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Abstract. The purpose of this study is to investigate implementation
techniques for polynomial arithmetic in a multiple-level programming
environment. Indeed, certain polynomial data types and algorithms can
further take advantage of the features of lower level languages, such as
their specialized data structures or direct access to machine arithmetic.
Whereas, other polynomial operations, like Gröbner basis over an arbi-
trary field, are suitable for generic programming in a high-level language.

We are interested in the integration of polynomial data type imple-
mentations realized at different language levels, such as Lisp, C and
Assembly. In particular, we consider situations for which code from dif-
ferent levels can be combined together within the same application in
order to achieve high-performance.

We have developed implementation techniques in the multiple-level
programming environment provided by the computer algebra system
AXIOM. For a given algorithm realizing a polynomial operation, avail-
able at the user level, we combine the strengths of each language level
and the features of a specific machine architecture. Our experimentations
show that this allows us to improve performances of this operation in a
significant manner.

1 Introduction

In a general purpose computer algebra system, generic code implementing uni-
variate and multivariate polynomial over an arbitrary ring or field is a central
feature. This is the case, for instance, in the computer algebra systems AX-

IOM [13], Aldor [2], MAGMA [3] and Singular [11]. On the other hand,
the quest for high-performance in critical areas, such as modular algorithms for
polynomial GCDs, leads naturally to develop low-level specialized code for uni-
variate and multivariate polynomials over finite fields. Such code is available in
the software systems mentioned above and others.

The works of [14,7,8] present efficient implementations of asymptotically fast
algorithms for polynomial arithmetic in a high-level programming environment.
In the reported experiments, for FFT-based univariate polynomial multiplication
and the Half-GCD algorithm, the speed-up ratio between the pure low-level spe-
cialized code and the pure high-level generic code is in the range 2 · · · 4. (We refer
to [10] and [16] respectively for these algorithms.) Therefore, high-performance

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 12–23, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Efficient Implementation of Polynomial Arithmetic 13

in polynomial arithmetic can be achieved in a high-level programming environ-
ment, such as AXIOM and Aldor.

However, linkage to specialized code is a substantial bonus when low-level
implementation can take advantage of special software or hardware features. The
purpose of this study is to investigate implementation techniques for polynomial
arithmetic in a multiple-level programming environment. We are interested in
the integration of polynomial data type implementations realized at the different
code levels. In particular, we consider situations for which code from different
levels can be combined together within the same application in order to achieve
high-performance.

As a driving example, we use the modular algorithm of van Hoeij and Mon-
agan [12]. We recall its specifications. Let K = Q(a1, a2, . . . , ae) be an algebraic
number field over the field Q of the rational numbers. Let f1, f2 ∈ K[y] be uni-
variate polynomials over K. The algorithm of van Hoeij and Monagan computes
gcd(f1, f2). To do so, for several prime numbers p, a tower of simple algebraic
extensions Kp of the prime field Z/pZ is used. Arithmetic operations in Kp

are performed by means of operations on multivariate polynomials over Z/pZ,
whereas the operations on the images of f1, f2 modulo p are performed in the
univariate polynomial ring Kp[y]. Therefore, several types of polynomials are
used simultaneously in this algorithm. This is why it is a good candidate for our
study.

We chose AXIOM as our implementation environment based on the following
observations. AXIOM has a high-level programming language, called SPAD,
which possesses all the essential features of object-oriented languages. Libraries
written in SPAD implement a hierarchy of algebraic structures (groups, rings,
fields, . . . ) and a hierarchy of algebraic domains (Q, A[x] for a given ring A, . . . ).

The SPAD compiler translates SPAD code into Common Lisp, then invokes
the underlying Lisp compiler to generate machine code. Today, GCL [17] (GNU
Common Lisp) is the underlying Lisp of AXIOM [1]. The design of GCL makes
use of the native C compiler for compiling to native machine code. In addition,
GCL employs the GNU Multi-Precision library (GMP) [9] for its arbitrary pre-
cision number arithmetic. Therefore, AXIOM is an efficient multiple language
level system. Moreover, the complete AXIOM system is open-source. Hence, we
can implement our packages at any language level and even modify the AXIOM

kernel. This allows us to take advantage of each language level’s strength and
access machine arithmetic directly when necessary. Therefore, we believe that
AXIOM, with its different implementation levels, all in open source, provides
an exceptional development environment among all computer algebra systems,
for the purpose of our study.

