
Making a Sophisticated Symbolic Solver Available to
Different Communities of Users

François Lemaire Marc Moreno Maza Yuzhen Xie
lemaire@lifl.fr moreno@orcca.on.ca yxie@orcca.on.ca

Université Lille 1 Univ. Western Ontario Univ. Western Ontario

France Canada Canada

Abstract

Triangular decompositions have become one of the major tools for solving systems of
non-linear algebraic or differential equations symbolically. These decompositions display
more geometrical information than other symbolic descriptions of polynomial systems.
However, their specifications and the algorithms computing them are quite sophisticated.
Their implementation in mathematical software, their accessibility, and ease of use for
non-expert users are challenges that we discuss in this paper.

We discuss our solutions and illustrate them with the implementation of an algorithm
for triangular decompositions, called Triade, in three computer algebra systems: AXIOM,
ALDOR, and MAPLE, targeting different communities of users. We believe that these im-
plementations of the same sophisticated mathematical algorithm for different communities
of experts, advanced users, and non-experts is a unique experience in the area of symbolic
computations which could benefit other algorithms in this field.

Introduction
Triangular decompositions are one of the major tools for solving polynomial systems. For
systems of algebraic equations, they provide a convenient way to describe complex solutions
and a step toward isolation of real roots or decomposition into irreducible components. They are
also used in dynamic evaluation [14, 11], in geometric computations [6], such as implicitization
and classification problems [13, 18], automatic theorem proving [7] and for studying dynamical
systems in biology [4, 5]. They have interesting properties [10, 24] for developing modular
methods and stable numerical techniques.

For systems of partial differential equations, triangular decompositions provide the main
practicable way for determining a symbolic description of the solution set. Moreover, tech-
niques from the algebraic case apply to the differential case.

The implementation of triangular decomposition algorithms in mathematical software, their
accessibility to expert or non expert users are certainly challenges that we address in this paper.
Section 1 presents the main difficulties arising during the conception and the implementation
of a polynomial system solver based on triangular decompositions. Among those are:

- the sophisticated notions and rich properties attached to triangular decompositions,

- the prototyping of the algorithm and its sub-routines,

- the validation and the user-interface of such a solver.

These must be addressed differently, depending on the strengths and weaknesses of the imple-
mentation environment, the level of expertise and expectation of its community of users,

We report on the implementation of an algorithm for triangular decompositions, called Tri-
ade [23], realized during the last eight years, in three computer algebra systems: AXIOM,
ALDOR, and MAPLE, targeting different communities of users. We discuss our solutions and
compare these three different implementations in Sections 2, 3 and 4 based on the challenges
defined in Section 1.

AXIOM has been designed to express the extremely rich and complex variety of structures
and algorithms in computer algebra; our AXIOM implementation (65,000 lines of code) of
Triade matches the theoretical specifications of the algorithm; this implementation is meant for
researchers in the area of symbolic computation, and is available in open source.

ALDOR is an extension of the AXIOM system with focuses on interoperability with other
languages and high-performance computing. In ALDOR, the Triade implementation (110,000
lines of code) is available in the form of specialized servers which can solve polynomial sys-
tems with frequently used rings of coefficients; these servers have been successfully used by
researchers in theoretical physics and algebraic problems. Today, a parallel implementation of
Triade in ALDOR is under development on multi-processor machines with shared memory.

MAPLE is a general purpose computer algebra system with users from broad areas (stu-
dents, engineers, researchers, etc.). The MAPLE implementation of the Triade algorithm (50,000
lines of code) is available since the release 10 of MAPLE as the RegularChains library. The
non-expert users can access easily a first group of easy-to-use functionalities for computing
triangular decompositions and studying the properties of the solutions of polynomial systems.
The more expert users can take advantage of the many options of these functionalities. In ad-
dition, sub-modules of the RegularChains provide advanced features such as automatic case
discussion in parametric problems, and linear algebra over non-integral domains.

Section 5 presents a comparison between the three implementations, and highlights their
advantages and weaknesses in terms of efficiency, ease of use and targeted audience.

