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ABSTRACT
We discuss the parallelization of arithmetic operations on
polynomials modulo a triangular set. We focus on parallel
normal form computations since this is a core subroutine in
many high-level algorithms, such as triangular decomposi-
tions of polynomial systems.

When computing modulo a triangular set, multivariate
polynomials are regarded recursively as univariate ones, which
leads to several implementation challenges when one targets
highly efficient code. We rely on an algorithm proposed
in [17] which addresses some of these issues.

We propose a two-level parallel scheme. First, we make
use of parallel multidimensional Fast Fourier Transform in
order to perform multivariate polynomial multiplication. Sec-
ondly, we extract parallelism from the structure of the se-
quential normal form algorithm of [17]. We have realized
a multithreaded implementation. We report on different
strategies for the management of tasks and threads.

Categories and Subject Descriptors:
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation – Algebraic Algorithms

General Terms:
Algorithms, Performance, Design, Experimentation, Lan-
guages, Theory.

Keywords:
Parallelization, Algorithms, High-performance, Normal form,
polynomials.

1. INTRODUCTION
Arithmetic operations on polynomials modulo a triangu-

lar set are essential in many areas of symbolic computation.
They are the core routines for higher-level procedures, such
as computing polynomial GCDs and resultants, solving sys-
tems of algebraic and differential equations. In practice,
they can impact the performances of a computer algebra
software in a dramatic manner. The speed-up factor can be
obtained by using fast arithmetic techniques as in [6, 17], by
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optimizing memory traffic as in demonstrated in [12] or by
combining different code levels, as illustrated in [16, 18].

With the increasing availability of parallel architectures,
we are interested in the following questions. How to achieve
efficient parallel implementations of these polynomial oper-
ations? How will they impact the performances of a par-
allel polynomial system solver. This paper deals with the
first question, the second one being the motivation of future
work.

When computing modulo a triangular set, multivariate
polynomials are regarded recursively as univariate ones. Thus,
such polynomials can be represented using tree structures.
One can also flatten these trees into a vector, for instance by
using Kronecker’s substitution. This recursive vision natu-
rally suggests a recursive implementation of arithmetic oper-
ations. This is, actually, a challenge when one targets highly
efficient code. Indeed, different intermediate coefficient rings
are involved, which implies different implementations of ring
operations, such as multiplication, and thus different cut-off
between classical and faster algorithms. Moreover, asymp-
totically fast algorithms, such as FFT-based algorithms, are
clearly easier to implement and optimize when the actual co-
efficient ring is a prime field rather than a polynomial ring
over a finite field.

In order to overcome this difficulty, we rely on the algo-
rithms introduced in [17]. In broad words, given a triangular
set {T1(x1), T2(x1, x2)} with coefficients in Fp = Z/pZ, this
algorithm allows us to efficiently implement the multiplica-
tion in (Fp[x1]/〈T1〉)[x2]]/〈T2〉 by avoiding plain division in
Fp[x1, x2] and relying only on univariate operations in Fp[x1]
and multiplication in Fp[x1, x2], for which high-performance
sequential algorithms and code are available.

Turning now to the parallelization of these arithmetic op-
erations modulo a triangular set, it is desirable to follow the
path open in [17], for the same reasons as in the sequential
case. Moreover, multiplication in Fp[x1, x2] can be achieved
by parallel FFT-based techniques, which is a well studied
subject. In Section 2 we discuss two natural parallelizations
of the algorithms in [17] and in Section 3 we propose two im-
plementation strategies based on multithreaded parallelism.
In Section 4, we report on our experimentations.

The targeted application of this work is the implementa-
tion of modular methods in algorithms for computing trian-
gular decompositions such as [5]. Our medium/fine-grained
parallel arithmetic modulo a triangular set should combine
in a favourable manner with the coarse-grained approach for
parallel and modular computations of triangular decompo-
sitions presented in [20].
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We know that, in these circumstances, the polynomials
that we are computing with are very dense, which makes
load balancing easier to achieve than in the sparse case. The
experimentation reported in [19] support this claim. There-
fore, this density assumption has guided our implementation
strategies. We leave for future work the challenging case of
sparse polynomials modulo a triangular set. This is a need
for computations such as those presented in [7], where the
number of variables can be in the order of several hundreds.

