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ABSTRACT
Given a real parametric polynomial p(x) and an interval
(a, b) ⊂ R, the Complete Root Classification (CRC) of p(x)
on (a, b) is a collection of all possible cases of its root classifi-
cation on (a, b), together with the conditions its coefficients
must satisfy for each case. In this paper, a new algorithm
is proposed for the automatic computation of the complete
root classification of a parametric polynomial on an inter-
val. As a direct application, the new algorithm is applied to
some real quantifier elimination problems.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—Algebraic algorithms

General Terms
Algorithms

Keywords
Complete root classification, real root, parametric polyno-
mial, interval, real quantifier elimination

1. INTRODUCTION
The counting and classifying of the roots of a polyno-

mial have been the subject of many investigations. This pa-
per concerns the complete root classification of a parametric
polynomial on an interval.

RC and CRC. Let p(x) be a real polynomial with constant
coefficients. The root classification (RC) of p(x) on R is
denoted by

[ L1, L2 ] = [ [n1, n2, . . .], [m1,−m1, m2,−m2, . . .] ],

where nk are the multiplicities of the distinct real roots of
p(x) on R, and mk are the multiplicities of the distinct com-
plex conjugate pairs of p(x), and L1 = [n1, n2, . . .] is called
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the real RC of p(x) on R . Let a, b ∈ R ∪ {−∞, +∞}. The
RC of p(x) on (a, b) is denoted by a list L = [n1, n2, . . .],
where n1, n2, . . . are the multiplicities of the distinct real
roots of p(x) on (a, b). For a real polynomial p(x) with para-
metric coefficients, the complete root classification (CRC) of
p(x) on (a, b) is a collection of all possible cases of its RC
on (a, b), together with the conditions its coefficients must
satisfy for each case.

The history of CRC is short. The CRC of a real para-
metric quartic polynomial on R was found by Arnon in 1988
[2]; the first method for establishing the CRC of a real para-
metric polynomial of any degree on R was given by Yang,
Hou and Zeng in 1996 [10]. They illustrated their method
by computing the CRC of a reduced sextic polynomial. The
first automatic generation of CRCs was described and im-
plemented by Liang and Zhang [7], with some improvements
added in [5]. Further improvements to the algorithm were
made in [6] by replacing the ‘revised sign lists’ (Definition 4
below) with the direct use of ‘sign lists’. As well as offering
greater efficiency, the new algorithm offers a better filter for
eliminating non-realizable conditions.

All works above are on R, and applications often need
CRC on an interval. For example, in robust control [1] and
problems concerning program termination [12], we have to
determine the conditions on the parametric coefficients of
p(x) such that ∀x > 0, p(x) > 0, or the conditions such
that ∀x ∈ (a, b), p(x) 6= 0. Therefore, it is meaningful to
develop an algorithm for computing the CRC of a parametric
polynomial on an interval.

However, in order to develop such an algorithm, we have
to face two challenging problems. The first problem is the
determination of the conditions for a parametric polynomial
having a given number of real roots on an interval. One
naturally thinks of the well-known Sturm sequence. The
Sturm sequence of a polynomial with known, constant co-
efficients is a good tool for computing the number of real
roots on an interval, but it is inconvenient and inefficient
when the given polynomial has parametric coefficients. A
better solution uses the fact that we know how to determine
the conditions for a polynomial having a given number of
real roots on R [6], and converts the problem of the de-
termination of conditions on an interval into a problem on
R. This is done in Section 3, where Theorem 4 is given.
Let p ∈ R[x] with p(x) = anxn + an−1x

n−1 + · · · + a0 and
an 6= 0. Let a, b ∈ R such that p(a) 6= 0 and p(b) 6= 0.

Let Ψ1(x) = (1 − x)np
�

b−ax
1−x

�
and Ψ2(x) = Ψ1(−x2) =
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(1 + x2)np
�

b+ax2

1+x2

�
. Then L = [r1, r2, . . . , rk] is the RC of

p(x) on (a, b), if and only if L2 = [r1, r1, r2, r2, . . . , rk, rk] is
the real RC of Ψ2(x) on R. Therefore, the conditions for
p(x) having L as its RC on an interval can be obtained by
computing the conditions for Ψ2(x) having L2 as its real RC
on R .

The second problem is the computation of the ∆-sequence
of Ψ2 (Definition 5). We try to determine the conditions for
Ψ2 having L2 as its real RC on R . The set of all possible sign
lists of Ψ2 can be determined by Theorem 2 and 3. Now, in
order to make the multiplicities of the 2k distinct real roots
of Ψ2 be r1, r1, r2, r2, . . . , rk, rk respectively, we also have to
determine the possible sign lists of the polynomials in the
∆−sequence of Ψ2. According to Proposition 1, ∆1(Ψ2)
can be determined by the maximal index ` of non-vanishing
members in the sign list of Ψ2 which actually is the total
number of distinct (real and complex) roots of Ψ2. Since L2

does not contain information about the number of distinct
complex-conjugate roots of Ψ2, the maximal index ` is not
uniquely determined. Therefore, unlike the case of RC on
R [6], there may be more than one ∆1(Ψ2) for the real RC
L2, and consequently the conditions for Ψ2(x) having L2 as
its real RC on R would be more complicated. So the ques-
tion is how to determine these ∆1(Ψ2) and corresponding
conditions.

In this paper, a new algorithm for the automatic compu-
tation of the CRC of a parametric polynomial on an interval
is proposed. The new algorithm has been implemented in
Maple. As an immediate application, the new algorithm
has been applied to some real quantifier elimination prob-
lems. However, it should be emphasized that the CRC of a
parametric polynomial on an interval contains more infor-
mation than is needed for these problems, and consequently
it has more potential applications than the examples given
here.

