
Efficient Evaluation of Large Polynomials

(Spine title: Efficient Evaluation of Large Polynomials)

(Thesis format: Monograph)

by

Liyun Li

Graduate Program

in

Computer Science

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

School of Graduate and Postdoctoral Studies Studies

The University of Western Ontario

London, Ontario, Canada

© L. Li 2010

THE UNIVERSITY OF WESTERN ONTARIO

THE SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF EXAMINATION

Supervisor: Examination committee:

Dr. Marc Moreno Maza Dr. David Jeffrey

Dr. Hanan Lutfiyya

Dr. Stephen Watt

The thesis by

Liyun Li

entitled:

Efficient Evaluation of Large Polynomials

is accepted in partial fulfillment of the

requirements for the degree of

Master of Science

Date
Chair of the Thesis Examination Board

ii

Abstract

In scientific computing, it is often required to evaluate a polynomial expression (or

a matrix depending on some variables) at many points which are not known in ad-

vance or with coordinates containing “symbolic expressions”. In these circumstances,

standard evaluation schemes, such as those based on Fast Fourier Transforms do not

apply.

Given a polynomial f expressed as the sum of its terms, we propose an algorithm

which generates a representation of f optimizing the process of evaluating f at some

points. In addition, this evaluation of f can be done efficiently in terms of data

locality and parallelism.

We have implemented our algorithm in the Cilk++ concurrency platform and our

implementation achieves nearly linear speedup on 16 cores with large enough input.

For some large polynomials, the generated schedule can be evaluated at least 10 times

faster than the schedules produced by other available software solutions. Moreover,

our code can handle much larger input polynomials.

Keywords. Polynomial evaluation, Parallel evaluation schedule generation, Paral-

lelism, Data locality, Straight-line program.

iii

Acknowledgments

It is a pleasure to convey my gratitude to many people who contributed in assorted

ways to my project.

I am heartily thankful to my supervisor, Marc Moreno Maza, whose encourage-

ment, enthusiasm and guidance enabled me to develop an understanding of the sub-

ject. This thesis would not have been possible without his support from the initial to

the final level.

Great thanks to my colleagues Yuzhen Xie, Xin Li, Changbo Chen, Wei Pan,

Sardar Anisul Haque, Paul Vrbik, Rong Xiao for providing a stimulating and fun

environment in which to learn and grow. Many thanks go in particular to Bill Naylor,

who kindly grants me his time for valuable discussion on this project. I would like to

show my gratitude to the Cilk++ development group (at CilkArts and then at Intel

Corp). I have benefited by their advice and discussion on their forum. I am also

grateful to our colleagues at Maplesoft, in particular Jürgen Gerhard and Clare So,

for our cooperation on the RegularChains and Modpn libraries.

I am thankful to the examination committee, David Jeffrey, Hanan Lutfiyya and

Stephen Watt for their precious time.

For this research project, I was partially supported by the Shared Hierarchical

Academic Research Computing Network (SHARCNET) and the MITACS full project

Mathematics of Computer Algebra and Analysis (MOCAA). The benchmarks were

also made possible by the dedicated resource program of SHARCNET.

I wish to thank my entire extended family, my grandmother, grandmother-in-

law, my parents, parents-in-law, my sisters, siblings-in-law, my husband, my niece,

nephews, and my nephew-in-law for providing a loving environment for me. To them

I dedicate this thesis.

Lastly, I wish to thank my husband, Wei Pan. Everything is in no words.

