
Calcul parallèle exacte des solutions réelles de systèmes
algébriques

Marc Moreno Maza

University of Western Ontario (Canada)

LIFL
Université Lille 1

19 Mai 2011

M3 () RealTriangularize LIRMM 1 / 49

Plan

1 Computing the real solutions of polynomial systems symbolically

2 Hilbert 16’s Problem

3 Real Root Isolation on Multicores

4 Solving Polynomial Systems on the GPU

M3 () RealTriangularize LIRMM 2 / 49

Plan

1 Computing the real solutions of polynomial systems symbolically

2 Hilbert 16’s Problem

3 Real Root Isolation on Multicores

4 Solving Polynomial Systems on the GPU

M3 () RealTriangularize LIRMM 3 / 49

A biochemical network: setting (1/3)

The generic kinetic scheme of prion diseases is illustrated as follows:

↓ 1

PrPC 3−→ PrPSC 4−→ Aggregates.

↓ 2

where[
PrPC

]
is the concentration of PrPC (harmless form)[

PrPSC
]

is the concentration of PrPSC (infectious form) which
catalyses the transformation from the normal form to itself,

Step 1: synthesis of native PrPC

Step 2, 4: normal degradation.

M3 () RealTriangularize LIRMM 4 / 49

A biochemical network: setting (2/3)

Let νi be the rate of Step i for i = 1, . . . , 4.

↓ 1

PrPC 3−→ PrPSC 4−→ Aggregates.

↓ 2

Step 1: zero-order kinetic process, that is ν1 = k1,

Step 2, 4: first-order rate equations: ν2 = k2

[
PrPC

]
,

ν4 = k4

[
PrPSC

]
.

Step 3: a nonlinear process

ν3 =
[
PrPC

] a (1 + b
[
PrPSC

]n)
1 + c [PrPSC]

n .

M3 () RealTriangularize LIRMM 5 / 49

A biochemical network: setting (3/3)

↓ 1

PrPC 3−→ PrPSC 4−→ Aggregates.

↓ 2

We also have:

d
[
PrPC

]
dt

= ν1 − ν2 − ν3

d
[
PrPSC

]
dt

= ν3 − ν4

Letting x =
[
PrPC

]
and y =

[
PrPSC

]
. we obtain the dynamical system:

dx

dt
= k1 − k2x − ax

(1 + byn)

1 + cyn

dy

dt
= ax

(1 + byn)

1 + cyn
− k4y

M3 () RealTriangularize LIRMM 6 / 49

A biochemical network: semi-algebraic systems to solve

Dynamical system to study

M. Laurent (Biochem. J., 1996) suggests to set b = 2, c = 1/20, n = 4,
a = 1/10, k4 = 50 and k1 = 800, leading to:{ dx

dt = f1
dy
dt = f2

with

{
f1 = 16000+800y4−20k2x−k2xy4−2x−4xy4

20+y4

f2 = 2(x+2xy4−500y−25y5)
20+y4

.

Semi-algebraic systems to solve

By Routh-Hurwitz criterion, an equilibrium (x , y) is asymptotically stable if

∆1 := −(
∂f1
∂x

+
∂f2
∂y

) > 0 and a2 :=
∂f1
∂x
· ∂f2
∂y
− ∂f1
∂y
· ∂f2
∂x

> 0.

Letting p1, p2 the above polynomials, we obtain two semi-algebraic
systems:

S1 : {p1 = p2 = 0, k2 > 0} and S2 : {p1 = p2 = 0, k2 > 0,∆1 > 0, a2 > 0}
M3 () RealTriangularize LIRMM 7 / 49

A biochemical network: solving S1

The real solutions of S1 are described by the following triangular
decomposition into regular semi-algebraic systems.