2. PRELIMINARY
In this section, we review some definitions and theorems

which mainly come from [10] and [6]. They are necessary
for the new algorithm. Let p(x) ∈ R[x] with p(x) = anxn +
an−1x

n−1 + · · ·+ a0 and an 6= 0.

Definition 1. The 2n× 2n matrix M0BBBBBBBBB@

an an−1 an−2 . . . a0

0 nan (n− 1)an−1 . . . a1

an an−1 . . . a1 a0

0 nan . . . 2a2 a1

. . . . . .

. . . . . .
an an−1 . . . a0

0 nan . . . a1

1CCCCCCCCCA
is called the discrimination matrix of p.

Definition 2. For 1 ≤ k ≤ 2n, let Mk be the kth prin-
cipal minor of M , and let Dk = M2k. The n-tuple D =
[D1, D2, . . . , Dn] is called the discriminant sequence of p.

Definition 3. If sgn x is the signum function, sgn 0 = 0,
then the list [s1, s2, . . . , sn] = [sgn D1, sgn D2, . . . , sgn Dn] is
called the sign list of p.

Definition 4. The revised sign list [e1, e2, . . . , en] of p(x)
is constructed from the sign list s = [s1, s2, . . . , sn] of p as

follows. If [si, si+1, . . . , si+j ] is a section of s, where si 6= 0,
si+1 = si+2 = . . . = si+j−1 = 0 and si+j 6= 0, then we
replace the subsection [si+1, . . . , si+j−1] by

[−si,−si, si, si,−si,−si, si, si, . . .] ,

i.e., let ei+r = (−1)b(r+1)/2csi, for r = 1, 2, . . . , j − 1, and
keep other elements unchanged, i.e., let ek = sk. The revised
sign list of p (resp. s) is denoted by rsl(p) (resp. rsl(s)).

Yang, Hou and Zeng used the following theorem to cal-
culate the number of distinct complex-conjugate roots and
real roots.

Theorem 1. Suppose a polynomial p ∈ R[x] has revised
sign list rsl(p). If the number of non-vanishing members
of rsl(p) is s, and the number of sign changes in rsl(p) is
v, then p(x) has v pairs of distinct complex-conjugate roots
and s− 2v distinct real roots.

In order to calculate the multiplicities of roots, Yang, Hou
and Zeng used the following definitions and propositions.

Definition 5. Let ∆(p) denote gcd(p(x), p′(x)), and let
∆0(p) = p(x), ∆j(p) = ∆(∆j−1(p)), j = 1, 2, . . . . Then
∆0(p), ∆1(p), ∆2(p), . . . is called the ∆-sequence of p.

Proposition 1. If rsl(p) contains k zeros, equivalently,
Dn = . . . = Dn−k+1 = 0 but Dn−k 6= 0, then gcd(p, p′) =
Pk(p, p′), where Pk(p, p′) is the kth subresultant of p(x) and
p′(x).

The relationship between the RC of ∆j(p) and the RC of
its ‘repeated part’ ∆j+1(p) is given by the following propo-
sitions.

Proposition 2. If ∆j(p) has k distinct roots with respec-
tive multiplicities n1, n2, . . . , nk, then ∆j+1(p) has at most
k distinct roots with respective multiplicities n1 − 1, n2 −
1, . . . , nk − 1.

Proposition 3. If ∆j(p) has k distinct roots with respec-
tive multiplicities n1, n2, . . . , nk, and ∆j−1(p) has m distinct
roots, then m ≥ k, and the multiplicities of these m distinct
roots are n1 + 1, n2 + 1 . . . , nk + 1, 1, . . . , 1 respectively.

However, the old algorithms [5] and the methods above
have to work with revised sign list which is a major source of
inefficiency, since we have to transfer the output conditions
in terms of revised sign lists to conditions in terms of sign
lists. The transferring process is usually very difficult and
full of opportunities for including non-realizable conditions.
This consideration motivated the authors to propose a new
algorithm for overcoming these disadvantages [6]. The new
algorithm offers improved efficiency and a new test for non-
realizable conditions. The improvement lies in the direct use
of sign lists, rather than revised sign lists.

The algorithm uses the following definitions and theorems,
where “PmV” means “generalized Permanences minus Vari-
ations” [3].

Definition 6. Let s = [sn, . . . , s0] be a finite list of el-
ements in R such that sn 6= 0. Let m < n such that
sn−1 = · · · = sm+1 = 0, and sm 6= 0, and s′ = [sm, . . . , s0].
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If there is no such m, then s′ is the empty list. We define
inductively

PmV(s) =

8<: 0 , s′ = ∅,
PmV(s′) + εn−m sgn(snsm) , n−m odd,
PmV(s′) , n−m even,

where εn−m = (−1)(n−m)(n−m−1)/2.

The following theorem gives the number of distinct roots
in terms of sign lists.

Theorem 2. Let D = [D1, . . . , Dn] be the discriminant
sequence of a real polynomial p(x) of degree n, and ` be the
maximal index such that D` 6= 0. If PmV(D) = r, then p(x)
has r +1 distinct real roots and 1

2
(`− r− 1) pairs of distinct

complex conjugate roots.

The next theorem can be used to detect the non-realizable
sign lists in output conditions.

Theorem 3. Let S = [s1, . . . , sn] and R = [r1, . . . , rn]
be the sign list and the revised sign list of p(x) respectively.
Then PmV(S) = PmV(R).

At last, we review a result given by Yang and Xia [9][11]
for computing the number of real roots on intervals, which
gives us some clue for solving the first problem mentioned
in Section 1.

Let p ∈ R[x] with p(x) = anxn + an−1x
n−1 + · · · + a0

and an 6= 0. Let a, b ∈ R such that p(a) 6= 0 and p(b) 6= 0.

