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Abstract

Given a regular chain T , we aim at finding an efficient way for computing a system of generators
of sat(T ), the saturated ideal of T . A natural idea is to test whether the equality 〈T 〉 = sat(T )
holds, that is, whether T generates its saturated ideal. By generalizing the notion of primitivity
from univariate polynomials to regular chains, we establish a necessary and sufficient condition,
together with a Gröbner basis free algorithm, for testing this equality. Our experimental results
illustrate the efficiency of this approach in practice.
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1. Introduction

Triangular decompositions are one of the most studied techniques for solving polyno-
mial systems symbolically. Invented by J.F. Ritt in the early 30’s for systems of differential
polynomials, their stride started in the late 80’s with the method of Wu (1986) dedicated
to algebraic systems. Different concepts and algorithms extended the work of Wu. In the
early 90’s, the notion of a regular chain, introduced independently by Kalkbrener (1993)
and by Yang and Zhang (1991), led to important algorithmic discoveries.

In Kalkbrener’s vision, regular chains are used to represent the generic zeros of the
irreducible components of an algebraic variety. In the original work of Yang and Zhang,
they are used to decide whether a hypersurface intersects a quasi-variety (given by a
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regular chain). Regular chains have, in fact, several interesting properties and are the key
notion in many algorithms for decomposing systems of algebraic or differential equations.

Regular chains have been investigated in many papers, among them are those of Aubry
et al. (1999), Kalkbrener (1998) and Chou and Gao (1991). Several surveys (Boulier et

al., 2006; Hubert, 2001) are also available on this topic. The abundant literature on the
subject can be explained by the many equivalent definitions of a regular chain. Actually,
the original formulation of Kalkbrener is quite different from that of Yang and Zhang. In
the papers by Chen et al. (2007) and Wang (2000), the authors provide bridges between
the point of view of Kalkbrener and that of Yang and Zhang.

The key algebraic object associated with a regular chain is its saturated ideal. Let us
review its definition. Let k be a field and x1 ≺ · · · ≺ xn be ordered variables. For a
regular chain T ⊂ k[x1, . . . , xn], the saturated ideal of T , denoted by sat(T ) is defined by
sat(T ) := 〈T 〉 : h∞, where h is the product of the initial polynomials of T . (The next sec-
tion contains a detailed review of these notions.) Given a polynomial p ∈ k[x1, . . . , xn],
the memberships p ∈ sat(T ) and p ∈

√

sat(T ) can be decided by means of pseudo-
divisions and GCD computations, respectively. One should observe that these compu-
tations can be achieved without computing a system of generators of sat(T ). In some
sense, the regular chain T is a “black box representation” of sat(T ) since the assertions
p ∈ sat(T ) and p ∈

√

sat(T ) can be evaluated without using an explicit representation
of sat(T ).

Being able to compute a system of generators of sat(T ) remains, however, a funda-
mental question. For instance, given a second regular chain U ⊂ k[x1, . . . , xn], the only
general method to decide the inclusion sat(T ) ⊆ sat(U) goes through the computation
of a system of generators of sat(T ) by means of Gröbner bases. Unfortunately, such com-
putations can be expensive (see Aubry and Moreno Maza, 1999) whereas one would like
to obtain an inclusion test which could be used intensively in order to remove redundant
components when computing the triangular decompositions of Kalkbrener’s algorithm
or those arising in differential algebra. Note that for other kinds of triangular decompo-
sitions, such as those of Moreno Maza (1999) and Wang (2000), this question has been
solved in Chen et al. (2007).

Therefore, testing the inclusion sat(T ) ⊆ sat(U) without Gröbner basis computation
is a very important question in practice. Moreover, this can be regarded as an algebraic

version of the Ritt problem in differential algebra. One case presents no difficulties: if
sat(T ) is a zero-dimensional ideal, the product of the initial polynomials of T is invertible
modulo 〈T 〉 (see Moreno Maza and Rioboo, 1995, Proposition 5) and thus T generates
sat(T ). In this case the inclusion test for saturated ideals reduces to the membership
problem mentioned above.

In positive dimension, however, the ideal sat(T ) could be strictly larger than that
generated by T . Consider for instance n = 4 and T = {x1x3 + x2, x2x4 + x1}, we have

〈T 〉 = 〈x1, x2〉 ∩ 〈x1x3 + x2,−x3x4 + 1〉.
Thus, we have

sat(T ) = 〈T 〉 : (x1x2)
∞ = 〈x1x3 + x2,−x3x4 + 1〉.

In this article, we give a necessary and sufficient condition for the equality 〈T 〉 = sat(T )
to hold. Looking at the above example, one can feel that the ideal 〈x1, x2〉 can be regarded
as a “sort of content” of the ideal 〈T 〉, which is discarded when computing sat(T ). We
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observe also that the polynomials x1x3 +x2 and x2x4 +x1 are primitive in (k[x1, x2])[x3]
and (k[x1, x2])[x4] respectively. Thus, the “usual notion” of primitivity (for a univariate
polynomial over a UFD) is not sufficient to guarantee the equality 〈T 〉 = sat(T ). This
leads us to the following two definitions.

Let R be a commutative ring with unity. We say that a non-constant polynomial
p = aex

e + · · · + a0 ∈ R[x] is weakly primitive if for any β ∈ R such that ae divides
βae−1, . . . , βa0 then ae divides β as well. This notion and its relations with similar con-
cepts are discussed in Sections 3, 4, and 5.

We say that the regular chain T = {p1, . . . , pm} is primitive if for all 1 ≤ k ≤ m, the
polynomial pk is weakly primitive in R[xj ], where xj is the main variable of pk and R is
the residue class ring k[x1, . . . , xj−1]/〈p1, . . . , pk−1〉.

The first main result of this paper is the following: the regular chain T generates

its saturated ideal if and only if T is primitive. This result, generalizing the concept of
primitivity from univariate polynomials to regular chains, is established in Section 4.

Looking at regular chains from the point of view of regular sequences, we obtain
our second main result: an algorithm to decide whether a regular chain generates its
saturated ideal or not. The pseudo-code and its proof are presented in Section 6. This
algorithm relies on a procedure for computing triangular decompositions. However, being
applied to input systems which are regular sequences and “almost regular chains”, this
procedure reduces simply to an iterated resultant computation. As a result, the proposed
algorithm performs very well in practice and is Gröbner basis free. In Section 8 we
report on experimentation, where we confirm the efficiency of this algorithm. Meanwhile,
we observe that primitive regular chains are often present in the output of triangular
decompositions.

Section 7, which is a new development w.r.t. our ISSAC paper (Lemaire et al., 2008),
proposes several criteria for testing the inclusion of saturated ideals. We point out that
the notion of primitivity of regular chains provides a helpful tool for dealing with this
question in practice. Section 9, which is also enhanced w.r.t. (Lemaire et al., 2008), offers
concluding remarks and open problems.

2. Preliminaries

2.1. Triangular set and regular chain

We denote by k[x ] the ring of multivariate polynomials with coefficients in a field k

and with ordered variables x = x1≺ · · · ≺xn. For a non-constant polynomial p ∈ k[x ], the
greatest variable appearing in p is called main variable, denoted by mvar(p). We regard
p as a univariate polynomial in its main variable. The degree, the leading coefficient, the
leading monomial and the reductum of p as a univariate polynomial in mvar(p) are called
main degree, initial, rank and tail of p; they are denoted by mdeg(p), init(p), rank(p) and
tail(p) respectively. Thus we have p = init(p)rank(p) + tail(p).

