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Background

A historical application of the resultant is to compute the
intersection of two plane curves. Up to details, there are two steps:

eliminate one variable by computing a resultant,

compute a GCD modulo this resultant.

Example (From MCA, Chapter 6)

Let P =
(

y2 + 6
)

(x − 1) − y
(

x2 + 1
)

and
Q =

(

x2 + 6
)

(y − 1) − x
(

y2 + 1
)

res(P, Q, y) = 2
(

x2 − x + 4
)

(x − 2)2 (x − 3)2.

gcd(P, Q, x − 2 = 0) = (y − 2)(y − 3).

gcd(P, Q, x − 3 = 0) = (y − 2)(y − 3).

gcd(P, Q, x2 − x + 4 = 0) = (2 x − 1) y − 7 − x.

Xin Li, Marc Moreno Maza and Wei Pan (University of Western Ontario)Computations Modulo Regular Chains



Regular GCD

Let B be a commutative ring with units. Let P, Q ∈ B[y ] be
non-constant with regular leading coefficients.

G ∈ B[y ] is a regular GCD of P, Q if we have:

(i) lc(G , y) is a regular element of B,
(ii) G ∈ 〈P,Q〉 in B[y ],
(iii) deg(G , y) > 0 ⇒ prem(P,G , y) = prem(Q,G , y) = 0.
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Let B be a commutative ring with units. Let P, Q ∈ B[y ] be
non-constant with regular leading coefficients.

G ∈ B[y ] is a regular GCD of P, Q if we have:

(i) lc(G , y) is a regular element of B,
(ii) G ∈ 〈P,Q〉 in B[y ],
(iii) deg(G , y) > 0 ⇒ prem(P,G , y) = prem(Q,G , y) = 0.

In practice B = k[x1, . . . , xn]/sat(T ), with T being a regular
chain.
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Regular GCD

Let B be a commutative ring with units. Let P, Q ∈ B[y ] be
non-constant with regular leading coefficients.

G ∈ B[y ] is a regular GCD of P, Q if we have:

(i) lc(G , y) is a regular element of B,
(ii) G ∈ 〈P,Q〉 in B[y ],
(iii) deg(G , y) > 0 ⇒ prem(P,G , y) = prem(Q,G , y) = 0.

In practice B = k[x1, . . . , xn]/sat(T ), with T being a regular
chain.

Such a regular GCD may not exist. However one can compute
Ii = sat(Ti ) and non-zero polynomials Gi such that

√
I = ∩e

i=0

√

Ii and Gi regular GCD of P, Q mod Ii
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Regularity test

Regularity test is a fundamental operation:

Regularize(p, I) 7−→ (I1, . . . , Ie)

such that:

√
I = ∩e

i=0

√

Ii and p ∈ Ii or p regular modulo Ii

Regularity test reduces to regular GCD computation.
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Related work

This notion of a regular GCD was proposed in (M. M. 2000)

In previous work (Kalkbrener 1993) and (Rioboo & M. M.
1995), other regular GCDs modulo regular chains were
introduced, but with limitations.

In other work (Wang 2000), (Yang etc. 1995) and (Jean Della
Dora, Claire Dicrescenzo, Dominique Duval 85), related
techniques are used to construct triangular decompositions.

Regular GCDs modulo regular chains generalize GCDs over
towers of field extentions for which specialized algorithms are
available, (van Hoeij and Monagan 2002 & 2004).
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Overview

We study the relations between subresultants and regular
GCDs. We insist on the case where sat(T ) is not radical.
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Overview

We study the relations between subresultants and regular
GCDs. We insist on the case where sat(T ) is not radical.

We present a new algorithm to compute regular GCDs.

Compute subresultant chains over the base field (typically
Z/pZ[x])
Discover GCDs in a bottom-up manner.
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Overview

We study the relations between subresultants and regular
GCDs. We insist on the case where sat(T ) is not radical.

We present a new algorithm to compute regular GCDs.

Compute subresultant chains over the base field (typically
Z/pZ[x])
Discover GCDs in a bottom-up manner.

This allows us to apply fast polynomial arithmetic over the
base field and to make the computations as lazy as possible.

In most cases, our new code outperforms the other packages
by several orders of magnitude.
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Regular Chain

Let T ⊂ k[x1 < · · · < xn] \ k be a triangular set, hence the
polynomials of T have pairwise distinct main variables.

mvar(T ) := {mvar(t) | t ∈ T} and init(t) := lc(t, mvar(t))
for all t ∈ T .

