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Introduction

Given a regular chain T, the saturated ideal sat(7T) is a fundamental
object attached to T

The questions like

— Is p an element of sat(7T')?

— Is p a zero-divisor modulo sat(7T')?

can be answered without computing a system of generators of sat(7).
In some sense, T" is a black box representation of sat(7).

However, in this representation, the inclusion test problem
— Does sat(U) C sat(T) hold?
is hard.



Introduction

e If a system of generators of U is known, then the inclusion test reduces
to the ideal membership problem.
e How to compute a system of generators of sat(7)?

— The only known general technique is via Grobner bases.

— If dim(sat(7")) = 0, then |sat(T) = (T) |.

e Our objectives are, in positive dimension,

(1) characterizing the T’s for which sat(T) = (T') holds;
(2) deciding sat(T') = (T') without Grobner basis computation.
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Primitive polynomials of A|z|

e Here A is a unique factorization domain (UFD): Z, Q[x1, . ..

o Let f € Alx] of degree d > 0, and write f as
f=agx?+ -+ ao.
Then f is called primitive if ged(ag,...,aq) = 1.

e Eixamples:
(1) 2z 4 3 € Z|z] is primitive;
(2) 123 + T2 € Al23] is primitive with A = Q[x1, x2];
(3) x129 € Alxs] is not primitive with A = Q[xz1].



Saturation operation

e Let R be a commutative ring, h € R and I be an ideal of R.

e The saturated ideal of I by h is

[:h>®° ={fcR|fh" cI, for some k € Z>g}.

e One side inclusion I C I : h®°; it can be strict.

e Eixamples:
(1) (12):2%° = (3) <= 12/22 = 3;
(2) (x123 + T2) : ° = (X123 + T2);

(3) (z172) @ 2T° = (T2).

e Proposition: f = agz? + -+ ag € A[z] is primitive iff

(f) rag” = ([),
where A is a UFD.



Regular chain and saturated ideal

e Notations:
Let T = {t1,...,ts} be a triangular set in k[z; < -+ < x,].
Each t € T is a univariate polynomial in its main variable mvar(t).

The leading coefficient of ¢ is called its initial, denoted by init(t).

e The saturated ideal sat(7T) of a triangular set T is
sat(1T) = (T) : h*°,
where h is the product of initials of ¢;’s.

e Regular chain:
(1) if T'= 0, then it is a regular chain and sat(T") = (0);

(2) if T =C U{p}, then T is a regular chain, iff C is a regular chain
and init(p) is regular modulo sat(C').



Regular chain and saturated ideal
e For example, in klx >y > u > v]
mvar(uy +v) = vy, sat(fuy4+v) = (uy+wv):u
init(uy +v) = u, = (uy +v).
Also v is regular modulo (uy + v).

e Saturating (7T') by the product of the initials of T will kick out

“bad” components.

VT T U, <T> — <uy TV, LY — 1> A <’LL, ’U>,
uy + v, sat(T) = (uy—+v,xy—1).

T :

Here sat(T') is strictly larger than (7).

e sat(7') is unmixed: all associated primes of sat(T") are minimal

primes of sat(T').



The question

e Proposition: f = agz?+ -+ ag € Alx] is primitive iff

() rag” = (f),
where A is a UFD.

e This proposition can be re-stated as: For each f € k|z1,...,z,]

sat(f) = (f) <= f is primitive in its main variable.

e | When does (T') equal sat(7)? | Primitive regular chains?




A remark

o A strightforward generalization of primitivity is not enough.
Consider T' = {t; = uy + v,t3 = vo + u}. Then

— t1 is primitive over k|u, v];
— to is primitive over klu, v, y].

However, sat(T) is strictly larger than (7).
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Primitivity over a commutative ring R

A nonconstant polynomial p = a,x¢ + ae_12°71 + -+ + ag € R[z] is

not weakly primitive if there exists a 8 € R such that

ae | Bag, ..., ae | Bac_1, but a.{p. (1)

e For instance, p = 6z + 3 € Z[x] is not weakly primitive, since
B = 2 satisfies (1): 6 |2-3 and 61 2.

e The [ may be seen as a co-content wrt a..

e If R is a UFD, then | weakly primitive = primitive |.
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Primitive regular chain

e Definition:
Let T'= C U {p} be a regular chain. Then T is primitive if C is
primitive and p is a weakly primitive polynomial regarded as a

univariate polynomial in its main variable over k[x|/(C").

e This is a proper generalization: If T'= {p} consists of a single

polynomial, then T’ is primitive iff p is primitive.

e Theorem: | Regular chain T is primitive iff (1) = sat(7") holds.
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Remark

In the proof of the theorem,
e if 7" is not primitive, we exhibit a polynomial p € sat(T") \ (T');

e if T is primitive, we express every polynomial of sat(7T) as a

linear combination of polynomials in 7'

e we rely on a Generalized Gauss Lemma: Dedekind-Mertens

Lemma.
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Primitivity checking algorithm

e Lemma:

Polynomial p = a.x® + - -- 4+ ap € R|z] is weakly primitive iff
(1) ae is invertible in R; or
(2) tail(p) = p — a.x° is regular modulo (a.).

e Primitivity test for a regular chain reduces to an invertibility
test and a regularity test.

e Let F be a list of polynomials and f € k[x]. Then
(1) f is invertible modulo (F) iff Triangularize(F U {f}) = 0.