1 Challenges in implementing triangular decompositions
In general, triangular decompositions can reveal geometrical information of the solution sets
better than other symbolic descriptions of polynomial systems such as Gröbner bases. However,
the specifications and algorithms for computing triangular decompositions are quite sophisti-
cated, which impose great challenges on their implementation in mathematical software, and
on their accessibility and ease of use for users with various interest.

For an input system of polynomials F , with rational coefficients, both a Gröbner basis and
a triangular decomposition of F give the full set of the complex solutions of F . Consider the
polynomial system F1 with the variables x > y > z:

x3−3x2 +2x = 0
2yx2− x2−3yx+ x = 0
zx2− zx = 0

It has lexicographical Gröbner basis:
x2− xy− x
−xy+ xy2

zxy

and triangular decomposition:

{
x = 0

[{
x = 1
y = 0

[
x = 2
y = 1
z = 0

It is clearly shown that it consists of one point (x = 2,y = 1,z = 0), one line (x = 1,y = 0),
and one plane (x = 0). This example reveals the first challenge in implementing triangular
decompositions, that is, the representation of triangular decompositions. It is a list of list of
polynomials with special properties, instead of just a list of polynomials as for a Gröbner basis.

In addition, for the same input polynomial system, there are different possible output trian-
gular decompositions. This makes it harder to specify the results, but in practice these different
outputs are of varied benefits. Moreover, there is a canonical form of output (if the system has
finitely many solutions), called the equiprojectable decomposition [9], which can be computed
from any triangular decomposition of the same system, if needed.

Let us illustrate by an example. For the following input polynomial system F2,

F2 :

x2 + y+ z = 1
x+ y2 + z = 1
x+ y+ z2 = 1

One possible triangular decomposition of the solution set of F2 is:
z = 0
y = 1
x = 0

S
z = 0
y = 0
x = 1

S
z = 1
y = 0
x = 0

S z2 +2z−1 = 0
y = z
x = z

Another one is:
z = 0

y2− y = 0
x+ y = 1

S
z3 + z2−3z =−1

2y+ z2 = 1
2x+ z2 = 1

Both results are valid. The second one is the equiprojectable decomposition. As a matter
of fact, the second one can be computed from the first one by techniques explained in [9].

Although triangular decompositions display rich geometrical information, the solutions can
be hard to read, especially when there is an infinite number of solutions; see Appendix A for
an example. Actually, this problem has not been properly solved yet.

In 1987, Wen Tsün Wu [28] introduced the first algorithm computing triangular decompo-
sitions of systems of algebraic equations, by means of the so-called “characteristic sets”. Kalk-
brener [17] provided an algorithm where he considered particular characteristic sets, namely
regular chains, leading to theoretical and practical improvements. See also the work of Wang [26],
and the work of Lazard and his students [1].

Our study employs the algorithm called Triade, introduced by Moreno Maza [23]. This
algorithm relies more intensively on geometrical considerations than the previous ones for
computing triangular decompositions, leading to an efficient management of the intermediate
computations and control of expression swell. Lazy evaluation techniques and a task manager
paradigm are also essential tools in this algorithm.

The implementation challenges on Triade are summarized as follows. First of all is the pro-
totyping. Indeed, most operations rely on automatic case discussion, splitting the computations
into sub-cases; see Section 2 for this point. Secondly, it has to be decided which functionalities
will be provided to the end users, and this will affect the ease of use of the package. This choice
depends on the computer algebra system and the different communities of users. Thirdly, code
validation is extremely difficult, because checking the computations in the case of triangular
decomposition is much harder than for Gröbner bases computations. See Appendix A for de-
tail. Therefore, we need more advanced techniques, such as validating packages, comparison
with other software, and large test suites. Performance and optimization of the implementa-
tions have special features. Again, they rely largely on the underlying computer algebra system
and the requirements of different groups of users. For instance, the data representation for
polynomials and regular chains affects the efficiency.

2 The AXIOM implementation
AXIOM designers attempted to overcome the challenges of providing an environment for im-
plementing the extremely rich relationships among mathematical structures [16]. Hence, their
design is of somewhat different direction from that of other computer algebra systems.

The AXIOM computer algebra system possesses an interactive mode for user interactions
and the SPAD language for building library modules. This language has a two-level object
model of categories and domains, that is similar to interfaces and classes in Java. They provide
a type system that allows the programmer the flexibility to extend or build on existing types, or
create new categories and domains, as is usually required in algebra.