Let R be a commutative ring with unity and F be a subset of R. Denote by 〈F 〉 the
ideal it generates, by

√

〈F 〉 the radical of 〈F 〉, and by R/〈F 〉 the residue class ring of R
with respect to 〈F 〉. For an element p in R, we say that p is zero modulo 〈F 〉 if p belongs
to 〈F 〉, that is, p is zero as an element in R/〈F 〉. An element p ∈ R is a zerodivisor modulo
〈F 〉, if there exists q ∈ R such that p /∈ 〈F 〉 and q /∈ 〈F 〉 but pq ∈ 〈F 〉. We say that p is
regular modulo 〈F 〉 if it is neither zero, nor a zerodivisor modulo 〈F 〉. Furthermore, p is
invertible in R if there exists a q ∈ R such that p q = 1.
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Example 1. Consider the polynomials in k[x1, x2, x3]

p1 = x2
2 − x2

1, p2 = (x2 − x1)x3 and p3 = x2x
3
3 − x1.

The above notions are illustrated in the following table.

mvar init mdeg rank tail

p1 x2 1 2 x2
2 −x2

1

p2 x3 x2 − x1 1 x3 0

p3 x3 x2 3 x3
3 −x1

The initial x2 − x1 of p2 is a zerodivisor modulo 〈p1〉, since (x2 + x1)(x2 − x1) is in 〈p1〉,
while neither x2 + x1 nor x2− x1 belongs to 〈p1〉. However, the initial x2 of p3 is regular
modulo 〈p1〉.

In what follows, we recall the notions of regular chain and saturated ideal, which are
the main objects in our study.

A set T of non-constant polynomials in k[x ] is called a triangular set, if for all p, q ∈ T
with p 6= q we have mvar(p) 6= mvar(q). For a nonempty triangular set T , we define the
saturated ideal sat(T ) of T to be the ideal 〈T 〉 : h∞, that is,

sat(T ) := 〈T 〉 : h∞ = {q ∈ k[x ] | ∃e ∈ Z≥0 s.t. heq ∈ 〈T 〉},
where h is the product of the initials of the polynomials in T . The empty set is also
regarded as a triangular set, whose saturated ideal is the trivial ideal 〈0〉.

One way of solving (or decomposing) a polynomial set F ⊆ k[x ] is to compute
triangular sets T1, . . . , Te ⊆ k[x ] such that

√

〈F 〉 =
√

sat(T1) ∩ · · · ∩
√

sat(Te).

It is thus desirable to require sat(T1), . . . , sat(Te) to be proper ideals. This observation
has led to the notion of a regular chain which was introduced independently in Kalkbrener
(1993); Yang and Zhang (1991).

Definition 1 (Regular chain). Let T be a triangular set in k[x ]. If T is empty, then it is
a regular chain. Otherwise, let p be the polynomial of T with the greatest main variable
and let C be the set of other polynomials in T . We say that T is a regular chain, if C is
a regular chain and init(p) is regular modulo sat(C).

In commutative algebra (see Eisenbud, 1994) there is a closely related concept called
regular sequence which is a sequence r1, . . . , rs of nonzero elements in the ring k[x ]
satisfying

(1) 〈r1, . . . , rs〉 is a proper ideal of k[x ];
(2) ri is regular modulo 〈r1, . . . , ri−1〉, for each 2 ≤ i ≤ s.

When we sort polynomials in a regular chain by increasing main variable, the following
example says that the resulting sequence may not be a regular sequence of k[x ].

Example 2. Let T = {t1, t2} be a triangular set in k[x1, x2, x3] with t1 = x1x2 and
t2 = x1x3. Then {t1} is a regular chain with sat({t1}) = 〈x1x2〉 : x∞

1 = 〈x2〉. Since
init(t2) = x1 is regular modulo sat({t1}), the triangular set T is a regular chain with

sat(T ) = 〈x1x2, x1x3〉 : x∞
1 = 〈x2, x3〉.
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However, t1, t2 is not a regular sequence since t2 = x1x3 is not regular modulo 〈x1x2〉.
Here, the saturation operation discards the content introduced by the initials.

2.2. Properties of regular chains

We recall several important results on regular chains and saturated ideals, which will
be used throughout this paper. Pseudo-division and iterated resultant are fundamental
tools in this context.

Let p and q be polynomials of k[x ], with q 6∈ k. Denote by prem(p, q) and pquo(p, q)
the pseudo-remainder and the pseudo-quotient of p by q, regarding p and q as univariate
polynomials in x = mvar(q). Using these notations, we have

init(q)ep = pquo(p, q)q + prem(p, q), (1)

where e = max{deg(p, x) − deg(q, x) + 1, 0}; moreover either r := prem(p, q) is null or
deg(r, x) < deg(q, x). Pseudo-division generalizes as follows given a polynomial p and a
regular chain T :

prem(p, T ) =







p if T = ∅,
prem(prem(p, t), T ′) if T = T ′ ∪ {t},

where t is the polynomial in T with greatest main variable. We have the pseudo-division

formula (Wu, 1986): there exist non-negative integers e1, . . . , es and polynomials q1, . . . , qs

in k[x ] such that

he1

1 · · ·hes

s p =

s
∑

i=1

qiti + prem(p, T ), (2)

where T = {t1, . . . , ts} and hi = init(ti), for 1 ≤ i ≤ s.
We denote by res(p, q) the resultant of p and q regarding them as univariate polyno-

mials in mvar(q). Note that res(p, q) may be different from res(q, p), if they have different
main variables. For a polynomial p and a regular chain T , we define the iterated resultant

of p w.r.t. T , denoted by ires(p, T ), as follows:

ires(p, T ) =







p if T = ∅,
ires(res(p, t), T ′) if T = T ′ ∪ {t},

where t is the polynomial in T with greatest main variable.

Theorem 1. For a regular chain T and a polynomial p we have:
(1) p belongs to sat(T ) if and only if prem(p, T ) = 0,
(2) p is regular modulo sat(T ) if and only if ires(p, T ) 6= 0,
(3) p is a zerodivisor modulo sat(T ) if and only if ires(p, T ) = 0 and prem(p, T ) 6= 0.

For the proofs, we refer to Aubry et al. (1999) for item (1), and to Wang (2000); Chen
et al. (2007) for item (2). Item (3) is a direct consequence of (1) and (2).

Remark 1. Theorems 1 and 2 highlight the structure of the associated primes of sat(T )
which makes regularity test easier than with an arbitrary polynomial ideal. In general,
deciding if a polynomial p is regular modulo an ideal I is equivalent to checking if p does
not belong to any associated primes of I.
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An ideal in k[x ] is unmixed, if all its associated primes have the same dimension. In
particular, an unmixed ideal has no embedded associated primes.

Theorem 2. Let T = C ∪ {t} be a regular chain in k[x ] with t having greatest main
variable in T . The following properties hold:

(1) sat(T ) is an unmixed ideal with dimension n− |T |,
(2) sat(T ∩ k[x1, . . . , xi]) = sat(T ) ∩ k[x1, . . . , xi],
(3) sat(T ) = 〈sat(C) ∪ {t}〉 : init(t)∞.

