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ABSTRACT
We study arithmetic operations for triangular families of
polynomials, concentrating on multiplication in dimension
zero. By a suitable extension of fast univariate Euclidean
division, we obtain theoretical and practical improvements
over a direct recursive approach; for a family of special cases,
we reach quasi-linear complexity. The main outcome we
have in mind is the acceleration of higher-level algorithms,
by interfacing our low-level implementation with languages
such as AXIOM or Maple. We show the potential for huge
speed-ups, by comparing two AXIOM implementations of
van Hoeij and Monagan’s modular GCD algorithm.

Categories and Subject Descriptors:
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation – Algebraic Algorithms

General Terms:
Algorithms, Experimentation, Performance, Theory

Keywords:
High-performance, multiplication, triangular set.

1. INTRODUCTION
Triangular representations are a useful data structure for

dealing with a variety of problems, from computations with
algebraic numbers to the symbolic solution of polynomial or
differential systems. At the core of the algorithms for these
objects, one finds a few basic operations, such as multiplica-
tion and division in dimension zero. Higher-level algorithms
can be built on these subroutines, using for instance modular
algorithms and lifting techniques [8].

Our goal in this article is twofold. First, we study al-
gorithms for multiplication modulo a triangular set in di-
mension zero. All known algorithms involve an overhead
exponential in the number n of variables; we show how to
reduce this overhead in the general case, and how to remove
it altogether in a special case. Our second purpose is to
demonstrate how the combination of such fast algorithms
and low-level implementation can readily improve the per-
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formance of environments like AXIOM or Maple in a sig-
nificant manner, for a variety of higher-level algorithms. We
illustrate this through the example of van Hoeij and Mona-
gan’s modular GCD algorithm for number fields [18].

Triangular sets. In this article, we adopt the following con-
vention: a triangular set is a family of polynomials T =
(T1, . . . , Tn) in R[X1, . . . , Xn], where R is a commutative
ring with 1. For all i, we impose that Ti is in R[X1, . . . , Xi],
is monic in Xi and reduced with respect to T1, . . . , Ti−1.

The natural approach to arithmetic modulo triangular
sets is recursive: to work in the residue class ring L =
R[X1, . . . , Xn]/〈T1, . . . , Tn〉, we regard it as L−[Xn]/〈Tn〉,
where L− is the ring R[X1, . . . , Xn−1]/〈T1, . . . , Tn−1〉. This
point of view allows one to design elegant recursive algo-
rithms, whose complexity is often easy to analyze, and which
can be implemented in a straightforward manner in lan-
guages supporting generic programming. However, as shown
below, this approach is not necessarily optimal, regarding
both complexity and practical performance.

Complexity issues. The core of our problematic is modular
multiplication: given A and B in the residue class ring L,
compute their product; here, one assumes that the input
and output are reduced with respect to the polynomials T.

In one variable, the usual approach consists in multiplying
A and B and reducing them by Euclidean division. Using
classical arithmetic, the cost is approximately 2d2

1 multi-
plications and 2d2

1 additions in R, with d1 = deg(T1, X1).
Using fast arithmetic, polynomial multiplication becomes
essentially linear, the best known result ([5], after [24, 23])
being of the form k d1 lg(d1) lg lg(d1), with k a constant and
lg(x) = log2 max(2, x). A Euclidean division can then be
reduced to two polynomial multiplications [6, 27, 13].

In n variables, the measure of complexity of the problem
is δ = deg(T1, X1) · · ·deg(Tn, Xn), since representing a poly-
nomial reduced modulo T requires storing δ elements. Then,
applying the previous results recursively leads to bounds of
order 2nδ2 for the standard approach, and (3k)nδ for the fast
one, neglecting logarithmic factors and lower-order terms.

Improved algorithms and the virtues of fast arithmetic.

Our first contribution is the design and implementation of a
faster algorithm: while still relying on the techniques of fast
Euclidean division, we show that a mixed dense / recursive
approach reduces the previous cost to an order of 4nδ, ne-
glecting again all lower order terms and logarithmic factors.
Building upon previous work [9], the implementation is done
in C, and is dedicated to small finite field arithmetic.

The algorithm uses fast polynomial multiplication and
Euclidean division. For univariate polynomials over Fp, such
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fast algorithms become advantageous for degrees of approx-
imately 100. In a worst-case scenario, this may suggest that
for multivariate polynomials, fast algorithms become use-
ful when the partial degree in each variable is at least 100,
which would be a severe restriction.

Our second contribution is to contradict this expectation,
by showing that the cut-off values for which the fast algo-
rithm becomes advantageous decrease with the number of
variables. This can be seen by doing a precise complexity
analysis of our algorithm, and clearly appears in our exper-
imental results.