The SPAD language has also a functional programming flavor: types and functions can be
constructed and manipulated within programs dynamically like the way values are manipulated.
This makes it easy to create generic programs in which independently developed components
are combined. For instance, one can write a SPAD function q which takes as arguments a
commutative ring R and an element p∈ R such that q(R, p) implements the quotient ring R/pR.

These features allowed us to implement the Triade algorithm in its full generality, that is
without any restrictions w.r.t. the theory presented in [23]. In particular, our code can be used
with any multivariate polynomial data-type over any field of coefficients available in AXIOM.

One important characteristic of the algorithms producing triangular decompositions is the
fact that the intermediate computations require many polynomial coefficient types leading to
potentially many type conversions. More precisely, the typical procedure, say proc,

• takes as input a quotient ring Q of the form K[X]/I , where I is an ideal of K[X], and
elements of Q, say f ,g, and

• returns a list of pairs (Q1,h1), . . . ,(Qs,hs) where Q j is a quotient ring K[X]/I j and h j is
an element of Q j, for all 1 ≤ j ≤ s.

In the Dynamic Evaluation packages in AXIOM [14, 11] the signature of a function im-
plementing proc would match the specializations of proc precisely; in particular, the types
Q,Q1, . . . ,Qs would be instantiated at run-time. In the implementation of the Triade algorithm
the quotient rings Q,Q1, . . . ,Qs are not built explicitly; instead, they are represented by the ide-
als I ,I1, . . . ,Is, and f ,g,h1, . . . ,hs are encoded by representatives in K[X]. This latter approach
may look less elegant than the former one. In fact, as reported in [2], it brings performance
improvement, by avoiding type instantiations and conversions; in addition, it offers more op-
portunities for optimizations, by homogenizing the type of the intermediate quantities. This
approach was continued in the ALDOR and MAPLE implementations of the Triade algorithm.

As discussed in Section 1, another challenge in implementing triangular decompositions is
code validation. Because a given input system F ⊂ K[X] may admit different triangular de-
compositions, it is hard to use one implementation of these decompositions in order to validate
another. The safest approach, as mentioned in Appendix A. is through computations based
on Gröbner bases. However, this leads to computations which, in practice and in theory, are
much more expensive than those of triangular decompositions. This difficulty was resolved by
interfacing AXIOM with a high-performance Gröbner engine [12] see [2] for details.

Our AXIOM implementation of the Triade algorithm has been integrated in 1998 in the
release 2.2 of AXIOM [15]. Experiments reported in [2] show that it often outperforms com-
parable solvers. Moreover, combined with another symbolic solver [25], it provides functional-
ities for isolating real roots of polynomial systems symbolically: AXIOM was the first general
purpose computer algebra system offering this feature.

On the contrary of other general purpose computer algebra system like MAPLE, AXIOM
is primarily destined to the community of researchers in computer algebra: it requires good
programming skills and a strong background in algebra. In particular, every user is potentially
an expert and a code developer. As a consequence, the logical organization of the library
modules relies simply on the algebraic hierarchies of categories and domains; thus, there is less
concern with the “ease of use” than in MAPLE.

To summarize, our AXIOM implementation has reached its goals: providing a generic,
reliable and quite efficient polynomial system solver by means of triangular decompositions.

3 The Aldor implementation
ALDOR was designed to be an extension language for the AXIOM computer algebra system.
In addition, an ALDOR program can be compiled into: stand-alone executable programs; object
libraries in native operating system formats (which can be linked with one another, or with C
or Fortran code to form application programs); portable byte code libraries; and C or Lisp
source. Aggressive code optimizations by techniques such as program specialization, cross-file
procedural integration and data structure elimination, are performed at intermediate stages of
compilation [27]. This produces code that is comparable to hand-optimized C.

For these reasons we use ALDOR to develop high-performance implementations of the Tri-
ade algorithm since 1999. More recently, we have realized a parallel implementation [20, 21]
on a multiprocessor machine using shared memory segments for interprocess data-communication.