iv

Contents

Certificate of Examination ii

Abstract iii

Acknowledgments iv

Table of Contents v

List of Algorithms viii

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Main Results . 6

1.1.1 Syntactic Decomposition . 6

1.1.2 Parallelization of the Hypergraph Method 8

1.1.3 Evaluation Schedule and Experimental Results 9

1.2 Organization of the Thesis . 9

2 Background and Literature Review 10

2.1 Canonical Representation of Multivariate Polynomials 10

2.1.1 Recursive Representation . 11

2.1.2 Sparse Distributed Representation 11

2.2 Straight-Line Programs . 12

2.2.1 Related Work on Straight-Line Program Representation 14

2.2.2 Implementation of Straight-Line Programs 15

2.3 Optimizing the Evaluation of Polynomials 16

2.3.1 Common Subexpression Elimination 16

v

2.3.2 Horner Scheme . 19

2.3.3 Algorithms Based on Combinatorial Structures 20

2.4 Parallel Evaluation of DAGs . 20

2.5 Other Related Work . 23

3 Syntactic Decomposition 24

4 The Hypergraph Method 29

4.1 Partial Syntactic Factorization . 29

4.2 Base Monomial Set . 37

4.3 Syntactic Decomposition . 38

5 Complexity Estimates 41

5.1 Monomial Set Construction . 41

5.2 Hypergraph Construction . 41

5.3 Computing Partial Syntactic Factorization 42

5.4 Expression Tree Construction . 43

5.5 Computing Syntactic Decomposition 43

6 Implementation and Parallelization of the Hypergraph Method 45

6.1 Data Structures . 45

6.1.1 Monomials, Terms and Polynomials 46

6.1.2 Hypergraphs . 46

6.1.3 Syntactic Decomposition . 47

6.2 Parallelization . 49

6.2.1 Merging Two Sets of Minimal Elements 50

6.2.2 Computation of Base Monomial Set 53

6.2.3 Construction of the Hypergraph 58

6.2.4 Computation of the Largest Intersection of Hyperedges 60

6.2.5 Identification of Largest Hyperedge 61

6.2.6 Collecting Hyperedges Including the Largest Intersection . . . 61

6.2.7 Multiplication of Two Sets of Monomials 62

6.2.8 Solving Coefficients of a Candidate Syntactic Factorization . . 65

6.2.9 Updating Hypergraph by a Syntactic Factorization 66

6.2.10 Syntactic Decomposition . 66

7 Evaluation Scheduling 69

vi

8 Experimentation 75

8.1 Evaluation Cost . 75

8.2 Timing to Optimize Large Polynomials 77

8.3 Evaluation Schedule . 80

9 Parallel Computation of the Minimal Elements of a Partially Or-

dered Set 83

9.1 The Algorithm . 85

9.2 Complexity Analysis and Experimentation 87

9.3 Base Monomial Set Computation . 91

9.4 Transversal Hypergraph Generation 92

9.5 Some Remarks . 99

10 Conclusions and Future Work 101

Appendices 104

A An Example Illustrating the Typical Output of Different Optimiza-

tion Techniques for a Polynomial Expression 104

Bibliography 107

Curriculum Vita 113

vii

List of Algorithms

1 CommonSubexpressionElimination . 18

2 NaiveConstructHypergraph . 31

3 ParSynFactorization . 34

4 NaiveBaseMonomialSet . 38

5 ExpressionTree . 39

6 SyntacticDecomposition . 40

7 SerialMinMerge . 51

8 ParallelMinMerge . 52

9 ParallelBaseMonomials . 56

10 SelfBaseMonomials . 56

11 CrossBaseMonomials . 56

12 HalfCrossBaseMonomials . 57

13 SerialCrossBaseMonomials . 57

14 ParallelConstructHypergraph . 59

15 NaiveIntersection . 60

16 ParallelIntersection . 60

17 ParallelLargestEdge . 61

18 ParallelSuperSet . 62

19 NaiveMulMonomials . 63

20 MulMonomials . 63

21 MulMerge . 64

22 NaiveMulMerge . 65

23 Update . 67

24 NaiveUpdate . 67

25 ScheduleBinaryTree . 73

26 MaximalTreeRoots . 73

viii

27 SerialMinPoset . 86

28 ParallelMinPoset . 86

29 ParallelTransversal . 93

30 ParallelHypMerge . 94

31 HalfParallelHypMerge . 94

ix

List of Figures

1.1 A hypergraph . 7

2.1 Input DAG of MM . 21

2.2 DAG after applying MM . 21

2.3 Input DAG of shunt . 22

2.4 DAG after applying shunt . 22

4.1 Computation process of partial syntactic factorization 33

6.1 Illustration of Algorithm 8 ParallelMinMerge 52

6.2 Illustration of Algorithm 9 ParallelBaseMonomials 54

6.3 Illustration of Algorithm 10 SelfBaseMonomials 54

6.4 Illustration of Algorithm 11 CrossBaseMonomials 55

6.5 Illustration of Algorithm 12 HalfCrossBaseMonomials 55

7.1 Evaluate a DAG in two steps . 70

7.2 The load of nodes in a binary tree. 71

7.3 A portion of a binary tree with 615 nodes. Each shaded node is the