A quasi-linear algorithm for a special case. We next dis-
cuss a particular case, where all polynomials in the trian-
gular set are actually univariate, that is, with Ti in K[Xi]
for all i. Despite its apparent simplicity, this problem al-
ready contains non-trivial questions, such as power series
multiplication modulo 〈Xd1

1 , . . . , Xdn
n 〉, taking Ti = Xdi

i .
For the question of power series multiplication, no quasi-

linear algorithm was known until [25]. We extend this result
to the case of arbitrary Ti ∈ K[Xi]; we prove that for K of
cardinality large enough and for ε > 0, there exists Kε such
that for all n, products modulo 〈T1(X1), . . . , Tn(Xn)〉 can
be done in at most Kεδ

1+ε operations, with δ as before.
Following [2, 3, 1, 25], the algorithm uses deformation

techniques, and is not expected to be very practical. How-
ever, it shows that for a substantial family of examples, one
can suppress the exponential overhead seen above. General-
izing this result to an arbitrary T is a major open problem.

Applications to higher-level algorithms. Fast arithmetic
for basic operations modulo a triangular set is fundamental
for a variety of higher-level operations. By embedding fast
arithmetic in high-level environments like AXIOM (see [9,
17]) or Maple, one can obtain a substantial speed-up for
questions ranging from computations with algebraic num-
bers (GCD, factorization) to polynomial system solving via
triangular decomposition, such as in the algorithm of [20],
which is implemented in AXIOM and Maple [15].

Our last contribution is to demonstrate such a speed-up
on the example of van Hoeij and Monagan’s algorithm for
GCD computation in number fields. This algorithm is mod-
ular, most of the effort consisting in GCD computations over
small finite fields. We compare a direct AXIOM implemen-
tation to one relying on our low-level C implementation, and
obtain improvement of orders of magnitude.

Outline of the paper. Section 2 presents our multiplication
algorithms, for general triangular sets and triangular sets
consisting of univariate polynomials. We next describe our
implementation of the former in Section 3; experiments and
comparisons with other systems are given in Section 4.

Acknowledgments. We wish to thank R. Rasheed for his
help with obtaining the Maple timings, and the referees for
their helpful remarks.

2. ALGORITHMS AND COMPLEXITY
In this section, we give the details of our multiplication

algorithms. We start by some notation.

Notation. Triangular sets will be written T = (T1, . . . , Tn).
The multi-degree of T is (di = deg(Ti, Xi))1≤i≤n. We will
write δT = d1 · · · dn and, in Subsection 2.2, we use the no-
tation rT =

Pn
i=1(di− 1) + 1. Writing X = X1, . . . , Xn, we

let LT be the residue class ring R[X]/〈T〉, for R a ring. Let

MT be the set of monomials

MT =
˘
Xe1

1 · · ·Xen
n | 0 ≤ ei < di for all i

¯
;

then, the free R-submodule Span(MT) of R[X] generated by
MT is isomorphic to LT, so that in our algorithms, elements
of LT are represented on the monomial basis MT.

Without loss of generality, we always assume that all de-
grees di are at least 2. Indeed, if Ti has degree 1 in Xi, the
variable Xi appears neither in the monomial basis MT nor
in the other polynomials Tj , so Ti can be discarded.

Standard and fast modular multiplication. As said be-
fore, standard algorithms have a cost of roughly 2nδ2

T oper-
ations in R for multiplication in LT. This bound seems not
even polynomial in δ, due to the exponential overhead in n.
However, since all degrees deg(Ti, Xi) are at least two, any
bound of the form Knδ� is actually polynomial in δ, since it
is upper-bounded by δlog2(K)+�.

Our goal is to obtain bounds of the form KnδT (up to log-
arithmic factors), that are thus softly linear in δT for fixed n,
with a small constant K. We will use fast polynomial multi-
plication, denoting by M : N→ N a function such that over
any ring, polynomials of degree less than d can be multiplied
in M(d) operations, and which satisfies the super-linearity
conditions of [10, Chapter 8]. Using the algorithm of [5], one
can take M(d) ∈ O(d log(d) log log(d)). Precisely, we will de-
note by k a constant such that M(d) ≤ k d lg(d) lg lg(d) holds
for all d, with lg(d) = log2 max(d, 2)

In one variable, fast modular multiplication is done using
the Cook-Sieveking-Kung algorithm [6, 27, 13]. Given T1

monic of degree d1 in R[X1] and A, B of degrees less than
d1, one computes first the product AB. To perform the
Euclidean division AB = QT1 + C, one first computes the
inverse S1 = U−1

1 mod Xd1−1
1 , where U1 = Xd1

1 T1(1/X1) is
the reciprocal polynomial of T1. This is done using Newton
iteration, and can be performed as a precomputation, for a
cost of 3M(d1)+O(d1). Once S1 is known, it enables one to
recover first the reciprocal of Q, then the remainder C, using
two polynomial products. Taking into account the cost of
computing AB, these operations have cost 3M(d1) + d1.

Applying this result recursively leads to a rough upper
bound of Πi≤n(3M(di) + di) for a product in LT, with-
out taking into account the similar cost of precomputation
(see [14] for similar considerations); this gives a total esti-
mate of roughly (3k+1)nδT, neglecting logarithmic factors.
One can reduce this (3k + 1)n exponential overhead: since
additions and constant multiplications in LT can be done in
linear time, it is the bilinear cost of univariate multiplica-
tion which governs the cost of the above recursive process.
Over a field of large enough cardinality, using evaluation /
interpolation techniques, univariate multiplication in degree
less than d can be done using 2d−1 bilinear multiplications;
this yields estimates of rough order (3× 2)nδT = 6nδT.