In Sections 2, 3 and 4 and 5 we discuss the strength (in view of our objectives)
of the SPAD, Lisp, C and Assembly level, respectively, together with our
implementation techniques. In Section 6, we report on our experimentation.

Our results suggest that choosing adequate and optimized data structures
is essential for polynomial arithmetic with high-performance. At the same time,
implementing them at a suitable language level or levels may impact the running
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time of an algorithm implementation in AXIOM by a factor in the range 2 · · · 4
for large input data.

2 The SPAD Level

The AXIOM computer algebra system possesses an interactive mode for user
interactions and the SPAD language for building library modules. The SPAD

language has a two-level object model of categories and domains that is similar
to interfaces and classes in Java. For instance, Ring is the AXIOM category for
all rings (in the algebraic sense, see for instance [5]) with units and Integer is
the AXIOM domain for the ring of integer numbers (see [13] for more details
about the AXIOM hierarchies of categories and domains).

The user can define a new category and domain, which, then, can be added to
the library modules. To do so, this new SPAD code must implement an AXIOM

type constructor (or a package), to be compiled with the SPAD compiler. An
AXIOM type constructor is simply a function which returns an AXIOM type,
that is a category or a domain. For instance, SparseUnivariatePolynomial,
abbreviated to SUP, is a type constructor, which takes an argument R of type
Ring and returns an implementation of the ring of univariate polynomials over
R, with a sparse representation (see below). Actually, SUP(R) implements Ring
and other operations specific to polynomials (evaluation, differentiation, . . . ).
The whole interface of SUP(R) is UnivariatePolynomialCategory(R) where
UnivariatePolynomialCategory is a category constructor.

The SPAD language supports conditional exports. This permits to imple-
ment the following statement: if R has type Field then SUP(R) implements
EuclideanDomain. SPAD supports also conditional implementation. For in-
stance, if R has type FiniteFieldCategory, one can use formulas such Little
Fermat Theorem to speed up some operations of SUP(R), such as exponentia-
tion. These features of the SPAD language are important for combining different
data types and achieving high-performance.

Implementing a new domain constructor requires the programmer choosing a
data structure for representing the objects defined by this domain. After a newly
defined domain or category is compiled, it becomes an AXIOM data type which
can be used just like any system provided data type.

In the light of these properties of the SPAD language, we describe briefly the
polynomial type constructors that we use in this study. Please, see [13] and [14]
for more details. Let R be an AXIOM Ring and V be an AXIOM OrderedSet.

SUP or UP. As mentioned above, the domain SUP(R) implements the ring of
univariate polynomials with coefficients in R. More precisely, it satisfies the
AXIOM category UnivariatePolynomialCategory(R). The representation
of these polynomials is sparse, that is, only non-zero terms are encoded.

DUP. The domain DUP(R) implements UnivariatePolynomialCategory(R) as
well. The representation is dense: all terms, null or not, are encoded.

NSMP. The domain NSMP(R,V) implements the ring of multivariate polynomials
with coefficients in R and variables in V. (To be precise, it implements the
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AXIOM category RecursivePolynomialCategory(R, V).) A non-constant
polynomial f of NSMP(R), with greatest variable v, is regarded as a univariate
polynomial in v implemented as an element of SUP(NSMP(R)). Therefore, the
representation is recursive and sparse.

DRMP. The domain DRMP(R,V) implements the same category as NSMP(R,V). The
representation is also recursive. However, it is based on DUP rather than SUP.

The constructors SUP and NSMP are provided by the AXIOM standard dis-
tribution, whereas DUP and DRMP were implemented by us at SPAD level. Our
motivation is the implementation of modular methods based on the Euclidean
Algorithm (or its variants) which tend to “densify” the computations, even if the
input polynomials are sparse. This is the case, for instance with the algorithm
of van Hoeij and Monagan, that we have implemented for this study.

3 The Lisp Level

The domain constructors SUP, DUP, NSMP and DRMP allow the user to construct
polynomials over any AXIOM Ring. So we say that their code is generic. Observe
that R has no influences on the representation scheme of the objects of SUP(R)
or DUP(R).

