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Abstract. The purpose of this study is to measure the impact of C
level code polynomial arithmetic on the performances of AXIOM high-
level algorithms, such as polynomial factorization. More precisely, given
a high-level AXIOM package P parametrized by a univariate polynomial
domain U, we have compared the performances of P when applied to
different U’s, including an AXIOM wrapper for our C level code.

Our experiments show that when P relies on U for its univariate poly-
nomial computations, our specialized C level code can provide a signifi-
cant speed-up. For instance, the improved implementation of square-free
factorization in AXIOM is 7 times faster than the one in Maple and
very close to the one in MAGMA. On the contrary, when P does not
rely much on the operations of U and implements its private univariate
polynomial operation, then P cannot benefit from our highly optimized
C level code. Consequently, code which is poorly generic reduces the
speed-up opportunities when applied to highly efficient and specialized
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1 Introduction

Generic programming, and in particular type constructors parametrized by types
and values, is a clear need for implementing computer algebra algorithms. This
has been one of the main motivations in the development of computer algebra
systems and languages such as AXIOM [10] and Aldor [15] since the 1970’s.
AXIOM and Aldor have a two-level object model of categories and domains
which allows the implementation of algebraic structures (rings, fields, . . . ) and
their members (polynomial domains, fields of rational functions, . . . ). In these
languages, the user can implement domain and category constructors, that is,
functions returning categories or domains. For instance, one can implement a
function UP taking a ring R as parameter and returning the ring of univariate
polynomials over R. This feature is known as categorical programming.

Another goal in implementing computer algebra algorithms is that of effi-
ciency. More precisely, it is desirable to be able to realize successful imple-
mentations of the best algorithms for a given problem. Sometimes, this may
sound contradictory with the generic programming paradigm. Indeed, efficient
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implementations often require specialized data-structures (e.g., primitive arrays
of machine words for encoding dense univariate polynomials over a finite field).
High-performance was not the primary concern in the development AXIOM. For
instance, until recently [11], AXIOM had no domain constructor for univariate
polynomials with dense representation.

The MAGMA [2,1] computer algebra system, developed at the University of
Sydney since the 1990’s, has succeeded in providing both generic types and high-
performance. As opposed to many previous systems, a strong emphasis was put
on performance: asymptotically fast state-of-the art algorithms are implemented
in MAGMA, which has become a De facto reference regarding performance.

MAGMA’s design uses the language of universal algebra as well. Users can
dynamically define and compute with structures (groups, rings, . . . ), that belong
to categories (e.g., permutation groups), which themselves belong to varieties
(e.g., the variety of groups); these algebraic structures are first-class objects.
However, some aspects of categorical programming available in AXIOM are not
present: users cannot define new categories; the interfacing with C seems not
possible either.

In this paper, we show that generic programming can contribute to high-
performance. To do so, we first observe that dense univariate and multivariate
polynomials over finite fields play a central role in computer algebra, thanks
to modular algorithms. Therefore, we have realized highly optimized implemen-
tations of these polynomial data-types in C, Aldor and Lisp. This work is
reported in [5] and [12].

The purpose of this new study is to measure the impact of our C level code
polynomial arithmetic on the performances of AXIOM high-level algorithms,
such as factorization. More precisely, given a high-level AXIOM package P (or
domain) parametrized by a univariate polynomial domain U, we have compared
the performances of P when applied to different U’s, including an AXIOM wrap-
per for our C level code.

Our experiments show that when P relies on U for its univariate polynomial
computations, our specialized C level code can provide a significant speed-up.
On the contrary, when P does not rely much on the operations of U and imple-
ments its private univariate polynomial operations, then P cannot benefit from
our highly optimized C level code. Consequently, code which is poorly generic re-
duces the speed-up opportunities when applied to highly efficient and specialized
polynomial data-types.

2 Software Overview

We present briefly the AXIOM polynomial domain constructors involved in our
experimentation. Then, we describe the features of our C code that play a central
in this study: finite field arithmetic and fast univariate polynomial arithmetic.
We notably discuss how the choice of special primes enables us to obtain fast
algorithms for reduction modulo p.
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2.1 AXIOM Polynomial Domain Constructors

Let R be an AXIOM Ring. The domain SUP(R) implements the ring of univariate
polynomials with coefficients in R. The data representation of SUP(R) is sparse,
that is, only non-zero terms are encoded. The domain constructor SUP is written
in the AXIOM language.

The domains DUP(R) implements exactly the same operations as SUP(R).
More precisely, these two domains satisfy the category UnivariatePolynomial-
Category(R). However, the representation of the latter domain is dense: all
terms, null or not, are encoded. The domain constructor DUP was developed in
the AXIOM language, see [11] for details.

Another important domain constructor in our study is PF: for a prime number
p, the domain PF(p) implements the prime field Z/pZ.

Our C code is dedicated to multivariate polynomials with dense representation
and coefficients in a prime field To make this code available at the AXIOM level,
we have implemented a domain constructor DUP2 wrapping our C code. For a
prime number p, the domains DUP2(p) and DUP(PF(p)) implement the same
category, that is, UnivariatePolynomialCategory(PF(p)).