Computations in algebraic number fields or in GF (2k)
are very important in symbolic computation and cryptog-
raphy, and can be performed with triangular sets. Parallel
algorithms and implementations of these computations are
reported in [13, 9, 2]. In this paper, the base field is Fp

and our techniques rely heavily on this assumption. How-
ever, by means of modular methods, our work could apply
to computations in algebraic number fields.

Other multithreaded symbolic computations are reported
in [14, 11], considering polynomial GCDs and resultants.
This is another area of interaction for our work, which could
again benefit to a parallel solver such as the one of [20].

2. ALGORITHMS
Let L0 = K be a commutative ring with a 1. Let B be

a univariate polynomial in K[x], non-constant, monic and
with degree d > 1. We aim at computing modulo B the
product A ∈ K[x] of two polynomials reduced w.r.t. B, that
is, with degree less than d. So, for simplicity, let us assume
that A has degree 2d− 2.

The quotient Q and the remainder R in the division of A
by B can be computed as follows, using the trick of Cook-
Sieveking-Kung [4, 22, 15]. We summarize this trick and
refer to [8] for details. Let B−1 be the inverse of the reversal
of B modulo xd−1. Let Q be the product AB−1 computed
modulo xd−1, where A is the reversal of A. Then Q is the
reversal of Q and we have R = A−BQ.

Consider now T = (T1, . . . , Ts) a set of non-constant poly-
nomials in K[x1, . . . , xs]. Let di be the degree of Ti w.r.t. xi,
for all i. We say that T is a triangular set if for all i, the poly-
nomial Ti lies in K[x1, . . . , xi], is monic in xi and is reduced
with respect to T1, . . . , Ti−1, that is, for all j = 1, . . . , i − 1
the degree of Ti w.r.t. xj is less than of dj .

Let 1 ≤ i ≤ s and let P ∈ K[x1, . . . , xs]. The normal
form of P w.r.t. T1, . . . , Ti, denoted by NFi(P ), is the the
unique polynomial R ∈ K[x1, . . . , xs] which is reduced w.r.t.
T1, . . . , Ti, and congruent to P modulo the ideal 〈T1, . . . , Ti〉.
Moreover, we define NF0(P ) = P .

For i = 1, . . . , s we define Li = K[x1, . . . , xi]/〈T1, . . . , Ti〉,
the residue class ring of K[x1, . . . , xi] modulo 〈T1, . . . , Ti〉.

Our main goal is to implement arithmetic operations in
all Li, leading to normal form computations for polynomi-
als in K[x1, . . . , xs] modulo 〈T1, . . . , Ti〉. We summarize the
algorithm of [17]. We assume that, for all 1 ≤ i ≤ s, the in-

verse T−1
i of the reversal of Ti in Li−1[xi]/〈xdi−1

i 〉 has been
precomputed. Let P ∈ K[x1, . . . , xs] be such that the degree
of P w.r.t. xi is at most 2di − 2 for all 1 ≤ i ≤ s. Then we
compute NFs(P ) as follows:

Step 1 Let P ′ := NFs−1(P ).

Step 2 Let P ′ be the reversal of P ′ in Ls−1[xs]. Let P ′ := P ′

mod xds−1
s and let Q := P ′T−1

s mod xds−1
s .

Step 3 Let Q := NFs−1(Q).

Step 4 Let Q be the reversal of Q in Ls−1[xs]. Let R :=
P −QTs.

Step 5 Return NFs−1(R).

For a polynomial F in K[x1, . . . , xs], with positive degree
w.r.t. xs, we compute NFs−1(F ) as a “map” on its coeffi-
cients w.r.t. xs.