root of a maximal subtree, with children omitted. 73

8.1 Scalability analysis for parallelized SyntacticDecomposition by Cilkview . . 79

9.1 Scalability analysis for ParallelMinPoset by Cilkview 90

9.2 Scalability analysis for ParallelBaseMonomials by Cilkview 91

9.3 Scalability analysis on ParallelTransversal for data mining problems by Cilkview 96

9.4 Scalability analysis on ParallelTransversal for K5
40 and K7

30 by Cilkview . . 98

x

List of Tables

8.1 Cost to evaluate resultants by different approaches 76

8.2 Cost to evaluation hand made input polynomials 77

8.3 Timing to optimize large polynomials 78

8.4 Speedup of parallel SyntacticDecomposition 80

8.5 Parallel evaluation 4-schedule . 81

8.6 Parallel evaluation 8-schedule . 81

8.7 Timing to evaluate large polynomials at 10K Points 81

8.8 Timing to evaluate large polynomials at 100K Points 82

9.1 Tests for examples from [39] . 97

9.2 Tests for the Kuratowski hypergraphs 99

9.3 Tests for the Lovasz hypergraphs . 99

xi

1

Chapter 1

Introduction

This thesis is dedicated to the efficient evaluation of large polynomials. In scientific

computing, it is frequently required to evaluate a polynomial (or a matrix depend-

ing on some variables) at many points which are not known in advance and whose

coordinates may contain “symbolic expressions”. For instance, in the Hensel-Newton

lifting techniques [37], which are used in many places, a key computation step is to

evaluate polynomials.

We review Newton’s root finding method as an example of an algorithm where a

polynomial needs to be evaluated at many points. This well known algorithm finds

successively better approximations of a root of a given polynomial (or a more general

function) f . The process starts with an initial guess value x0 and the sequence of

approximations are computed by

xi+1 = xi −
f(xi)

f ′(xi)
.

This iteration continues until reaching a value xn such that f(xn) satisfies a specified

tolerance value. In this process, we evaluate f and f ′ at a list of inputs x0, x1, . . . , xn.

Except the initial guess x0, the value of each xi for i = 1, . . . , n is computed from the

previous approximation xi−1. Thus their values are not known in advance. If we are

provided with a representation of f which permits a cheaper evaluation, then all the

evaluations can be performed with less cost. In cases like this, it is worth the effort

computing a representation of f making its evaluation more efficient.

We observe that when the evaluation points are known in advance specific tech-

niques are available, for instance those based on Fast Fourier Transforms (FFTs) or

subproduct trees. We refer to Chapters 8 and 10 in [37] for these techniques. We

note also that when the evaluation points are numerical values and when the poly-

2

nomials are of moderate size, the evaluation process is likely not to be a bottleneck

in the targeted computation. However, in this thesis, we are concerned with the

situation where the polynomials to be evaluated are potentially large and where the

evaluation points are not necessarily numerical. This scenario is typical in symbolic

computation.

The initial motivation of this study arose from the computation of polynomial re-

sultants, which essentially play the role for non-linear systems that determinants play

for linear systems, that is, they provide conditions for a given system to have solu-

tions. The resultant of two univariate polynomials can be defined as the determinant

of the so-called Sylvester matrix. Let

a = amxm + · · ·+ a1x + a0 and b = bnxn + · · ·+ b1x + b0

be two generic univariate polynomials of respective positive degrees m and n. By

generic polynomials, we mean that am, . . . , a1, a0, bn, . . . , b1, b0 are treated as inde-

pendent symbols. The Sylvester matrix Sylv(a, b, x) of a and b is the square matrix

of order n + m defined as

Sylv(a, b, x) =















































am bn

am−1 am bn−1 bn

...
...

. . .
...

...
. . .

...
... am b1

...
. . .

...
... am−1 b0

...
. . .

...
...

... b0 bn

a0
...

...
. . . bn−1

a0
...

. . .
...

. . .
...

. . .
...

a0 b0















































.