2.2 Finite Field Arithmetic

The implementation reported here focuses on some special small finite fields. By
a small finite field, we mean a field of the form K = Z/pZ, for p a prime that
fits in a 26 bit word (so that the product of two elements reduced modulo p fits
into a double register). Furthermore, the primes p we consider have the form
k2� + 1, with k a small odd integer (typically k ≤ 7), which enables us to write
specific code for integer Euclidean division.

The elements of Z/pZ are represented by integers from 0 to p − 1. Additions
and subtractions in Z/pZ are performed in a straightforward way: we perform
integer operations, and the result is then reduced modulo p. Since the result of
additions and subtractions is always in −(p−1), . . . , 2(p−1), modular reduction
requires at most a single addition or subtraction of p; for the reduction, we use
routines coming from Shoup’s NTL library [9,14].

Multiplication in Z/pZ requires more work. A standard solution, present in
NTL, consists in performing the multiplication in double precision floating-point
registers, compute numerically the quotient appearing in the Euclidean division
by p, and finally deduce the remainder.

Using the special form of the prime p, we designed the following faster
“approximate” Euclidean division, that shares similarities with Montgomery’s
REDC algorithm [13]; for another use of arithmetic modulo special primes,
see [4]. Let thus Z be in 0, . . . , (p − 1)2; in actual computations, Z is obtained
as the product of two integers less than p. The following algorithm computes an
approximation of the remainder of kZ by p, where we recall that p has the form
k2� + 1:

1. Compute q = � Z
2� �.

2. Compute r = k(Z − q2�) − q.
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Proposition 1. Let r be as above and let r0 < p be the remainder of kZ by p.
Then r ≡ r0 mod p and r = r0 − δp, with 0 ≤ δ < k + 1.

Proof. Let us write the Euclidean division of kZ by p as kZ = q0p + r0. This
implies that

q = q0 +
⌊

q0 + r0

k2�

⌋

holds. From the equality qp + r = q0p + r0, we deduce that we have

r = r0 − δp with δ =
⌊

q0 + r0

k2�

⌋
p.

The assumption Z ≤ (p − 1)2 enables us to conclude that δ < k + 1 holds. �

In terms of operations, this reduction is faster than the usual algorithms, which
rely on either Montgomery’s REDC or Shoup’s floating-point techniques. The
computation of q is done by a logical shift; that of r requires a logical AND (to
obtain Z−2�q), and a single multiplication by the constant c. Classical reduction
algorithms involve 2 multiplications, and other operations (additions and logical
operations). Accordingly, in practical terms, our approach turned out to be more
efficient.

There are however drawbacks to this approach. First, the algorithm above does
not compute Z mod p, but a number congruent to kZ modulo p (this multipli-
cation by a constant is also present in Montgomery’s approach). This is however
easy to circumvent in several cases, for instance when doing multiplications by
precomputed constants (this is the case in FFT polynomial multiplication, see
below), since a correcting factor k−1 mod p can be incorporated in these con-
stants. The second drawback is that the output of our reduction routine is not
reduced modulo p. When results are reused in several computations, errors accu-
mulate, so it is necessary to perform some error reduction at regular time steps,
which slows down the computations.

2.3 Polynomial Arithmetic

For polynomial multiplication, we use the Fast Fourier Transform (FFT) [6,
Chapter 8], and its variant the Truncated Fourier Transform [8]. Indeed, since
we work modulo primes p of the form k2� +1, Lemma 8.8 in [6] shows that Z/pZ

admits 2�th primitive roots of unity, so that it is suitable for FFT multiplication
for output degrees up to 2� − 1.

Both variants feature a O(d log(d)) asymptotic complexity; the latter offers a
smoother running time, avoiding the usual abrupt jumps that occur at powers
of 2 in classical Fast Fourier Transforms.

Using fast multiplication enables us to write a fast Euclidean division for
polynomials, using Cook-Sieveking-Kung’s approach through power series inver-
sion [6, Chapter 9]. Recall that this algorithm is based on the remark that the
quotient q in the Euclidean division u = qv + r in K[x] satisfies

revdeg u−deg v(q) = revdeg u(u) revdeg v(v)−1 mod xdeg u−deg v+1,
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where revm(p) denotes the reverse polynomial xmp(1/x). Hence, computing the
quotient q is reduced to a power series division, which itself can be done in time
O(d log(d)) using Newton’s iteration [6, Chapter 9].

Newton’s iteration was implemented using middle product techniques [7],
which enable us to reduce the cost of a direct implementation by a constant
factor (these techniques are particularly easy to implement when using FFT
multiplication, and are already described in this case in [14].

Our last ingredient is GCD computation. We implemented both the classical
Euclidean algorithm, as well as its faster divide-and-conquer variant using so-
called Half-GCD techniques [6, Chapter 11]. The former features a complexity
in O(d2), whereas the latter has cost in O(d log(d)2), but is hindered by a large
multiplicative constant hidden by the big-O notation.