Let Ψ1(x) = (1−x)np
�

b−ax
1−x

�
and Ψ2(x) = Ψ1(−x2) = (1+

x2)np
�

b+ax2

1+x2

�
. Then, it is easy to see that coeff(Ψ1, x, n) =

(−1)np(a) 6= 0, coeff(Ψ2, x, 2n) = p(a) 6= 0 and Ψ1(0) =
coeff(Ψ1, x, 0) = coeff(Ψ2, x, 0) = p(b) 6= 0. Furthermore

Proposition 4. #{x ∈ (a, b)|p(x) = 0} =
#{x < 0|Ψ1(x) = 0} = 1

2
#{x ∈ R|Ψ2(x) = 0}.

3. BASIS OF THE ALGORITHM
In this section, we establish the basis for the new algo-

rithm. The main idea is that we transfer the computation
of CRC for a parametric polynomial on an interval to the
computation of CRC for a parametric polynomial on R.

Theorem 4. Let p(x), Ψ1(x), Ψ2(x) be defined as in Sec-
tion 2. Then, [r1, r2, . . . , rk] is the RC of p(x) on (a, b), if
and only if [r1, r1, r2, r2, . . . , rk, rk] is the real RC of Ψ2(x)
on R.

Proof. Since [r1, r2, . . . , rk] is the RC of p(x) on (a, b),
we can decompose p(x) in C as

p(x) = an

kY
i=1

(x−αi)
ri

sY
j=1

(x−βj)
fj

tY
u=1

(x−γu)hu(x−γu)hu ,

where, αi(i = 1, . . . , k), βj(j = 1, . . . , s) ∈ R are all distinct
real roots of p(x), γu, γu(u = 1, . . . , t) ∈ C are all pairs of
distinct complex-conjugate roots of p(x), and a < αi < b,
βj /∈ [a, b]. Then, since a, b are not roots of p(x), we have
Ψ1(x) =

an

kY
i=1

(αi−a)ri

�
x− αi − b

αi − a

�ri sY
j=1

(βj−a)fj

�
x− βj − b

βj − a

�fj

.

tY
u=1

(γu−a)hu

�
x− γu − b

γu − a

�hu

(γu−a)hu

�
x− γu − b

γu − a

�hu

.

Notice that αi−b
αi−a

6= αj−b

αj−a
(i 6= j), αi−b

αi−a
< 0,

βj−b

βj−a
> 0 and

γu−b
γu−a

, γu−b
γu−a

/∈ R because of αi 6= αj , a < αi < b, βj /∈ [a, b]
and a 6= b respectively.

Based on the facts above, we can conclude that Ψ1(x) in
(−∞, 0) has exactly k distinct real roots of respective mul-
tiplicities r1, . . . , rk. Therefore, the RC of Ψ1(x) on (−∞, 0)
is [r1, r2, . . . , rk], if and only if the RC of p(x) on (a, b) is
[r1, r2, . . . , rk]. Noticing Ψ1(0) = p(b) 6= 0, by similar dis-
cussion, we can conclude that the real RC of Ψ2(x) on R
is [r1, r1, r2, r2, . . . , rk, rk], if and only if the RC of Ψ1(x)
on (−∞, 0) is [r1, r2, . . . , rk]. Finally, the desired result fol-
lows.

From Theorem 4, for intervals (−∞, a) and (a, +∞), we
have the following corollary.

Corollary 1. Let notations be as in Theorem 4. Then,
[r1, r2, . . . , rk] is the RC of p(x) on (−∞, a) iff [r1, r1, r2, r2,
. . . , rk, rk] is the real RC of Ψ2(x) := p(−x2 + a) on R;
[r1, r2, . . . , rk] is the RC of p(x) on (a, +∞) iff [r1, r1, r2, r2,
. . . , rk, rk] is the real RC of Ψ2(x) := p(x2 + a) on R.

Based on Theorem 4 and Corollary 1, the conditions for
p(x) having [r1, r2, . . . , rk] as its RC on an interval can be ob-
tained by computing the conditions for Ψ2(x) having [r1, r1,
r2, r2, . . . , rk, rk] as its real RC on R.

4. THE ALGORITHM
Let p(x), Ψ2(x) be defined as in Section 2. In this section,

we propose an algorithm for computing the CRC of p(x) on
(a, b), where a, b ∈ R∪{−∞, +∞}. We need some functions
to present the algorithm.

• ClassifySL: Input a set of sign lists and a positive inte-
ger i; output the subset of sign lists of which the maxi-
mal index of non-vanishing members is i. For example,
if the input is S = {[1, 1, 1,−1, 0, 0], [1, 0, 0,−1, 0, 0],
[1, 1, 1,−1, 1, 1], [1,−1, 0, 0, 1, 1]}, then
ClassifySL(S, 4) = {[1, 1, 1,−1, 0, 0], [1, 0, 0,−1, 0, 0]},
ClassifySL(S, 6) = {[1, 1, 1,−1, 1, 1], [1,−1, 0, 0, 1, 1]},
but ClassifySL(S, 1) = ClassifySL(S, 2) =
ClassifySL(S, 3) = ClassifySL(S, 5) = ∅.

• MinusOne: Input an RC [r1, . . . , rk]; output [r1 − 1,
. . . , rk − 1] (all elements with value 0 are removed).

• Op: Input a set {a1, . . . , an} or a list [a1, . . . , an]; out-
put the sequence a1, . . . , an.

• DRC: input an RC [r1, . . . , rk]; output [r1, r1, . . . , rk, rk].

• AllRC: Input n ∈ N; output the union of the sets of
partitions of 0, 1, . . . , n.

By Theorem 4 and Corollary 1, the conditions for p having
L = [r1, r2, . . . , rk] as its RC on (a, b) can be obtained by
computing the conditions for Ψ2 having L2 = [r1, r1, r2, r2,
. . . , rk, rk] as its real RC on R. So, what we have to do is to
find the conditions for Ψ2 having L2 as its real RC on R.