Then the resultant of a and b in x is Det(Sylv(a, b, x)). We simply denote it by

R(a, b). Here are a few examples. For m = n = 1, the Sylvester matrix of a and b is

Sylv(a, b, x) =

[

a1 b1

a0 b0

]

and we have:

R(a, b) = a1b0 − a0b1.

3

For m = n = 2, the Sylvester matrix of a and b is

Sylv(a, b, x) =













a2 0 b2 0

a1 a2 b1 b2

a0 a1 b0 b1

0 a0 0 b0













and we have:

R(a, b) = a2
0 b2

2 − a0 a1 b1 b2 − 2 a0 a2 b0 b2 + a0 a2 b2
1 + a2

1 b0 b2 − a1 a2 b0 b1 + a2
2 b2

0.

Suppose that am, . . . , a1, a0, bn, . . . , b1, b0 are specialized to (i.e. replaced by) some

polynomials αm, . . . , α1, α0, βn, . . . , β1, β0 in some other variables c1, . . ., cq. Let us

denote by R(α, β) the “specialized” resultant. If these αi’s and βj’s are large in

size, then computing R(α, β) as a polynomial in c1, . . . , cq, expressed as the sum

of its terms, may become practically impossible. However, if R(a, b) was originally

represented as a straight-line program (SLP for short) with am, . . . , a1, a0, bn, . . . , b1, b0

as input nodes and if the αi’s and βj’s are also represented as SLPs with c1, . . . , cq

as input nodes, then it is still possible to manipulate R(α, β). To illustrate this

challenge, let us consider two simple examples.

Example 1. Assume m = n = 1. Recall that in this case, we have:

R(a, b) = a1b0 − a0b1.

Let us specialize a1, a0, b1, b0 to generic bivariate polynomials in variables u, v, with

coefficients e0, . . . , e11:

α1 := e0u+e1v+e2, α0 := e3u+e4v+e5, β1 := e6u+e7v+e8 and β0 := e9u+e10v+e11.

Replacing a1, a0, b1, b0 by α1, α0, β1, β0 respectively in R(a, b) and expanding the

result, we obtain the following expression:

R(α, β) = e0 e9 u2 + e0 e10 uv + e1 e9 uv + e1 e10 v2 − e3 e6 u2−

e3 e7 uv − e4 e6 uv − e4 e7 v2 + e0 e11 u + e1 e11 v+

e2 e9 u + e2 e10 v − e3 e8 u− e4 e8 v − e5 e6 u−

e5 e7 v + e2 e11 − e5 e8

The above expression has 18 terms, each of them has degree 2, 3 or 4. If

4

u, v, e0, . . . , e11 are all specialized to numerical values, evaluating the above expres-

sion (processing one term after another) will amount to 42 multiplications and 17

additions. Meanwhile, the following straight-line program representation of R(α, β)

has 19 instructions, which implies that R(α, β) can be computed within 19 arithmetic

operations (additions, multiplications).

t1 ← e0u

t2 ← e1v

t1 ← t1 + t2

a1 ← t1 + e2

t1 ← e3u

t2 ← e4v

t1 ← t1 + t2

a0 ← t1 + e5

t1 ← e6u

t2 ← e7v

t1 ← t1 + t2

b1 ← t1 + e8

t1 ← e9u

t2 ← e10v

t1 ← t1 + t2

b0 ← t1 + e11

t1 ← a1b0

t2 ← a0b1

t1 ← t1 − t2

Example 2. Assume now that n = m holds and that each of the αi’s and βj’s is a

univariate polynomial of degree d, for which each coefficient is an integer which can be

stored in at most B bits. From the shape of the Sylvester matrix, it is easy to see that

R(a, b) is a multivariate polynomial in 2(n+1) variables and of total degree 2(n+1).

Moreover, once expanded (i.e. written as the sum of its terms) the polynomial R(a, b)

has O(2nnn) terms. Therefore, the specialized polynomial R(α, β) is a univariate

polynomial of degree O(nd), where each coefficient fits within O(2nB + (d + 1)2n +

2nnn) bits. This latter estimate is very rough and pessimistic. However, if the αi’s

and βj’s are sufficiently dense and generic, the degree estimate O(nd) is sharp and

most coefficients will occupy Ω(nB) bits. Thus, in this case, the space requirement

for storing R(α, β) is expected to be Ω(n2dB) bits.