Tv is the polynomial of T with main variable v and
T<v = {t ∈ T | mvar(t) < v}.

The saturated ideal of T is the ideal of k[x1 < · · · < xn]
defined by

sat(T ) := 〈T 〉 : h∞,

where h is the product of initials in T .

T is a regular chain if for each v ∈ mvar(T ) the initial of Tv

is regular modulo sat(T<v ).
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Subresultants

Let P, Q ∈ B[y ] with p = deg(P) ≥ deg(Q) = q > 0.

For 0 ≤ d < q let Sd = Sd(P, Q) be the d-th subresultant of
P and Q. Let sd = coeff(Sd , xd). If sd = 0 we say Sd is
defective, otherwise we say Sd is non-defective.

Let d = q − 1, . . . , 1. Assume Sd , Sd−1 nonzero, with resp.
degrees d and e. Assume sd regular in B. Then we have

lc(Sd−1)
d−e−1

Sd−1 = sd
d−e−1Se .

Moreover, there exists Cd ∈ B[X ] such that we have:

(−1)d−1lc(Sd−1)seSd + CdSd−1 = sd
2Se−1.

In addition Sd−2 = Sd−3 = · · · = Se+1 = 0 also holds.

(Yap 1993) (Ducos 1997) (El Kahoui, 2003)
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Regular GCDs (1/6)

Let P, Q ∈ k[x][y ] with mvar(P) = mvar(Q) = y .

Define R = res(P, Q, y).

Let T ⊂ k[x1, . . . , xn] be a regular chain such that

R ∈ sat(T ),
init(P) and init(Q) are regular modulo sat(T ).

A = k[x1, . . . , xn] and B = k[x1, . . . , xn]/sat(T ).

For 0 ≤ j ≤ mdeg(Q), we write Sj for the j-th subresultant of
P, Q in A[y ].
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Regular GCDs (2/6)

Let 1 ≤ d ≤ q such that Sj ∈ sat(T ) for all 0 ≤ j < d .

Lemma

If lc(Sd , y) is regular modulo sat(T ), then Sd is non-defective over

k[x].

Consequently, Sd is the last nonzero subresultant over B, and
it is also non-defective over B.

If lc(Sd , xn) is not regular modulo sat(T ) then Sd may be
defective over B.
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Regular GCDs (3/6)

Let 1 ≤ d ≤ q such that Sj ∈ sat(T ) for all 0 ≤ j < d .

Lemma

If lc(Sd , y) is in sat(T ), then Sd is nilpotent modulo sat(T ).

Up to sufficient splitting of sat(T ), Sd will vanish on all the
components of sat(T ).

The above two lemmas completely characterize the last
non-zero subresultant of P and Q over B.
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Regular GCDs (4/6)

Example

Consider P and Q in Q[x1, x2][y ]:

P = x2
2y2 − x4

1 and Q = x2
1y2 − x4

2 .

We have:

S1 = x6
1 − x6

2 and R = (x6
1 − x6

2 )2.

Let T = {R}. Then we observe:

The last subresultant of P,Q modulo sat(T ) is S1, which is a
defective one.
S1 is nilpotent modulo sat(T ).

P and Q do not admit a regular GCD over Q[x1, x2]/sat(T ).
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Regular GCDs (5/6)

Let 1 ≤ d ≤ q such that Sj ∈ sat(T ) for all 0 ≤ j < d .

Proposition

Assume
lc(Sd , y) is regular modulo sat(T ),

sat(T ) is radical.

Then, Sd is a regular GCD of P, Q modulo sat(T ).
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Regular GCDs (5/6)

Let 1 ≤ d ≤ q such that Sj ∈ sat(T ) for all 0 ≤ j < d .

Proposition

Assume
lc(Sd , y) is regular modulo sat(T ),

sat(T ) is radical.

Then, Sd is a regular GCD of P, Q modulo sat(T ).

Recall that Sd regular GCD of P, Q modulo sat(T ) means
(i) lc(Sd , y) is a regular element of B,
(ii) Sd ∈ 〈P,Q〉 in B[y ],
(iii) deg(Sd , y) > 0 ⇒ prem(P,Sd , y) = prem(Q,Sd , y) = 0.
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Regular GCDs (5/6)

Let 1 ≤ d ≤ q such that Sj ∈ sat(T ) for all 0 ≤ j < d .