Main results. Studying more precisely the multivariate
multiplication process, we prove in Theorem 1 that one can
compute products in LT in time at most K 4nδT lg3(δT), for
a universal constant K. This is a synthetic but rough up-
per bound; we give more precise estimates within the proof,
and in Section 4 in the case n = 2. Obtaining results linear
in δT, without an exponential factor in n, is a major open
problem. When the base ring is a field of large enough cardi-
nality, we obtain first results in this direction in Theorem 2:
in the case of families of univariate polynomials, we present
an algorithm of quasi-linear complexity Kεδ

1+ε
T for all ε.
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Complexity. Since we are estimating costs that depend on
an a priori unbounded number of parameters, big-Oh nota-
tion is delicate to handle. We rather use explicit inequalities
when possible, all the more as an explicit control is required
in the proof of Theorem 2. For similar reasons, we do not
use O˜ notation. Hence, with a view to improve readability,
we keep some estimates sub-optimal regarding logarithmic
factors, relying on rough upper bounds like lg lg(d) ≤ lg(d).

Recall that k is such that the univariate multiplication
cost is bounded by k d lg(d) lg lg(d) for all d. Up to increasing
k, we can also assume that over any ring R, evaluation and
interpolation of a polynomial of degree less than d on d
points a0, . . . , ad−1 can be done in at most k d lg2(d) lg lg(d)
operations, assuming ai − aj is a unit for i �= j, see [10,
Chapter 10]. Following our policy above, we use the upper
bound k d lg3(d).

We let MM(d1, . . . , dn) be such that over any ring R, poly-
nomials in R[X1, . . . , Xn] of degree in Xi less than di for
all i can be multiplied in MM(d1, . . . , dn) operations. One
can take MM(d1, . . . , dn) ≤ M((2d1 − 1) · · · (2dn − 1)) us-
ing Kronecker’s substitution. Letting δ = d1 · · · dn, and up
to increasing k, this is seen to be at least δ and at most
k 2nδ lg3(δ), assuming di ≥ 2 for all i. Pan [21] proposed
an alternative algorithm, that requires the existence of in-
terpolation points in the base ring. This algorithm is more
efficient when e.g. di are fixed and n→∞. However, using
it below would not bring a noticeable improvement, due to
our rough over-simplifications.

2.1 The main algorithm
We describe here our main algorithm for modular multi-

plication. While relying on the Cook-Sieveking-Kung idea,
it differs from a direct recursive implementation.

Theorem 1. There exists a constant K such that the fol-
lowing holds. Let R be a ring and let T be a triangular set
in R[X]. Given A, B in LT, one can compute AB ∈ LT in
at most K 4nδT lg3(δT) operations (+,×) in R.

Proof. Let T = (T1, . . . , Tn) have multi-degree (d1, . . . , dn)
in R[X] = R[X1, . . . , Xn]. We write T− = (T1, . . . , Tn−1),
so that LT− = R[X1, . . . , Xn−1]/〈T−〉.

For i ≤ n, Ui is the reciprocal polynomial of Ti and Si

is the inverse of Ui modulo 〈T1, . . . , Ti−1, X
di−1
i 〉. We write

S = (S1, . . . , Sn) and S− = (S1, . . . , Sn−1).
Two subroutines are used. The first one is Rem(A,T,S),

with A in R[X]. This algorithm computes the normal form
of A modulo T, assuming that deg(A, Xi) ≤ 2di−2 holds for
all i. When n = 0, A is in R, T is empty and Rem(A,T) =
A. The next subroutine is called MulTrunc(A,B,T,S, dn+1),
with A,B in R[X, Xn+1]; it computes the product AB mod-

ulo 〈T, X
dn+1
n+1 〉, assuming that deg(A,Xi) and deg(B, Xi)

are bounded by di − 1 for i ≤ n + 1. If n = 0, T is empty,
so this function return AB mod Xd1

1 .
To compute Rem(A,T), we use the Cook-Sieveking-Kung

idea in LT− [Xn], reducing all coefficients of A modulo T−
and performing two truncated products in LT− [Xn] using
MulTrunc. The operation MulTrunc is performed by mul-
tiplying A and B as polynomials, truncating in Xn+1 and
reducing all coefficients modulo T, using Rem. In Figure 1,
Coeff(D, Xi, e) is the coefficient of Xe

i of D ∈ R[X]; assum-
ing D ∈ R[X1, . . . , Xi] and deg(D, Xi) ≤ e, Rev(D, Xi, e) is
the reciprocal polynomial Xe

i D(X1, . . . , Xi−1, 1/Xi).
Assuming for a start that all inverses S have been pre-

Rem(A,T,S)

1 if n = 0 return A

2 A′ ←P2dn−2
i=0 Rem(Coeff(A,Xn, i), T−,S−)Xi

n

3 B ← Rev(A′, Xn, 2dn − 2) mod Xdn−1
n

4 P ← MulTrunc(B, Sn, T−,S−, dn − 1)
5 Q← Rev(P, Xn, dn − 2)
6 return A′ mod Xdn

n −MulTrunc(Q, Tn,T−,S−, dn)

MulTrunc(A, B,T,S, dn+1)

