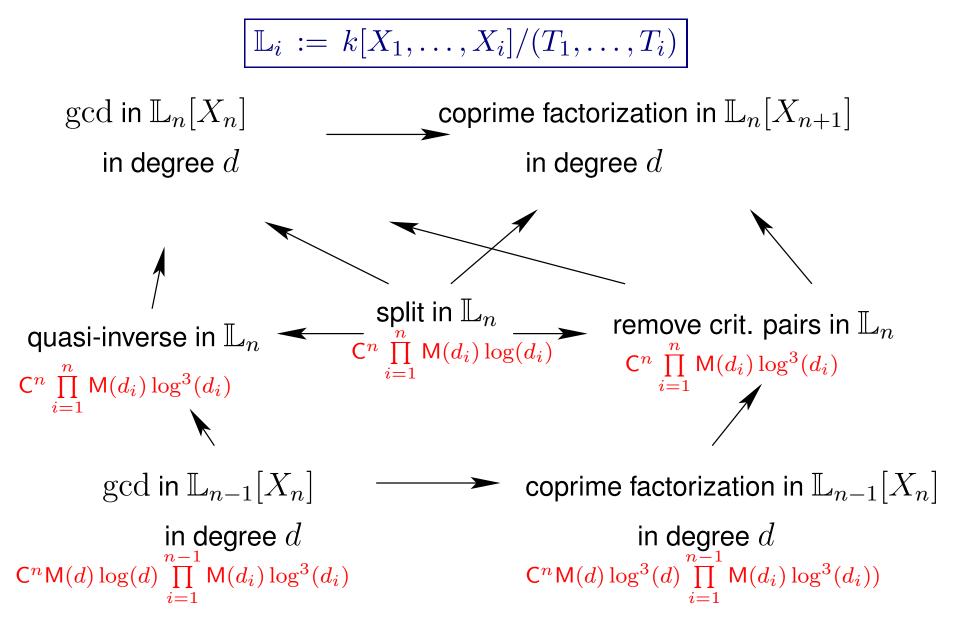
Coprime factorization

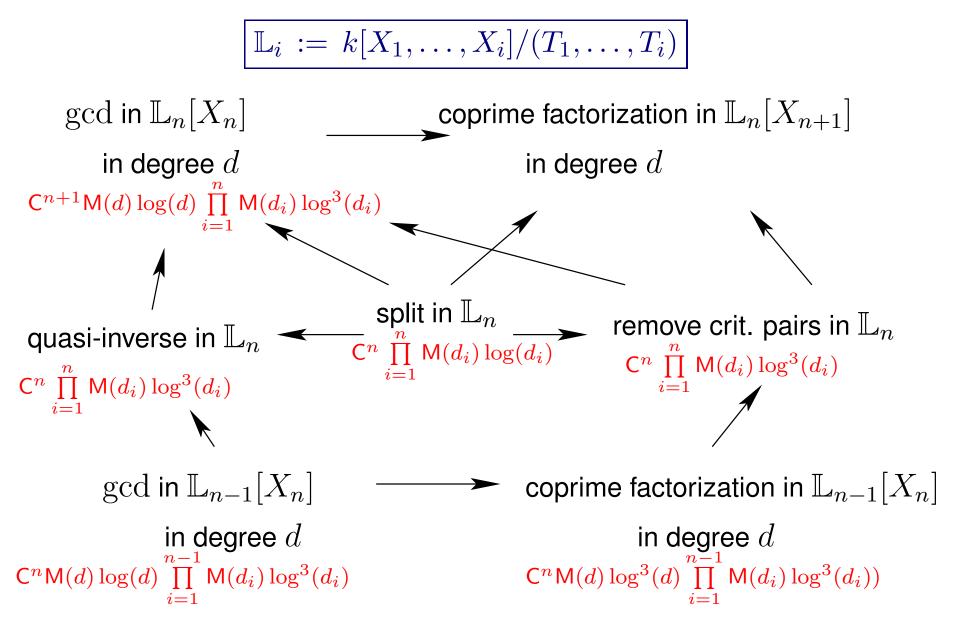
- Input (over a field): $A = a_1, ..., a_s$ family of squarefree polynomials in k[y]. $d := \sum_{i=1}^n \deg(a_i)$
- Output (over a field): $B = b_1, \ldots, b_t \in k[y]$ s.t.:
 - $gcd(b_i, b_j) = 1$ for $i \neq j$
 - each a_i is a product of some b_j 's.
 - each b_j divides one a_i .
- Modulo a triangular set: The input family A is in K(T)[y].
 The algorithm uses gcd computations, hence splittings appear.
 The output is a non-critical decomposition of T, where the three conditions above make sense.
- Main idea: Divide the family A in 2 sets, compute a coprime factorization of the both two sets, take all the pairs of gcd between the two coprime factorizations.
- Complexity: $CM(d) \log^3(d)$ operations modulo T.