A1 :=


(2y4 + 1)x − 25y5 − 500y = 0

(k2 + 4)y5 − 64y4 + (2 + 20k2)y − 32 = 0
k2 > 0
r 6= 0

, A2 :=


tx = 0
ty = 0
r = 0
k2 > 0

.

where ty (k2, y) has degree 4 in y and r is given by

r := 100000k8
2 + 1250000k7

2 + 5410000k6
2 + 8921000k5

2 − 9161219950k4
2

− 5038824999k3
2 − 1665203348k2

2 − 882897744k2 + 1099528405056.

The polynomial r has four real roots, two are positive: α1 < α2.

M3 () RealTriangularize LIRMM 8 / 49

A biochemical network: solving S1

Regarding k2 as a parameter, one can compute a real comprehensive
triangular decomposition which gives:

{ } k2 ≤ 0
{A1} 0 < k2 < α1

{A2} k2 = α1

{A1} α1 < k2 < α2

{A2} k2 = α2

{A1} k2 > α2

.

From where we deduce the number of real solutions:
0 k2 ≤ 0
1 k2 > 0 and r > 0
2 k2 > 0 and r = 0
3 k2 > 0 and r < 0

M3 () RealTriangularize LIRMM 9 / 49

A biochemical network: conclusion

Theorem

Assume that k2 > 0. Then we have: if r > 0, then the dynamical system
has 1 equilibrium; if r = 0, then it has 2 equilibria; if r < 0, it has 3
equilibria.

Theorem

Assume that k2 > 0. Then we have: if r > 0, then the system has one
hyperbolic equilibrium, which is asymptotically stable; if r < 0 and r2 6= 0,
then the system has three hyperbolic equilibria, two of which are
asymptotically stable and the other one is unstable; if r = 0 or r2 = 0, the
system experiences a bifurcation where

r2 = 10004737927168k9
2 + 624166300700672k8

2 + 7000539052537600k7
2

+ 45135589467012800k6
2 − 840351411856453750k5

2 − 50098004352248446875k4
2

− 27388168989455000000k3
2 − 8675209266696000000k2

2

+ 102960917356800000000k2 + 5932546064102400000000.

M3 () RealTriangularize LIRMM 10 / 49

Summary and notes

Solving for the real roots of (parametric or not) polynomial systems
is a fundamental problem with many applications.

Most of the time, this requires symbolic (and exact) computation.

Computer algebra systems have limited capabilities for that, especially
for the parametric case.

Recent work (Changbo Chen, James H. Davenport, M3 , Bican Xia
& Rong Xiao ISSAC 2010-2011) is changing that.

RealTriangularize is available Maple 15, as part of the Maple
RegularChains library.

M3 () RealTriangularize LIRMM 11 / 49

Plan

1 Computing the real solutions of polynomial systems symbolically

2 Hilbert 16’s Problem

3 Real Root Isolation on Multicores

4 Solving Polynomial Systems on the GPU

M3 () RealTriangularize LIRMM 12 / 49

Cycles limite dans le modèle proie-prédateur

Two species interact, one is a predator and one is its prey, according
to the pair of differential equations:{ dx

dt = x(a− by)
dy
dt = −y(c − dx).

Say x and y are numbers of carnivores and herbivores, while
a, b, c, d are parameters.

At (x , y) = (c
d ,

b
a), we have a

limit cycle:

as the number of
herbivores increases, then
so does that of carnivores.

but as that of carnivores
increases, that of
herbivores decreases, . . .

M3 () RealTriangularize LIRMM 13 / 49

The statement

H 16: modern version

The (second half) of the 16th problem is one of the two remaining ones.

It asks for an upper bound of the number of limit cycles in polynomial
vector fields:

ẋ = Pn(x , y), ẏ = Qn(x , y) (1)

where Pn(x , y) and Qn(x , y) are real polynomials of total degree n.

So far one got there:

n = 2 is solved and the maximum is 3.

But n = 3 resists, even if restricting to the nearby of isolated fixed points.