We parallelize the computation of NFs(P ) at two levels.
First, for degrees large enough, we perform the products in
Step 2 and Step 4 by means of a parallel multi-dimensional
FFT algorithm, see Section 3.1. From now on, let us regard
these products as atomic operations. Secondly, we focus
on the calls to the NFs−1 function performed at Step 1,
Step 3 and Step 5. Let G be the task graph or instruction
stream DAG [3] associated with NFs(P ). One can use either
a depth-first traversal or a bottom-up level-by-level traversal
for G, leading to the two parallel schemes detailed in Sec-
tion 3.3. Note that our task graph G is not a fork-join
graph and the special techniques developed for this kind of
task graphs, see for instance [23], do not apply here.

In fact, the structure of the algorithm implies several
“global synchronisations”. More precisely, before starting
each of Step 2, Step 3, Step 4 and Step 5, all threaded
computations of the previous step must be completed. These
constraints make the parallelization of our normal form com-
putations more challenging than for more standard “divide
& conquer” algorithms. See also [21] on this topic.

3. IMPLEMENTATION

3.1 Multidimensional FFT
The standard multidimensional FFT algorithm [1] as shown

in the pseudo-code MultiFFT below has been implemented
in C in our packages. In the standard approach, the input
polynomials f1, f2 ∈ K[x1, x2, . . . , xs] will be evaluated, for
all i = 1· · ·s, by N/Ni Discrete Fourier Transforms (DFTs)
on dimension i in turn, where Ni is the FFT size on dimen-
sion i, and N =

Qs
i=1 Ni .

MultiFFT:

Input: f1, f2 ∈ K[x1, x2, . . . , xs].

Output: f1f2 ∈ K[x1, x2, . . . , xs].

1 for i from 1 to s do
2 Eval(f1, i)
3 Transpose(f1, i, 1)
4 Eval(f2, i)
5 Transpose(f2, i, 1)
6 f1f2 = PairwiseMul (f1, f2)
7 for i from s to 1 do
8 Interp(f1f2, i)
9 Transpose(f1f2, i, 1)
12 return f1f2

In the pseudo-code, Eval stands for the DFT computa-
tions on the dimension i. Before applying Eval on dimen-
sion i, the coefficient arrays of the input polynomials will
be transposed (transposing data on dimension i to dimen-
sion 1) for preserving the good locality of memory reference;
Transpose stands for this operation. Likewise, during the
interpolation we also need to transpose the coefficient arrays
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backward. And the interpolation, presented by Interp, is
conducted by the inverse DFTs (IDFTs).

Multidimensional FFT is a very nice application to paral-
lelize on a SMP architecture, since the “small” DFTs/IDFTs
performed on a given dimension have no data dependency to
each other. Therefore, instead of computing these “small”
DFTs/IDFTs one by one in a sequential setting, we create
multiple threads and each of the threads will be in charge of
an amount of “small” DFTs/IDFTs’ computations. Since
all the “small” DFTs/IDFTS have similar amount of work-
loads in a dense polynomial application, each thread will be
in charge of a similar number of “small” DFTS/IDFTS.

In fact, when implementing multivariate polynomial mul-
tiplication in our sequential mode, we used two approaches.
One is the above mentioned multidimensional FFT, the other
is based on Kronecker’s substitution. In this latter method,
two input multivariate polynomials are mapped to univari-
ate ones. Then, univariate FFT can be used to compute the
polynomial multiplication. This implies that parallelizing
Kronecker’s substitution based FFT multiplication is ac-
tually, parallelizing a univariate FFT. We didn’t try this
direction based on three reasons. First, the multidimen-
sional FFT is much easier to parallelize as we described be-
fore. Second, we implemented Truncated Fourier transform
(TFT) [10], and replaced multidimensional FFT by multidi-
mensional TFT in our package. This brings us a significant
improvement of performance comparing to Kronecker’s sub-
stitution method as reported in Section 4. Moreover, the
multidimensional TFT has the same code structure as the
multidimensional FFT, thus is easy to implement. Third,
multidimensional FFT/TFT is more cache friendly compar-
ing to Kronecker’s substitution method for certain range of
input [17].

