The RegularChains library in MAPLE 10

F. Lemaire*, M. Moreno Mazal, Y. Xie'
*: LIFL, Université Lille 1, 59655 Villeneuve d’Ascq, France.
T: ORCCA, University of Western Ontario, London, Ontario, Canada.
{lemaire}@lifl.fr {moreno,yxie}@orcca.on.ca

Abstract

The RegularChains library provides facilities for symbolic computations with sys-
tems of polynomial equations. In particular, it allows to compute modulo a set of alge-
braic relations. Automatic case discussion (and recombination) handles zero-divisors
and parameters. This permits triangular decomposition of polynomial equations.

1 Introduction

Performing calculations modulo a set of relations is a basic technique in algebra. For instance,
computing the inverse of an integer modulo a prime integer or computing the inverse of the
complex number 3+ 2: modulo the relation 7>+ 1 = 0. Computing modulo a set F' containing
more than one relation requires from F' to have some mathematical structure. For instance,
computing the inverse of p = x + y modulo Fy = {2? + y + 1,4> + x + 1} is difficult
unless one realizes that this question is equivalent to computing the inverse of p modulo
C = {2* + 22> + 2+ 2,y + 2> + 1}. Indeed, from there one can simplify p using y = —2? — 1
leading to ¢ = —z® + x — 1 and compute the inverse of ¢ modulo z* + 222 + z + 2 (using the
extended Euclidean algorithm) leading to —%m?’ — %x One commonly used mathematical
structure for a set of algebraic relations is that of a Grébner basis [2]. It is particularly well
suited for deciding whether a quantity is null or not modulo a set of relations. For inverse
computations, the notion of a regular chain is more adequate. For instance, computing the
inverse of p = x +y modulo the set C' = {y? — 2z + 1, 22 — 3z + 2}, which is both a Grébner
basis and a regular chain for the variable order of y > x, is easily answered in this latter
point of view. Indeed, it naturally leads to consider the GCD of p and C, = y* — 2z + 1
modulo the relation C, = z? — 3z + 2 = 0, which is

if z=1
Gen G = {8 02

This shows that p has no inverse if x = 1 and has an inverse (which can be computed and
which is —y +2) if z = 2.

The notion of a regular chain was introduced by Kalkbrenerin [10] and extended that of a
triangular set (as defined in [11]). Kalkbrener pointed out, ”since every irreducible variety in
K™ is uniquely determined by one of its generic points, we represent varieties by representing
the generic points of their irreducible components. These generic points are given by certain
subsets of K[x1, ..., x,], so-called regular chains in K[xq, ..., z,|”. The common roots of



any set of multivariate polynomials F' (with coefficients in a field) can be decomposed into
a finite union of regular chains. Because of the triangular shape of a regular chain, such
decomposition is called a triangular decomposition.

In computing triangular decompositions, the removal of redundant components is a cen-
tral issue. In 1987, Wen Tsun Wu [16] introduced the first method for solving systems of
algebraic equations by means of so-called “characteristic sets”. In his method, many re-
dundant components are produced without any function to remove them. Kalkbrener [10]
provided an algorithm where he considered particular characteristic sets, namely regular
chains. Although less frequent, the redundant components produced by his algorithm are
extremely expensive to remove. At the same time Lazard [11] introduced a practical way to
check if a component is contained in another, but these checks may happen quite late in the
solving process, so that many intermediate computations can be useless.

The RegularChains library employs the algorithm introduced by Moreno Maza [12]. In
this algorithm, the computations are managed using a notion of a tree of tasks, where redun-
dant branches are easy to cut and can be cut at an early stage. Other than solving systems
of algebraic equations symbolically, the RegularChains library also provides functionalities
for computing modulo regular chains, for instance, polynomial gcds and matrix inverses.

In the following sections we review the mathematical notions of reqular chain and tri-
angular decomposition. Then, we present the RegularChains library and illustrate some of
its main functionalities: (1) solving polynomial systems symbolically; (2) solving polynomial
systems with parameters; (3) computation over non-integral domain; (4) automatic case dis-
tinction with recombination; and (5) controlling the properties and the size of the output.
We also report on the work-in-progress with the RegularChains library, especially regarding
the introduction of modular methods for computing triangular decomposition.