2.4 Code Connection

Open AXIOM is based on GNU Common Lisp (GCL), GCL being developed
in C [12]. We follow the GCL developers’ approach to integrate our C level
code into GCL’s kernel. The crucial step is converting different polynomial data
representations between AXIOM and the ones in our C library via GCL level.
The overhead of these conversions may significantly reduce the effectiveness of
our C implementation. Thus, good understanding of data structures in AXIOM

and GCL is a necessity to establish an efficient code connection.

3 Experimentation

In this section, we compare our specialized domain constructor DUP2 with our
generic domain constructor DUP and the standard AXIOM domain constructor
SUP. Our experimentation takes place into the polynomial rings:

• Ap = Z/pZ[x],
• Bp = (Z/pZ[x]/〈m〉)[y],

for a machine word prime number p and an irreducible polynomial m ∈ Z/pZ[x].
The ring Ap can be implemented by any of the three domain constructors DUP2,
DUP and SUP applied to PF(p), whereas Bp is implemented by either DUP and SUP
applied to Ap. In both Ap and Bp, we compare the performances of factorization
and resultant computations provided by theses different constructions. These
experimentations deserve two goals.

(G1) When there is a large proportion of the running time which is spent in
computing products, remainders, quotients, GCDs in Ap, we believe that
there are opportunities for significant speed-up when using DUP2 and we
want to measure this speed-up w.r.t. SUP and DUP.

(G2) When there is a little proportion of the running time which is spent in
computing products, remainders, quotients, GCDs in Ap, we want to check
whether using DUP2, rather than SUP and DUP, could slow down computations.
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For computing univariate polynomial resultants over a field, AXIOM runs the
package PseudoRemainderSequence implementing the algorithms of Ducos [3].
This package takes R: IntegralDomain and polR: UnivariatePolynomialCa-
tegory(R) as parameters. However, this code has its private divide operation
and does not rely on the one provided by the domain polR. In fact, the only non-
trivial operation that will be run from polR is addition! Therefore, if polR has
a fast division with remainder, this will not benefit to resultant computations
performed by the package PseudoRemainderSequence. Hence, in this case, there
is very little opportunities for DUP2 to provide speed-up w.r.t. SUP and DUP.

For square-free factorization over a finite field, AXIOM runs the package
UnivariatePolynomialSquareFree. It takes RC: IntegralDomain P: Univa-
riatePolynomialCategory(RC) as parameters. In this case, the code relies on
the operations gcd and exquo provided by P. Hence, if P provides fast GCD com-
putations and fast divisions, this will benefit to the package UnivariatePolyno-
mialSquareFree. In this case, there is a potential for DUP2 to speed-up
computations w.r.t. SUP and DUP.
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Fig. 2. Square-free factorization in
Z/pZ[x]

We start the description of our experimental results with resultant computa-
tions in Ap = Z/pZ[x]. As mentioned above, this is not a good place for obtaining
significant performance gain. Figure 1 shows that computations with DUP2 are
just slightly faster than those with SUP. In fact, it is satisfactory to verify that
using DUP2, which implies data-type conversions between the AXIOM and C
data-structures, does not slow down computations.

We continue with square-free factorization and irreducible factorization in
Ap. Figure 2 (resp. Figure 3) shows that DUP2 provides a speed-up ratio of 8
(resp. 7) for polynomial with degrees about 9000 (resp. 400). This is due to
the combination of the fast arithmetic (FFT-based multiplication, Fast division,
Half-GCD) and highly optimized code of this domain constructor.

In the case of irreducible factorization, we could have obtained a better ratio
if the code was more generic. Indeed, the irreducible factorization over finite
fields in AXIOM involves a package which has its private univariate polyno-
mial arithmetic, leading to a problem similar to that observed with resultant
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computations. The package in question is ModMonic, parametrized by R: Ring
and Rep: UnivariatePolynomialCategory(R), which implements the Frobe-
nius map.

We conclude this section with our benchmarks in Bp = (Z/pZ[x]/〈m〉)[y]. For
resultant computations in Bp the speed-up ratio obtained with DUP2 is better
than in the case of Ap. This is because the arithmetic operations of DUP2 (addi-
tion, multiplication, inversion) perform better than those of SUP or DUP. Finally,
for irreducible factorization in Bp, the results are quite surprising. Indeed, AX-

IOM uses Trager’s algorithm (which reduces computations to resultants in Bp,
irreducible factorization in Ap and GCDs in Bp) and, based on our previous
results, we could have anticipated a good speed-up ratio. Unfortunately, the
package AlgFactor, which is used for algebraic factorization, has its private
arithmetic. More precisely, it “re-defines” Bp with SUP and factorizes the input
polynomial over this new Bp.

4 Conclusion

The purpose of this study is to measure the impact of our C level specialized
implementation for fast polynomial arithmetic on the performances of AXIOM
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high-level algorithms. Generic programming is well designed in the AXIOM

system. The experimental results demonstrate that by replacing a few important
operations in DUP(PF(p))with our C level implementation, the original AXIOM

univariate polynomial arithmetic over Z/pZ has been speed up by a large factor
in general. For algorithm such as univariate polynomial square free factorization
over Z/pZ, the improved AXIOM code is 7 times faster than the one in Maple

and very close to the one in MAGMA (see Figure 6).
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