1 C ← AB

2 if n = 0 return C mod Xd1
1

3 return
Pdn+1−1

i=0 Rem(Coeff(C, Xn+1, i),T,S)Xi
n+1

Figure 1: Algorithms Rem and MulTrunc.

computed, we write CRem(d1, . . . , dn) for an upper bound
on the cost of Rem(A,T,S) and CMulTrunc(d1, . . . , dn+1) for
a bound on the cost of MulTrunc(A, B,T,S, dn+1). Setting
CRem( ) = 0, the previous algorithms imply the estimates

CRem(d1, . . . , dn) ≤ (2dn − 1)CRem(d1, . . . , dn−1)

+ CMulTrunc(d1, . . . , dn − 1)

+ CMulTrunc(d1, . . . , dn)

+ d1 · · · dn;

CMulTrunc(d1, . . . , dn) ≤ MM(d1, . . . , dn)

+ CRem(d1, . . . , dn−1)dn.

Assuming that CMulTrunc is non-decreasing in each di, we de-
duce the upper bound

CRem(d1, . . . , dn) ≤ 4CRem(d1, . . . , dn−1)dn

+ 2MM(d1, . . . , dn) + d1 · · · dn,

for n ≥ 1. Write MM′(d1, . . . , dn) = 2MM(d1, . . . , dn) +
d1 · · · dn. Then, this recurrence yields the upper bound

CRem(d1, . . . , dn) ≤Pn
i=1 4n−iMM′(d1, . . . , di)di+1 · · · dn.

In view of the bound on MM given above and taking e.g.
K = 3k, we get after a few simplifications

CRem(d1, . . . , dn) ≤ K 4nδT lg3(δT).

The product A,B �→ AB in LT is performed by multiply-
ing A and B as polynomials and returning Rem(AB,T,S).
Hence, the cost of this operation admits a similar bound, up
to replacing K by K + k. Observe for future use that mul-
tiplication in degree d′

n ≤ dn in LT− [Xn] can be performed

in K 4nδ′ lg3(δT), with δ′ = d1 · · · dn−1d
′
n.

To conclude, we estimate the cost of precomputing S.
Supposing that S1, . . . , Sn−1 are known, we detail the cost
of computing Sn. Let � = �log2(dn − 1)
. Using Newton
iteration in LT− [Xn], we obtain Sn by performing 2 multi-
plications LT− [Xn] in degrees less than m and m/2 nega-

tions, for m = 2, 4, . . . , 2�−1. By the remark above, the cost
is at most t(n) = 3K 4nδT lg3(δT). The sum t(1) + · · ·+ t(n)
bounds the total precomputation time; one sees that it ad-
mits a similar form of upper bound. Up to increasing K, this
gives the desired result. �

2.2 The case of univariate polynomials
We next discuss a special case, that of triangular sets con-

sisting of univariate polynomials: while this may seem like
an easy problem, no fast algorithm was known to us.
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We provide here a first quasi-linear algorithm, that works
under mild assumptions. However, the techniques used (de-
formation ideas, see [2, 3, 1]) induce huge logarithmic factors
(as they do in matrix multiplication algorithms). Hence, this
should mainly be considered as a feasibility result.

Theorem 2. For any ε > 0, there exists a constant Kε

such that the following holds. Let K be a field and T =
(T1, . . . , Tn) be a triangular set of multi-degree (d1, . . . , dn)
in K[X1] × · · · × K[Xn], with 2 ≤ di ≤ |K| for all i. Given
A, B in LT, one can compute AB ∈ LT using at most
Kε δ1+ε

T operations (+,×,÷) in K.

Step 1. We start by a special case. Let T = (T1, . . . , Tn) be
a triangular set of multi-degree (d1, . . . , dn); for later appli-
cations, we suppose that its has coefficients in a ring R and
that for all i, Ti is in R[Xi] and factors as

Ti = (Xi − αi,0) · · · (Xi − αi,di−1),

with αi,j −αi,j′ a unit in R for j �= j’. Then, we prove that
given A, B in LT, one can compute AB ∈ LT using at most
K′ δT lg3(δT) operations (+,×,÷) in R, for a universal con-
stant K′. The proof reduces to an evaluation / interpolation
process. Let V ⊂ Rn be the grid [(α1,�1 , . . . , αn,�n) | 0 ≤
�i < di] and define the evaluation map

Eval : Span(MT) → RδT

F �→ [F (α) | α ∈ V ].

In view of our assumption that all αi,j −αi,j′ are units, the
map Eval is invertible. To perform evaluation and interpo-
lation, we use the algorithm in [21, Section 2]. This gives
the recursion for the cost CEval of evaluation

CEval(d1, . . . , dn) ≤ CEval(d1, . . . , dn−1) dn+

k d1 · · · dn−1dn lg3(dn),

so CEval(d1, . . . , dn) ≤ k δT
P

i≤n lg3(di) ≤ k δT lg3(δT). The
recursion and the bounds for interpolation are the same.

It is then easy to prove our claim: to compute AB mod T,
it suffices to evaluate A and B on V , multiply the δT pairs
of values thus obtained, and interpolate the result. The
claimed estimate follows by taking K′ = 2k + 1.

