When does $\langle T \rangle$ equal sat(T)?

Wei Pan

joint work with

François Lemaire, Marc Moreno Maza and Yuzhen Xie

MOCAA M³ workshop UWO May 7, 2008

Introduction

- Given a regular chain T, the **saturated ideal** sat(T) is a fundamental object *attached* to T.
- The questions like
 - Is p an element of sat(T)?
 - Is p a zero-divisor modulo sat(T)?

can be answered without computing a system of generators of sat(T).

- In some sense, T is a **black box representation** of sat(T).
- However, in this representation, the **inclusion test** problem

- Does $\operatorname{sat}(U) \subseteq \operatorname{sat}(T)$ hold?

is hard.

Introduction

- If a system of generators of U is known, then the inclusion test reduces to the ideal membership problem.
- How to compute a system of generators of sat(T)?
 - The only known general technique is via Gröbner bases.
 - If dim(sat(T)) = 0, then $|sat(T) = \langle T \rangle$.
- Our objectives are, in **positive** dimension,
 - (1) characterizing the T's for which $sat(T) = \langle T \rangle$ holds;
 - (2) deciding $\operatorname{sat}(T) = \langle T \rangle$ without Gröbner basis computation.

Outline

- Primitivity of polynomials
- Regular chain and saturated ideal
- Primitive regular chain
- Primitivity checking algorithm
- Experimentation and discussion

Primitive polynomials of A[x]

- Here A is a unique factorization domain (UFD): $\mathbb{Z}, \mathbb{Q}[x_1, \ldots, x_n]$.
- Let $f \in A[x]$ of degree d > 0, and write f as

$$f = a_d x^d + \dots + a_0.$$

Then f is called **primitive** if $gcd(a_d, \ldots, a_0) = 1$.

• Examples:

(1) $2x + 3 \in \mathbb{Z}[x]$ is primitive;

(2) $x_1x_3 + x_2 \in A[x_3]$ is primitive with $A = \mathbb{Q}[x_1, x_2];$

(3) $x_1x_2 \in A[x_2]$ is **not** primitive with $A = \mathbb{Q}[x_1]$.

Saturation operation

- Let R be a commutative ring, $h \in R$ and I be an ideal of R.
- The **saturated ideal** of I by h is

$$I: h^{\infty} = \{ f \in R \mid fh^k \in I, \text{ for some } k \in \mathbb{Z}_{\geq 0} \}.$$

- One side inclusion $I \subseteq I : h^{\infty}$; it can be strict.
- Examples:
- (1) $\langle 12 \rangle : 2^{\infty} = \langle 3 \rangle \iff 12/2^2 = 3;$ (2) $\langle x_1 x_3 + x_2 \rangle : x_1^{\infty} = \langle x_1 x_3 + x_2 \rangle;$ (3) $\langle x_1 x_2 \rangle : x_1^{\infty} = \langle x_2 \rangle.$
- **Proposition**: $f = a_d x^d + \dots + a_0 \in A[x]$ is primitive iff

$$\langle f \rangle : a_d^\infty = \langle f \rangle,$$

where A is a UFD.

Regular chain and saturated ideal

• Notations:

Let $T = \{t_1, \ldots, t_s\}$ be a triangular set in $\Bbbk[x_1 \prec \cdots \prec x_n]$. Each $t \in T$ is a univariate polynomial in its **main variable** mvar(t). The leading coefficient of t is called its **initial**, denoted by init(t).

• The saturated ideal sat(T) of a triangular set T is

 $\operatorname{sat}(T) = \langle T \rangle : h^{\infty},$

where h is the product of initials of t_i 's.

• Regular chain:

- (1) if $T = \emptyset$, then it is a regular chain and sat $(T) = \langle 0 \rangle$;
- (2) if $T = C \cup \{p\}$, then T is a regular chain, iff C is a regular chain and init(p) is regular modulo sat(C).