Ideally, one would like to use also conditional data representations. For in-
stance, one could think of a domain U(R) implementing univariate polynomials
over R, an AXIOM Ring, such that sparse polynomials (polynomials with fre-
quent null terms) have a sparse representation and dense polynomials (polynomi-
als with few null terms) have a dense representation. In addition, if R implements
a prime field Z/pZ for a machine word size prime p, one could require encode
each dense polynomial of U(R) by an array of machine words (such that the
slot of index i contains the coefficient in the term of degree i). But the code
of this ideal type constructor U would be quite complicated and harder to opti-
mize from the compilation point of view. Indeed, many tests would be needed
for selecting the appropriate representation. Instead, we believe that specialized
domain constructors (say, dense univariate polynomials over a prime field) to be
called by a package (implementing, for instance, the algorithm of van Hoeij and
Monagan) are a better choice. Moreover, polynomials over prime fields are such
an importance case, for modular methods, that they deserve an independent
treatment.

For these reasons, we have defined at the SPAD level a polynomial type con-
structor MultivariateModularArithmetic, abbreviated to MMA, taking a prime
integer p and V, an OrderedSet, as arguments, such that MMA(p,V) implements
the same operations as DRMP(PF(p),V). (The domain PF(p) implements the
prime field of characteristic p.) In fact, MMA(p,V) is just a wrapper for an im-
plementation in Lisp. At this inner level of AXIOM, we have realized two im-
plementations of MMA(p,V): one for the case where p fits in a machine word and
one for the case where it does not.

In these implementations, we used the vector-based recursive dense representa-
tion proposed by Richard J. Fateman [6]: a multivariate polynomial f is encoded
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by a number (to be precise, an integer modulo p) if f is constant and, otherwise,
by a Lisp vector storing the coefficients of f w.r.t its leading variable. At the
SPAD level, such disjunction would be implemented by a union type bringing an
extra indirection. This can be avoided at the Lisp level, thanks to the so-called
predicate functions which can judge the type of an object.

In addition, we can tell the Lisp compiler to use machine integer arithmetic,
if p fits in a machine word and, otherwise, to use the functions for big integer
arithmetic from the GMP library [9].

Similarly for univariate polynomials, we have defined at the SPAD level a uni-
variate type constructor UnivariateModularArithmetic, abbreviated to UMA,
taking a prime integer p as argument and implementing the same operations as
DUP(PF(p)). It is also a wrapper for two Lisp implementations: one for Small p’s
and for one big p’s. Each of these univariate polynomials is implemented using
fixnum-array (a C-like array) in GCL. It is possible direct using C arrays to
encode univariate polynomials over Z/pZ, but we prefer the Lisp level garbage
collection system which is more efficient and convenient.

All these specialized implementations at the Lisp level yield significant speed
up, as reported in Section 6.

4 The C Level

GCL is implemented in C language and uses the native optimizing C compiler
to generate native machine code. This allows us to extend the functionalities
of the Lisp level of AXIOM with a given C function by either integrating this
function into the GCL kernel, or by integrating it into a GCL library.

This interoperability between Lisp and C has at least two benefits for achiev-
ing high-performance in the AXIOM environment. First, Assembly code (writ-
ten for some efficiency critical operation, see Section 5) can be into the Lisp level
via C. Second, we can use existing C libraries providing efficient implementations
of polynomial and integer arithmetic, such as GMP library [9] or NTL [15]. We
illustrate these two benefits by an important example: the implementation of
dense univariate polynomials over the prime field Z/pZ.

Recall that we have two implementations for these polynomials at the Lisp

level: one for small primes p (that fit in a machine word) and one for big primes p.
They are both available at the SPAD level via the wrapper domain constructor
UMA. For both the small and big prime case, we have integrated in the GCL

kernel:

– classical multiplication, addition and Chinese remaindering algorithm writ-
ten in Assembly,

– FFT-based multiplication written in C with Assembly sub-routines.

Moreover, in the big prime case, we distinguish between the double precision
case and the multiple precision case. In the former one, we have developed our
Assembly routines which improve the performance of the GMP multiple preci-
sion functions. (See [14] for details.) In the latter one, we rely on the Assembly
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routines of GMP. This distinction is motivated by the importance of the double
precision case. For instance, most prime numbers used in the modular method
of [4] are of that size.