Step 2. We continue with by an approach using deformation
techniques, giving good results for triangular sets made of
many polynomials of low degree. Under the assumptions
of Theorem 2 (thus, without supposing any factorization
property), we prove that given A, B in LT, one can compute
the product AB ∈ LT using at most

K′′ δT rT
`
log(δT) log(rT)

´3
(1)

operations (+,×,÷) in K, for a universal constant K′′.

Let thus T = (T1, . . . , Tn) be a triangular set with Ti in
K[Xi] of degree di for all i. Let U = (U1, . . . , Un) be the
set of polynomials Ui = (Xi − ai,0) · · · (Xi − ai,di−1), where
for fixed i, the values ai,j are pairwise distinct (these values
exist due to our assumption on the cardinality of K).

Let η be a new variable, and define V ⊂ K[η][X] by Vi =
ηTi +(1− η)Ui, so that Vi is monic of degree di in K[η][Xi].
Remark that the monomial bases MT, MU and MV are all
the same, that specializing η at 1 in V yields T and that
specializing η at 0 in V yields U.

Lemma 1. Let A, B be in Span(MT) in K[X] and let C =
AB mod 〈V〉 in K[η][X]. Then C has degree in η at most
rT − 1, and C(1)(X) equals AB mod 〈T〉.

Proof. Fix an arbitrary order on the elements of MT, and let
Mat(Xi, V) and Mat(Xi, T) be the multiplication matrices
of Xi modulo respectively 〈V〉 and 〈T〉 in this basis. Hence,
Mat(Xi, V) has entries in K[η] of degree at most 1, and
Mat(Xi, T) has entries in K. Besides, specializing η at 1 in
Mat(Xi, V) yields Mat(Xi,T).

The coordinates of C = AB mod 〈V〉 on the basis MT are
obtained by multiplying the coordinates of B by the matrix
Mat(A,V) of multiplication by A modulo 〈V〉. This matrix
equals A(Mat(X1,V), . . . , Mat(Xn,V)); hence, specializing
its entries at 1 gives the matrix Mat(A,T), proving our last
assertion. To conclude, observe that since A has total degree
at most rT−1, the entries of Mat(A,V) have degree at most
rT − 1 as well. �
Let R be the truncated series ring K[η]/〈ηrT 〉 and let A, B
be in Span(MT) in K[X]. Define Cη = AB mod 〈V〉 in
R[X] and let C be its canonical preimage in K[η][X]. By
the previous lemma, C(1)(X) equals AB mod 〈T〉.

Lemma 2. One can compute [αi,j ∈ R | 1 ≤ i ≤ n, 0 ≤
j < di] with αi,j − αi,j′ invertible for j �= j′, and such that

Vi = (Xi − αi,0) · · · (Xi − αi,di−1)

holds in R[Xi] for all i, using k′δT rT (lg(δT) lg(rT))3 oper-
ations in K, for a constant k′.

Proof. The polynomial Ui = Vi(0)(X) splits into a prod-
uct of linear terms in K[Xi], with no repeated root, so the
conclusion follows by Hensel’s lemma. Theorem 15.18 in [10]
gives a cost in O(M(di)M(rT) log(di)), from which our claim
follows after a few (very rough) simplifications. �
We now prove estimate (1). To compute AB mod 〈T〉, we
compute Cη = AB mod 〈V〉 in R[X], deduce C ∈ K[η][X]
and evaluate it at 1. By the previous lemma, we can ap-
ply the previous evaluation / interpolation techniques over
R to compute Cη. An operation (+,×,÷) in R has cost
O(M(rT)). Combining this with the costs of Step 1 and
Lemma 2 gives the claimed result after a few simplifications.

Step 3: conclusion. To prove Theorem 2, we combine
the two previous approaches (the general case and the de-
formation approach). Let ε be a positive real, and define
ω = 2/ε. We can assume that the degrees in T are ordered
as 2 ≤ d1 · · · ≤ dn, with in particular δT ≥ 2n. Define an
index � by the condition that d� ≤ 4ω ≤ d�+1, taking d0 = 0
and dn+1 =∞, and let

T′ = (T1, . . . , T�) and T′′ = (T�+1, . . . , Tn).

Then the quotient LT equals R[X�+1, . . . , Xn]/〈T′′〉, with
R = K[X1, . . . , X�]/〈T′〉. By cost estimate (1), a product in
R can be done in

K′′ δT′ rT′ (lg(δT′) lg(rT′))3

operations in K; additions are cheaper, since they can be
done in time δT′ . By Theorem 1, one multiplication in LT

can be done in K 4n−�δT′′ lg3(δT′′) operations in R. Hence,
taking into account that δT = δT′δT′′ , the total cost for one
operation in LT is at most

KK′′ 4n−� δT rT′ (lg(δT′) lg(rT′) lg(δT′′))3
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operations in K. Now, observe that rT′ is upper-bounded
by d�n ≤ 2ω lg(δT). This implies that the factor

rT−(lg(δT′) lg(rT′) lg(δT′′))3

is bounded by H lg10(δT), for a constant H depending on ε.
Next, (4n−�)ω = (4ω)n−� is bounded by d�+1 · · · dn ≤ δT.