We consider the computation of small limit cycles bifurcated from a center
at origin.

M3 () RealTriangularize LIRMM 14 / 49

Problem set up

Original problem:

Consider a general normalized cubic system:

ẋ = a10x + a01y + a20x
2 + a11xy + a02y

2 + a30x
3 + a21x

2y + a12xy
2 + a03y

3

ẏ = b10x + b01y + b20x
2 + b11xy + b02y

2 + b30x
3 + b21x

2y + b12xy
2 + b03y

3 .
(2)

Reworked problem:

After various transformations (rescaling, etc.) aiming at reducing the
number of parameters, one obtains:

ẋ =αx + y + x2 + (b + 2d)xy + cy2 + fx3 + gx2y + (h − 3p)xy2 + ky3

ẏ =− x + αy + dx2 + (e − 2)xy − dy2 + lx3 + (m − h − 3f)x2y

+ (n − g)xy2 + py3.
(3)

which depends on 13 variables {α, b, c , d , e, f , g , h, k , l ,m, n, p}.

M3 () RealTriangularize LIRMM 15 / 49

Using polar coordinates

Normal form

One obtains the so-called normal form:

dr

dt
= r(v0 + v1r

2 + v2r
4 + · · ·+ vk r

2k),

dθ

dt
= 1 + ω + t1r

2 + t2r
4 + · · ·+ tk r

2k ,

(4)

where v0, . . . , vk depend polynomially on {α, b, c, d , e, f , g , h, k , l ,m, n, p}.

Theorem (Yu Pei)

If the system
v0 = v1 = · · · = vk−1 = 0, vk 6= 0 , (5)

is consistent, then there are at most k limit cycles. Furthermore, these are
exactly k limit cycles if at one real solution we have:

det

(
∂vi
∂aj

)
(k−1)×(k−1)

6= 0 (6)

M3 () RealTriangularize LIRMM 16 / 49

The system to solve

13 should be the maximum!

It follows that “generically”’ we need to solve

v0 = v1 = · · · = vk−1 = 0, vk 6= 0 , (7)

for k = 13, since there are 13 variables {α, b, c , d , e, f , g , h, k, l ,m, n, p}.

Thus we expect to prove that 13 is an upper bound.

The system is hard to generate

So far we could only generate v0, v1, . . . , v9 after several days of
computation with Maple.

However, v0, v1, . . . , v9 appear to be very sparse (linear growth w.r.t.
their total degree).

M3 () RealTriangularize LIRMM 17 / 49

A first attempt via symbolic solving

Make the origin a center!

We return to the Cartesian formulation

ẋ = ax + y + x2 + (b + 2d)xy + cy2 + fx3 + gx2y + (h − 3p)xy2 + ky3 ,

ẏ = −x + ay + dx2 + (e − 2)xy − dy2 + lx3 + (m − h − 3f)x2y + (n − g)xy2 + py3 ,
(8)

and set α = b = e = h = m = n = 0, p = f and
n = 1/3(35c2 + 30c − 15l − 15k − 45).

Experimental result

We solved the new system for g < f < l < k < c modulo a 258-bit prime.
After 19 days of Maple, using 9506.1MB, we obtained 852 complex
roots using the RegularChains library.
Unfortunately, the output length is 6, 355, 573 character long.
Too big for isolating the real roots on a desktop!

M3 () RealTriangularize LIRMM 18 / 49

Summary and notes

There is hope to solve Hilbert 16’s Problem, for n = 3, on a cluster
(but not on a desktop).

Using symbolic computation is required.

We are currently building a cluster and software for that purpose.

Joint work (dynamical system part) with Changbo Chen,
Robert M. Corless, Pei Yu, Yiming Zhang.