Therefore, on a multi-processor architecture we prefer mul-
tidimensional FFT to Kronecker’s substitution method. In
addition, matrix transposition in multidimensional FFT also
can be parallelized. We leave it as a future work, since
the computation time of matrix transposition is generally a
small portion of the whole computation.

3.2 Two Traversal Methods for Normal Form
By using the names defined in our pseudo-code in this

section, we describe the normal form operation as follows.
The normal form operation consists of two major operations
UniFastMod and NormalForm. NormalForm is the
“main” function which recursively reduces the coefficients
of the input polynomial f∈K[x1, x2, · · · , xs]. TS is brief for
the given triangular set, and s is the number of variables.

In addition, we have following definition of operations for
all pseudo-code in this section.

• revn(f) returns xs
nf( 1

xs
), where xs is the main vari-

able of f and n≥deg(f).

• deg(f) returns the degree of f .

• degree(f, i) returns the partial degree of f in xi.

• coef (f, i) fetches the i-th coefficient of f .

• coef (f, i, s)

This operation only applies to a dense multivariate
polynomial f who is encoded in an one dimensional
array. we define this operation as follows. For the in-
put polynomial f , we use a data representation based

on Kronecker substitution [6, 17]. Namely, a dense
multivariate polynomial will be encoded in an one di-
mensional array. The Kronecker map U(f) is an array
of element of K.

U : (x1, x2, · · ·, xs) �−→ (x1, x1
δ2 , · · · , x1

δs)
where δ1 = 1,

δi =
Qi−1

j=1 (degree(f, j) + 1)

(1)

Thus, coef (f, i, s) returns the i-th slot of U(f) re-
garded as an array where each slot has size of δs.

NormalForm (f, TS, s)

Input: f ∈ K[x1, x2, · · · , xs], TS = {T1, T2, · · · , Ts},with
Ti is monic.

Output: The normal form of f w.r.t. TS.

1 if (s == 0) return f
2 d = deg(f)
3 RC (f, 0, d, TS, s− 1)
4 f =UniFastMod(f, TS, s)

UniFastMod (f, TS, s)

1 n ←− deg f
2 m ←− deg Ts

3 if n < m then
4 q ←− 0
5 r ←− f
6 else
7 q ←− revn(f) T−1

s mod xn−m+1

8 q ←− revn−m(q)
9 RC(q, 0, n−m, TS, s− 1)
10 w = Ts q
11 RC(w, 0, n−m, TS, s− 1)
12 r ←− f − w
13 return r

Each reduction step is performed by calling UniFast-
Mod, namely a fast univariate division in Ls−1[xs]. The
function RC means to reduce each coefficient of a polyno-
mial by calling NormalForm and it is an in-place opera-
tion.

RC (f, start, end, TS, s)

1 for i from start to end do
2 coef (f, i)=NormalForm (coef (f, i), TS, s)

As we mentioned above, a multivariate polynomial can
be encoded by a tree structure. When reducing its coef-
ficients, we need to have a tree traversal. The nested re-
cursion in NormalForm performs a depth-first tree traver-
sal. The other way is what we called “bottom-up level-by-
level” (BULL) traversal. The pseudo functions RS, Nor-
malForm2, UniFastMod2, and RC2 describe the com-
putational steps for this method.
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NormalForm2 (f, TS, s)

1 if (s == 0) return f
2 size =

Qs
j=1 (degree(f, j) + 1)

3 i = 2
4 while (i≤s) do

5 ss = size /
Qi

j=1 (degree(f, j) + 1)
6 RS (f, 0, ss− 1, TS, i)
7 i = i + 1

RS (f, start, end, TS, s)

1 for i from start to end do
2 coef(f, i, s)=UniFastMod2(coef(f, i, s), TS, s)

In brief, we suppose the input multivariate polynomial f
is encoded in an one dimensional array by the Kronecker
map U . The size of the array is

Qs
j=1 (degree(f, j) + 1).