We first compute all possible sign lists of Ψ2 for Ψ2 having
L2 as its real RC on R.
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PolySL.
Input: Ψ2 and L2.
Output: The set of all possible sign lists of Ψ2.
Procedure:

• Compute the discriminant sequence D = [D1, . . . , D2n]
of Ψ2.

• Compute the set S0 of all possible sign lists from D: for
1 ≤ k ≤ 2n, if Dk ∈ R, then Dk → sgn(Dk); otherwise,
Dk → {−1, 0, 1}. For example, if D = [1,−2, a], then
S0 = {[1,−1,−1], [1,−1, 0], [1,−1, 1]}.

• Compute S = {s ∈ S0|PmV(s) = PmV(rsl(s)) = 2k−
1}, where #L2 = 2k.

• Return S.

Then S = PolySL(Ψ2, L2) is the set of all possible sign
lists of Ψ2 for Ψ2 having L2 as its real RC on R. In or-
der to make the multiplicities of the 2k distinct real roots
of Ψ2 be r1, r1, r2, r2, . . . , rk, rk respectively, we also have to
determine the possible sign lists of the polynomials in the
∆−sequence of Ψ2. According to Proposition 1, ∆1(Ψ2)
can be determined by the maximal index ` of non-vanishing
members in the sign list of Ψ2, which actually is the total
number of distinct (real and complex) roots of Ψ2. Since L2

does not contain information about the number of distinct
complex roots of Ψ2, the maximal index ` is not uniquely
determined. Therefore, unlike the case of RC on R [6], there
may be more than one ∆1(Ψ2) for the real RC L2, and conse-
quently the conditions for Ψ2(x) having L2 as its real RC on
R would be more complicated. The following observations
can be used to solve the problem.

Let Gi = ClassifySL(S, i). Then S =
Sn

i=k G2i because
Ψ2 has at least 2k distinct roots and, by Theorem 4 and its
proof, the number of distinct roots of Ψ2 is always a mul-
tiple of 2. For k ≤ i ≤ n, if the sign list of Ψ2 belongs to
G2i, then the number of distinct roots of Ψ2 is 2i. So by
Proposition 1, ∆1(Ψ2) = P2n−2i(Ψ2, Ψ

′
2). It is a polynomial

of degree 2n− 2i. By Proposition 2, the real RC of ∆1(Ψ2)
on R is MinusOne(L2). Then the computation above can be
repeated for ∆1(Ψ2) and MinusOne(L2) until the termina-
tion conditions (see below) are reached. Therefore, unlike
the case of RC on R, we have to divide all possible sign
lists of Ψ2 into different groups. For each group, there is a
distinct ∆1(Ψ2).

For the following three termination conditions, we can de-
termine just by S that the real RC of Ψ2 on R is L2 without
further computation for the sign lists of other polynomials
in the ∆-sequence of Ψ2.

1. k = n,

2. k = 0,

3. the last entry of the sign list of Ψ2 is nonzero.

Therefore, the algorithm for generating the necessary and
sufficient conditions for p(x) having L = [r1, r2, . . . , rk] as
its RC on (a, b) is as follows. Let Ψ2 and L2 be defined as
above. The output conditions are a sequence of mixed lists.
Each mixed list consists of a polynomial in the ∆-sequence
of Ψ2, followed by all of its possible sign lists. We denote the
empty sequence by NULL. Notice that if the empty sequence
is returned, then L2, and consequently L are not realizable.

IntCond
Input: Ψ2 and a real RC L2.
Output: A sequence of mixed lists (the conditions for Ψ2

having L2 as its real RC on R).
Procedure:

t ← #L2

m ← deg(Ψ2)
S ← PolySL(Ψ2, L2)
if S = ∅ then

return NULL
elif t = 0 or t = m or ClassifySL(S, m) = S then

return [Ψ2, Op(S)] (*)
else

for i from t to m by 2 do
Gi ← ClassifySL(S, i)
if Gi 6= ∅ then

if i = m then
return [Ψ2, Op(Gi)] (**)

else
Ci ← IntCond(∆1(Ψ2), MinusOne(L2))
if Ci 6= NULL then

return [Ψ2, Op(Gi)], Ci

else
return NULL

Remark 1. Notice that ∆1(Ψ2) depends on i. By Proposi-
tion 1, it is a polynomial of degree 2n− i. In the algorithm,
t is a nonnegative integer representing the number of dis-
tinct real roots of Ψ2. m is a positive integer representing
the degree of Ψ2. S is a set of sign lists representing all
possible sign lists of Ψ2 for Ψ2 having L2 as its real RC on
R. Gi is the subset of S such that the maximal index of
non-vanishing members in the sign lists of Gi is i. Finally,
Ci is a sequence of mixed lists representing the conditions
for ∆1(Ψ2) having MinusOne(L2) as its real RC on R.

Proof. First, observe that the number of recursions in
the algorithm is finite. So the algorithm will terminate in
finite steps.

Second, the output conditions can be viewed as a cou-
ple of trees whose nodes consist of mixed lists. Their roots
are those mixed lists of which the first member is Ψ2, and
their leaves are the mixed lists at points (*) or (**) in the
algorithm.

For the case of RC on R [6], the necessary and sufficient
conditions for a polynomial having a given RC is a single
chain of mixed lists connected using conjunction (∧). Now
suppose the leaves are labeled by i (i = 1, . . . , N). Let Θi be
the chain of mixed lists obtained by connecting the nodes
from the ith leaf to its root using conjunction. Then, the
output conditions can be expressed as the disjunction of
these chains,

WN
i=1 Θi.