Regular chain and saturated ideal

• For example, in $\Bbbk[x \succ y \succ u \succ v]$

$$mvar(uy + v) = y, \quad sat(uy + v) = \langle uy + v \rangle : u^{\infty}$$
$$init(uy + v) = u, \quad = \langle uy + v \rangle.$$

Also v is regular modulo $\langle uy + v \rangle$.

Saturating \langle T \rangle by the product of the initials of T will kick out "bad" components.

$$T: \begin{vmatrix} v\mathbf{x} + u, & \langle T \rangle &= \langle uy + v, xy - 1 \rangle \cap \langle u, v \rangle, \\ u\mathbf{y} + v, & \operatorname{sat}(T) &= \langle uy + v, xy - 1 \rangle. \end{vmatrix}$$

Here sat(T) is strictly larger than $\langle T \rangle$.

• sat(T) is **unmixed**: all associated primes of sat(T) are minimal primes of sat(T).

The question

• **Proposition**: $f = a_d x^d + \dots + a_0 \in A[x]$ is primitive iff

$$\langle f \rangle : a_d^{\infty} = \langle f \rangle,$$

where A is a UFD.

• This proposition can be re-stated as: For each $f \in \mathbb{k}[x_1, \ldots, x_n]$

 $\operatorname{sat}(f) = \langle f \rangle \iff f$ is primitive in its main variable.

• When does $\langle T \rangle$ equal sat(T)? Primitive regular chains?

A remark

• A strightforward generalization of primitivity is not enough. Consider $T = \{t_1 = uy + v, t_2 = vx + u\}$. Then

 $-t_1$ is primitive over $\mathbb{k}[u, v]$;

 $-t_2$ is primitive over $\mathbb{k}[u, v, y]$.

However, sat(T) is strictly larger than $\langle T \rangle$.

Primitivity over a commutative ring R

A nonconstant polynomial $p = a_e x^e + a_{e-1} x^{e-1} + \dots + a_0 \in R[x]$ is not weakly primitive if there exists a $\beta \in R$ such that

$$a_e \mid \beta a_0, \ldots, a_e \mid \beta a_{e-1}, \text{ but } a_e \nmid \beta.$$
 (1)

- For instance, $p = 6x + 3 \in \mathbb{Z}[x]$ is not weakly primitive, since $\beta = 2$ satisfies (1): $6 \mid 2 \cdot 3$ and $6 \nmid 2$.
- The β may be seen as a <u>co-content</u> wrt a_e .
- If R is a UFD, then weakly primitive = primitive .

Primitive regular chain

• Definition:

Let $T = C \cup \{p\}$ be a regular chain. Then T is **primitive** if C is primitive and p is a weakly primitive polynomial regarded as a univariate polynomial in its main variable over $k[\mathbf{x}]/\langle C \rangle$.

- This is a proper generalization: If $T = \{p\}$ consists of a single polynomial, then T is primitive iff p is primitive.
- **Theorem**: Regular chain T is primitive iff $\langle T \rangle = \operatorname{sat}(T)$ holds.

Remark

In the proof of the theorem,

- if T is not primitive, we exhibit a polynomial $p \in \operatorname{sat}(T) \setminus \langle T \rangle$;
- if T is primitive, we express every polynomial of sat(T) as a linear combination of polynomials in T;
- we rely on a Generalized Gauss Lemma: **Dedekind-Mertens** Lemma.

Primitivity checking algorithm

• Lemma:

Polynomial $p = a_e x^e + \dots + a_0 \in R[x]$ is weakly primitive iff (1) a_e is invertible in R; or (2) $\operatorname{tail}(p) = p - a_e x^e$ is regular modulo $\langle a_e \rangle$.

- Primitivity test for a regular chain reduces to an **invertibility test** and a **regularity test**.
- Let F be a list of polynomials and $f \in \mathbb{k}[\mathbf{x}]$. Then
 - (1) f is invertible modulo $\langle F \rangle$ iff **Triangularize** $(F \cup \{f\}) = \emptyset$.
 - (2) f is regular modulo $\langle F \rangle$ iff f is not contained in any associated prime of $\langle F \rangle$.