2 Regular chains

Let K be a field and let X be a finite set of variables. Typically, the field K is the set Q of the
rational numbers or a finite field. Let us call R the set of the polynomials with coefficients
in K and variables in X. The set X is assumed to be totally ordered. Hence, when looking
at a non-constant polynomial p of R, one can talk about its main (or greatest) variable,
say v, and the leading coefficient of p w.r.t. v, called the initial of p. We can now describe
the shape of a regular chain by defining a more general concept sometimes called ascending
chain (or triangular set in [1]).

A finite set T of non-constant polynomials of R is an ascending chain if two different
polynomials of 7" have different main variables. For instance, if X consists of the variables
r and y such that z > y holds, then [x — y + 1,%% + 1] is an ascending chain, whereas
[t —y + 1,9 — z] is not. In broad words, an ascending chain is a system of algebraic
equations which is ready to solve by evaluating the unknowns one after the other, just like
a triangular linear system. However, there is a difference with the linear case: the back
solving process may lead to some degenerated situation or even to no solutions. Consider
with z > y, the ascending chain [yx — 1,4% — y]. The value y = 1 leads to x = 1 but the
value y = 0 does not lead to a value for . In broad words, regular chains are a particular
kind of ascending chains for which the back solving process succeeds in every case.



Regular chains have many interesting computational properties. One of them is that it is
very convenient to perform computations modulo a set of relations given by a regular chain.
The set of relations which is naturally associated with a regular chain is called its saturated
tdeal. When the regular chain 7" has as many polynomials as variables, then its saturated
ideal is simply the ideal generated by 7.

We give now a precise definition of a regular chain and its saturated ideal. First, we recall
that a non-zero element A of a ring A is called regular if h is not a zero-divisor, that is, for
every f of A, if the product f A is null, then f is null. Now, let 7" be an ascending chain. We
define by induction what it means that 7" is a regular chain. Also we define the saturated
ideal of T'. If T is empty, then it is a regular chain and its saturated ideal is the trivial
ideal (i.e. the ideal consisting only of zero). Assume now that 7" is not empty. Let p be the
polynomial of 7" with greatest main variable and let C be the set of the other polynomials in
T. If Cis a regular chain with saturated ideal I and if the initial A of p is regular w.r.t. I,
then 7' is a regular chain. In addition, the saturated ideal of 7' is the set of the polynomials
g such that there exists a power h¢ of h such that h® g belongs to the ideal generated by I
and p. An important property of a regular chain 7 is that a polynomial f belongs to the
saturated ideal of T if and only if f reduces to zero by pseudo-division w.r.t 7.

It follows from the previous definition that a set consisting of a single non-constant
univariate polynomial ¢ is a regular chain with the ideal generated by ¢ as saturated ideal.
Let T be an ascending chain consisting of two polynomials p and ¢ such that ¢ is univariate
in y and p is bivariate in  and y. Then T is a regular chain if the gcd of ¢ and the initial
of p is 1. This second example generalizes to regular chains with more than two variables
or more than two polynomials. Verifying that an ascending chain is a regular chain can be
made by means of ged computations (in the sense of [13]).

These ged computations take as input two polynomials p; and p, with the same main
variable v and a regular chain 7. Since these gcd computations rely on division (or pseudo-
division), the initial of the intermediate remainders (or pseudo-remainders) must be regular
modulo 7. As a consequence, the input polynomials p; and py are required to have regular
initials, and the output, if it has main variable v, has also an initial regular w.r.t. 7'

The saturated ideal of a regular chain is not necessarily prime and working modulo such
ideals may involve zero-divisors. However, computing with these zero-divisors is possible
following the celebrated D5 Principle, after J. Della Dora, C. Discrescenzo and D. Duval [8].
The idea is the following. When a zero-divisor is encountered during a computation modulo
a regular chain, one can split the computations into several cases (or branches) such that in
each case this zero-divisor becomes either zero or a regular element (i.e. an element which
is not a zero-divisor). Therefore, this zero-divisor is not an obstacle for the computations in
any of these branches.