Using Theorem 2 and Propositon 2 and 3, as we did in
[6], we can prove that

WN
i=1 Θi is the necessary and sufficient

conditions for Ψ2 having L2 as its real RC on R.
Finally, by Theorem 4, the correctness of IntCond fol-

lows.

Based on the algorithm IntCond above, we can now pro-
pose an algorithm for generating the CRC of a parametric
polynomial p(x) on an interval (a, b).
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IntCRC
Input: A real parametric polynomial p(x), and a, b ∈ R ∪
{−∞, +∞}.
Output: The CRC of p(x) on (a, b).
Procedure:

L ← AllRC(deg(p))
compute Ψ2

for L in L do
C ← IntCond(Ψ2, DRC(L))
if C 6= NULL then

return L and C

Optimization of algorithm. Finally we discuss the op-
timization of the algorithm. In comparison with the case
on R, the output conditions of the CRC of a parametric
polynomial on an interval is usually large, especially when
the parametric polynomial has a general form. So there
remains the work of condensing the output conditions. Sup-
pose [D1, . . . , D2n] is the discriminant sequence of Ψ2, and
S is the set of all possible sign lists of Ψ2 for Ψ2 having
L2 = [r1, r1, . . . , rk, rk] as its real RC on R. Notice that the
length of any sign list in S is 2n and the first element of it
can always be assumed to be 1.

For S1, S2, S3 ∈ S, if there is an index i such that for any
index j 6= i, we have S1[j] = S2[j] = S3[j] and {S1[i], S2[i],
S3[i]} = {−1, 0, 1}, then S1, S2, S3 can be represented by a
single list [ S1[1], . . . , S1[i−1], ∗, S1[i+1], . . . , S1[2n] ], where
‘∗’ means that Di is unconstrained.

For S1, S2 ∈ S, if there is an index i such that for any
index j 6= i, we have S1[j] = S2[j] and {S1[i], S2[i]} = {0, 1},
then S1, S2 can be represented by a single list [ S1[1], . . . ,
S1[i − 1], 0+, S1[i + 1], . . . , S1[2n] ], where ‘0+’ means that
Di ≥ 0.

Similarly, for S1, S2 ∈ S, if there is an index i such that for
any index j 6= i, we have S1[j] = S2[j] and {S1[i], S2[i]} =
{0,−1}, then S1, S2 can be represented by a single list
[ S1[1], . . . , S1[i − 1], 0−, S1[i + 1], . . . , S1[2n] ], where ‘0−’
means that Di ≤ 0.

At last, for S1, S2 ∈ S, if there is an index i such that for
any index j 6= i, we have S1[j] = S2[j] and {S1[i], S2[i]} =
{1,−1}, then S1, S2 can be represented by a single list [ S1[1],
. . . , S1[i − 1], <>, S1[i + 1], . . . , S1[2n] ], where ‘<>’ means
that Di 6= 0.

In this way, S can be condensed into a smaller set S′. For
the sake of simplicity, we still call the elements in S′ sign
lists. For example, if S = {[1, 0, 1, 1], [1, 0, 0, 1], [1, 0,−1, 1]},
then S′ = {[1, 0, ∗, 1]}.

Complexity analysis. We give an upper bound for the
running time of the algorithm IntCond. We count the
number of operations T (n) on the coefficients, regarding all
polynomials as univariate in x. We recall that the input
polynomial Ψ2 has degree 2n. We first estimate the call
S = PolySL(Ψ2, L2) and make three observations: (1) com-
puting the discriminant sequence D of Ψ2 can be done in
O(n2) coefficient operations, (2) computing the set S0 of all
possible sign lists from D requires O(32n) operations on coef-
ficients (and integers), (3) for each s ∈ S0, checking whether
s belongs to the output set S can be done in linear time
(w.r.t.n), and there are 32n sign lists in S0. So computing
S requires O(n32n) operations

Consequently the call S = PolySL(Ψ2, L2) runs in O(n32n)
operations on coefficients. Returning to the body of the al-

gorithm IntCond, we observe that all the calls ClassifySL(S, i)
together have a linear cost w.r.t. the size of S, hence these
costs can be absorbed in the cost for creating S. The remain-
ing costs in the body of IntCond are (at most) n−1 recur-
sive calls with respective costs T (n− 1), T (n− 2), . . . , T (1).
Therefore, we have

T (n) ≤ O(n32n) + T (n− 1) + T (n− 2) + . . . + T (2) + T (1).

Unrolling the recurrence, performing elementary computa-
tions we obtain: T (n) ∈ O(n9n).

5. EXAMPLES
In this section, we present some examples of the CRCs for

some parametric polynomials on intervals. As a direct ap-
plication, we show how to apply the CRC to questions con-
cerning real quantifier elimination. As with many symbolic
computations, solving general cases of high degree polyno-
mials usually would result in very large solutions. Therefore,
we only focus on sparse parametric polynomials. All compu-
tations were performed with Maple 10 running on a 1.6 GHz
Pentium CPU. Notice that, in the output conditions below,
different chains of mixed lists (see the proof of IntCond)
are separated by semicolons (;).

Example 1. The following is the CRC of p3 = x3 + ax + b
on (0, 2), where the initial conditions correspond to p3(0) 6=
0 and p3(2) 6= 0. It takes 1.18 seconds to generate the CRC.
After the output, there is an explanation of its interpreta-
tion.