Raising to the power ε/2 yields 4n−� ≤ δ
ε/2
T ; thus, the pre-

vious estimate admits the upper bound

KK′′ H δ
1+ε/2
T lg10(δT).

To conclude, it suffices to observe that lg10(δT) admits an

upper bound of the form H′δε/2
T , where H′ depends on ε.

3. IMPLEMENTATION TECHNIQUES
The algorithm of Subsection 2.1 was implemented in C

(that in Subsection 2.2 is not expected to be very practical,
except for very large number of variables and very low de-
gree). As in [9, 17], the C code was then interfaced with
AXIOM. In this section, we describe our implementation.

Arithmetic in Fp. Our implementation is devoted to small
finite fields Fp, with p a machine word prime. Multiplica-
tions in Fp are done using Montgomery’s REDC routine [19].
A straightforward implementation does not bring better per-
formance than Shoup’s floating point techniques [26]. How-
ever, we designed an improved scheme which decomposes
Montgomery’s formula into three easily computable parts.
This lowers the operations done by 2 double word shifts and
2 single word shifts [16]. Compared with the implementa-
tion in [9], this approach is more portable, as it does not
explicitly use any special machine features like SSE regis-
ters in late IA-32 architectures, and brings a speed-up of
about 50% on Pentium 4 processors.

Arithmetic in Fp[X]. Multiplication modulo a triangular
set boils down to multivariate polynomial multiplications,
which, these can be reduced to univariate multiplications
through Kronecker’s substitution. We use classical and FFT
multiplication for univariate polynomial arithmetic over Fp,
for p a Fourier prime. For base fields without roots of unity,
we use Chinese Remaindering techniques as in [26].

Our FFT multiplication routine is the one presented in [7];
the implementation is essentially the one described in [9],
up to a few modifications to improve cache-friendliness. We
tried several data accessing patterns in our FFT implemen-
tation; the most suitable solution is platform-dependent,
since cache size, associativity properties and register sets
have huge impact. Going further in that direction will re-
quire automatic code tuning techniques, as in [12, 11, 22].

Multivariate arithmetic over Fp. At the C level, we use
a dense representation for multivariate polynomials: impor-
tant applications of modular multiplication (GCD compu-
tations, Hensel lifting for triangular sets) tend to produce
dense polynomials. Therefore, we use multi-dimensional ar-
rays (encoded as a contiguous memory block of machine inte-
gers) to represent our polynomials, where the size in each di-
mension is bounded by the corresponding degree deg(Ti, Xi),
or twice that much for intermediate products.

Multivariate arithmetic is done using either Kronecker’s
substitution as in [9] or standard multi-dimensional FFT.
While the two approaches share similarities, they do not
access data in the same manner. In our experiments, multi-
dimensional FFT performed better by 10-15% for bivariate

cases, but was slower for larger number of variables with
small FFT size in each dimension.

Triangular sets over Fp. Triangular sets are represented in
C by an array of multivariate polynomials. Two strategies
for modular multiplication were implemented, a plain one
and the one relying on the algorithm of Subsection 2.1.

Both of them first perform a multivariate multiplication
then do a multivariate reduction; the plain reduction method
performs a recursive Euclidean division, while the faster one
implements both algorithms Rem and MulTrunc of Subsec-
tion 2.1. Remark in particular that even the plain approach
is not the entirely naive, as it uses fast multivariate multi-
plication for the initial multiplication.

Both approaches are recursive, which makes it possible
to interleave them. At each level i = n, . . . , 1, a cut-off
point decides whether to use the plain or fast algorithm
for multiplication modulo 〈T1, . . . , Ti〉. These cut-offs are
experimentally determined: as showed in Section 4, they
are surprisingly low for i > 1.

The fast algorithm relies on some precomputation (of the
power series inverses of the reciprocals of the polynomi-
als Ti). While the complexity analysis takes the cost of
this precomputation into account, in practice, it is of course
better to store and reuse these elements: in situations such
as GCD computation or Hensel lifting, we expect to do sev-
eral multiplications modulo the same triangular set. We
could push further these precomputations, by storing FFT
transforms; this is work in progress.

GCD’s. One of the first applications of fast modular mul-
tiplication is GCD computation modulo a triangular set,
which itself is central to higher-level algorithms for solving
systems of equations. Hence, we implemented a preliminary
version of such GCD computations using a plain recursive
version of Euclid’s algorithm. This implementation has not
been thoroughly optimized. In particular, we have not in-
corporated any half-GCD technique, except for univariate
GCD’s; this univariate half-GCD is itself far from optimal.

The AXIOM level. Integrating our fast arithmetic into
AXIOM is straightforward, after dealing with the follow-
ing two problems. First, AXIOM is a Lisp-based system,
whereas our package is implemented in C. Second, in AX-
IOM, dense multivariate polynomials are represented by re-
cursive trees, but in our C package, they are encoded as
multi-dimensional arrays. Both problems are solved by mod-
ifying the GCL kernel. For the first issue, we integrate our C
package into the GCL kernel, so that our functions from can
be used by AXIOM at run-time. For the second problem,
we realized a tree / array polynomial data converter. This
converter is also linked to GCL kernel; the conversations,
happening at run-time, have negligible cost.