(2) f is regular modulo (F') iff f is not contained in any

associated prime of (F).

Regularity test (2) is hard for a general ideal.
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IsPrimitive algorithm

Input: T, a regular chain of k[z1,...,xn].

Output: true if T is primitive, false otherwise.

1: if |T| =1 then
2: t < the defining polynomial of T
3:  if content(t) € k then return true else return false
4: else
5:  write T as T U {t}, where t has the greatest main variable
6: if not IsPrimitive(7’) then
7 return false
8: else
9: h « init(t), r < tail(t)
10: for U € RegularChains : —Triangularize(7’ U {h}) do
11: if ires(r, U) = 0 then return false
12: end for
13: return true
14:  end if
15: end if

Line 10 implies an invertibility test. Line 11 is the regularity test which follows

from the following facts. 16



o Let I = (F) and U be the output of Triangularize(F'), then

VI= (] Vsat(U).

Ucu
e Let T’ be primitive regular chain and h be regular modulo (T").

Then (17, h) is a regular sequence, consequently (T" U {h}) is an

unmixed ideal with dimension n — |T’| — 1.

e For an unmixed ideal I,

f is regular modulo I <= f is regular modulo /1.

e Finally, r = tail(¢) is regular modulo (T U {h})
<= r is regular modulo \/W for each U € U
<= r is regular modulo sat(U) for each U € U
<= the iterated resultant ires(r, U) is not zero.
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Experimentation

System (n,d) IsPrimitive Pattern

KAV575 (26, 3) 3525 [T, T, T,T,T,T, T]
MontesS11 (6, 4) 001 [T]

MontesS16 (15, 2) .103 [T, T, T, F, T, T, T]
Wu-Wang?2 (13, 3) 0.099 [T, F, T, T, T]
MontesS10 (7, 3) 145 [F]

Lazard2001 (7, 4) 2.314 [T, T, T, F, T, F|
Lanconelli (11, 3) 062 [F, T]

Wang93 (5, 3) 142 [F]

Leykin-1 (8, 4) 228 [T, T, T, T,T,T,T,T,FT,TT,F,F|
MontesS14 (5, 4) 1.171 [T, F, F]

MontesS15 (12, 2) 312 [F]

Maclane (10, 2) 157 [T, T, F, T, F]
MontesS12 (8, 2) 042  [F]

Liu-Lorenz (5, 2) 1.117  [F, T]

In the algorithm the call Triangularize(7T” U {h}) is expectedly cheap

since T" is a regular chain and (77, h) is a regular sequence.
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Discussion with an example: Montes16

wl2 4+ wl4,

wl2 + wl3,

wl2 + wlH,

wl2 4+ w23 + w25 — w26x + w26,

wl2 4+ w25 — w26y + w26,

wl2 4+ w23 — w26z + w26,

w23 + w34 + zw36, wl3 + w34 — w36y + w36,
w23 4+ zw36, wld + w34 + wdd — wi4bx + w46,
w34 + yw4o6,

w4d + zwbd6,

wld + w4d — zwbd6 + w6,

—w26 + w26x + xw36 — w46 + wdbx + wdH6T,

—w26 + w26y — w36 + w36y + ywd6 + w6y,

[ —w26 + w26z + zw36 + w46z — wd6 + zwH6

F <

with X = [wl12, w13, wld, wlh, w23, w25, w34, wi5, w26, w36, wd6, wh6, x, y, z].
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Discussion with an example: Montes16

The output 7 of Triangularize

[regular_chain,regular_chain,regular_chain,regular_chain,

regular_chain,regular_chain,regular_chain];

Are they primitive?

[true, true, true, false, true, true, truel;

Are there any redundant regular chains?

Let T; = Tli], for i = 1,...,7. Dimension of regular chains:
dlm(Tl) = 3,
dim(7s) = dim(73) = dim(7,) = dim(75) = 2,

dim(7s) = dim(77) = 1.
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In fact, the following two are the only inclusion relations

sat(Ty) C sat(Tg) and  sat(Ty) C sat(7Tr)

"~

Can be detected. Still can not be detected.

Note that a polynomial | f € sat(T) <= prem(f,T)=0|.

An irredundant decomposition for F' is

{T1,T5,15,16,T7}.

With the notion of primitive regular chain, one can improve the

situation for removing redundancy.

However, a complete Grobner free algorithm for inclusion test is

still unknown.
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Thank you!
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Dedekind-Mertens Lemma
Let
f=ag+a1x+---4+a,x" and g=bg+ -+ b,z

be polynomials in R[x]. Denote by c¢(-) the ideal generated by the
coefficients. Then we have

c(f)"elg) = c(f)"e(fg).

As a corollary, for each h € R,
(1) h| fg implies h | bpa!" ™" for 0 < i < n,

(2) h | fg implies h | bya!"™" for 0 < i < n.
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