We start the reduction steps at level 1. That is we view the
given array as an array with size / (degree(f, 1) + 1) slots.
Each slot has size of degree(f, 1) + 1. Each slot actually is
encoding an univariate polynomial in L1. Then we reduce
all slots by calling UniFastMod2. Then we continue the
reduction steps on level 2, 3, · · · , i, · · · , s.

On level i, the given array is viewed as an array with
size /

Qi
j=1 (degree(f, j) + 1) slots. Each slot has size

Qi
j=1 (degree(f, j) + 1). We iteratively conduct the re-

duction steps from level 1 to level s by calling function RS.
In this way, we compute a normal form in a BULL traversal.

UniFastMod2 (f, TS, s)

1 n ←− deg f
2 m ←− deg Ts

3 if n < m then
4 q ←− 0
5 r ←− f
6 else
7 q ←− revn(f) T−1

s mod xn−m+1

8 q ←− revn−m(q)
9 RC2(q, 0, n−m, TS, s− 1)
10 w = Ts q
11 RC2(w, 0, n−m, TS, s− 1)
12 r ←− f − w
13 return r

RC2 (f, start, end, TS, s)

1 for i from start to end do
2 coef(f, i)=NormalForm2(coef(f, i), TS, s)

3.3 Parallelizing Normal Form
Both approaches based on either depth-first or bottom-

up level-by-level tree traversal are nice applications to par-
allelize. In our setting, we suppose input polynomial are
dense, thus the workload of each coefficient reduction is
close. We describe our parallelization strategies as follows.

3.3.1 Parallelism in Depth-first Method

NormalForm Para (f, TS, s)

1 if (s == 0) return
2 d = deg(f)
3 for i from 0 to d do
4 Task=NormalForm Para(coef(f, i),TS,s-1)
5 CreateThread (Task)
6 DumpThreadPool()
7 f =UniFastMod(f, TS, s− 1)

CreateThread (Task)

1 Creat a thread for Task in thread pool
2 if thread pool is full.
3 DumpThreadPool(thread pool)

DumpThreadPool(thread pool)

1 Force all threads in thread pool to finish.

In the depth-first method we cursively create a thread
for each coefficient reduction which we called a “task”. All
threads will live in a thread pool. When the thread pool
is full. We will force all threads to finish up before inserting
a new one. To force all threads to finish, we use the func-
tion DumpThreadPool. Function NormalForm Para
in above pseudo-code is the parallelized version of the depth-
first multivariate reduction.

3.3.2 Parallelism in Bottom-up Level-by-level Method

NormalForm2 Para 1 (f, TS, s)

1 if (s == 0) return f
2 size =

Qs
j=1 (degree(f, j) + 1)

3 i = 2
4 while (i≤s) do

5 ss = size /
Qi

j=1 (degree(f, j) + 1)
// suppose NoOfCPU divides ss.

6 q = ss / NoOfCPU
7 for j from 0 to NoOfCPU-1 repeat
8 Task = RS (f, jq, (j + 1)q, TS, i)
9 CreateThread ( Task )
10 i = i + 1
11 DumpThreadPool()

NormalForm2 Para 2 (f, TS, s)

1 Create C threads and put them into sleep.
2 if (s == 0) return f
3 size =

Qs
j=1 (degree(f, j) + 1)

4 i = 2
5 while (i≤s) do

6 ss = size /
Qi

j=1 (degree(f, j) + 1)