For the proofs, we refer to Boulier et al. (2006); Chou and Gao (1991) for item (1),
to Aubry et al. (1999) for item (2), and to Kalkbrener (1998) for item (3). From (1),
we deduce that the saturated ideal of a regular chain T consisting of n polynomials has
dimension 0.

3. Primitivity of Polynomials

In this section, we introduce the notion of weak primitivity of a polynomial in a general
univariate polynomial ring, and then present several of its properties.

The following Lemma 1 may be seen as a generalization of Gauss lemma over an
arbitrary commutative ring with unity. It will be used in the proof of our main theorem.
We found that this lemma is not new and can be deduced from the Dedekind-Mertens
Lemma (See Arnold and Gilmer (1970); Corso et al. (1998); Coquand et al. (2003) and
the references therein). For the sake of reference, we include our direct proof here. In the
sequel, the ring R is a commutative Noetherian ring with unity. We say that p divides q,
denoted by p | q, if there exists r such that q = p r holds.

Lemma 1. Let p =
∑m

i=0 aiy
i and q =

∑n
i=0 biy

i be polynomials in R[y] with deg(p) =
m ≥ 0 and deg(q) = n ≥ 0. Then for each h ∈ R,

(i) h | pq implies h | b0a
n+1
i for 0 ≤ i ≤ m,

(ii) h | pq implies h | bnan+1
i for 0 ≤ i ≤ m.

Proof. First, we prove (i). Considering first the special case m = 0, we observe that
h | pq implies h | a0b0 and the conclusion follows. Now we assume that m > 0 holds.

For i = 0, the claim is also clear, for the same reason as the case m = 0. For 1 ≤ i ≤ m,
we introduce the polynomials Ai and Bi below in order to simplify our expressions:

Ai =
i−1
∑

j=0

ajy
j , and Bi = −

m
∑

j=i

ajy
j . (3)

Clearly, we have p = Ai − Bi. The key observation is to consider the polynomial p̃ =
An+1

i −Bn+1
i , as suggested by the forms of our claims. To avoid talking about the degree

of a zero polynomial, we assume that both An+1
i and Bn+1

i are nonzero polynomials.
According to the construction of Ai and Bi in (3), we have the following degree

estimates:

deg(An+1
i ) ≤ deg(Ai)(n + 1) ≤ (i− 1)(n + 1), (4)

trdeg(Bn+1
i ) ≥ trdeg(Bi)(n + 1) ≥ i(n + 1), (5)
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where trdeg(·) denotes the trailing degree, that is, the degree of the term with lowest
degree in a polynomial. Therefore there is no term cancellation between An+1

i and Bn+1
i .

With the assumption that Ai and Bi nonzero, the polynomial p̃ is nonzero too. Now we
write p̃ in the form

p̃ = (Ai −Bi)(A
n
i + · · ·+ Bn

i ) = p(An
i + · · ·+ Bn

i ).

It follows that p | p̃ holds. Therefore h | p̃q holds since we have h | pq. Observe now that
if qAn+1

i is nonzero, then

deg(qAn+1
i ) ≤ (i− 1)(n + 1) + n < i(n + 1). (6)

Similarly, if qBn+1
i is nonzero, then its trailing degree is bounded

trdeg(qBn+1
i ) ≥ i(n + 1). (7)

Combining (6) with (7), we know that in qp̃ = qAn+1
i − qBn+1

i , the polynomial qAn+1

only contributes to terms with degree smaller than i(n + 1). Thus we have

coeff(qp̃, yi(n+1)) = coeff(−qBn+1
i , yi(n+1)) = b0a

n+1
i (8)

which implies h | b0a
n+1
i , as desired.

Now we handle the special cases where An+1
i = 0 and Bn+1

i = 0. It is easy to see that
An+1

i = 0 does not affect the proof above. When Bn+1
i = 0, simply we have an+1

i = 0,
and then the claim is also clear.

Finally, we prove (ii). Let P = ymp(1/y) and Q = ynq(1/y). Since h | pq, h will also
divide PQ = ym+n(pq)(1/y). Assume that

a0 = · · · = ar−1 = 0, ar 6= 0,

b0 = · · · = bs−1 = 0, bs 6= 0.

Then r ≤ m and s ≤ n hold. According to (i), for any r ≤ i ≤ m, h | bnas+1
i . It follows

that h | bnan+1
i for any 0 ≤ i ≤ m. 2

Definition 2. Let p = a0 + · · · + aex
e ∈ R[x] with e ≥ 1. The polynomial p is strongly

primitive if the ideal generated by {a0, . . . , ae} is the whole ring R. The polynomial p is
weakly primitive if for any β ∈ R such that ae | βai holds for all 0 ≤ i ≤ e− 1, we have
ae | β as well.

Proposition 1. Strong primitivity implies weak primitivity.

Proof. We use the same notation as in Definition 2. Let p be strongly primitive. Then
there exist ce, . . . , c0 ∈ R such that ceae + · · · + c0a0 = 1. Let β ∈ R such that for
0 ≤ j ≤ e− 1, we have ae | βaj . Then there exist d0, . . . , de−1 ∈ R such that aedj = βaj .
Since βceae + · · ·+ βc0a0 = β, we have ae(βce + de−1ce−1 · · ·+ d0c0) = β. Thus, we have
ae | β, and therefore p is weakly primitive. 2

Remark 2.

(1) If any ai is invertible, then p is strongly primitive and then is weakly primitive. As
a particular case, p is weakly primitive if one of its coefficients is a nonzero constant
of a field.
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(2) Weak primitivity does not imply strong primitivity. For example, let R = Z[t] and
p = tx + 2 ∈ Z[t][x]. Then p is not strongly primitive, since 〈t, 2〉 6= 〈1〉R. In R[x],
the polynomial p is weakly primitive. If t | 2β, then t | β must hold.

(3) The definition of strongly primitive does not depend on the order of the coefficients
in p. However, the definition of weakly primitive relies on it. Indeed, let R = Z4[t],
p = 2̄x + t and q = tx + 2̄ . Then we have
(a) p is weakly primitive in R[x]. For any β ∈ R[x], if 2̄ | tβ then 2̄ | β.
(b) q is not weakly primitive in R[x]. Let β = t + 2̄ ∈ R[x]. Then we have t |

2̄(t + 2̄) = 2̄t, and t ∤ (t + 2).
(4) Weak primitivity may not be extended. That is to say, if p is weakly primitive,

assuming that deg(p) = e > 0, then p̄ = p + qxe+1 may not be weakly primitive.
For example, let R = Z4[t], p = 2̄x + t and p̄ = p + tx2 = tx2 + 2̄x + t. Then p is
weakly primitive, and p̄ is not weakly primitive. Indeed taking β = t + 2̄, we have
t | tβ and t | 2̄β, but t ∤ β.

According to Proposition 2 the notion of weak primitivity turns out to be a general-
ization of the ordinary notion of primitivity (the gcd of the coefficients of a univariate
polynomial is 1).

Proposition 2. Let R be a UFD and p =
∑e

i=0 aix
i ∈ R[x] with ae 6= 0 and e ≥ 1.

Then, the following statements are equivalent
(i) p is weakly primitive in R[x].

(ii) content(p) := gcd(a0, . . . , ae) = 1.