Our ALDOR implementation is much less generic than our AXIOM implementation. First,
it is limited to particular, and frequently used, coefficient fields, such as Q, the field of rational
numbers, and finite fields. Secondly, it is available in form of executable binary programs,

like an operating system command. These “servers” are quite easy to use, but they perform
only very specific tasks; in particular, they offer a very limited user interaction. However, their
computational power outperforms the AXIOM implementation and they were used to solve
difficult problems in theoretical physics [13] and in invariant theory [18].

To summarize, our ALDOR implementation of the Triade algorithm is reaching its main
objective: high-performance computing.

4 The RegularChains library in Maple
MAPLE [22] is a general-purpose computer algebra system. It offers an interpreted, dynami-
cally typed programming language. MAPLE has a very large audience among the world. It is
used by engineers, researchers as well as students, in much different topics such as engineering,
finance, statistics, education, etc. MAPLE is shipped with a wide variety of libraries dealing, for
instance, with linear algebra, differential equations solving, numerical computations. MAPLE

is intended to be powerful and easy to use for the high end user. We have realized a MAPLE im-
plementation of the Triade algorithm, the RegularChains library [19], which is shipped with
the MAPLE software since the version 10 of MAPLE, released in 2005.

On the contrary to AXIOM and ALDOR, the MAPLE programming language does not have
a strong object oriented flavor. Code organization and validation are, therefore, even more
challenging in this context. So, we describe our effort in these directions for implementing the
RegularChains library. MAPLE libraries are usually organized as follows:

• a user-interface level providing functionalities accessible to the end-user in the interactive
mode; those functions usually check the input specifications,

• an internal level providing functionalities accessible only to the library programmers;
they are called by the user-interface functionalities for doing the actual computations.

The data structures are quite straightforward. The most complex data used are the multivari-
ate polynomials. We have chosen the native MAPLE polynomials which are directed acyclic
graphs (DAG). This choice has been made for simplicity reasons. Indeed, all MAPLE directives
manipulating polynomials handle DAG. All other objects, as regular chains, have been imple-
mented with lists. Moreover, all structures have been enriched with extra information of two
different kinds. The first kind are cached results which are computed frequently (for example
the leading variable of a polynomial). The second kind are flags that help optimizing certain
functions (for example, knowing that a regular chain represents an irreducible component helps
speeding-up computations).

The source code organization is rather standard too. We have split the library source into
different files, each one representing a different class of objects. The objective was to mimic the
AXIOM/ALDOR organization into categories and domains. This split is very handy, because it
emulates some kind of generic programming. Indeed, if we want to use a different representa-
tion for polynomials, we only need to change the file implementing polynomials. This makes it
easy to compare the efficiency of two different polynomial representations. As for prototyping,
the internal functions have been organized similarly to AXIOM/ALDOR.

The RegularChains user-interface has been designed to provide ease of use to the non-
expert and, advanced functionalities to the expert. The library offers numerous primitives for
computing and manipulating triangular decompositions. For instance, it provides a rich variety

of coefficient fields: Q, the field of rational functions, prime fields, fields of rational functions
over Q and prime fields. This is an additional challenge in the MAPLE framework, which has
limited support for generic programming.

Combining ease of use and variety of advanced functionalities is achieved by a two-level or-
ganization of the user-interface. The first level provides the basic functionalities easy to use for
the non-expert. Those functionalities allow to compute triangular decompositions and manipu-
late polynomials. The second level of the user-interface provides more technical functionalities
that are available through optional arguments of the basic functionalities and through two sub-
modules, called ChainTools and MatrixTools. Those two sub-libraries respectively provide
tools for manipulating triangular decompositions and regular chains, and for doing linear al-
gebra over non-integral domains. This makes MAPLE the unique computer algebra system
offering automatic case discussion and recombination.