// suppose NoOfCPU divides ss.
7 q = ss / NoOfCPU
8 for j from 0 to NoOfCPU-1 repeat
9 Task = RS (f, jq, (j + 1)q, TS, i)
10 Wake up a thread to handle Task.
11 i = i + 1
12 Finish and terminate all threads.
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In the BULL traversal, we have two slightly different sub-
methods. One is that at each level we create C threads to
handle all reductions on this level in parallel, where C is a
constant. Then, we wait them to finish and destroy these C
threads before go to next level. Therefore, the total num-
ber of threads being created is parametrized by the num-
ber of variables of the input. This sub-method is presented
by function NormalForm2 Para 1 in above pseudo-code.
In the other sub-method, we will create a fixed number of
threads and put them into sleep at the beginning. Then
we start the BULL traversal. When there is a reduction on
demanding, we will push it onto a task queue and send a
signal to wake up some thread. The waken thread will go
to fetch a task from the task queue and handle it immedi-
ately. If there are multiple tasks have been pushed on the
task queue, multiple threads will be waken up and run in
parallel. After finishing a task, the thread will go back to
sleep or continue to handle another task. This sub-method
is presented by function NormalForm2 Para 2.

The first sub-method is very easy to implement. But the
overhead of creating and destroying many threads maybe
burdensome in large input cases. The second sub-method
takes a little more coding effort for tasks management and
threads synchronization. But it is advantageous by avoiding
the potential overhead happened in the first sub-method.

We used pthread library to implement the parallelization.
We tested the performance on a AMD 4 processor machine.
We observed a factor of 3.5 speed-up when the input size is
sufficiently large. The experimentation results are reported
in Section 4.

4. BENCHMARKS
In Section 3, several parallelization strategies have been

described. We provide benchmark results for these methods.
The tested operation is the multivariate polynomial multi-
plication modulo a triangular set and the tested strategies
are summarized in below list.

0 Sequential algorithm.
1 Depth-first traversal with a thread pool.
2 BULL traversal with a thread pool.
3 BULL traversal with sleep/wake-up threads.

We conducted our benchmark on a AMD Opteron 850 4-
Processor machine with CPU MHZ 2391.537 and cache size
1024 KB for each processor. The input dense polynomi-
als are randomly generated. The benchmark data can well
reflect the performance in real world computation.

We benchmarked 2, 3 and 4 variable cases. We observe a
factor of 2 ∼ 3 speed-up in those examples. Here, we only
report the data we collected from the 4 variable example.
In this example, we fixed the partial degrees in x3 and x4

at 4 – the number of processors. Then by increasing par-
tial degrees in x1 and x2, we obtain a timing surface for
each methods listed in above table. Namely, Figure 1 is the
benchmark between the sequential method and the Depth-
first traversal parallelization method with a global thread
pool. Figure 2 is the benchmark between sequential method
and the BULL traversal parallelization method with a global
thread pool. Figure 3 is the benchmark between sequential
method and the BULL traversal parallelization method with
threads sleep/wake-up strategy. And Table 1, 2, 3 and 4
are the selected data point from Figure 1, 2, 3 and 4 re-
spectively.
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Figure 1: method 0 vs. method 1

Table 1: Selected data points from Figure 1

d4 d3 d2 d1 method 0 (sec) method 1 (sec)
4 4 4 100 0.926028 0.736449
4 4 6 300 8.104279 6.015184
4 4 8 500 9.642438 7.084307
4 4 10 800 35.232581 25.746897
4 4 12 1000 39.521405 29.216119

According to the benchmark result, the depth-first method
does not improve the performance by big factors w.r.t to the
number of processors. The main reason is that when the
coarser grain parallelization is well balanced and processors
have been well utilized, it’s insensible to keep generating
finer grain sub-threads recursively for the sub-tasks, espe-
cially when the sub-tasks are small. On the other hand,
the bottom-up level-by-level approach has a factor of 2 ∼ 3
speed up based on the input size accordingly. The examples
with larger degrees have better speed-up than the smaller
ones. The main reason for this is that the overhead gener-
ated by threads and tasks management is still not negligible
for smaller input.

For the comparison between methods 2 and 3, we observe
that method 2 outperforms method 3 for smaller input. The
main reason is that in methods 3 the overhead of manag-
ing task queues and synchronizing signals is more expensive
than the one in method 2. When the input is small, the
overhead has bigger impact on the overall computational
time. Whereas, method 3 will only generate fixed number
of threads. Thus, the scheduling becomes much simpler.
The overhead of creating /destroying threads in the mid-
dle steps has been avoided as well. Thus, for larger input
method 3 outperforms method 2 according to our results,
though the gap is not big.