4. EXPERIMENTAL RESULTS

4.1 Comparing different strategies
We start by experiments comparing different strategies

for computing products modulo triangular sets in n = 1, 2, 3
variables. For the entire set of benchmarks, we use random
dense polynomials. Our experiments were done on a PC 2.80
GHz Pentium 4, with 1GB memory and 1024 KB cache.

Strategies. Let L0 = Fp be a small prime field and let Ln

be L0[X1, . . . , Xn]/〈T〉, with T a n-variate triangular set of
multi-degree (d1, . . . , dn). To compute a product C = AB ∈
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Ln, we first expand P = AB ∈ L0[X], then reduce it modulo
T. The product P is always computed by the same method;
we will discuss three strategies for computing C.

Plain. We use univariate Euclidean division; computations
are done recursively in Li−1[Xi] for i = n, . . . , 1.

Fast, using / without precomputations. We apply the
algorithm Rem(C,T,S) of Figure 1. Depending on the strat-
egy, we either assume that the inverses S have been precom-
puted, or compute them beforehand.
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Figure 2: Multiplication in L1, all strategies.

Our ultimate goal is to obtain a highly efficient imple-
mentation of the multiplication in Ln. To do so, we want to
compare our strategies in L1, L2, . . . , Ln. In this report we
give details for n ≤ 3 and leave for future work the case of
n > 3, as the driving idea is to tune our implementation in
Li before investigating that of Li+1. This approach leads to
determine cut-offs between our different strategies. The al-
ternative is between Plain and Fast strategies, depending
on the assumption regarding precomputations. For appli-
cations discussed before (quasi-inverses, polynomial GCDs
modulo a triangular set), using precomputations is realistic.
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Figure 3: Multiplication in L2, fast without precompu-

tations vs. fast using precomputations.

Univariate results. In the case of L1, finding the cut-offs
is straightforward. Figure 2 shows that the Fast using
precomputations strategy takes the lead for d1 ≥ 146 over
the Plain one. If precomputations are not assumed, then
this cut-off doubles. From now on, all computations in L1

will use these thresholds.

Bivariate results. For n = 2, we let in Figures 3 and 4 d1

and d2 vary in the ranges 4, . . . , 304 and 2, . . . , 102. This
allows us to determine a cut-off for d2 as a function of d1.
Surprisingly, this cut-off is essentially independent of d1 and
can be chosen equal to 5. We discuss this point below.

In order to continue our benchmarks in L3 as we did for
L2, we would like the product d1d2 to play the role in L3
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Figure 4: Multiplication in L2, plain vs. fast using pre-

computations.
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Figure 5: Plain multiplication in L2, time vs. d = d1d2.

that d1 did in L2, so as to determine the cut-off for d3 as a
function of d1d2. This leads to the following question: for
a fixed product d1d2, does the running time of the multipli-
cation in L2 stay constant when (d1, d2) varies in the region
4 ≤ d1 ≤ 304 and 2 ≤ d2 ≤ 102? Figures 5 and 6 give
all timings obtained for this sample set; they show that the
time does vary, mostly for the plain strategy (the levels ap-
pearing in the fast case are due to our FFT multiplication).
This observation will guide our experiments in L3.

Trivariate results. For our experiments with the multipli-
cation in L3, following the previous observation, we consider
three patterns for (d1, d2). Pattern 1 has d1 = 2, Pattern 2
has d1 = d2 and Pattern 3 has d2 = 2. Then, we let d1d2

vary from 4 to 304 and d3 from 2 to 102. For simplicity,
we also restrict our report to the comparison between the
strategies Plain and Fast using precomputations. The
timings are reported in Figures 7 to 9.

For the extreme case (d1d2, d3) = (304, 102) the ratio be-
tween the timings for Plain and Fast are 16.8, 7.2 and
12.4, respectively, showing an impressive speed-up for the
Fast strategy. We also observe that the cut-off between
the two strategies can be set to 3 for each of the patterns.
Performing experiments as in Figures 5 and 6 gives simi-
lar conclusion: the timing depends not only on the product
d1d2 and d3 but also on the ratios between these degrees.

Discussion of the cut-offs. To understand the low cut-off
points we observe, we have a closer look at the costs of sev-
eral strategies for multiplication in L2. For a ring R, classical
polynomial multiplication in R[X] in degree less than d uses
� (d2, d2) operations (×, +) respectively; Euclidean division
of a polynomial of degree 2d − 2 by a monic polynomial T
of degree d has essentially the same cost. Hence, classical
modular multiplication uses � (2d2, 2d2) operations (×, +)
in R. Additions modulo 〈T 〉 take time d.

Thus, a purely recursive approach for multiplication in
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Figure 7: Multiplication in L3, pattern 1, plain vs. fast.
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Figure 8: Multiplication in L3, pattern 2, plain vs. fast.
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Figure 9: Multiplication in L3, pattern 3, plain vs. fast.