The code validation is made through the MAPLE library test suites. A test suite for Regular-
Chains check all the user interface functions, in order to validate any changes that would be
made to the code and the user-interface. Also, the primitive computing triangular decompo-
sition, which is a crucial functionality, is tested through a large set of problems. The outputs
are partially checked in positive dimension by checking that the radical of the input system is
included in the radical of (the saturated ideal of) each regular chain in the output. This ensures
that we haven’t lost any solution. A complete check in positive dimension has not been done as
it has been done for the AXIOM or ALDOR implementations. However, the checking in zero
dimension has been done very thoroughly. Indeed, the output decomposition is processed in a
special way. We first make the decomposition radical (each regular chain of the output is made
radical), which removes multiple roots. Then the decomposition is processed in such a way that
all regular chains of the decomposition have distinct roots. This ensures that the total number
of solutions no without multiplicity of the decomposition is exactly the sum of the number of
solutions of each regular chain (which is just the product of the leading degrees). Thus, if the
input system is reduced to zero by each regular chain of the decomposition, we know that the
solutions of the input are solutions of the decomposition. Therefore, if we know the number
of solutions of the input in advance, and if it is equal to no, we are sure that no solutions have
been lost or added, which means that the decomposition is correct.

5 Discussion
Here are some highlights and additional comments regarding the three implementations of the
Triade algorithm in AXIOM, ALDOR and MAPLE.

The AXIOM implementation has been developed in a very general manner in the sense
the design is very close to the mathematical theory. This makes it powerful and flexible. The
drawback is that it is not suitable for high-performance, and hard to use for non-experts.

The ALDOR implementation is less general than the AXIOM implementation but has sev-
eral advantages. First of all, the ALDOR compiler produces binaries which can act as servers
or regular applications. This makes it easier for interfacing the Triade solver with other soft-
ware. Moreover, ALDOR provides an efficient interface with the machine resources leading
to higher performances. Both ALDOR and AXIOM implementations are organized into cate-
gories and domains, and lots of functionalities can be used and extended. Therefore, they are
well adapted for expert users who aim at developing new algorithms and performing advanced

experimentations.
The MAPLE implementation RegularChains is different from the ALDOR and AXIOM

ones, in numerous ways. First of all, MAPLE has a larger audience of users, and is aimed
at being user friendly. RegularChains is written in this spirit and is very easy to use for
non-experts. Advanced users are still able to make more complicated computations by using
optional arguments and the two submodules ChainTools and MatrixTools. Secondly, the
MAPLE programming language is interpreted and dynamically typed. The language syntax
is straightforward and easy, thus, it is not difficult to write MAPLE code. However, the code
validation and maintenance is much harder because type errors are only detected at execution.
Therefore, coding requires a lot of care and discipline.

Despite of this difficulty, it appears in practice that contributions from students and collab-
orators are usually made to the MAPLE implementation rather than to its ALDOR and AXIOM
counterparts. This is clearly due to the ease of use of the RegularChains library. Conse-
quently, some recent and efficient algorithms have been implemented only in the Regular-
Chains library, see for instance [9, 8]. This is why, on some test problems, the RegularChains
library can outperform the ALDOR and AXIOM implementations of the Triade algorithm.

References
[1] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets. J. Symb.

Comp., 28(1-2):105–124, 1999.

[2] P. Aubry and M. Moreno Maza. Triangular sets for solving polynomial systems: A com-
parative implementation of four methods. J. Symb. Comp., 28(1-2):125–154, 1999.

[3] T. Becker and V. Weispfenning. Gröbner Bases: a computational approach to commuta-
tive algebra, volume 141 of Graduate Texts in Mathematics. Springer Verlag, 1991.

[4] F. Boulier, L. Denis-Vidal, T. Henin, and F. Lemaire. Lépisme. In International Confer-
ence on Poynomial System Solving. University of Paris 6, France, 2004.

[5] F. Boulier and F. Lemaire. Lépisme. Université de Lille I, France, 2005.
http://www.lifl.fr/∼lemaire/lepisme.

[6] F. Chen and D. Wang, editors. Geometric Computation. Number 11 in Lecture Notes
Series on Computing. World Scientific Publishing Co., Singapore, New Jersey, 2004.

[7] S.C. Chou. Mechanical Geometry Theorem Proving. D. Reidel Publ. Comp., Dordrecht,
1988.

[8] X. Dahan, X. Jin, M. Moreno Maza, and É Schost. Change of ordering for regular chains
in positive dimension. In Ilias S. Kotsireas, editor, Maple Conference 2006, pages 26–34,
2006.