Finally, we would like to mention that several properties relate regular chains to lex-
icographical Grébner bases [1, 3]. In particular, strongly normalized regular chains are
lexicographical Grobner bases which provide them with a notion of normal form. Please,
refer to [1, 3] for detail on the theoretical aspects of regular chains.



{x=1, y40} {x40

Aiwieryiz
X "

Figure 1: A geometric view of the triangular decomposition of Fj

3 Triangular decompositions

Triangular decompositions are one of the major approaches to solve systems of equations
symbolically [16, 10, 11, 15, 12]. For an input system of polynomials F', with rational
coefficients, both a Grobner basis and a triangular decomposition of F' give the full set of the
complex solutions of F. Consider the polynomial system F; with the variables x > y > z:

23 — 322+ 2x =0
2yx? — 2?2 —3yzr+x = 0
2% — 22 =0

It has lexicographical Grobner basis:

22 —zy—x = 0
—ry+axy> = 0
zxy = 0

and triangular decomposition:

=2

r=1
{x=0 or{ _pog O y=1
y= z2=0

The geometric view of the triangular decomposition of the above polynomial system is illus-
trated in Figure 1. It is clearly shown that it consists of one point (x =2,y =1,z = 0), one
line (x = 1,y = 0), and one plane (z = 0);

The triangular decomposition algorithm [12], called Triade, relies on a notion of a task.
A task consists of a set of “algebraic constraints” (namely, a regular chain) and a system of
equations to solve under these constraints. A task is called solved when its system part is
empty; the output of the algorithm is a list of solved tasks. The solving process relies on a
procedure called transform which takes a non-solved task as input and returns a list of tasks

4



(some of them may be solved, but not necessarily). Therefore, the whole process can be
depicted by a tree where every node is a task and where the leaves form the set of solutions
of the input problem, i.e. a list of regular chains Cy, ..., Cj.

The Triade top-level procedure looks like:

toDo := [initialT ask]
results = []
while toDo # || repeat
aTask := choose (toDo)
toDo := toDo \ {aTask}
newTasksAndResults := transform(aT ask)
(toDo, results) := update(toDo, results, newTasksAndResults)
return results

One of the most important features of the Triade algorithm is that regular chains (i.e.
solved tasks) are produced by decreasing order of dimension. This ensures that the redundant
components can be removed at an early stage of the solving process. Indeed, the dimension
of a redundant component is less than or equal to that of the components in which it is
contained.

There are two possible relations between the common roots of F' and the regular chains

Ci, ..., Cs, leading to two notions of a triangular decomposition. We say that Cy, ..., C;
is a triangular decomposition of F' in the sense of Kalkbrener if the following holds: a point
is a root of F'if and only if it is a root of one of the saturated ideals of the Cy, ..., Cj.

To introduce the other notion of a triangular decomposition we need a definition. We
say that a point P is a root of a regular chain 7" if P cancels every polynomial of 7" but
does not cancel any of the initials of the polynomials of T. We say that C4, ..., Cy is a
triangular decomposition of F' in the sense of Lazard if the following holds: a point is a root
of F' if and only if it is a root of one of the regular chains C;, ..., C,. In particular, a
triangular decomposition in the sense of Lazard is a triangular decomposition in the sense of
Kalkbrener. The RegularChains library provides both kinds of triangular decompositions.
Please, refer to [12] for detail on the theoretical aspects of triangular decompositions.

4 Overview of the RegularChains library

The RegularChains library is a collection of commands for solving systems of algebraic
equations symbolically and studying their solutions. The field K of coefficients can be Q, a
prime field, or a field of multivariate rational functions over Q or a prime field. In addition,
a remarkable feature of the RegularChains library is that it also provides functions for
computing modulo regular chains, based on the algorithms of [12, 13].