Proposition

Assume
lc(Sd , y) is regular modulo sat(T ),

sat(T ) is radical.

Then, Sd is a regular GCD of P, Q modulo sat(T ).

Proposition

Assume

lc(Sd , y) is regular modulo sat(T ),

for all d < k ≤ q, coeff(Sk , y
k) is either 0 or regular modulo sat(T ).

Then, Sd is a regular GCD of P, Q modulo sat(T ).
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Regular GCDs (6/6)

Assume that the subresultants Sj for 1 ≤ j < q are computed.

Then one can compute a regular GCD of P, Q modulo sat(T )
by performing a bottom-up search.

B

C

A

D

E

O
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Complexity Estimates

We assume that the the base field k supports FFT.

Let xn+1 := y . Define di := max(deg(P, xi ), deg(Q, xi )).
Define bi := 2didn+1 and B := (b1 + 1) · · · (bn + 1).
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Complexity Estimates

We assume that the the base field k supports FFT.

Let xn+1 := y . Define di := max(deg(P, xi ), deg(Q, xi )).
Define bi := 2didn+1 and B := (b1 + 1) · · · (bn + 1).

We compute Sj for 1 ≤ j < mdeg(Q) via FFT on an n-dim.
grid of points not cancelling init(P) and init(Q) in

O(dn+1B log(B) + d2
n+1B) where B ∈ O(2ndn

n+1d1 . . . dn).
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Complexity Estimates

We assume that the the base field k supports FFT.

Let xn+1 := y . Define di := max(deg(P, xi ), deg(Q, xi )).
Define bi := 2didn+1 and B := (b1 + 1) · · · (bn + 1).

We compute Sj for 1 ≤ j < mdeg(Q) via FFT on an n-dim.
grid of points not cancelling init(P) and init(Q) in

O(dn+1B log(B) + d2
n+1B) where B ∈ O(2ndn

n+1d1 . . . dn).

Then res(P, Q, y) = S0 is interpolated in time O(B log(B)).
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Complexity Estimates

We assume that the the base field k supports FFT.

Let xn+1 := y . Define di := max(deg(P, xi ), deg(Q, xi )).
Define bi := 2didn+1 and B := (b1 + 1) · · · (bn + 1).

We compute Sj for 1 ≤ j < mdeg(Q) via FFT on an n-dim.
grid of points not cancelling init(P) and init(Q) in

O(dn+1B log(B) + d2
n+1B) where B ∈ O(2ndn

n+1d1 . . . dn).

Then res(P, Q, y) = S0 is interpolated in time O(B log(B)).

If sat(T ) is radical, a regular GCD is interpolated within
O(dn+1B log(B)); otherwise O(d2

n+1B log(B)).
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Complexity Estimates

We assume that the the base field k supports FFT.

Let xn+1 := y . Define di := max(deg(P, xi ), deg(Q, xi )).
Define bi := 2didn+1 and B := (b1 + 1) · · · (bn + 1).

We compute Sj for 1 ≤ j < mdeg(Q) via FFT on an n-dim.
grid of points not cancelling init(P) and init(Q) in

O(dn+1B log(B) + d2
n+1B) where B ∈ O(2ndn

n+1d1 . . . dn).

Then res(P, Q, y) = S0 is interpolated in time O(B log(B)).

If sat(T ) is radical, a regular GCD is interpolated within
O(dn+1B log(B)); otherwise O(d2

n+1B log(B)).

If a regular GCD is expected to have degree 1 in y all
computations fit in O (̃dn+1B).
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Regularity Test

T a normalized zero-dimensional regular chain. Q a polynomial
with initial regular modulo sat(T ).