5

In contrast, if R(a, b) and each of each of the αi’s , βj’s are encoded as SLPs, then

the total space requirement for R(α, β) is simply O(n4log(n) + ndB) bits. Indeed,

for computing a SLP representation of R(a, b), one can use the techniques of Llovet,

Castaño and Mart́ınez [45] (based on Jounaidi Abdeljaoued’s version [1] of Stuart

J. Berkowitz’s algorithm [5]) which leads the estimate O(n4log(n)). The estimate

O(ndB) is obtained by applying Horner’s rule to each of the polynomials αi’s , βj’s.

Since in practice n is small, say 2 ≤ n ≤ 10, it is likely to be much smaller

than d and B. This suggests that the SLP representation is much more efficient for

evaluating R(α, β) than the expanded form.

The previous discussion about the specialization of generic polynomial resultants

suggests that, for the purpose of evaluating a polynomial F (x1, . . . , xn), one should

look for polynomials G(y1, . . . , yp), H1(x1, . . . , xn), . . . , Hp(x1, . . . , xn) satisfying

F (x1, . . . , xn) = G(H1(x1, . . . , xn), . . . , Hp(x1, . . . , xn)).

This functional decomposition problem is a classical topic in computer algebra and its

applications [18, 21, 26, 27]. For multivariate polynomials, this is a computationally

hard problem. Moreover, for the case of large (and generally random) polynomials

that we aim at processing, these techniques are not suitable.

We stress the fact that the techniques presented in this thesis do not make any

assumptions about the input polynomials and that they are designed to process very

large objects. We simply use the example of resultants of generic polynomials as an

illustrative well-known problem from computer algebra.

Before summarizing the results of this thesis, we discuss the case of univariate

polynomials, for which the question of evaluation (as well as that of functional de-

composition) is well understood. In fact, it has been shown that Horner’s rule is

optimal for evaluating arbitrary univariate polynomials (Chapter 1 of [12]). Given an

arbitrary univariate polynomial of degree n in variable x,

f = a0 + a1x + a2x
2 + · · ·+ anx

n,

Horner’s rule transforms f into a sequence of nested additions and multiplications

f = a0 + x(a1 + x(a2 + · · ·+ x(an−1 + anx))).

Evaluating f with this representation amounts to n additions and n multiplications

which matches the lower bound given in [12]. In the case of multivariate polynomials,

6

there are no known methods proven to be optimal. Some related work on this topic

will be reviewed in Chapter 2.

1.1 Main Results

1.1.1 Syntactic Decomposition

The first main result of this work contributes to the reduction on the evaluation

cost of polynomials. We propose an algorithm that, for a polynomial given as the

sum its terms, computes a so-called syntactic decomposition of it which permits a

cheaper evaluation of this polynomial. This syntactic decomposition is defined as a

binary tree where all operations are syntactic operations. By syntactic operation, we

mean an arithmetic operation (addition, multiplication) on polynomials which can be

performed without combination (or grouping) of terms. See Definition 6 p. 25 for a

formal definition. For instance, the expression

(a + 2d)(bc(3b + 5c) + 2e) + s

is a syntactic decomposition of the polynomial

3ab2c + 5abc2 + 2ae + 6b2cd + 10bc2d + 4de + s,

whereas (x− 1)(xn + xn−1 + · · ·+ 1) is not a syntactic decomposition of xn − 1 since

cancellation terms are needed there. Appendix A (p. 104) gives a more complicated

example of syntactic decomposition. By imposing the concept of syntactic operation,

the evaluation cost of our syntactic decomposition is ensured to never grow comparing

to the direct evaluation of the input polynomial. For instance, in the above example,

evaluating the syntactic decomposition requires 4 additions and 7 multiplications,

whereas the direct evaluation of the input polynomial would cost 6 additions and 20

multiplications.