The most frequently used functions are accessible at the top level module in the library.
Two submodules, ChainTools and MatrixTools, contain additional commands to manipu-
late regular chains and triangular decompositions.



4.1 The top level module

In the top level module of RegularChains, the main function is Triangularize. For a set
F' of polynomials, the command Triangularize computes the common roots of F' in an
algebraic closure L of K in a form of a triangular decomposition. (If K is @, then L is the
field of the complex numbers.) By default, the sense of Kalkbrener is used. An option for
solving in the sense of Lazard is available. The operation PolynomialRing allows the user to
define the polynomial ring R in which the computations take place, together with the order
of the variables.

One very useful function is RegularGed, which computes gecds of two polynomials p; and
po with common main variable v modulo a regular chain rc. It returns a list of pairs [g;, 7¢;]
where g; is a polynomial and rc; is a regular chain. For each pair, the polynomial g; is a
gcd of p; and p, modulo the saturated ideal of rc;. Moreover, the leading coefficient of the
polynomial ¢g; w.r.t. v is regular modulo the saturated ideal of rc¢;. Finally, the returned
regular chains r¢; form a triangular decomposition of rc (in the sense of Kalkbrener). See
the example in Section 5. Other useful functions are NormalForm (which applies only to
strongly normalized regular chains) and SparsePseudoRemainder (which can be used with
any regular chains) for “reducing” a polynomial modulo a regular chain.

4.2 The ChainTools submodule

The ChainTools submodule is a collection of commands to manipulate regular chains. These
commands split into different categories. First, the commands Empty, ListConstruct,
Construct, Chain create regular chains from lists of polynomials and other regular chains.
Other commands allow to inspect the properties of a regular chain, such as IsZeroDimensional
and IsStronglyNormalized.

The commands DahanSchostTransform and Lift perform transformation on a regu-
lar chain, whereas the commands EquiprojectableDecomposition, SeparateSolutions,
Squarefree perform transformation on a triangular decomposition.

The commands IsInSaturate and IsInRadical compare one polynomial p and one
regular chain 7. The first one decides whether p belongs to the saturated ideal I of T'. This
is done without computing a system of generators of I, just by pseudo-division. In fact,
the RegularChains module never computes explicitly a system of generators for a saturated
ideal. The second command decides whether p belongs to the radical of I; this is achieved
simply by ged computations.

The commands EqualSaturatedIdeals and IsIncluded compare two regular chains 73
and T5. More precisely, the first one can decide whether the saturated ideals of T} and T; are
equal or not. If the second command returns true, then the saturated ideal of 7} is contained
in that of T5. However, if it returns false, nothing can be said.

4.3 The MatrixTools submodule

The MatrixTools submodule is a collection of commands to manipulate matrices of polyno-
mials modulo regular chains, including IsZeroMatrix, JacobianMatrix, LowerEchelonForm,
MatrixInverse, MatrixMultiply, and MatrixOverChain.



The main purpose of the commands of the MatrixTools submodule is to compute the
inverse of the Jacobian matrix of a polynomial system modulo (the saturated ideal of) a
regular chain. This question arises for instance in Hensel lifting techniques for triangular
sets [14]. The commands of the MatrixTools submodule are quite standard by their goals:
multiplication of matrices, computation of inverse or lower echelon of a matrix. However,
these commands are considered here in a non-standard context. Indeed, the coefficients of
these matrices are polynomials and the computations are performed modulo (the saturated
ideal of) a regular chain. In case of a zero-divisor, following the D5 principle [8], the com-
putations split into branches, where in each branch the zero-divisor becomes either zero or
a regular element.

5 The RegularChains keynote features

We present here a tour d’horizon of the RegularChains library by means of a series of
examples. The first ones are for non-experts in symbolic computations whereas the last two
require some familiarity with this area.