5 The Assembly Code Level

As mentioned in Section 4, we make use of the Assembly functions of the GMP

library in order to accomplish low-level operations with univariate polynomial
over Z/pZ[x]. There are two other reasons for taking advantage of Assembly

code in our AXIOM environment. We discussed them below.

5.1 Controlling Register Allocation

In a modern computer architecture, CPU registers seat at the top level of the
memory hierarchy. Although optimizing compilers devote special efforts to make
good use of the target machine’s register set, this effort can be constrained by
numerous factors, such as:

– difficulty to estimate the execution frequencies of each part of the program,
– difficulty to allocate or evict ambiguous values,
– difficulty to take advantage of some new hardware features on specific plat-

forms.

Therefore, a high-performance oriented application requires programmers to bet-
ter exploit the power of registers on a target machine. In fact, we have spent a
great effort in this direction in our implementation.

First, we directly program the efficiency-critical parts in Assembly language
in order to explicitly manipulate data in registers. For example, for dense uni-
variate polynomials over Z/pZ, we write the classical multiplication algorithm
in both C and Assembly language. The Assembly version is faster than the C

version since we always try to keep frequently used variables in registers instead
of a memory location. Although in C we can declare a variable to be of “regis-
ter” type, this does not guarantee that the register is reserved for this variable.
According to our benchmark results, our explicit register allocation method is
always faster than the C compiler’s optimization.

Beside the general purpose registers, we also can use MMX, XMM registers
when they are available. Keeping the working set in registers will yield significant
performance improvement comparing to keeping them in main memory.

5.2 Using Architecture Specific Features

Polynomial arithmetic in Z/pZ[x] makes an intensive use of integer division. This
integer operation has a dominant cost in crucial polynomial operations like the
FFT-based multiplication in Z/pZ[x]. Therefore, improving the performance of
integer division is one of the key issues in our implementation.



18 X. Li and M. Moreno Maza

In the NTL library [15], the single precision modular reduction is implemented
by means of floating point arithmetic, based on the following formula

a ≡ a�a 1/p� p

This formula can be implemented directly in C in two or three lines of code.
However, one can further improve the performance by writing assembly code.

We have also implemented this trick in Assembly language for the Pentium
IA-32 with SSE2 support. The SSE/SSE2 instruction sets use XMM registers.
Each of these registers is of 128-bit and can be used to pack 2 double precision
floating point numbers. In fact, SSE/SSE2 instructions can compute on multiple
data packed in one register, in parallel.

Our implementation of the FFT-based polynomial multiplication over Z/pZ

uses this technique. It is faster than using FPU unit, as reported in Section 6.

6 Experimentation

6.1 Benchmarks for the Lisp Level Implementation

The goal of these benchmarks is to measure the performance improvements
obtained by our specialized multivariate polynomial domain constructor MMA
implemented at the Lisp level and described in Section 3. We are also curious
about measuring the practical benefit of dense recursive polynomial domains in
a situation (polynomial GCD computations over algebraic number fields) where
AXIOM libraries traditionally use sparse recursive polynomials.

As announced in the introduction, our test algorithm is that of van Hoeij and
Monagan [12]. Recall that, given an algebraic number field K = Q(a1, a2, . . . , ae),
this algorithm computes GCDs in K[y] by means of a small prime modular
algorithm, leading to computations over a tower of simple algebraic extensions
Kp of Z/pZ. Recall also that the algorithm involves two polynomial data types:

– a multivariate one for the elements of K and Kp,
– a univariate one for the polynomials in K[y] and Kp[y].

Figure 1 shows the different combinations that we have used.

Q(a1, a2, . . . , ae) K[y]
NSMP in SPAD SUP in SPAD

DMPR in SPAD DUP in SPAD

MMA in Lisp SUP in SPAD

MMA in Lisp DUP in SPAD

Note that:

– the first two combinations, that is NSMP + SUP (sparse polynomial domains)
and DMPR + DUP (dense polynomial domains), involve only SPAD code,
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– the other two combinations use MMA - our dense multivariate polynomi-
als implemented at the Lisp level and SUP/DUP - univariate polynomials
written at the SPAD level.