Regularity test (2) is hard for a general ideal.

Primitivity checking algorithm

• Lemma:

Polynomial $p = a_e x^e + \dots + a_0 \in R[x]$ is weakly primitive iff (1) a_e is invertible in R; or (2) $\operatorname{tail}(p) = p - a_e x^e$ is regular modulo $\langle a_e \rangle$.

- Primitivity test for a regular chain reduces to an **invertibility test** and a **regularity test**.
- Let F be a list of polynomials and $f \in \mathbb{k}[\mathbf{x}]$. Then
 - (1) f is invertible modulo $\langle F \rangle$ iff **Triangularize** $(F \cup \{f\}) = \emptyset$.
 - (2) f is regular modulo $\langle F \rangle$ iff f is not contained in any associated prime of $\langle F \rangle$.

Regularity test (2) is hard for a general ideal.

IsPrimitive algorithm

```
Input: T, a regular chain of k[x_1, \ldots, x_n].
```

Output: true if T is primitive, false otherwise.

```
1: if |T| = 1 then
```

```
2: t \leftarrow the defining polynomial of T
```

```
3: if content(t) \in \mathbb{k} then return true else return false
```

4: **else**

```
5: write T as T' \cup \{t\}, where t has the greatest main variable
```

```
6: if not IsPrimitive(T') then
```

```
7: return false
```

```
8: else
```

```
9: h \leftarrow \operatorname{init}(t), r \leftarrow \operatorname{tail}(t)
```

```
10: for U \in \mathbf{RegularChains} : -\mathbf{Triangularize}(T' \cup \{h\}) do
```

```
11: if ires(r, U) = 0 then return false
```

```
12: end for
```

```
13: return true
```

```
14: end if
```

15: **end if**

Line 10 implies an invertibility test. Line 11 is the regularity test which follows from the following facts. 16

• Let $I = \langle F \rangle$ and \mathcal{U} be the output of **Triangularize**(F), then

$$\sqrt{I} = \bigcap_{U \in \mathcal{U}} \sqrt{\operatorname{sat}(U)}.$$

• Let T' be primitive regular chain and h be regular modulo $\langle T' \rangle$. Then (T', h) is a regular sequence, consequently $\langle T' \cup \{h\} \rangle$ is an **unmixed ideal** with dimension n - |T'| - 1.

• For an unmixed ideal I,

f is regular modulo $I \iff f$ is regular modulo \sqrt{I} .

• Finally, $r = \operatorname{tail}(t)$ is regular modulo $\langle T' \cup \{h\} \rangle$ $\iff r$ is regular modulo $\sqrt{\operatorname{sat}(U)}$ for each $U \in \mathcal{U}$ $\iff r$ is regular modulo $\operatorname{sat}(U)$ for each $U \in \mathcal{U}$ \iff the **iterated resultant** $\operatorname{ires}(r, U)$ is not zero.

Experimentation

System	(n, d)	IsPrimitive	Pattern
KdV575	(26, 3)	3.525	[T, T, T, T, T, T, T, T]
MontesS11	(6, 4)	.001	[T]
MontesS16	(15, 2)	.103	[T, T, T, F, T, T, T]
Wu-Wang2	(13, 3)	0.099	[T, F, T, T, T]
MontesS10	(7, 3)	.145	[F]
Lazard2001	(7, 4)	2.314	[T, T, T, F, T, F]
Lanconelli	(11, 3)	.062	$[\mathrm{F,~T}]$
Wang93	(5,3)	.142	[F]
Leykin-1	(8, 4)	.228	[T, T, T, T, T, T, T, T, T, F, T, T, T, F, F]
MontesS14	(5, 4)	1.171	$[\mathrm{T},\mathrm{F},\mathrm{F}]$
MontesS15	(12, 2)	.312	$[\mathbf{F}]$
Maclane	(10, 2)	.157	[T, T, F, T, F]
MontesS12	(8, 2)	.042	[F]
Liu-Lorenz	$(5,\ 2)$	1.117	$[\mathrm{F,~T}]$

In the algorithm the call **Triangularize** $(T' \cup \{h\})$ is **expectedly cheap** since T' is a regular chain and (T', h) is a regular sequence.