[9] X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and Y. Xie. Lifting techniques for trian-
gular decompositions. In ISSAC’05, pages 108–115. ACM Press, 2005.

[10] X. Dahan and É. Schost. Sharp estimates for triangular sets. In ISSAC 04, pages 103–110.
ACM, 2004.

[11] D. Duval. Algebraic Numbers: an Example of Dynamic Evaluation. J. Symb. Comp.,
18(5):429–446, November 1994.

[12] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases. J. Pure and Appl.
Algebra, 139(1-3):61–88, 1999.

[13] M.V. Foursov and M. Moreno Maza. On computer-assisted classification of coupled inte-
grable equations. J. Symb. Comp., 33:647–660, 2002.

[14] T. Gómez Dı́az. Quelques applications de l’évaluation dynamique. PhD thesis, Université
de Limoges, 1994.

[15] The Computational Mathematics Group. AXIOM 2.2. NAG Ltd, Oxford, UK, 1998.

[16] R. D. Jenks and R. S. Sutor. AXIOM, The Scientific Computation System. Springer-Verlag,
1992. AXIOM is a trade mark of NAG Ltd, Oxford UK.

[17] M. Kalkbrener. A generalized euclidean algorithm for computing triangular representa-
tions of algebraic varieties. J. Symb. Comp., 15:143–167, 1993.

[18] I. A. Kogan and M. Moreno Maza. Computation of canonical forms for ternary cubics.
In Teo Mora, editor, Proc. ISSAC 2002, pages 151–160. ACM Press, July 2002.

[19] F. Lemaire, M. Moreno Maza, and Y. Xie. The RegularChains library. In Ilias S.
Kotsireas, editor, Maple Conference 2005, pages 355–368, 2005.

[20] M. Moreno Maza and Y. Xie. An implementation report for parallel triangular decompo-
sitions on a shared memory multiprocessor. ACM Press, 2006.

[21] M. Moreno Maza and Y. Xie. Parallelization of triangular decompositions. In Proc. of
Algebraic Geometry and Geometric Modelling’06, Barcelona, Spain, 2006.

[22] Maplesoft. Maple 10. http://www.maplesoft.com/, 2005.

[23] M. Moreno Maza. On triangular decompositions of algebraic varieties. Technical Report
TR 4/99, NAG Ltd, Oxford, UK, 1999. http://www.csd.uwo.ca/∼moreno.

[24] M. Moreno Maza, G. Reid, R. Scott, and W. Wu. On approximate triangular decomp-
soitions i. dimension zero. In D. M. Wang and L. Zhi, editors, Symbolic-Numeric Com-
putation, Xi’an, China, 2005.

[25] R. Rioboo. Real algebraic closure of an ordered field, implementation in axiom. In Proc.
ISSAC’92, pages 206–215. ISSAC, ACM Press, 1992.

[26] D. M. Wang. Elimination Methods. Springer, Wein, New York, 2000.

[27] Stephen M. Watt, Peter A. Broadbery, Samuel S. Dooley, Pietro Iglio, Scott C. Morrison,
Jonathan M. Steinbach, and Robert S. Sutor. A first report on the a# compiler. In ISSAC
’94: Proceedings of the international symposium on Symbolic and algebraic computation,
New York, NY, USA, 1994. ACM Press.

[28] W. T. Wu. A zero structure theorem for polynomial equations solving. MM Research
Preprints, 1:2–12, 1987.

APPENDIX A
Let K be a field and X = x1 < · · · < xn be ordered variables. For a non-constant polynomial
p ∈ K[X], the main variable of p, denoted by mvar(p), is the greatest variable of p; the initial
of p, denoted by init(p) is the leading coefficient of p w.r.t. mvar(p). For example, for p1 =
(2x1−1)x2

2−3x1x2 + x2, mvar(p1) = x2, and init(p1) = 2x1−1.
Let F ⊂ K[X] be any set of polynomials with coefficients in K and variables in X . We

denote by 〈F〉 the ideal generated by F in K[X] and by
√
〈F〉 its radical. We denote by V (F)

the zero set of F in the affine space Kn where K is an algebraically closed field containing K.
Usually K = Q, the field of rational numbers and K = C, the field of complex numbers.