The involved RegularChains library algorithms are based on the
following papers:

I (Changbo Chen & M3 , ISSAC 2011)
I (Xavier Dahan, M3 , Éric Schost, Yuzhen Xie, ISSAC 2005)
I (François Boulier, Changbo Chen, François Lemaire & M3 , ASCM

2009)
I (Changbo Chen, James H. Davenport, M3 , Bican Xia & Rong Xiao,

ISSAC 2010 & ISSAC 2011)

M3 () RealTriangularize LIRMM 19 / 49

Plan

1 Computing the real solutions of polynomial systems symbolically

2 Hilbert 16’s Problem

3 Real Root Isolation on Multicores

4 Solving Polynomial Systems on the GPU

M3 () RealTriangularize LIRMM 20 / 49

Reduction to Taylor shift

The Taylor shift x 7−→ f(x + 1) operation is at the core of Collins-Akritas
Algorithm for real root isolation (counting).

Algorithm 1: NumberInZeroOne(p)

Input: a squarefree univariate polynomial p
Output: number of real roots of p in (0, 1)
begin1

p1 := xnp(1/x); p2 := p1(x + 1)2

let d be the number of sign variations of the coefficients of p23

if d ≤ 1 then return d4

p1 := 2np(x/2); p2 := p1(x + 1)5

if x | p2 then m := 1 else m := 06

m′ := NumberInZeroOne(p1)7

m = m + NumberInZeroOne(p2)8

return m + m′9

end10

M3 () RealTriangularize LIRMM 21 / 49

Reformulate the problem: Pascal’s triangle

Example

For f (x) = a3x
3 + a2x

2 + a1x + a0, we have

f (x + 1) = a3x
3 + (a2 + 3a3)x2 + (a1 + 2a2 + 3a3)x + (a0 + a1 + a2 + a3)

That is:
0 0 0 0

a3 + + + +→ c3

a2 + + +→ c2

a1 + +→ c1 ↘
a0 +→ c0

M3 () RealTriangularize LIRMM 22 / 49

Work, span and parallelism

For Tableau, we have

work: U1(n) = 4U1(n/2) + 1, so U1(n) = Θ(n2).

span: U∞(n) = 3U∞(n/2) + 1, so U∞(n) = Θ(nlog2 3).

For Pascal’s triangle, we have

work: T1(n) = 2T1(n/2) + U1(n/2), so T1(n) = Θ(n2).

span: T∞(n) = T∞(n/2) + U∞(n/2), so T∞(n) = Θ(nlog2 3).

The parallelism for both is Θ(n0.45).
M3 () RealTriangularize LIRMM 23 / 49

Space and cache complexity

Space complexity

Since only the coefficients of f (x + 1) matter, computations can be done
in place, so Θ(n).

Cache complexity

For two-way Tableau, we have

Q(n) =

{
2n/L + 2 n ≤ αZ
4Q(n/2) + 1 otherwise

thus Q(n) = Θ(n2/ZL)

Then for the Pascal’s triangle:

Q(n) =

{
2n/L + 2 n ≤ αZ
2Q(n/2) + Θ(n2/ZL) otherwise

thus Q(n) = Θ(n2/ZL)

Using the Hong-Kung lower bound one can prove that this is optimal.

M3 () RealTriangularize LIRMM 24 / 49

Increasing the parallelism

Using a k-way divide and conquer

Yes, but the cache complexity then depends linearly on k2.

Using a blocking strategy

One can partition the entire Pascal Triangle into B × B blocks. Of course
B should be tuned in order for a block to fit in cache.

Span and parallelism are now Θ(Bn) and Θ(n/B) respectively.

In addition, if B is well chosen, cache complexity remains optimal..