(*) p3:=x^3+a*x+b

The CRC of p3 on (0,2) is:

([polynomial,its all possible sign lists])

(1) [ ], if and only if [P6,[1,-1,0,0,<>,-1],

[1,-1,-1,1,0,0],[1,-1,-1,0+,0,-1],[1,-1,-1,1,-1,-1],

[1,-1,-1,*,1,-1],[1,0,0,-1,1,-1],[1,1,1,-1,1,-1]]

(2) [1], if and only if [P6,[1,1,1,-1,0,0],

[1,0,0,-1,0,0],[1,-1,-1,-1,0,0]],[P62,[1,-1]];

[P6,[1,1,1,-1,1,1],[1,-1,0,0,1,1],[1,0-,-1,-1,1,1],

[1,1,1,<>,-1,1],[1,1,1,0,0,1],[1,-1,-1,1,1,1],

[1,-1,-1,0,0,1],[1,-1,-1,-1,-1,1],[1,0,0,-1,<>,1]]

(3) [2], if and only if [P6,[1,1,1,-1,0,0],

[1,0,0,-1,0,0],[1,-1,-1,-1,0,0]], [P62, [1,1]]

(4) [1,1], if and only if [P6,[1,-1,-1,-1,-1,-1],

[1,1,1,-1,-1,-1],[1,0,0,-1,-1,-1]],

where,

P6:=8+2*a+4*a*x^2+2*a*x^4+b+3*b*x^2+3*b*x^4+b*x^6,

P62:=b*a^2*x^2+9*b^2*x^2+2*a^3*x^2+6*b*a*x^2

+b*a^2+8*a^2+2*a^3.

And the initial conditions are

b <> 0, 8+2*a+b <> 0

Let us explain the CRC of p3 on (0, 2). We assume that
the initial conditions b 6= 0 and 2a+ b+8 6= 0 hold. All pos-
sible cases of RC for p3 on (0, 2) are [ ], [1], [2], [1, 1], [3], [1, 2],
[1, 1, 1].

The conditions for p3 having [1] (one single root) as its
RC in (0, 2) can be obtained by computing the conditions
for P6 (which is Ψ2 in the algorithm) having [1, 1] as its real
RC on R.
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All possible sign lists of P6 would be [1, 1, 1,−1, 0, 0],
[1, 0, 0,−1, 0, 0],[1,−1,−1,−1, 0, 0], [1, 1, 1,−1, 1, 1],
[1,−1, 0, 0, 1, 1], [1, 0−,−1,−1, 1, 1],[1, 1, 1, <>,−1, 1],
[1, 1, 1, 0, 0, 1], [1,−1,−1, 1, 1, 1], [1,−1,−1, 0, 0, 1],
[1,−1,−1,−1,−1, 1], [1, 0, 0,−1, <>, 1].

Now these sign lists of P6 can be divided into two groups:
G4 = {[1, 1, 1,−1, 0, 0], [1, 0, 0,−1, 0, 0], [1,−1,−1,−1, 0, 0]}
and G6 = {[1, 1, 1,−1, 1, 1], [1,−1, 0, 0, 1, 1], [1, 0−,−1,−1,
1, 1], [1, 1, 1, <>,−1, 1], [1, 1, 1, 0, 0, 1], [1,−1,−1, 1, 1, 1],
[1,−1,−1, 0, 0, 1], [1,−1,−1,−1,−1, 1], [1, 0, 0,−1, <>, 1]}.

If the sign list of P6 belongs to G4, then the number of
distinct roots of P6 is 4. So the ‘repeated part’ ∆1(P6) = P62

and the RC of P62 is MinusOne([1, 1]) = [ ]. For P62 and [ ],
IntCond is called again, obtaining that the condition for P62

having [ ] as its real RC on R is its sign list being [1,−1].
At this point, the termination condition 2 is satisfied, so

IntCond terminates. If the sign list of P6 belongs to G6,
then the termination condition 3 is satisfied, and IntCond
terminates.

In summary, p3 has [1] as its RC on (0, 2), if and only if
the sign list of P6 belongs to G4 and the sign list of P62 is
[1,−1], or the sign list of P6 belongs to G6. The cases [ ], [2]
and [1, 1] can be explained similarly.

For the cases [3], [1, 2], [1, 1, 1], since the output of IntCond
is the empty sequence NULL, they are not realizable. Based
on the CRC of p3, we can answer some questions concerning
real quantifier elimination. The discriminant sequence of P6

is [1, D2, D3, D4, D5, D6], where

D2 = −3b2 − 2ab,
D3 = −a2b(2a + 3b),
D4 = a2b(a2b + 9b2 + 2a3 + 6ab),
D5 = −b(a2b + 2a3 + 6ab + 9b2)(4a3 + 27b2),
D6 = −(8 + 2a + b)b(4a3 + 27b2)2.

The necessary and sufficient condition for ∀x ∈ (0, 2)[p3 6=
0] is that case (1) holds, and case (1) holds iff the sign list
of P6 be one of the following: [1,−1, 0, 0, <>,−1],
[1,−1,−1, 1, 0, 0], [1,−1,−1, 0+, 0,−1], [1,−1,−1, 1,−1,−1],
[1,−1,−1, ∗, 1,−1], [1, 0, 0,−1, 1,−1], [1, 1, 1,−1, 1,−1].
Therefore, the necessary and sufficient condition for ∀x ∈
(0, 2)[p3 6= 0] is
[D2 < 0 ∧ D3 = 0 ∧ D4 = 0 ∧ D5 6= 0 ∧ D6 < 0] ∨ [D2 <
0 ∧D3 < 0 ∧D4 > 0 ∧D5 = 0 ∧D6 = 0] ∨ [D2 < 0 ∧D3 <
0 ∧D4 ≥ 0 ∧D5 = 0 ∧D6 < 0] ∨ [D2 < 0 ∧D3 < 0 ∧D4 >
0 ∧D5 < 0 ∧D6 < 0] ∨ [D2 < 0 ∧D3 < 0 ∧D5 > 0 ∧D6 <
0] ∨ [D2 = 0 ∧D3 = 0 ∧D4 < 0 ∧D5 > 0 ∧D6 < 0] ∨ [D2 >
0 ∧D3 > 0 ∧D4 < 0 ∧D5 > 0 ∧D6 < 0].