RegularizeDim0(Q, T ) ==
(1) Results := []; v := mvar(Q)
(2) R := res(Q, Tv , v)
(3) for D ∈ RegularizeDim0(R, T<v ) do

(4) s := NormalForm(R, D)
(5) if s 6= 0 then

(7) Results := {{D ∪ {Tv} ∪ T>v}} ∪ Results

(8) else for (g , E ) ∈ RegularGcd(Q, Tv , D) do

(9) g := NormalForm(g , E )
(11) Results := {{E ∪ {g} ∪ T>v}} ∪ Results

(12) c := NormalForm(quo(Tv , g), E )
(13) if deg(c , v) > 0 then

(14) Results := RegularizeDim0(q, E ∪ c ∪ T>v) ∪ Results

(15) return Results
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Experimentation in Maple

d1 = d2 Lex-Basis Solve Triang. FastTriang.
4 0.020 0.040 0.152 0.020
7 0.020 0.580 0.424 0.016

10 0.064 3.892 0.680 0.020
13 0.136 16.557 1.424 0.024
16 0.232 55.939 2.324 0.032
22 0.552 416.466 13.972 0.044
25 0.804 1116.045 22.346 0.048
28 1.124 2162.271 58.695 0.056

Table: Bivariate solving. 32-bit Characterisitic. Generic input
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Experimentation in Maple

d1 = d2 Lex-Basis Solve Triang FTriang
5 0.014 0.080 0.616 0.016
8 0.152 3.004 3.200 0.048

11 0.908 44.407 10.049 0.124
14 6.837 246.839 25.902 0.428
17 36.581 1266.958 55.014 0.938
20 156.245 6296.301 92.662 1.740
23 627.551 21758.120 222.897 2.625

Table: Bivariate solving. 32-bit Characteristic. Highly non-equiprojectable systems
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Experimentation Magma vs our Code

d1 = d2 Lex-GB (Magma) Triang (Magma) FastTriang (Maple)
5 0.010 0.010 0.016
8 0.040 0.070 0.048
11 0.190 0.360 0.124
14 0.730 1.210 0.428
17 2.170 3.300 0.938
20 5.510 7.810 1.740
23 12.430 17.220 2.625

Table: Bivariate solving. Highly non-equiprojectable case.
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Experimentation Magma vs our Code

d1 d2 d3 Regularize Fast Regularize Magma
2 2 3 0.032 0.004 0.010
3 4 6 0.160 0.016 0.020
4 6 9 0.404 0.024 0.060
5 8 12 >100 0.129 0.330
6 10 15 >100 0.272 1.300
7 12 18 >100 0.704 5.100
8 14 21 >100 1.276 14.530
9 16 24 >100 5.836 40.770

10 18 27 >100 9.332 107.280
11 20 30 >100 15.904 229.950
12 22 33 >100 33.146 493.490

Table: Random dense input. 3-variable case.
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Conclusions

We have given sufficient conditions for a subresultant Sd of
P, Q to be a regular GCD modulo sat(T ).
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Conclusions
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We have insisted on the non-radical case. In particular, in the
long version of the paper in the CoRR repository.
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Conclusions

We have given sufficient conditions for a subresultant Sd of
P, Q to be a regular GCD modulo sat(T ).

We have insisted on the non-radical case. In particular, in the
long version of the paper in the CoRR repository.

We have derived a bottom-up algorithm, which permits
efficient implementation techniques.

Our implementation
Maple13:-RegularChains:-FastArithmeticTools for
dense polynomials over Z/pZ often outperforms related
packages by several orders of magnitude.

See also the poster Balanced Dense Multiplication on

Multi-cores for the latest development in the dense case.
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Thank you!
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Example: Bivariate System Solving

Let P, Q ∈ Z/pZ[x1, x2]. Assume
deg(P, x2) ≥ deg(Q, x2) > 0 and R = res(P, Q, x2) 6∈ Z/pZ

and gcd(lc(P, x2), lc(Q, x2)) = 1.

Assume P, Q admits a regular GCD G modulo 〈R〉. Then we
have

V (P, Q) = V (R, G ).

Hence V (P, Q) can be decomposed at the cost of computing
R that is O∼(d2

2d1) operations in Z/pZ.

The assumptions can be relaxed and in the worst case the
running time is O∼(d3

2d1).
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S1

S2

S4

S5

S6

Q = S7

P

S̄1

S̄2

S̄4

S̄6

Q̄ = S̄7

P̄

Figure: A possible configuration of the subresultant chain of P and Q.

On the left, P and Q have five nonzero subresultants over k[X], four

of which are non-defective and one of which is defective. Let T be a

regular chain in k[X] such that lc(P) and lc(Q) are regular modulo

sat(T ). Further, we assume that lc(S1) and lc(S4) are regular modulo

sat(T ), however, lc(S6) is in sat(T ). The right hand side is a possible

configuration of the subresultant chain of P̄ and Q̄. In this case, S1 is

a regular gcd of P and Q modulo sat(T ).
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