Discussion with an example: Montes16

$$F \begin{cases} w12 + w14, \\ w12 + w13, \\ w12 + w15, \\ w12 + w23 + w25 - w26x + w26, \\ w12 + w25 - w26y + w26, \\ w12 + w23 - w26z + w26, \\ w23 + w34 + xw36, w13 + w34 - w36y + w36, \\ w23 + zw36, w14 + w34 + w45 - w46x + w46, \\ w34 + yw46, \\ w45 + zw56, \\ w15 + w45 - zw56 + w56, \\ -w26 + w26x + xw36 - w46 + w46x + w56x, \\ -w26 + w26y - w36 + w36y + yw46 + w56y, \\ -w26 + w26z + zw36 + w46z - w56 + zw56 \end{cases}$$

with X = [w12, w13, w14, w15, w23, w25, w34, w45, w26, w36, w46, w56, x, y, z].

Discussion with an example: Montes16

• The output \mathcal{T} of **Triangularize**

[regular_chain,regular_chain,regular_chain,regular_chain, regular_chain,regular_chain,regular_chain];

• Are they primitive?

[true, true, true, false, true, true, true];

- Are there any **redundant** regular chains?
- Let $T_i = \mathcal{T}[i]$, for i = 1, ..., 7. Dimension of regular chains:

 $\dim(T_1) = 3,$ $\dim(T_2) = \dim(T_3) = \dim(T_4) = \dim(T_5) = 2,$ $\dim(T_6) = \dim(T_7) = 1.$ • In fact, the following two are the only inclusion relations

$$\underbrace{\operatorname{sat}(T_2) \subseteq \operatorname{sat}(T_6)}_{\operatorname{Can be detected.}} \quad \text{and} \quad \underbrace{\operatorname{sat}(T_4) \subseteq \operatorname{sat}(T_7)}_{\operatorname{Still can not be detected.}}.$$

Note that a polynomial $f \in \operatorname{sat}(T) \iff \operatorname{prem}(f,T) = 0$.

• An irredundant decomposition for F is

 ${T_1, T_3, T_5, T_6, T_7}.$

- With the notion of primitive regular chain, one can improve the situation for removing redundancy.
- However, a complete <u>Gröbner free algorithm</u> for inclusion test is still **unknown**.

References

- (0) J. Arnold and R. Gilmer. On the contents of polynomials. Proc. Amer. Math. Soc., 24:556562, 1970.
- A. Corso, W. V. Vasconcelos, and R. H. Villarreal. On the contents of polynomials. J. Pure. Appl. Algebra, 125(1-3):117127, 1998.
- (2) P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets. J. Symb. Comput., 28(1-2):105124, 1999.
- M. Kalkbrener. Algorithmic properties of polynomial rings. J. Symb. Comput., 26(5):525581, 1998.
- (4) L. Yang and J. Zhang. Searching dependency between algebraic equations: an algorithm applied to automated reasoning. Technical report IC/91/6, International Atomic Engery Angency, Miramare, Trieste, Italy, 1991.
- (5) F. Lemaire, M. Moreno Maza, W. Pan, and Y. Xie. When does $\langle T \rangle$ equal sat(T)? To appear in ISSAC 2008.

Thank you!

Dedekind-Mertens Lemma

Let

$$f = a_0 + a_1 x + \dots + a_n x^n$$
 and $g = b_0 + \dots + b_m x^m$

be polynomials in R[x]. Denote by $c(\cdot)$ the ideal generated by the coefficients. Then we have

$$c(f)^{m+1}c(g) = c(f)^m c(fg).$$

As a corollary, for each $h \in R$, (1) $h \mid fg$ implies $h \mid b_0 a_i^{m+1}$ for $0 \le i \le n$, (2) $h \mid fg$ implies $h \mid b_n a_i^{m+1}$ for $0 \le i \le n$.