5.1 Solving polynomial systems symbolically

In this first example, we show how the RegularChains library can solve systems of alge-
braic equations symbolically. After loading the library in our MAPLE session, we define
the ring of the polynomials of the system to be solved. Indeed, most operations of the
RegularChains library requires such polynomial ring as argument. This is how one speci-
fies the variable ordering. In our example we choose x > y > z. Other arguments passed
to the PolynomialRing command could be a set of parameters or the characteristic of the
ground field. By default, there are no parameters and the characteristic is zero. Hence, in
our example below, the polynomial ring is Q[z, y, z], that is the ring of polynomials in z, y, z
with rational number coefficients.

> R:=PolynomialRing([x,y,z]);

R := polynomial_ring
Then we define a set of polynomials of R by

> sys ;= {x2+y+z-1, x+y2+z-1,x+7y+2z"2-1};
sys = {2 +y+z—-lLx+y +z—Lx+y+22—-1}

Ideally, one would like to decompose the solutions of sys into a list of points. This is what
Triangularize does using symbolic expressions. However, some points are grouped because
they share some properties. These groups are precisely regular chains.

> dec := Triangularize(sys, R);

dec := [regular_chain, reqular _chain, reqular _chain, reqular _chain|



Because regular chains may involve large expressions, one needs ask for viewing them! The
command Equations displays the list of polynomials of a regular chain. The first three
regular chains are very simple: each of them clearly corresponds to a point in the space. Let
us have a closer look at the last one. The polynomial in z has two solutions. Each of them
corresponds to a point in the space.

> map(Equations, dec, R);

[[x—l,y,z],[x,y—1,z],[x,y,z—1],[$—z,y—z,22+22—1]]

Observe that we can also impose inequations. Below we impose the condition z — z # 0.
Then, two points from the original decomposition have been removed.

> decn := Triangularize(sys, [x-z],R); map(Equations, decn, R);
decn = [regular_chain, reqular _chain|
[[.Z' - 1ay: Z]) [.f, Y,z — 1]]

5.2 Solving polynomial systems with parameters

The RegularChains library can solve systems of equations with parameters. To illustrate
this feature, let us consider a “generic” linear system with 2 unknowns and 2 equations.
First we declare x,y,a,b,c,d,g,h all as variables.

> R:=PolynomialRing([x,y,a,b,c,d,g,h]l): sys:={a*x+b*y-g, cxx+d*y-h};
sys = {ax + by — g,cx + dy — h}

In this setting, having more unknowns than equations, our system has an infinite number
of solutions. There are two ways of solving such systems. First, by describing its “generic
solutions”, which is done by computing a triangular decomposition in the sense of Kalkbrener.
This is the default behavior of the Triangularize command. Observe that the cases where
the determinant —cb + a d vanishes are not explicitly described.

> dec := Triangularize(sys, R); map(Equations, dec, R);

dec := [regular_chain]
[lex +dy — h, (—cb+ ad) y + cg — ahl|

Now let us compute all the solutions (generic or not) that is a triangular decomposition in
the sense of Lazard. To do so, we use the option output=lazard of the Triangularize

command.

> dec := Triangularize(sys, R, output=lazard);



dec =
reqular_chain, reqular _chain, reqular_chain, reqular _chain, reqular _chain|

[reqular _chain, reqular_chain, reqular_chain, reqular _chain, reqular_chain,

When a regular chain encodes an infinite number of solutions, these solutions are the values
canceling any of the polynomials returned by the Equations command and none of the
polynomials returned by the Inequations command. In the command below, for each
regular chain of dec, we display on the same line its list of equations eq and its list of
inequations ¢neq. For instance, the solutions given by the first regular chain in dec satisfy
simultaneously cx +dy — h =0, (—cb+ ad)y + cg —ah =0, —cb + ad # 0 and ¢ # 0.