Figure 4 shows an improved version of method 3. The
speed-up is yielded by replacing all Fast Fourier Transform
by Truncated Fourier Transform (TFT). Although this im-
provement seems unrelated to parallelism, the better multi-
ple cache behavior deserves to be counted in. Namely, TFT
requires less memory to store the intermediate results than
FFT. There are larger chances that these results will be kept
in cache and used in later computation steps on the same
processor.

Above benchmarks only show a factor of 2 ∼ 3 speed up

57



 4  5  6  7  8  9  10  11  12
 200

 400
 600

 800
 1000

 0
 5

 10
 15
 20
 25
 30
 35
 40

Time
Sequential.

BULL, M threads.

d2

d1

Time

Figure 2: method 0 vs. method 2

Table 2: Selected data points from Figure 2

d4 d3 d2 d1 method 0 (sec) method 2 (sec)
4 4 4 100 0.926028 0.659218
4 4 6 300 8.104279 3.844373
4 4 8 500 9.642438 4.391355
4 4 10 800 35.232581 13.915399
4 4 12 1000 39.521405 15.650396

on a 4 processor machine. This is not a satisfying result
with considering that polynomials in our applications are
dense ones. Dense polynomial computations usually pro-
vide a good opportunity for work-load balance. However,
we have identified the major bottle-neck that impedes the
perform in our benchmark examples. Recall that in previ-
ous benchmarks we set the partial degrees of x4 and x3 as
a constant number 4. This leads a situation that in some of
the sub-algorithms such as Coefficient Reduction, there is no
enough work-load to be scheduled evenly to all 4 processors
by our current scheduling method. Therefore, we increase
the degrees of x3 and x4 to be 8. Then, we observe a factor
3.2 ∼ 3.3 speed-up between method 1 and method 3. In
Table 5 we list a few timing points from the new benchmark
result.

When we increase the partial degrees of x3 and x4 to be
16, 24, 32,· · · . we ab serve a factor of 3.4 ∼ 3.6 speed-up
between method 1 and method 3 (see Table 6).

To summarize, for the larger examples, especially when
we increase the partial degrees of x3 and x4 in 4-variable
case, the performance is reasonably better. By profiling in-
formation, we know the top level division in BULL method is
often a dominant factor. Thus, increasing the degrees of top
level variables to some extend with respect to the number
of processors allows a more balanced work-load assignment
thus a better performance.

Although, our experiments are conducted on a 4 processor
machine. We believes that our approach will scale on larger
parallel SMP system. Actually, the number of threads in
application has been parametrized such that it can be easily
adjusted according to the number of processors or other cut-
offs.
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Figure 3: method 0 vs. method 3

Table 3: Selected data points from Figure 3

d4 d3 d2 d1 method 0 (sec) method 3 (sec)
4 4 4 100 0.926028 0.778774
4 4 6 300 8.104279 4.031646
4 4 8 500 9.642438 4.531477
4 4 10 800 35.232581 13.335127
4 4 12 1000 39.521405 14.952662

5. CONCLUSION
In conclusion, we studied multithreaded versions of mul-

tivariate polynomial arithmetic modulo a triangular set. In
this report, we focused on the normal form operation. We
obtain parallelism from two procedures: a multidimensional
FFT algorithm and our normal form algorithm. Due to the
intrinsic data-dependency inside these operations, we ob-
serve a factor of 2∼3 speed up on a 4 processor machine.

One major issue remains: detecting cut-offs between the
different possible strategies. This is a highly complicated
task. A cut-off in our application is parameterized by the
type of architectures, the number of processors, the number
of variables of the input, and the shape of the given trian-
gular set, etc. This motivates us to design an automatic
cut-off detection framework for our application in near fu-
ture. Now we are working on automatic cut-off detecting.
We are designing algorithms which will detect the cutoffs
between different parallel methods at compile time.
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