Proof. We prove (i) ⇒ (ii). Assume that gcd(a0, . . . , ae) 6= 1. Then there is a prime
factor f of gcd(a0, . . . , ae). Let β = ae/f . Then ae | βai, for 0 ≤ i ≤ e− 1. Since ae ∤ β,
p is not weakly primitive, a contradiction.

We prove (ii)⇒ (i). Assume that there exists β ∈ R such that

(∀ 0 ≤ j ≤ e− 1) ae | βaj and ae ∤ β.

Then ae | content(βp) = βcontent(p). Since ae ∤ β, some prime factor f of ae divides
content(p), a contradiction. 2

The following property on weak primitivity will be used in the next section. It states
the following fact: if one raises each coefficient of a weakly primitive polynomial p to some
power, then the resulting polynomial is still weakly primitive. To avoid the cancellation
of the leading coefficient of p, we assume that this coefficient is a regular element of the
ground ring.

Proposition 3. Let p =
∑e

i=0 aix
i ∈ R[x] with ae being regular in R, and {ni | 0 ≤

i ≤ e} be a set of non-negative integers. Define q =
∑e

i=0 ani

i xi. Then if p is weakly
primitive, q is also weakly primitive.

The proof directly follows from the following two lemmas.

Lemma 2. Let p = a0 + · · · + aex
e ∈ R[x] with ae being regular in R and n be a

non-negative integer. If p is weakly primitive, then pn = a0 + · · · + ae−1x
e−1 + an

e xe is
also weakly primitive.
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Proof. By induction on n ≥ 0. The case n = 0 follows from Remark 2. So we assume

that the claim is true for n− 1, that is, pn−1 is weakly primitive, with n ≥ 1. Let β ∈ R

such that an
e | aiβ, for 0 ≤ i ≤ e− 1. There exist h0, . . . , he−1 ∈ R such that we have

an
e hi = aiβ, 0 ≤ i ≤ e− 1. (9)

Since pn−1 is weakly primitive and since we have an−1
e | aiβ, we deduce an−1

e | β, that

is, there exists h′ ∈ R such that

an−1
e h′ = β. (10)

With (9) and (10) we have an
e hi = aia

n−1
e h′, and then aehi = aih

′, since ae is regular.

Hence ae | aih
′. By the weak primitivity of p, ae | h′ holds, that is, there exists h′′ ∈ R

such that

aeh
′′ = h′. (11)

By (10) and (11) we have an
e h′′ = β. So an

e | β and pn is weakly primitive. 2

Lemma 3. Let p = a0 + · · ·+ aex
e ∈ R[x] with ae 6= 0 and n be a non-negative integer.

Let j be an index such that 0 ≤ j ≤ e − 1. Define q = a0 + · · · + an
j xj + · · · + aex

e =

p + (an
j − aj)x

j . If p is weakly primitive, then q is also weakly primitive.

Proof. The claim is clear if n = 0, so we assume n ≥ 1. Let β ∈ R such that, for

0 ≤ i ≤ e− 1 and i 6= j

ae | aiβ, and ae | an
j β. (12)

We prove that ae | β holds. We have, for 0 ≤ i ≤ e− 1 and i 6= j

ae | ai(a
n−1
j β), and ae | aj(a

n−1
j β).

Define β′ = an−1
j β. Hence ae | β′ holds, since p is weakly primitive. With (12), for

0 ≤ i ≤ e− 1 and i 6= j we have

ae | aiβ, and ae | an−1
j β. (13)

We deduce that ae | an−2
j β holds. Continuing in this manner, we reach ae | β. Thus q is

also weakly primitive. 2

4. Primitive Regular Chain

In this section, we generalize the notion of primitivity to any regular chain T . Then

we prove that sat(T ) = 〈T 〉 holds if and only if T is primitive.

Definition 3. Let T = {p1, . . . , pm} ⊂ k[x ] = k[x1, . . . , xn] be a regular chain with

mvar(p1) ≺ · · · ≺ mvar(pm). We say that T is primitive if for all 1 ≤ k ≤ m, pk is weakly

primitive in R[xj ] where xj = mvar(pk) and

R = k[x1, . . . , xj−1]/〈p1, . . . , pk−1〉.

Proposition 4 (Base case of Theorem 3). Let p = aex
e + · · · + a0 ∈ k[y ][x] and

c = gcd
k[y ](a0, . . . , ae), where e ≥ 1 and y is a finite set of variables. Then we have

〈p〉 = 〈p〉 : a∞
e ⇐⇒ c = 1.

9



Proof. First we prove that 〈p〉 ( sat(p) := 〈p〉 : a∞
e if c 6= 1. Denote p̄ = p/c. Then

aep̄ = aep/c ∈ 〈p〉, hence p̄ ∈ sat(p). Assume that p̄ is in 〈p〉. Then there exists q ∈ k[y ][x]
such that p/c = p̄ = pq. It follows that qc = 1 which is a contradiction since c /∈ k.
Therefore p̄ is in sat(p) but not in 〈p〉.

Conversely, we prove that if c = 1 then sat(p) ⊆ 〈p〉. For any q ∈ sat(p), there exist
n ∈ Z≥0 and β ∈ k[y ][x] such that an

e q = βp . Taking the content w.r.t. x, we have

an
e content(q, x) = content(β, x) content(p, x)

= content(β, x)

Thus an
e | β. There exists β′ ∈ k[y ][x] such that β = an

e β′. So we have an
e q = βp = an

e β′p,
and then q = β′p, that is, q ∈ 〈p〉. 2

Remark 3. Let T = {p1} be a regular chain consisting of a single polynomial. By
definition, T is primitive if and only if p1 is weakly primitive in R = k[x1, . . . , xj−1],
where xj = mvar(p1). Since R is a UFD, it follows from Proposition 2, that T is primitive
if and only if p1 is primitive in ordinary sense, that is, whenever the gcd of the coefficients
of p1 (as a univariate polynomial in R[xj ]) is 1. Therefore, the notion of primitivity for
a regular chain extends that of primitivity for a polynomial.

Theorem 3. Let T ⊂ k[x1, . . . , xn] be a regular chain. Then T is primitive if and only
if 〈T 〉 = sat(T ).

Proof. We prove the theorem by induction on the number of polynomials in T . The base
case is Proposition 4, where |T | = 1. Now assume that T = {p1, . . . , pm} consists of
m ≥ 2 polynomials with mvar(p1) ≺ · · · ≺ mvar(pm). We denote by Tk the regular chain
consisting of the first k polynomials in T .

First, assume indirectly that T is not primitive. We need to prove that 〈T 〉 is a proper
subset of sat(T ). Let k be the smallest integer such that pk is not weakly primitive in
R[y], where y = xj = mvar(pk) and R = k[x1, . . . , xj−1]/〈Tk−1〉. By Proposition 4, we
know k ≥ 2.

Let pk = aey
e + · · ·+a0. By induction, sat(Tk−1) = 〈Tk−1〉 holds and thus ae is regular

in R. Since pk is not weakly primitive over R, there exists β ∈ k[x1, . . . , xj−1] such that,
in R, we have

(∀0 ≤ r ≤ e− 1) ae | βar and ae ∤ β.

Define qk = βpk/ae. Then qk ∈ R[y], since

β

ae

pk = βye +
∑

0≤r<e

βar

ae

yr.

We claim that qk ∈ 〈pk〉 : a∞
e and qk /∈ 〈pk〉 in R[y], which leads to sat(Tk) 6= 〈Tk〉.