Similarly, the necessary and sufficient condition for p3 hav-
ing two distinct real roots of multiplicities 1 on (0, 2) is that
case (4) holds. That is
[D2 < 0 ∧ D3 < 0 ∧ D4 < 0 ∧ D5 < 0 ∧ D6 < 0] ∨ [D2 >
0 ∧D3 > 0 ∧D4 < 0 ∧D5 < 0 ∧D6 < 0] ∨ [D2 = 0 ∧D3 =
0 ∧D4 < 0 ∧D5 < 0 ∧D6 < 0].

Example 2. The following is the CRC of p4 = x4 + ax +
b on (−∞,−1), where the initial condition corresponds to
p4(−1) 6= 0. It takes 0.75 second to generate the CRC.

(*) p4:=x^4+a*x+b

The CRC of p4 on (-Infinity,-1) is:

([polynomial,its all possible sign lists])

(1) [ ], if and only if

[P8,[1,-1,0,0,0,0,0,0],[1,-1,0,0,-1,-1,-1,1],

[1,-1,0,0,0,0,<>,1],[1,-1,0,0,<>,-1,0,0],

[1,-1,0,0,1,*,-1,1],[1,-1,0,0,<>,-1,1,1]]

(2) [1], if and only if

[P8,[1,-1,0,0,0,0,-1,-1],[1,-1,0,0,1,-1,-1,-1],

[1,-1,0,0,1,0,0,-1],[1,-1,0,0,1,1,1,-1],

[1,-1,0,0,-1,-1,-1,-1]]

(3) [1,1], if and only if

[P8, [1, -1, 0, 0, 1, 1, 1, 1]]

Where,

(#1) P8:=1+4*x^2+6*x^4+4*x^6+x^8-a-a*x^2+b,

and the initial condition is

1-a+b <> 0

Example 3. Find the conditions on a, b, c such that ∀x >
0, p5 = x5 + ax2 + bx + c > 0.

This problem was studied by Yang in [9]. Here we try
to use the CRC method to solve this problem. First, we
compute the CRC of p5 on (0, +∞). It takes 6.33 seconds.

(*) p5:=x^5+a*x^2+b*x+c

The CRC of p5 on (0,+Infinity) is:

([polynomial,its all possible sign lists])

(1)[ ], if and only if

[P10,[1,0,0,0,0,-1,1,*,-1,-1],[1,0,0,0,0,*,-1,1,

0,0],[1,0,0,0,0,-1,1,1,1,-1],[1,0,0,0,0,-1,1,1,0,0],

[1,0,0,0,0,-1,0,0,-1,-1],[1,0,0,0,0,*,-1,0+,0,-1],

[1,0,0,0,0,0+,0,-1,1,-1],[1,0,0,0,0,0-,0,1,*,-1],

[1,0,0,0,0,*,-1,*,1,-1],[1,0,0,0,0,-1,0,0,0,0],

[1,0,0,0,0,1,1,-1,1,-1],[1,0,0,0,0,*,-1,1,-1,-1],

[1,0,0,0,0,*,0,0,1,-1],[1,0,0,0,0,0-,0,0,0,-1],

[1,0,0,0,0,-1,1,0+,0,-1],[1,0,0,0,0,0-,0,1,0,0]]

(2) [1,2], if and only if

[P10,[1,0,0,0,0,1,1,1,0,0]],[P102,[1,1]]

(3) [1], if and only if

[P10,[1,0,0,0,0,1,0,0,0,0]],[P104,[1,-1,0,0],[1,-1,

1,1],[1,0,0,1],[1,-1,0,1],[1,1,-1,1],[1,0,-1,1],

[1,-1,-1,1]];[P10,[1,0,0,0,0,1,1,-1,0,0],

[1,0,0,0,0,*,-1,-1,0,0],[1,0,0,0,0,0+,0,-1,0,0]],

[P102,[1,-1]];[P10,

[1,0,0,0,0,-1,1,1,1,1],[1,0,0,0,0,1,1,0-,0,1],

[1,0,0,0,0,1,1,-1,1,1],[1,0,0,0,0,*,-1,0-,0,1],

[1,0,0,0,0,1,0,0,-1,1],[1,0,0,0,0,1,1,*,-1,1],

[1,0,0,0,0,*,0,0,1,1],[1,0,0,0,0,0-,0,1,1,1],

[1,0,0,0,0,*,-1,*,1,1],[1,0,0,0,0,*,-1,-1,-1,1],

[1,0,0,0,0,0+,0,0,0,1],[1,0,0,0,0,0+,0,-1,*,1]]

(4) [2], if and only if

[P10,[1,0,0,0,0,1,0,0,0,0]],[P104,[1,0,-1,-1],[1,-1,

-1,-1],[1,1,-1,-1],[1,1,1,-1],[1,1,0,-1],[1,0,0,-1]];

[P10,[1,0,0,0,0,0,0,-1,0,0],[1,0,0,0,0,1,-1,-1,0,0],

[1,0,0,0,0,0,-1,-1,0,0],[1,0,0,0,0,-1,-1,-1,0,0],

[1,0,0,0,0,1,1,-1,0,0],[1,0,0,0,0,1,0,-1,0,0]],

[P102, [1, -1]]

(5) [3], if and only if [P10,[1,0,0,0,0,1,0,0,0,0]],

[P104,[1,1,0,0]],[P1042, [1,1]]

(6) [1,1], if and only if

194



[P10,[1,0,0,0,0,1,1,1,0,0]],[P102,[1,-1]];[P10,

[1,0,0,0,0,1,1,1,1,-1],[1,0,0,0,0,1,0,0,-1,-1],

[1,0,0,0,0,1,1,*,-1,-1],[1,0,0,0,0,1,1,0+,0,-1],

[1,0,0,0,0,0+,0,-1,-1,-1],[1,0,0,0,0,*,-1,-1,-1,-1]]