M3 () RealTriangularize LIRMM 25 / 49

Experimental results

Table 1. Taylor shift (timings in seconds).

n k B method Bnd Cnd Random
×103 ×103 8p 1p Sp 8p 1p Sp 8p 1p Sp

5 5 50 block 1.3 6.5 4.9 0.92 2.3 2.5 1.3 6.5 4.9
5 5 8 d-n-c 1.5 6.6 4.6 0.94 2.3 2.5 1.5 6.63 4.6

10 10 50 block 7.7 50.8 6.6 4.4 17.5 4.0 7.8 50.78 6.5
10 10 8 d-n-c 8.5 51.7 6.0 4.2 17.6 4.2 8.5 51.65 6.1
25 25 50 block 104 779 7.5 43 261 6.1 104 778.7 7.5
25 25 8 d-n-c 110 790 7.2 42 262 6.3 110 789.7 7.2

This machine has 8 GB memory and 6144 KB of L2 cache.
Each processor is Intel Xeon X5460 @3.16 GHz.
In the table, n and k denote the degree and coefficient size (number of
bits) of the input polynomials.

M3 () RealTriangularize LIRMM 26 / 49

Summary and notes

The real roots of our polynomial (from the Hilbert 16 problem) with
degree 852 and 6, 355, 573 character long could be isolated on a
32-core node with 128 GB memory in 15 minutes.

The implementation is in Cilk++.

Work in progress includes the use of dynamically sized blocks to
take into account the increase of work per block.

Joint work with Changbo Chen and Yuzhen Xie.

M3 () RealTriangularize LIRMM 27 / 49

Plan

1 Computing the real solutions of polynomial systems symbolically

2 Hilbert 16’s Problem

3 Real Root Isolation on Multicores

4 Solving Polynomial Systems on the GPU

M3 () RealTriangularize LIRMM 28 / 49

Background

Background

FFTs over finite fields is at the core of asymptotically fast polynomial
arithmetic.

Most FFTs on GPUs are for complex numbers, such as NVIDIA
CUFFT library.

Testing in GB/s

log2 n memset Main Mem to GPU GPU to Main Mem GPU Kernel
23 1.56 1.33 1.52 61.6
24 1.56 1.34 1.52 69.9
25 1.39 1.35 1.53 75.0
26 1.39 1.28 1.50 77.4
27 1.43 1.35 1.49 79.0

Intel Core 2 Quad Q9400 @ 2.66GHz, 6GB memory, memory interface width
128 bits

GeForce GTX 285, 1GB global memory, 30× 8 cores, memory interface
width 512 bits

M3 () RealTriangularize LIRMM 29 / 49

Extract parallelism from structural formulas

In ⊗ A: block parallelism

I4 ⊗DFT2 =



1 1
1 −1

1 1
1 −1

1 1
1 −1

1 1
1 −1



M3 () RealTriangularize LIRMM 30 / 49

Extract parallelism from structural formulas

A⊗ In: vector parallelism

DFT2 ⊗ I4 =



1
1

1
1

1
1

1
1

1
1

1
1

−1
−1

−1
−1



M3 () RealTriangularize LIRMM 31 / 49

Stockham FFT

DFT2k =
k−1∏
i=0

(DFT2 ⊗ I2k−1)︸ ︷︷ ︸
butterfly

(D2,2k−i−1 ⊗ I2i)︸ ︷︷ ︸
twiddling

(L2k−i

2 ⊗ I2i)︸ ︷︷ ︸
reordering

void stockham_dev(int *X_d, int n, int k, const int *W_d, int p)

{

int *Y_d;

cudaMalloc((void **)&Y_d, sizeof(int) * n);

butterfly_dev(Y_d, X_d, k, p);

for (int i = k - 2; i >= 0; --i) {

stride_transpose2_dev(X_d, Y_d, k, i);

stride_twiddle2_dev(X_d, W_d, k, i, p);

butterfly_dev(Y_d, X_d, k, p);

}

cudaMemcpy(X_d, Y_d, sizeof(int)*n, cudaMemcpyDeviceToDevice);

cudaFree(Y_d);

}

M3 () RealTriangularize LIRMM 32 / 49

Cooley-Tukey FFT

DFT2k =

(
k∏

i=1

(I2i−1 ⊗DFT2 ⊗ I2k−i)Tn,i

)
Rn

with the twiddle factor matrix Tn,i = I2i−1 ⊗ D2,2k−i and the bit-reversal
permutation matrix

Rn = (In/2 ⊗ L2
2)(In/22 ⊗ L4

2) · · · (I1 ⊗ Ln2).