For a subset W ⊂ Kn, we denote by W the Zariski closure of W w.r.t. K, that is the inter-
section of the V (F) containing W , for all F ⊂K[X].

Let I be a proper ideal of K[X]. We say that a polynomial p ∈ K[X] is regular modulo I
if for every prime ideal P associated with I we have p 6∈ P , equivalently, this means that p is
neither null modulo I , nor a zero-divisor modulo I .

Let h ∈ K[X]. We denote by I : h∞ the set of the polynomials p such that there exists a
non-negative integer e such that he p belongs to I . Let T = t1, . . . , ts be non-constant polyno-
mials in K[X] with respective (pairwise distinct) main variables mvar(t1) < · · ·< mvar(ts). The
saturated ideal of T is defined by

Sat(T) = 〈T 〉 : hT
∞,

where hT is the product of the initials of the polynomials of T .
The quasi-component of T is the subset W (T) of the zero-set V (T) consisting of all the

points that do not cancel any of the initials of the polynomials of T . We have the following
important property, which realizes a bridge between the “algebraic” notion of a saturated ideal
and the “geometric” notion of a quasi-component. It is, in fact, a consequence of Hilbert’s
theorem of zeros:

W (T) = V (Sat(T)).

We can now define one of the two central concepts in the theory of triangular decompo-
sitions: the set T is a regular chain if for all i = 2 · · ·s the initial of ti is regular modulo the
saturated ideal of t1, . . . , ti−1.

We can now define the notion of a triangular decomposition of a polynomial system. This
notion comes actually in two flavors.

Definition 1 Let F ⊂ K[X] be a polynomial set. A set C1, . . . ,Cs of regular chains in K[X] is a
triangular decomposition of F in the sense of

- Kalkbrener if we have
√
〈F〉= ∩1≤i≤s Sat(Ci),

- Lazard if we have V (F) = ∪1≤i≤s W (Ci).

It is easy to check that a triangular decomposition of F in the sense of Lazard is also a
triangular decomposition of F in the sense of Kalkbrener. The converse is true if V (F) is finite.
However, it is false, in general, when V (F) is infinite.

In broad words, a triangular decomposition of F in the sense of Kalkbrener describes “only”
the generic zeros of V (F) whereas a triangular decomposition of F in the sense of Lazard

describes all the zeros of V (F). The following example illustrates the differences between
these two kinds of triangular decompositions.

Given a polynomial system F1 having two polynomials with variable order of x > y > a >
b > c > d > e > f : {

ax+ cy− e = 0
bx+dy− f = 0

The triangular decomposition of F1 in the sense of Kalkbrener consists of one regular chain,
which is {

bx+dy− f
(da− cb)y− f a+ eb

The triangular decomposition of F1 in the sense of Lazard consists of eleven regular chains,
which are

{
bx+dy− f
(da− cb)y− f a+ eb ,

ax+ cy− e
dy− f
b

,

bx+dy− f
da− cb
f c− ed

,

dy− f
a
b
f c− ed

,

bx− f
f a− eb
c
d

,

ax+ cy− e
b
d
f

,

bx+dy
da− cb
e
f

,

cy− e
a
b
d
f

,

y
a
b
e
f

,

x
c
d
e
f

,

a
b
c
d
e
f

.

Let C1, . . . ,Cs be regular chains in K[X] and F ⊂ K[X] be a polynomial set. We explain
how to check whether C1, . . . ,Cs is a triangular decomposition of F in the sense of Kalkbrener.
(Up to now, there is no algorithms for the case of Lazard decompositions.) The procedure is as
follows and relies on well-known ideal operations, see for instance [3] for details:

1. for all 1 ≤ i ≤ s replace Ci by Di such that Sat(Di) is radical and equals to
√

Sat(Ci).

2. for all 1 ≤ i ≤ s, for all f ∈ F , check that f ∈ Sat(Di) holds, that is, f reduces to 0 by
pseudo-division w.r.t. Di.

3. compute a set of generators {g1, . . . ,gt} of the intersection of Sat(D1), . . . ,Sat(Ds).

4. for all 1 ≤ i ≤ t check that gi belongs to
√
〈F〉.