(7) [1,1,1], if and only if

[P10,[1,0,0,0,0,1,1,1,1,1]]

Where,

(#1) P1042:=-2*b*x^2-5*c

(#2) P102:=54*a^4*c+27*b*a^4*x^2-225*x^2*c^2*a^2

+600*a*c^2*b+720*a*x^2*c*b^2-320*c*b^3-256*x^2*b^4,

(#3) P10:=x^10+a*x^4+b*x^2+c,

(#4) P104:=-3*a*x^4-4*b*x^2-5*c,

and the initial condition is

c <> 0

The discriminant sequence of P10 is [1, 0, 0, 0, 0, D6, D7,
D8, D9, D10], where

D6 = −a5, D7 = −a3(27a4 + 300abc− 160b3),

D8 = (300bac− 160b3 + 27a4)(720acb2 − 256b4 + 27a4b

−225a2c2),

D9 = −(720acb2 − 256b4 + 27a4b− 225a2c2)(−1600b3ca

+256b5 − 27a4b2 + 2250ba2c2 + 3125c4 + 108a5c),

D10 = −c(−1600b3ca + 256b5 − 27a4b2 + 2250ba2c2

+3125c4 + 108a5c)2

Again, we assume that the initial condition c 6= 0 holds.
Then (∀x > 0)[p5 = x5 +ax2 + bx+ c > 0] iff case (1) holds.
That is [D6 < 0∧D7 > 0∧D9 < 0∧D10 < 0]∨[D7 < 0∧D8 >
0 ∧D9 = 0 ∧D10 = 0] ∨ [D6 < 0 ∧D7 > 0 ∧D8 > 0 ∧D9 >
0∧D10 < 0]∨ [D6 < 0∧D7 > 0∧D8 > 0∧D9 = 0∧D10 =
0]∨ [D6 < 0∧D7 = 0∧D8 = 0∧D9 < 0∧D10 < 0]∨ [D7 <
0 ∧D8 ≥ 0 ∧D9 = 0 ∧D10 < 0] ∨ [D6 ≥ 0 ∧D7 = 0 ∧D8 <
0∧D9 > 0∧D10 < 0]∨ [D6 ≤ 0∧D7 = 0∧D8 > 0∧D10 <
0]∨ [D7 < 0∧D9 > 0∧D10 < 0]∨ [D6 < 0∧D7 = 0∧D8 =
0 ∧D9 = 0 ∧D10 = 0] ∨ [D6 > 0 ∧D7 > 0 ∧D8 < 0 ∧D9 >
0∧D10 < 0]∨ [D7 < 0∧D8 > 0∧D9 < 0∧D10 < 0]∨ [D7 =
0 ∧D8 = 0 ∧D9 > 0 ∧D10 < 0] ∨ [D6 ≤ 0 ∧D7 = 0 ∧D8 =
0 ∧D9 = 0 ∧D10 < 0] ∨ [D6 < 0 ∧D7 > 0 ∧D8 ≥ 0 ∧D9 =
0∧D10 < 0]∨[D6 ≤ 0∧D7 = 0∧D8 > 0∧D9 = 0∧D10 = 0].

This solution appears to be different from that given by
Yang [9]. To obtain the same form as he gave, one might
apply additional transformations to the result. For example,
one writes D7 = −a3(27a4 + 300abc − 160b3) = a3d8 with
d8 taking the obvious value. Then the condition D7 > 0
can be written as (a3 > 0 ∧ d8 > 0) ∨ (a3 < 0 ∧ d8 < 0).
It is now possible to use Boolean algebra to transform the
above result into Yang’s form. Furthermore, the CRC of p5

on (0, +∞) can be used to solve other problems easily. For
example, the necessary and sufficient condition for p5 having
two distinct positive roots of multiplicities 1 is that case (6)
holds. Thus the condition is
[D6 > 0 ∧ D7 > 0 ∧ D8 > 0 ∧ D9 = 0 ∧ D10 = 0 ∧ E2 <
0]∨ [D6 > 0∧D7 > 0∧D8 > 0∧D9 > 0∧D10 < 0]∨ [D6 >
0 ∧D7 = 0 ∧D8 = 0 ∧D9 < 0 ∧D10 < 0] ∨ [D6 > 0 ∧D7 >
0 ∧D9 < 0 ∧D10 < 0] ∨ [D6 > 0 ∧D7 > 0 ∧D8 ≥ 0 ∧D9 =
0∧D10 < 0]∨ [D6 ≥ 0∧D7 = 0∧D8 < 0∧D9 < 0∧D10 <
0] ∨ [D7 < 0 ∧D8 < 0 ∧D9 < 0 ∧D10 < 0],
where [1, E2] is the discriminant sequence of P102, and E2 =
−c(300bac−160b3+27a4)(720acb2−256b4+27a4b−225a2c2).

Also, we can conclude that it is impossible for p5 to have
four distinct positive roots.

6. CONCLUSION
In this paper, we have proposed a new algorithm for the

automatic computation of the complete root classification
of a parametric polynomial on an interval. However, some
issues deserve further consideration. Although Theorem 3 is
used in the algorithm to filter non-realizable sign lists, it is
not guaranteed that all non-realizable sign lists are detected
and deleted. Furthermore, the output conditions are basi-
cally equalities and inequalities in terms of the parametric
coefficients. A further step would be to determine what are
the possible values of the parametric coefficients such that
the conditions described are satisfied. This is essentially the
problem of solving semi-algebraic systems, a problem well-
known to be difficult. This problem may be addressed using
interval analysis [4] or method based on Gröbner basis [8].
We will leave these issues in further work.
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