M3 () RealTriangularize LIRMM 33 / 49

Timing FFT in milliseconds

e modpn Cooley-Tukey C-T + Mem Stockham S + Mem
time ratio time ratio time ratio time ratio

12 1 1 1.0 1 1.0 2 0.5 2 0.5
13 1 2 0.5 2 0.5 2 0.5 3 0.3
14 3 1 3.0 2 1.5 2 1.5 3 1.0
15 4 2 2.0 2 2.0 3 2.0 3 1.3
16 10 3 3.3 3 3.3 3 3.3 4 3.3
17 16 4 4.0 5 3.2 3 5.3 5 3.2
18 37 6 6.2 9 4.1 4 9.3 7 5.3
19 71 11 6.5 15 6.5 6 11.8 10 7.1
20 174 22 7.9 28 6.2 9 19.3 16 10.9
21 470 44 10.7 56 8.4 16 29.4 28 16.8
22 997 83 12.0 105 9.5 29 34.4 52 19.2
23 2070 165 12.5 210 9.9 56 37.0 101 20.5
24 4194 330 12.7 418 10.0 113 37.0 201 20.9
25 8611 667 12.9 842 10.2 230 37.4 405 21.2
26 17617 1338 13.2 1686 10.4 473 37.2 822 21.4

The GPU is GTX 285.

M3 () RealTriangularize LIRMM 34 / 49

Solving polynomial systems with GPU support

Main idea

Solving P(x , y) = Q(x , y) = 0 is essentially done as follows:

1 Determine necessary conditions on x for P(x)(y) and Q(x)(y) to
have common roots; such x ’s are roots of the resultant R(x) of P,Q
w.r.t. y .

2 For x = x0 such that x0 is a root of R determine the common
solutions of P(x0)(y) = 0 and Q(x0)(y) = 0; this is essentially a GCD
computation.

Both steps can be easily deduced from a so-called Subresultant Chain
Computation

M3 () RealTriangularize LIRMM 35 / 49

Subresultant chain computation

M3 () RealTriangularize LIRMM 36 / 49

Subresultant chain by evaluation/interpolation

Different Strategies

FFT based techniques

- Fourier prime limitation,
- a valid grid is required,
- translations are tried a few times.

Subproduct tree techniques

FFT scube on the GPU

Coarse-grained construction (always works)

Fine-grained construction (requires some genericity assumption)

M3 () RealTriangularize LIRMM 37 / 49

Profiling coarse-grained implementation

M3 () RealTriangularize LIRMM 38 / 49

Profiling fine-grained implementation

M3 () RealTriangularize LIRMM 39 / 49

Computing resultants

d t0 t1 t1/t0

30 0.23 0.29 1.3
40 0.23 0.43 1.9
50 0.27 1.14 4.2
60 0.27 1.53 5.7
70 0.31 3.95 12.7
80 0.32 4.88 15.3
90 0.35 5.95 17.0

100 0.50 19.10 38.2
110 0.53 17.89 33.8
120 0.58 19.72 34.0

Bivariate dense polynomials of total
degree d .

d t0 t1 t1/t0

8 0.23 0.76 3.3
9 0.24 0.85 3.5

10 0.25 0.98 3.9
11 0.24 1.10 4.6
12 0.30 4.96 16.5
13 0.31 5.52 17.8
14 0.32 6.07 19.0
15 0.78 8.95 11.5
16 0.65 31.65 48.7
17 0.66 34.55 52.3
18 3.46 47.54 13.7
19 0.73 51.04 69.9
20 0.75 43.12 57.5