We would like to stress the following facts:

– the algorithms for addition, multiplication, division of DRMP and MMA are
identical,

– none of the above polynomial types uses fast arithmetic, such as FFT-based
or Karatsuba multiplication.

Remember also that:

– the SPAD constructors NSMP, DMPR, UP, and DUP are generic constructors,
i.e. they work over any AXIOM ring,

– however, our dense multivariate polynomials implemented at the Lisp level
(provided by the MMA constructor) only work over a prime field.

Therefore, we are comparing here is the performances of

– specialized code at the Lisp level versus generic code at the SPAD level,
– sparse representation versus dense representation.

We have run the algorithm of van Hoeij and Monagan for different degrees of
the extension Q → K, different degrees of the input polynomials and different
sizes for their coefficients. Figure 1 p. 20 shows our benchmark results. First, we
fix the coefficient size bound to 5 and increase the total degree (degree of the
extension plus maximum degree of an input polynomial). The charts (a), (b) and
(c) correspond to towers of 3, 4 and 5 simple extensions respectively. Second, we
fix the total degree to 2000 and increase the coefficient bound. The charts (d),
(e) and (f) correspond to towers of 3, 4 and 5 simple extensions respectively. We
observe the following facts.

Charts (a), (b), (c). For univariate polynomial data types, DUP outper-
forms SUP and, for the multivariate polynomial data types, MMA outperforms
DRMP, which outperforms NSMP. For the largest degrees, the timing ratio be-
tween the best combination, DUP + MMA, and the worst one, SUP + NSMP is
in the range 2 · · · 3.

Charts (d), (e), (f). The best and the worst combinations are the same
as above, however the timing ratio is in the range 3 · · · 4. Interestingly, the
second best combination is SUP + MMA for small coefficients and DUP + DRMP
for larger ones. This fact has probably the following double explanation.
First, the SUP constructor relies on some fast routines which allows it to
compete with the DUP constructor for small input data. Second, garbage
collection of polynomials built with DUP + DRMP appears to be more efficient
than for SUP + MMA polynomials, for large data.
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Fig. 1. In (a), (b) and (c) fixing the coefficient size bound, and increase the total degree
of input polynomials. Conversely In (d), (d), and (f) fixing the total degree and increase
the coefficient size bound.
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6.2 Benchmark for the C and Assembly Level Implementation

The goal of these benchmarks is to measure the benefit provided by the C and
Assembly levels to the SPAD level. Figure 2 shows benchmarks for addition
and classical multiplication in Z/pZ[x] for a 64-bit prime p, between

– the code of the SUP constructor (from the SPAD level), and
– the UMA constructor (written in Lisp with C and Assembly sub-routines).

This clearly illustrates the benefits of our implementation at Assembly level
comparing to its SPAD level counterpart.
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Fig. 2.

Figure 3 illustrates the performance difference between

– the generic Assembly code using integer arithmetic and,
– the SSE2 Assembly code using floating point arithmetic.

The benchmark data of Figure 3 are obtained with our implementation of FFT-
based univariate polynomial multiplication over Z/pZ[x] for a 27-bit Fourier
prime p. This benchmark shows that our SSE2-based implementation is signifi-
cantly faster than our generic Assembly version.

6.3 Benchmark of the Multi-level Implementation

The goal of this benchmark is to compare an AXIOM function, involving code
at all levels, SPAD, Lisp, C and Assembly, versus its counterpart in a similar
computer algebra system, namely MAGMA. We choose multivariate polynomial
multiplication based on Kronecker substitution (which for us is implemented
at SPAD and Lisp levels, since it is independent from machine arithmetic)
and FFT-based univariate multiplication (which for us is implemented at C

and Assembly level, as shown in previous benchmark). Our implementation
outperforms MAGMA’s counterpart as shown in Figures 4.
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7 Conclusion

We have investigated implementation techniques for polynomial arithmetic in
the multiple-level programming environment of the AXIOM computer algebra
system. Our benchmark results show that careful integration of data structures
and code from different levels can improve the performances in a significant
manner (a ratio of 2. . . 4 speed up reported in 6). The integration process requires
deep understanding of polynomial arithmetic, machine arithmetic and compiler
optimization techniques. However, we believe that it should be implemented in
a transparent way for the end-user.
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