Indeed, we have aeqk = βpk ∈ 〈pk〉 in R[y]. Thus, qk ∈ 〈pk〉 : a∞
e . Now if qk ∈ 〈pk〉,

there exists α ∈ R[y] such that qk = αpk in R[y]. By the construction of qk, deg(qk, y)
equals deg(pk, y). Hence α ∈ R and β − αae = 0 in R. This contradicts ae ∤ β.

Secondly, we assume that T is primitive and show 〈T 〉 = sat(T ). By induction,
sat(Tk−1) = 〈Tk−1〉 holds. We shall prove that sat(Tk) = 〈Tk〉 holds, too. To do so, we con-
sider p ∈ sat(Tk) and show that we have p ∈ 〈Tk〉. Let mvar(p) = xi and mvar(pk) = xj .
If i > j, then p ∈ sat(Tk) if and only if all coefficients of p w.r.t xi are in sat(Tk), since
Tk is a regular chain. So we can concentrate on the case p ∈ k[x1, . . . , xj ].

10



Let hpk
be the leading coefficient of pk w.r.t. y = xj , that is, w.r.t. the main variable

of pk. By virtue of Theorem 2 we have

sat(Tk) = 〈sat(Tk−1), pk〉 : h∞
pk

= 〈〈Tk−1〉, pk〉 : h∞
pk

.

By virtue of Theorem 1 we have prem(p, Tk) = 0, since p ∈ sat(Tk). Consequently,
prem(p, pk) is in sat(Tk−1) = 〈Tk−1〉. Now the pseudo-division formula (1) in Section 2
leads to

hα
pk

p = pquo(p, pk)pk + prem(p, pk), (14)

where α = max{0, deg(p, y) − deg(pk, y) + 1}. If deg(p, y) < deg(pk, y), then p =
prem(p, pk) ∈ 〈Tk−1〉 ⊂ 〈Tk〉 holds and we are done. From now on, we assume deg(p, y) ≥
deg(pk, y) and we write α = deg(p, y) − deg(pk, y) + 1. With (14) we observe that we
have the following equation in R[y]

hα
pk

p = q pk. (15)

We consider a more general situation: let s ∈ sat(Tk), let δ be a non-negative integer
and let u ∈ k[x1, . . . , xn] such that

hδ
pk

s = u pk (16)

holds in R[y]. In order to prove that p ∈ 〈Tk〉 holds, we prove that s ∈ 〈Tk〉 by induction
on the number of terms in u. For simplicity, we denote

pk =

e
∑

i=0

aiy
i and u =

f
∑

i=0

biy
i,

with ae 6= 0 and bf 6= 0. Note that ae = hpk
.

If u = 0 in R[y], then ae
δs = 0 in R[y]. Since ae is regular in R, we deduce s = 0 in

R[y], that is, s ∈ 〈Tk−1〉 and thus s ∈ 〈Tk〉. Assume u 6= 0 in R[y]. Let f ′ be the largest

integer such that bf ′ /∈ 〈Tk−1〉 and write u′ =
∑f ′

i=0 biy
i. We have

aδ
es = u′pk in R[y]. (17)

By Lemma 1, for any 0 ≤ i ≤ e, we have aδ
e | bf ′af ′+1

i in R. Since pk is weakly primitive
in R[y], by Proposition 3 we have aδ

e | bf ′ in R. Thus there exists γ ∈ k[x1, . . . , xj−1],
γ 6= 0 in R, such that

aδ
eγ = bf ′ in R. (18)

We define
s′ = s− γyf ′

pk. (19)

Since s ∈ sat(Tk) we have s′ ∈ sat(Tk). Moreover we have

u′ = aδ
eγyf ′

+ tail(u′).

Therefore, the following holds in R[y]:

aδ
es

′ = tail(u′)pk. (20)

By induction hypothesis we have s′ ∈ 〈Tk〉. With (19) we conclude s ∈ 〈Tk〉, as de-
sired. 2

11



5. Weak Primitivity Test

In this section, we point out the componentwise nature of weak primitivity. That is,
if R can be written as a direct product of rings, then checking weak primitivity over R
reduces to checking weak primitivity over each of its “components”.

Lemma 4. Let R1, . . . , Rn be commutative rings with 1. Let R = Πn
i=1Ri be their direct

product and let πk be the canonical projection from R to Rk. Let a, b ∈ R. Then a | b in
R if and only if πk(a) | πk(b) for each 1 ≤ k ≤ n.

The proof of this lemma is straightforward, and thus is omitted.

Proposition 5. Let R = Πn
i=1Ri be a direct product of rings and let πk be the canonical

projection from R to Rk and τk be the canonical injection from Rk to R. Let p =
∑e

i=0 aix
i ∈ R[x] be a polynomial with ae being regular in R. Then p is weakly primitive

in R[x] if and only if πk(p) =
∑e

i=1 πk(ai)x
i is weakly primitive in Rk[x] for each 1 ≤

k ≤ n.

Proof. For any 1 ≤ k ≤ n, denote pk = πk(p). Since ae is regular in R, πk(ae) 6= 0 for
each k, and then each pk is a polynomial of degree e.

First we prove that if all pk are weakly primitive then p is also weakly primitive. Let
β ∈ R satisfying ae | aiβ for 0 ≤ i ≤ e− 1. By definition, we need to prove that ae | β in
R.

Applying πk to ae | aiβ, we have πk(ae) | πk(ai)πk(β), for 0 ≤ i ≤ e − 1. By the
weak primitivity of pk, we have πk(ae) | πk(β). So there exists uk ∈ Rk such that
πk(ae)uk = πk(β). Define u = (u1, . . . , un) ∈ Πn

i=1Ri. Then πk(u) = uk, and hence
πk(ae)πk(u) = πk(β), for each 1 ≤ k ≤ n. By Lemma 4, ae | β in R. We proved that p is
weakly primitive in R[x].

On the other hand, we prove that, if pk is not weakly primitive over Rk for some

1 ≤ k ≤ n then p is not weakly primitive over R. For simplicity, we assume k = 1. So,
there exists β1 ∈ R1 such that π1(ae) | π1(ai)β1 for 0 ≤ i ≤ e− 1, but π1(ae) ∤ β1. Define
β = τ1(β1) = (β1, 0, . . . , 0) ∈ R. Then we claim that ae ∤ β and ae | aiβ for 0 ≤ i ≤ e− 1.
This implies that p is not weakly primitive over R, as desired.

Indeed, first we have ae ∤ β, since π1(ae) ∤ π1(β) = β1. Second, to prove ae | aiβ for
0 ≤ i ≤ e − 1, by Lemma 4, we need to prove that πk(ae) | πk(aiβ) for 1 ≤ k ≤ n and
0 ≤ i ≤ e− 1. If k = 1, it follows from the choice of β1. If 2 ≤ k ≤ n, we have

πk(aiβ) = πk(ai)πk(β) = πk(ai) · 0 = 0

for 1≤ i≤e− 1. Thus πk(ae) |πk(aiβ) holds for 1≤ i≤e− 1. 2

Example 3. Let T = {p1, p2} be a regular chain in Q[t ≺ x ≺ y] with p1 = x(x−t), p2 =
(x + t)y + t. Since p1 = x2 − tx is strongly primitive in (Q[t])[x], p1 is weakly primitive
in (Q[t])[x]. Let R = Q[t, x]/〈x(x− t)〉. Then we have

R = R1 ×R2 = Q[x, t]/〈x〉 ×Q[x, t]/〈x− t〉 ≃ Q[t]×Q[t].