>

[seq([eq=Equations(dec[i],R), ineq=Inequations(dec[i],R)], i=1..nops(dec))];
eq = {cx+dy—h,(—cb+ad)y+cg—ah} ineq = {—cb+ ad,c}

eq = {ax+by—g,dy— h,c}, ineq = {a,d}
eq = {cx+dy— h,—cb+ ad,—dg + hb}, ineq = {h,c,d}
eq = {cx— h,—cg+ah,b,d}, ineq = {h,c}
eq = {dy—h,a,—dg+ hb,c}, ineq = {h,d}
eq = {cx+dy,—cb+ad,g,h}, ineq = {c,d}
eq = {by—g,a,cd,h}, ineq = {b}

eq = {37, b, da g, h}, ineq = {}

eq = {ya a,c, g, h’}a ZTL@(] = {}

eq = {a,b,cd, g, h}, ineq = {}

Now, we change our polynomial ring in order to specify that g and h are parameters. This
means that we consider now the ring of polynomials in variables x,y,a,b,c,d with coeffi-
cients in the field of rational functions Q(g, h). When solving our input system in the sense
of Lazard with this new polynomial ring, the last five cases above are discarded since g =0
or h = 0 cannot hold anymore.

>

>

>

R2 := PolynomialRing([x,y,a,b,c,d],{g,h}):
dec := Triangularize(sys, R2, output=lazard):

[seq([eq=Equations(dec[i],R2), ineq=Inequations(dec[i],R2)], i=1..nops(dec))];

eq = {cx+dy—h,(—cb+ad)y+cg—ah} ineq = {—cb+ ad,c}

eq = {ax+by—g,dy— h,c}, ineq = {a,d}
eq = {cx+dy— h,—cb+ ad,—dg + hb}, ineq = {c,d}
eq = {cx— h,—cg+ah,b,d}, ineq = {c}
eq = {dy—h,a,—dg+ hb,c}, ineq = {d}

To summarize:

e one can specify (in advance) a set of variables to be viewed as parameters (this was

done with the latter call to Triangularize obtaining 5 cases)



e or one can discover the largest set of variables which can be viewed as parameters (this
was done with the first call to Triangularize, leading to the generic points, in the
sense of Kalkbrener)

e or one can view all variables as unknowns (as in the second call to Triangularize,
returning 10 cases).

5.3 Computation over non-integral domains

The RegularChains library provides linear algebra and polynomial computations over tow-
ers of simple extensions. These algebraic structures, which appear naturally when solving
polynomial systems, may possess zero-divisors. Below, we construct a regular chain rc with
two simple algebraic extensions. The first one is the extension of the field of rational num-
bers by v/2. The second one is not a field extension and introduces zero-divisors. Indeed,
its defining polynomial y*> — y + x — 2 factorizes as (y — z)(y + z — 1) modulo the defining
polynomial 22 — 2 of the first extension.

> R := PolynomialRing([z,y,x]);

R := polynomial_ring
> rc := Chain([x"2-2, y~2 -y + x -2], Empty(R), R);
rc := reqular_chain

> Equations(rc,R);
W2y ta 2.0t

Let us compute the ged of polynomials pl and p2 below w.r.t. rc. The example is made
such that splitting is needed.

> pl o= (y-x)*z+(y+x-1)*(z+1) ;
pl = (y—z)z+y+z-1)(2+1)
> p2 = (y-x)*1+(y+x-1)*(z+1);

p2 =y—z+(y+r—-1)(2+1)
> g:= RegularGed(pl,p2,z,rc,R,normalized=yes);
g = [[2y + zy + zx — z — 1, reqular_chain], [3y* — 2yx — 2y — 2 + 2z, reqular_chain]]
> rcl := g[1][2]: Equations(rcl, R);
[y —z,2% - 2]
> rc2 := g[2]1[2]: Equations(rc2, R);
[y+x—1,2%—2]

We obtain two cases. This case discussion comes from the following fact. Modulo the regular
chain rc1, the gcd of p1 and p2 has degree 1 w.r.t. z, whereas it has degree 0 modulo rc2.
In general, the output of a gcd computation w.r.t. a regular chain is a list of ” cases”. Indeed,
such ged is computed by applying the D5 principle.