L2 uses approximately (4d2
1d

2
2, 4d2

1d
2
2) operations (×,+) in

K. Our Plain approach is less naive. We first perform a
bivariate product in degrees (d1, d2). Then, we reduce all
coefficients modulo 〈T1〉 and perform Euclidean division in
L1[X2], for a cost of � (2d2

1d
2
2, 2d2

1d
2
2). Hence, we can al-

ready make some advantage of fast FFT-based multiplica-
tion, since we traded 2d2

1d
2
2 base ring multiplications and as

many addition for a bivariate product.
Using precomputations, the Fast approach performs 3

bivariate products in degrees � (d1, d2) and � 4d2 reduc-
tions modulo 〈T1〉. Even for moderate (d1, d2) such as in
the range 20–30, bivariate products can already be done ef-
ficiently by FFT multiplication, for a cost much inferior to
d2
1d

2
2. Then, even if reductions modulo 〈T1〉 are done by the

plain algorithm, our approach performs better: the total
cost of these reductions will be � (4d2

1d2, 4d2
1d2), so we save

a factor � d2/2 on them. This explains why we observe very
low cut-offs in favor of the fast algorithm.

4.2 Comparing implementations
Comparison with Magma. To evaluate the quality of our
implementation of modular multiplication, we compared it
with Magma v. 2-11 [4], which has set a standard of efficient
implementation of low-level algorithms.

We compared multiplication in L3 for the three patterns
of the previous subsection, in the same degree ranges. Fig-
ure 10 gives the timings for Pattern 3. The Magma code
uses quo constructs over UnivariatePolynomial, which was
the most efficient configuration we found. We give only the
time for performing the actual computation; sometimes, the
time spent in the construction of the structure was larger.
For our code, we use the strategy Plain using precompu-
tations. On this example, our code outperforms Magma
by factors up to 7.4; other patterns yield similar behaviour.
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Figure 10: Multiplication in L3, pattern 3, Magma vs.

our code.

Comparison with Maple. One of our long-term purposes is
to design high-performance implementations of higher-level
algorithms, such as those of [20, 8], in languages such as
AXIOM or Maple, by replacing built-in arithmetic by our
C implementation. While it is easy to put this idea to prac-
tice with AXIOM (see below), doing it within Maple is not
straightforward as of now; hence, our Maple experiments
stayed at the level of GCD and inversions. We compared our
code with Maple’s recden library for inversion in L3. We
used the same degree patterns as before, but we were led to
reduce the degree ranges to 4 ≤ d1d2 ≤ 204 and 2 ≤ d3 ≤ 20.
Figure 11 gives the timings for pattern 3, where our code
uses the strategy Fast using precomputations. There is
a huge performance gap, so that our timing surface is very
close the bottom. The other results are similar.

The Maple recden library implements multivariate dense
recursive polynomials and can be called from the Maple in-
terpreter via the Algebraic wrapper library. Our Maple
timings, however, do not include the necessary time for con-
verting Maple objects into the recden format: we just mea-
sured the time spent by the function invpoly of recden.

We observe a huge gap between the two implementations.
For instance, for (d1d2, d3) = (204, 20) for patterns 1 and 2,
the ratio between the recden timings and ours is 506.4/2.0
and 36.7/1.6 respectively. The Maple code could not reach
these degrees for pattern 3, as too much memory was needed
when constructing the algebraic structure L3. When using
our Plain strategy, our code remains faster, but the ratio
diminishes by a factor of about 4.

Comparison with AXIOM. As explained in Section 3, using
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Figure 11: Inverse in L3, pattern 1, Maple vs. our code.

our lower-level arithmetic in AXIOM is made easy by the
multiple-level C/GCL structure.

In [17], the modular algorithm by van Hoeij and Mon-
agan [18] was used as a driving example to show strate-
gies for such multiple-level language implementations. This
algorithm computes GCD’s of univariate polynomials with
coefficients in a number field by modular techniques. The
coefficient field is described by a tower of simple algebraic
extensions of Q; we are thus led to compute GCD’s modulo
triangular sets over Fp, for several prime numbers p.

We implemented the top-level of this algorithm in AX-
IOM. Then, two strategies were used: one relying on the
built-in AXIOM modular arithmetic, and the other on our
C code. Since our C code provides all conversion functions
from and to AXIOM, the only difference between the two
strategies at the top-level resides in which GCD function to
call. The results are reported in Figure 12, where we con-
sider polynomials in Q[X1, X2, X3]/〈T1, T2, T3〉[X4], with in-
put coefficients of absolute value bounded by 2. As shown
in Figure 12 the performance gap between the two imple-
mentations increases dramatically.
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Figure 12: GCD computations L3[X4], pure AXIOM

code vs. combined C-AXIOM code.

5. CONCLUSION
We have provided new estimates for the cost of multiplica-

tion modulo a triangular set. The outstanding challenge for
this question remains the suppression of exponential over-
heads; a tempting approach consists in a higher-dimensional
extension of the Cook-Sieveking-Kung idea, or the related
Montgomery approach. On the software level, our exper-
iments show the importance of both fast algorithms and
implementation techniques. While most of our efforts were
limited to multiplication, the next steps are well-tuned inver-
sion and GCD computations. Theory and practice revealed
that, as far as multivariate multiplication is concerned, fast
algorithms become faster than plain ones for very low de-

grees. An outstanding question is whether this phenomenon
extends to half-GCD techniques in several variables.
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