Over R1, p2 = ty+t is not weakly primitive, since t is not invertible over R1 and according
to the definition we can choose β = 1. Hence T is not a primitive regular chain.

12



In order to generalize the construction of the above example into an algorithm, one

would need to use algebraic factorization. In the next section, we propose a primitivity

test for regular chains which avoids algebraic factorization, relying instead on polynomial

GCDs modulo regular chains. Based on the algorithms and software tools available today

we view it as a practical solution, as confirmed in Section 8.

6. A Primitivity Test Algorithm

In Section 4, we define the notion of primitive regular chain which generalizes that of

primitive polynomial over a UFD. In this section, we present another characterization

on primitivity in terms of regularity of a polynomial. As a consequence, we obtain an

algorithm to test whether a regular chain is primitive or not.

Lemma 5, 6, 7 and 8 are well-known facts. The proofs of Lemma 5 and 8 are straight-

forward. Lemma 6 can be found as Lemma 9.2.3 in Ischebeck and Rao (2005) whereas

Lemma 7 is in Coquand et al. (2003, Lemma 7).

Lemma 5. Let I be a proper ideal of R and let h be an element of R. Then h is regular

modulo I if and only if I = I : h∞ holds.

Lemma 6. Let a and b be two regular elements of R. Assume that a and b are not

invertible. If a is regular modulo 〈b〉 then b is also regular modulo 〈a〉.

Lemma 7 (Mc Coy Lemma). A non-zero polynomial f ∈ R[x] is a zerodivisor if and

only if there exists a non-zero element a ∈ R such that af = 0 holds.

Lemma 8. Let f ∈ R[x] be a non-constant polynomial. If its leading coefficient is a

regular element in R, then f is not a unit.

Proposition 6. Let R be a Noetherian commutative ring with 1. Consider a polynomial

f =
∑n

i=0 aix
i ∈ R[x]. Assume that n is at least 1 and an is regular in R. Then 〈f〉 =

〈f〉 : a∞
n holds if and only if an is invertible in R, or tail(f) is regular modulo 〈an〉.

Proof. If an is invertible in R, then clearly 〈f〉 : a∞
n = 〈f〉 holds. So we assume that

an is not invertible in R. Note that both an and f are regular in R[x]; this follows from

Lemma 7. Since an is not invertible in R, an is not invertible in R[x] either. Since an is

regular in R, it follows from Lemma 8 that f is not invertible in R[x]. Then, applying

Lemma 5 and 6, we deduce

〈f〉 = 〈f〉 : an
∞ ⇐⇒ an is regular modulo 〈f〉
⇐⇒ f is regular modulo 〈an〉
⇐⇒ tail(f) is regular modulo 〈an〉.

This completes the proof. 2

The following corollary may be seen as another characterization of the primitivity of

a regular chain. This also provides an algorithm for checking whether a regular chain is

primitive or not.
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Corollary 1 (Primitivity test of a regular chain). Let T ⊂ k[x1, . . . , xs−1] be a primitive
regular chain. Let p =

∑e
i=0 aix

i
s ∈ k[x1, . . . , xs] with ae being regular modulo sat(T ).

Denote tail(p) =
∑e−1

i=0 aix
i
s. Then T ∪ {p} is a primitive regular chain if and only if ae

is invertible modulo sat(T ), or tail(p) is a regular polynomial modulo 〈T ∪ {ae}〉.

Proof. This is a direct consequence of Proposition 6, Theorem 3 and the definition of a
regular chain. 2

Thus the problem of checking whether a regular chain T ∪ {p} is primitive or not,
reduces to checking whether the polynomial tail(p) is regular or not modulo 〈T, ae〉. We
next show that (T, ae) in Corollary 1 generates an unmixed ideal; this result is crucial in
view of Algorithm 1 below. Indeed, it allows us to deal with the following subtle point:
a polynomial p regular modulo the radical

√
I of an ideal I may not be regular modulo

I. For example, consider p = y and I = 〈xy, x2〉. Then y is a zerodivisor modulo I but y
is regular modulo

√
I = 〈x〉. If I is unmixed, then p is regular modulo I if and only if p

is regular modulo
√

I.

Lemma 9. Let R = k[x1, . . . , xn] and T be a primitive regular chain of R. If t ∈ R is
regular but not invertible modulo sat(T ), then (T, t) is a regular sequence of R and the
ideal 〈T, t〉 is unmixed with dimension n− |T | − 1.

Proof. Denote Ti = T ∩ k[x1, . . . , xi]. Since T is primitive, sat(Ti) = 〈Ti〉 holds for each
i. Thus T is already a regular sequence of R. Now since t is regular but not invertible
modulo sat(T ) = 〈T 〉, by definition (T, t) is a regular sequence.

Let I = 〈T, t〉 and d = |T |. According to the Principal Ideal Theorem (see Eisenbud,
1994, Theorem 10.2) the dimension dim(I) of I is at least n− (d+1). On the other hand,
since (T, t) is a regular sequence of length d+1, the dimension of I is at most n− (d+1).
Hence, dim(I) = n− (d+1) and then I is unmixed, by Macaulay Unmixedness Theorem
(see Sturmfels, 2002, Theorem 5.7). 2

Remark 4. Before proving the above algorithm, we comment on its subprocedures and
possible optimization.

(1) The function Triangularize decomposes a polynomial system F into a finite set
of regular chains Ui such that

√

〈F 〉 = ∩i

√

sat(Ui) holds; this is called a triangular
decomposition of F in the sense of Kalkbrener (Aubry and Moreno Maza, 1999).
According to the above specification, the set of the associated primes of

√

〈F 〉 are
“implicitly” represented by Ui’s .

Triangularize is one of the core functions in the RegularChains library in
Maple (Lemaire et al., 2005); it implements the triangular decomposition algo-
rithm of Moreno Maza (1999). While computing in Kalkbrener’s sense, it has the
same specification as the function solven in Kalkbrener (1993), although the algo-
rithms of Moreno Maza (1999) and Kalkbrener (1993) are quite different.

Apart from Kalkbrener’s sense, Triangularize can also work in the Lazard
sense (see Aubry and Moreno Maza, 1999), where all solutions of the input systems
will be explicitly represented by means of regular chains. In general, this function
runs faster in Kalkbrener’s sense, since only generic solutions will be represented
explicitly.
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Algorithm 1 IsPrimitive

Input: T , a regular chain of k[x1, . . . , xn].
Output: true if T is primitive, false otherwise.

1: if |T | = 1 then

2: t← the defining polynomial of T
3: if content(t,mvar(t)) ∈ k then return true else return false
4: else

5: write T as T ′ ∪ {t}, where t has the greatest main variable
6: if not IsPrimitive(T ′) then

7: return false
8: else

9: h← init(t), r ← tail(t)
10: for U ∈ Triangularize(T ′ ∪ {h}) do

11: if ires(r, U) = 0 then return false
12: end for

13: return true
14: end if

15: end if

(2) The use of Triangularize seems hard to avoid. The purpose is to represent all

associated primes of the ideal 〈T ∪{h}〉 by means of regular chains. Geometrically,

it is the intersection of the zero set of T with the hypersurface defined by h.