10



5.4 Automatic case distinction with recombination

Below, we compute the inverse (when it exists) of two matrices m modulo a regular chain
rc. As in the previous example, this regular chain defines a tower of simple extensions
with zero-divisors. Each matrix m leads to two cases. The first matrix m is invertible in
one case, but not in the other. The second matrix m is invertible in both cases and the
corresponding answers are recombined. This recombination feature of the RegularChains
library is a by-product of the notion of an equiprojectable decomposition recently introduced
in [5]. In addition, this example illustrates the capabilities of the RegularChains library for
solving linear systems over non-integral domains.

> R := PolynomialRing([y,z]);

R := polynomial _ring
> rc := Chain([z"4 +1, y~2 -z~2], Empty(R), R);
rc = reqular_chain
> Equations(rc, R);
[y? — 22, 2% + 1]

> m := Matrix([[1, y+zl, [0, y-z11);

1 y+=2
m =
0 y—=z

> MatrixInverse(m,rc,R);

1 y+=2

1 0
[[[[ ] , reqular_chain], [[“no Inverse”, [ 0 , reqular_chain]|]

0 1/22°
> m := Matrix([[1, y+zl, [2, y-zl11);

1 y+=2
m =
2 y—=z

y—=z

> mim := MatrixInverse(m,rc,R);
0 1/2

1 0
mim = , reqular _chain)|,
m[ ] g M| i 1

-2 1/22°

] , reqular_chain]], []]

> ml :=mim [11[1]1[1]: rcl := mim [11[1]1[2]: Equations(rcl, R);
[y + 2, 2% + 1]
> m2 := mim [11[2][1]: rc2 := mim [1]1[2][2]: Equations(rc2, R);
[y —Zz, 24 + 1]
> mc := MatrixCombine([rcl, rc2], R, [ml, m2]);
1/223y+1/2 —1/423y+1/4
me = | , reqular _chain]]
=3/423+1/42%y 3/82%—1/82%

> Equations(mc[1]1[2], R);
[y? — 22, 2% + 1]

11



5.5 Controlling the properties and the size of the output

Solving systems of equations by means of regular chains can help reducing the size of the
coefficients in the output. Even when no splitting arises! On the example below, due to
Barry Trager, we compare the size of the output of Triangularize with the lexicographical
Grobner basis for the same variable ordering. We do not print this Grobner basis nor the
regular chain, and we print only their size (as number of characters in the output).

> R := PolynomialRing([x,y,z]);

R := polynomial_ring
> s8ys := [-x"5 + y°5 -3xy -1, b*xy~4 -3, -20*x + y -z];
sys =[5 +y> =3y —1,5y*—3,-20x +y — 2]
> dec := Triangularize(sys, R);

dec := [regular_chain]
> length(convert (map(Equations,dec,R),string));
654
> gb := Groebner:-gbasis(sys,plex(x,y,z)):
> length(convert(gb,string));
8672

On the contrary of the polynomial set gb, the regular chain dec[1] is not a reduced Grobner
basis of the input system. However, the set gb is a regular chain and can be obtained as
such by using the option normalized=yes of Triangularize. In addition, it is possible to
obtain from this normalized regular chain (also called “triangular set” in [4, 5, 11]) a more
compact regular chain using the transformation of Dahan and Schost [4], as shown below.
Again, we only show the sizes.

> dec := Triangularize(sys, R, normalized=yes);
dec := [regular_chain]
> length(convert (map (Equations,dec,R),string));
8674
> dec2 := map(DahanSchostTransform, dec, R);
dec2 := [regular_chain)

> length(map(Equations,dec2,R),string) ;
1692

6 Work in progress

The research undertaken in [5, 6, 7] aims at developing fast algorithms and modular method
(such as Hensel lifting) to solve systems of polynomials by way of triangular decomposition.

12



Among all possible triangular decompositions, a canonical one, introduced in [5] and called
the equiprojectable decomposition, is well suited for modular computations. The function
EquiprojectableDecomposition in the RegularChains library is implemented based on
the split-and-merge algorithm reported in [6].