Trivariate dense polynomials of total
degree d .

t0, GPU fft code

t1, CPU fft code

Nvidia Tesla C2050

M3 () RealTriangularize LIRMM 40 / 49

Bivariate solver

M3 () RealTriangularize LIRMM 41 / 49

Bivariate solver on the CPU

M3 () RealTriangularize LIRMM 42 / 49

Bivariate solver on the GPU

M3 () RealTriangularize LIRMM 43 / 49

Solving bivariate systems in seconds

d t0(gpu) t1(total) t2 (cpu) t3 (total) t2/t0 t3/t1

30 0.25 0.35 0.14 0.25 0.6 0.7
40 0.25 0.46 0.42 0.64 1.7 1.4
50 0.28 0.67 1.14 1.56 4.1 2.3
60 0.29 0.88 1.54 2.20 5.3 2.5
70 0.31 1.20 3.94 4.94 12.7 4.1
80 0.32 1.42 4.84 6.06 15.1 4.3
90 0.33 1.80 5.94 7.54 18.0 4.2

100 0.48 2.56 14.23 16.66 29.7 6.5
110 0.52 2.93 16.78 19.58 32.1 6.7
120 0.55 3.80 24.41 28.60 44.4 7.5

d : total degree of the input polynomial

t0 : GPU FFT based scube construction

t1 : total time for solving with GPU code

t2 : CPU FFT based scube construction

t3 : total time for solving without CPU code

M3 () RealTriangularize LIRMM 44 / 49

Summary and notes

The Stockham FFT achieves a speedup factor of 21 for large FFT
degrees, comparing to the modpn serial implementation.

The subresultant chain construction has been improved by a factor of
(up to) 44 on the GPU.

For the bivariate solver, more code has to be ported to GPU (mainly
univariate polynomial GCDs)

Nevertheless the GPU-based code solves within a second, polynomial
systems for which pure serial code takes 7.5 sec.

The goal is to make bivariate and trivariate system solvers as fast as a
univariate GCD routine in Maple.

Our H 16 cluster will rely heavily on those!

Joint work with Wei Pan.

M3 () RealTriangularize LIRMM 45 / 49

The predator-prey biological model (1/4)

Two species interact, one is a predator and one is its prey, according
to the pair of differential equations:{ dx

dt = x(a− by)
dy
dt = −y(c − dx).

Say x and y are numbers of carnivores and herbivores, while
a, b, c, d are parameters.

Population equilibria at: {
x(a− by) = 0
y(c − dx) = 0.

This gives two solutions:

(x , y) = (0, 0) and (x , y) = (
c

d
,
b

a
).

M3 () RealTriangularize LIRMM 46 / 49

The predator-prey biological model (2/4)

Stability analysis of the hyperbolic equilibria via linearization
(Hartman and Grobman Theorem). The Jacobian matrix of the
system:

J(x , y) =

[
a− by −bx
dy dx − c

]
.

Its characteristic polynomial is:

p = λ2 + (c − xd − a + yb)λ+ xad − ac + ybc.

At (x , y) = (0, 0), we have a saddle point, thus instable, since:

p = −(λ+ c)(−λ+ a)

At (x , y) = (c
d ,

b
a), the characteristic polynomial p has roots with zero

real part, as we shall see.

M3 () RealTriangularize LIRMM 47 / 49

The predator-prey biological model (3/4)

M3 () RealTriangularize LIRMM 48 / 49

The predator-prey biological model (4/4)

Therefore, at (x , y) = (c
d ,

b
a), we have a limit cycle:

as the number of herbivores increases, then so does that of carnivores.

but as that of carnivores increases, that of herbivores decreases, . . .
M3 () RealTriangularize LIRMM 49 / 49

	Computing the real solutions of polynomial systems symbolically
	Hilbert 16's Problem
	Real Root Isolation on Multicores
	Solving Polynomial Systems on the GPU