(3) Algorithm 1 can be optimized using Item (1) of Remark 2: if a coefficient ai of

t = aex
e + · · ·+ a0 is an invertible constant, then lines 10-12 can be skipped since

t is strongly primitive.

Proof. We prove the above algorithm IsPrimitive. Its termination of the algorithm

follows from the fact that in each recursive call the number of polynomials in the input

regular chain decreases by 1.

For the correctness, we proceed by induction on the number of polynomials in the

regular chain T . When |T | = 1, the specification follows from Remark 3. So we assume

|T | > 1. Definition 3 and Theorem 3 imply that if T is primitive then T ′ is also primitive.

So we assume that T ′ is primitive and branch to line 9.

Let U be the output of Triangularize in line 10 and let I = 〈T ′ ∪ {h}〉. From the

specification of Triangularize, we have
⋂

U∈U

√

sat(U) =
√

I.

By Corollary 1, we need to distinguish two cases: h is invertible (resp. not invertible)

modulo 〈T ′〉 = sat(T ′).

If h is invertible modulo 〈T ′〉 then U is empty, and the algorithm correctly returns

true. Assume from now on that h is not invertible modulo 〈T ′〉. In this case by Lemma 9,

the triangular decomposition U is not empty. So T is primitive if and only if r is regular

modulo I. By Lemma 9 again, the ideal I is unmixed and therefore T is primitive if and

only if r is regular modulo
√

I. This holds if and only if r is regular modulo sat(U) for

each U ∈ U . Finally, the correctness of Algorithm 1 follows from Theorem 1. 2
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Example 4. Let R = k[z ≺ y ≺ x] be a polynomial ring and T = {t1, t2} be a regular
chain of R with t1 = y5 − z4, t2 = zx− y2. Clearly, {t1} is a primitive regular chain. Let
I = 〈t1, lc(t2)〉 = 〈t1, z〉 = 〈z, y5〉. In Algorithm 1 the call to Triangularize will produce√

I =
√

sat(U) where U = {z, y} is a regular chain. Thus, the computation

ires(tail(t2), U) = ires(−y2, U) = 0

implies that tail(t2) = −y2 is not regular modulo I. Thus T is not primitive. In fact,
the prime ideal sat(T ) = 〈x3 − yz, xz − y2, z2 − x2y〉 can not be generated by only two
polynomials (see Şahin, 2002, page 43). Hence, in any variable ordering, one cannot find
a primitive regular chain C such that 〈C〉 = sat(T ).

7. An Application to Inclusion Test

A fundamental problem in the theory of regular chains is the inclusion test for satu-
rated ideals, that is, deciding if sat(T ) ⊆ sat(U) holds for two regular chains T and U .
For a regular chain T , denote by mvar(T ) the set of main variables of polynomials in T ,
which is also called the set of algebraic variables of T . In this section, we first show that
when T and U share the same set of algebraic variables the inclusion test is simple. Then
we point out that the notion of primitivity presented in this paper solves the inclusion
test problem partially.

Lemma 10. Let T and U be two regular chains. If sat(T ) ⊆ sat(U) and |T | = |U | hold,
then each associated prime of sat(U) is also an associated prime of sat(T ).

Proof. Let T and U be the set of associated primes of sat(T ) and sat(U) respectively.
Then we have

√

sat(T ) =
⋂

P∈T

P and
√

sat(U) =
⋂

Q∈U

Q.

Since sat(T ) ⊆ sat(U) implies
√

sat(T ) ⊆
√

sat(U), for each Q ∈ U there exists P ∈ T
such that P ⊆ Q. Since T and U are unmixed with same height, dim(P ) equals dim(Q),
which implies Q = P . Hence U is a subset of T . 2

Proposition 7. Let T and U be two regular chains with the same set of algebraic
variables. Write T as T = T ′ ∪ {t} with t having largest main variable. Then sat(T ) ⊆
sat(U) if and only if sat(T ′) ⊆ sat(U) and prem(t, U) = 0.

Proof. Clearly, we only need to show that sat(T ) ⊆ sat(U) holds if sat(T ′) ⊆ sat(U) and
prem(t, U) = 0.

Denote by h the initial of t. We first prove that h is regular modulo sat(U). Since h is
regular modulo sat(T ′), h is not contained in any associated prime of sat(T ′). Let u be
the polynomial in U such that mvar(t) = mvar(u) and define U ′ = U \{u}. Then we have
sat(T ′) ⊆ sat(U ′). By Lemma 10, h is not contained in any associated prime of sat(U ′).
Hence h is regular modulo sat(U ′). It follows that h is regular modulo sat(U) since the
main variable of h is smaller than that of u.

For arbitrary f ∈ sat(T ), we have prem(f, t) ∈ sat(T ′) ⊆ sat(U). By the pseudo-
division formula, hef = prem(f, t)+q t for some e ≥ 0 and some q. Since prem(t, U) = 0,
we have t ∈ sat(U). Therefore hef belongs to sat(U), which implies f ∈ sat(U) since h
is regular modulo sat(U). 2
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The above proposition handles the case in which two regular chains have the same set
of algebraic variables.

Example 5. Let R = k[x ≺ y ≺ z] and let T = {xz+y} and U = {x, y} be regular chains
of R. Then sat(T ) = 〈xz + y〉 ( 〈x, y〉 = sat(U) holds, although we have mvar(T ) = {z}
and mvar(U) = {x, y}.

In practice, the inclusion sat(T ) ⊆ sat(U) is often established by proving that 〈T 〉 ⊆
sat(U) holds and that all initials in T are regular modulo sat(U). This simple criterion
follows immediately from the definition of a saturated ideal and Lemma 5.

Now with the notion of primitivity for a regular chain, we have another useful way to
detect if sat(T ) ⊆ sat(U) holds. That is, sat(T ) ⊆ sat(U) holds whenever 〈T 〉 ⊆ sat(U)
holds and T is primitive. In the above example, the initial of zx+y is not regular modulo
sat(U). However, we know that sat(T ) is contained in sat(U), since T is primitive and
〈T 〉 ⊆ sat(U) holds. In the following Section 8, we shall see that algorithm IsPrimitive

is efficient and primitive regular chains appear quite often in practice.
Corollary 2 below is a direct consequence of Proposition 7, which shows that it is an

easy task to check whether two regular chains have the same saturated ideal. Actually,
testing sat(T ) = sat(U) can be done “directly” without testing the inclusions sat(T ) ⊆
sat(U) and sat(U) ⊆ sat(T ). The algorithm concluding this section combines together
the different criteria reported above for testing the inclusion of saturated ideals. Observe
that this algorithm is not always able to check whether the inclusion holds or not.

Corollary 2. Let T = T ∪ {t} and U = U ′ ∪ {u} be two regular chains with t and u
having the greatest main variable in T and U respectively. The equality sat(T ) = sat(U)
holds if and only if the following conditions hold

(1) sat(T ′) = sat(U ′),
(2) mvar(t) = mvar(u),
(3) t ∈ sat(U) and u ∈ sat(T ) .

Algorithm 2 IsIncluded

Input: T and U , regular chains of k[x1, . . . , xn].
Output: If true (resp. false ) is returned then sat(T ) ⊆ sat(U) holds (resp. does not

hold). If failed is returned then the inclusion could not be proved nor disproved.