The work in [7] shows the high potential to obtain a quasi-linear time (w.r.t. the degree of
the algebraic variety defined by the input system F) split-and-merge algorithm. A modular
algorithm using Hensel 1lifting for triangular decompositions of zero dimensional varieties
has been developed in [6]. A preliminary implementation of it shows significant improvements
in running time and allows us to solve more difficult problems. It will be available in the
next release of the RegularChains library.

The next step is to extend these techniques to specialize variables as well during the
triangularize modular phase, following the approach initiated in [9] for primitive element
representations.

Acknowledgment

The authors would like to thank W. Wu (Univ. of Western Ontario, Canada), E. Schost, X.
Dahan (Ecole Polytechnique, France) for their significant contributions to the RegularChains
library. They are also grateful to H. Ding, X. Li, X, Jin, S. Liang, R. Scott, A. Shakoori,
W. Zhou, J. Zhao who have been using the RegularChains library for course projects at the
University of Western Ontario.

7 Conclusions

The RegularChains library provides routines for computing (polynomial GCDs, inverses,

..) modulo regular chains. In particular, this includes computing over towers of field ex-
tensions (algebraic or transcendental). In general, this allows computing modulo any radical
polynomial ideal, since the operation Triangularize can decompose any such ideal into
regular chains. The RegularChains library is distributed in MAPLE 10. New developments
will be included in the next release.

References

[1] P. Aubry and D. Lazard and M. Moreno Maza. On the Theories of Triangular Sets. J.
Symb. Comp., 28:105-124, 1999.

[2] Thomas Becker and Volker Weispfenning. Grdbner Bases: a computational approach to
commutative algebra, volume 141 of Graduate Texts in Mathematics. Springer Verlag,
1991.

(3] F. Boulier and F. Lemaire. Computing canonical representatives of regular differential
ideals. In proc. ISSAC 2000, St Andrews, ACM Press, 2000.

13



[4] X. Dahan and E. Schost. Sharp Estimates for Triangular Sets. In proc. ISSAC 04,
Santander, ACM Press, 2004.

[5] X. Dahan, M. Moreno Maza, E. Schost, W. Wu, and Y. Xie. Equiprojectable decompo-
sition of zero-dimensional varieties. In proc. ICPSS, Paris, 2004.

[6] X. Dahan, M. Moreno Maza, E. Schost, W. Wu and Y. Xie. Lifting techniques for
triangular decompositions. In proc. ISSAC’05, 2005.

[7] X. Dahan, M. Moreno Maza, E. Schost, W. Wu and Y. Xie. On the complexity of the
D5 principle. submitted poster, ISSAC’05, 2005.

[8] J. Della Dora, C. Discrescenzo and D. Duval. About a new Method for Computing in
Algebraic Number Fields. In Proc. EUROCAL 85 Vol. 2, Springer-Verlag, 1985.

[9] M. Giusti, J. Heintz, J. E. Morais, and L. M. Pardo. When polynomial equation systems
can be solved fast? In AAFECC-11, pages 205-231. Springer, 1995.

[10] M. Kalkbrener. A generalized Euclidean algorithm for computing triangular represen-
tations of algebraic varieties. J. Symb. Comp., 15:143-167, 1993.

[11] D. Lazard. Solving zero-dimensional algebraic systems. J. Symb. Comp., 13:117-133,
1992.

[12] M. Moreno Maza. On triangular decompositions of algebraic varieties. MEGA-2000
Conference, Bath, 2000.

[13] M. Moreno Maza and R. Rioboo. Polynomial Ged Computations over Towers of Alge-
braic Extensions. Proc. AAECC-11, Springer, 1995.

[14] E. Schost. Degree Bounds and Lifting Techniques for Triangular Sets. Proc. ISSAC
2002, 238 245, Teo Mora, jul, ACM Press, 2002.

[15] D. M. Wang. An elimination method for polynomial systems. J. Symb. Comp., 16:
83-114, 1993.

[16] W. T. Wu. A zero structure theorem for polynomial equations solving. MM Research
Preprints, 1:2-12, 1987.

14