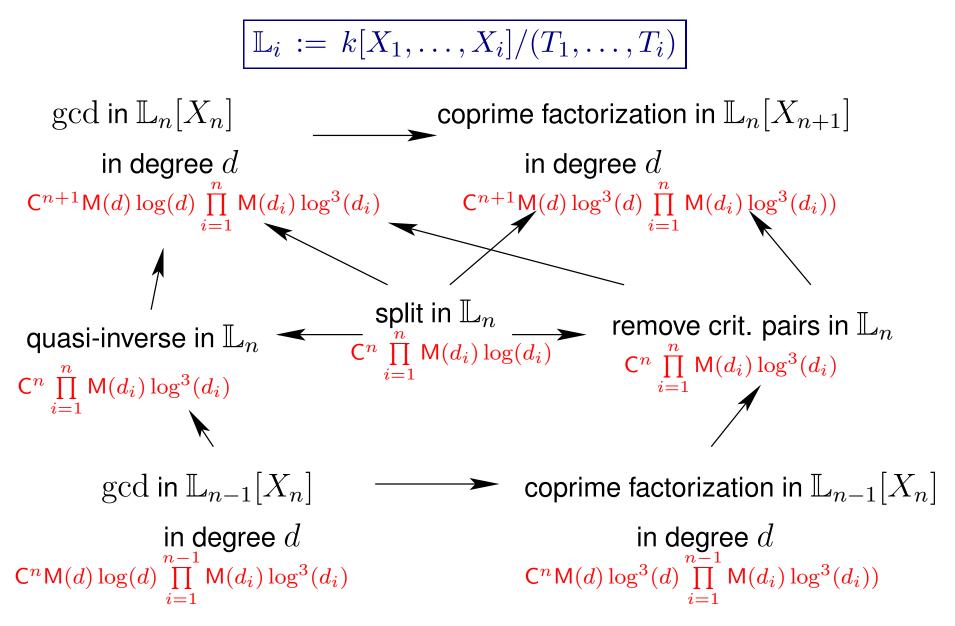
Remove critical pairs

- **Input:** A decomposition $\mathbf{T} = \{T^1, \dots, T^e\}$ of a triangular set T.
- Output: Family of decompositions $\mathbf{T}^1, \ldots, \mathbf{T}^e$ s.t.:
 - \mathbf{T}^i is a decomposition of T^i
 - the total family $\mathbf{T}^1 \cup \ldots \cup \mathbf{T}^e$ has no critical pairs.
- *Main idea:* coprime factorization of course...but it is tricky









Conclusion

The next goal is to obtain complexity statements for more general dynamic evaluation questions:

- If A is an "algorithm" that works over a field k in time T(A),
- then one can deduce an "algorithm" that works over the product of fields $k[X_1, \ldots, X_n]/(T_1, \ldots, T_n)$ in time

 $C^n(M(d_1)\log^3(d_1)\cdots M(d_n)\log^3(d_n))T(\mathbf{A}).$

The algorithm for \gcd , coprime factorization rely on such results, but the proofs are still ad-hoc.