1: if T = ∅ then return true end if

2: if U = ∅ then return false end if

3: if mvar(T ) = mvar(U) then

4: v := max mvar(T )
5: T ′ := T \ {Tv}
6: if IsIncluded(T ′, U) and prem(Tv, U) = 0 then return true end if

7: end if

8: if T ⊆ sat(U) then

9: if ires(
∏

t∈T init(t), U) 6= 0 then return true end if

10: if IsPrimitive(T ) then return true end if

11: end if

12: return failed
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8. Experimentation

We have implemented the algorithm IsPrimitive on top of the RegularChains

library in Maple (Lemaire et al., 2005). The experimentation, described hereafter, was

conducted on well-known problems used in Chen et al. (2007) 1 , and the tests were

performed in Maple 11 on an Intel Pentium 4 machine (3.20GHz CPU, 2.0GB memory).

First, we computed their triangular decompositions using the Triangularize com-

mand in the sense of Kalkbrener. Then, we applied the IsPrimitive algorithm to each

regular chain in the output.

In Table 1, we summarize the features of the problems and our experimental results.

The name of the problems are listed in the first column. The second column gives the

number n of variables and the maximal total degree d. For each triangular decomposi-

tion (which is a list of regular chains) we record the total running time (in seconds) of

IsPrimitive in the third column. The last column is the result of mapping IsPrimitive

to each triangular decomposition: in each of these patterns Y stands for true and N for

false.

These data show that the procedure IsPrimitive is efficient in practice. This agrees

with the fact that, in Algorithm 1, the input polynomial set in each call to Triangularize

is rather structured. We also observe that primitive regular chains appear quite often in

the output of triangular decompositions.

Table 1. Tests for IsPrimitive on 14 examples

System (n, d) Time Pattern

KdV575 (26, 3) 3.525 [Y, Y, Y, Y, Y, Y, Y]

MontesS11 (6, 4) .001 [Y]

MontesS16 (15, 2) .103 [Y, Y, Y, N, Y, Y, Y]

Wu-Wang2 (13, 3) 0.099 [Y, N, Y, Y, Y]

MontesS10 (7, 3) .145 [N]

Lazard2001 (7, 4) 2.314 [Y, Y, Y, N, Y, N]

Lanconelli (11, 3) .062 [N, Y]

Wang93 (5, 3) .142 [N]

Leykin-1 (8, 4) .228 [Y, Y, Y, Y, Y, Y, Y, Y, N, Y, Y, Y, N, N]

MontesS14 (5, 4) 1.171 [Y, N, N]

MontesS15 (12, 2) .312 [N]

Maclane (10, 2) .157 [Y, Y, N, Y, N]

MontesS12 (8, 2) .042 [N]

Liu-Lorenz (5, 2) 1.117 [N, Y]

1 The defining polynomial systems can be found at http://www.orcca.on.ca/~panwei/issac08/
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9. Discussion

We have generalized the notion of primitivity from univariate polynomials to regular

chains. This has allowed us to establish a necessary and sufficient condition for a regular

chain T to generate its saturated ideal sat(T ). Assume that T is not empty and write

T = T ′∪{p} where p is the polynomial of T with largest main variable. Theorem 3 states

that the equality 〈T 〉 = sat(T ) holds whenever 〈T ′〉 = sat(T ′) holds and the polynomial

p is weakly primitive over k[x]/〈T ′〉. This latter property is a generalization of the usual

notion of primitivity for polynomials over a UFD.

Examining the proof of Theorem 3, we make the following observation. When p is

not weakly primitive over k[x]/〈T ′〉, the proof exhibits a polynomial q which belongs to

sat(T ) but not to 〈T 〉. When p is weakly primitive over k[x]/〈T ′〉, the proof shows that

every polynomial q of sat(T ) belongs to 〈T 〉. The argument is constructive providing that

one has at hand an algorithm for dividing a by b modulo 〈T ′〉, where b is a polynomial

regular modulo 〈T ′〉 and is a multiple of the polynomial a modulo 〈T ′〉. This can be

done via Gröbner basis computations (see Monagan and Pearce, 2006). An algorithmic

solution based on the algorithms of the RegularChains library is an ongoing research

work.

Theorem 3 and its proof do not lead directly to an algorithm for testing the equality

〈T 〉 = sat(T ). Algorithm 1 provides such a decision procedure. This algorithm reduces to

testing whether a polynomial is regular modulo an ideal. Fortunately the involved ideal is

unmixed which allows us to rely on the algorithms of the RegularChains library avoid-

ing Gröbner basis computations. Our experimentation illustrates the practical efficiency

of Algorithm 1.

Algorithm 1 does not generalize easily in the differential setting. Indeed, consider the

polynomial p = u2
x − 4u as in (Ritt, 1950, example 1 page 120). We recall hereafter that

we have [u2
x − 4u] ( [u2

x − 4u] : {ux}∞. This indicates that even in the case of a single

polynomial, the problem is much harder in the differential setting since the case of a single

polynomial in the algebraic setting is obvious (line 3 of Algorithm 1). It is obvious to show

that uxx−2 ∈ [u2
x−4u] : {ux}∞ since dp/dx = 2ux(uxx−2). However uxx−2 /∈ [u2

x−4u]

holds for the following reason: the solution u = 0 for [u2
x − 4u] does not cancel uxx − 2

which implies: uxx − 2 /∈ [u2
x − 4u]. Thus, we have; [u2

x − 4u] ( [u2
x − 4u] : {ux}∞

In general a primitive regular chain is not a lex Gröbner basis with the same variable

ordering. Over the ring Q[x ≻ y ≻ z ≻ v ≻ u ≻ r ≻ t], the following regular chain T is

primitive:

T =































v − rt,

ztu− 1,

yr − t2u− 1,

xu− xr − 2x− u− 2 t4 + 1.

The ideal sat(T ) = 〈T 〉 has the reduced lex Gröbner basis G in lex order x ≻ y ≻ z ≻
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v ≻ u ≻ r ≻ t, which consists of 6 polynomials.

G =























































v − rt,

ztu− 1,

yr − t2u− 1,

xu− xr − 2x− u− 2 t4 + 1,

rtzx + 1− zt− x + 2 ztx + 2 t5z,

ztx + t2x− yzt− xy + y + 2 yztx + 2 t5yz

Moreover, in the same variable ordering, its reduced degree reverse lex Gröbner basis
(omitted here) consists of 12 polynomials. Clearly, when T is a primitive regular chain,
no other generating set of the saturated ideal sat(T ) can can have fewer elements than
T ; in addition T provides nice algorithmic properties (membership test, regularity test)
as Gröbner bases do.

As discussed in Section 7, an application of Algorithm 1 is in the removal of redun-
dant components for triangular decompositions in the sense of Kalkbrener. However, this
Algorithm 2 provides only a criterion for removing redundant components. Obtaining
a decision algorithm, free of Gröbner basis computations, for testing the inclusion of
saturated ideals, remains an open problem.

Another possible research direction is to investigate the relations between primitive
regular chains and the minimum number of generators of saturated ideals. For instance,
it is natural to ask whether a prime ideal P of height h can be generated by h elements
if and only if there exists a variable ordering and a primitive regular chain C (w.r.t. this
variable ordering) such that C generates P.
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