The algorithm to compute syntactic decompositions will be introduced in Chap-

ter 4. Our algorithm keeps extracting the syntactic factorizations from the input

polynomial, until no nontrivial syntactic factorizations exist. (Syntactic factorization

is one of the syntactic operations, formally defined in Definition 7 page 25.) The key

idea of our algorithm is to consider a hypergraph which detects “candidate syntactic

factorizations”. The construction of this hypergraph is presented by Algorithm 2 in

Chapter 4. For the above example f = 3ab2c+5abc2 +2ae+6b2cd+10bc2d+4de+ s,

7

the hypergraph, guiding the computation of its syntactic decomposition, is shown in

Figure 1.1. In this hypergraph, the set of vertices is {a, d, bc, e} and each hyperedge

e

a

d ac

a d

bc^2

b^2c

bc cd

ab

 e

bd

Figure 1.1: A hypergraph

is a collection of vertices defined by a monomial (defining monomial). For example,

the hyperedge defined by b2c contains vertices {a, d}. Each intersection of hyperedges

potentially leads to a “candidate syntactic factorization”. For example, the intersec-

tion {a, d} of the hyperedges defined by the monomials b2c, bc2 and e leads to the

following syntactic factorization

(a + 2d) (3b2c + 5bc2 + 2e).

The monomials of the above syntactic factorization all come from this intersection

and the defining monomials of the hyperedges. The coefficients of this syntactic

factorization can be derived easily from a system of equations (Proposition 6 p. 32).

After extracting this factorization, we update the hypergraph by removing all vertices

in each hyperedge related to monomials in this syntactic factorization (Algorithm 3

p. 34). The hypergraph eventually becomes empty and we output a so-called partial

syntactic factorization of f , which is

f = (a + 2d) (3b2c + 5bc2 + 2e) + s.

Recursively applying the same procedure to 3b2c + 5bc2 + 2e, a factor of the parent

syntactic factorization, one can compute a syntactic decomposition of f as

f = (a + 2d)(bc(3b + 5c) + 2e) + s.

As shown in Chapter 5, this algorithm, that we call the Hypergraph Method, runs in

polynomial time w.r.t. the number of variables, the total degree and the number of

terms of the input polynomial in its distributed dense representation.

Our complexity estimates rely on a worst case scenario and our analysis is quite

rough due the complicated structure of the main algorithm and its subroutines. Ob-

taining finer complexity results is work-in-progress. Nevertheless, up to our knowl-

8

edge, the only algorithm with similar specifications that we could find in the litera-

ture [35] has a worst case whose running time is exponential in the number of terms

of the input polynomials.

We have implemented our algorithm in the Cilk++ concurrency platform and our

implementation achieves near linear speedup on 16 cores with large enough input.

This work is reported in a paper [42] co-authored with Charles E. Leiserson, Marc

Moreno Maza and Yuzhen Xie.

1.1.2 Parallelization of the Hypergraph Method

Our purpose is to process very large input polynomials. Thus, it is desirable to paral-

lelize our algorithm for computing syntactic decompositions. This is quite challenging

since one of the two core routines (Algorithm 3 p. 34) is inherently sequential. Indeed,

one cannot extract two syntactic factorizations concurrently. To overcome this diffi-

culty, one needs to extract parallelism from all subroutines of Algorithm 3 including

at a fine-grained level, see Chapter 6. For sufficiently large input polynomials, our

Cilk++ code reaches a nearly linear speedup factor of on 16 cores.

The other core routine computes the so-called base monomial set (Chapter 4),

which is the vertex set of the above hypergraph. Therefore, the base monomial

set directs the process of extracting partial syntactic factorizations from the input

polynomial f . Different choices of base monomial sets produce different factorizations,

and thus affect the evaluation cost. For the base monomial set, we choose the minimal

elements of the set of all pairs of gcds of monomials in f , where the partial order is

given by the divisibility relation on monomials.

In Chapter 9, we discuss the general problem of computing the minimal elements

of an arbitrary partially ordered set. We propose a cache-friendly and parallel al-

gorithm for this task; we also report on its application to transversal hypergraph

generation. By cache-friendly, we mean that the serial counterpart of our parallel al-

gorithm (obtained by ignoring the spawn and sync constructs in Algorithm 28 p. 86)

has a better cache complexity than the straightforward method (Algorithms 27 p. 86)

for the same task. More precisely, for an ideal cache of Z words, with cache lines

of size L, on an input of n elements, the number of cache misses of the serialized

version of our algorithm is O(n2/(ZL) + n/L) whereas the cache complexity of the

straightforward method is O(n2/L).

For sufficiently large input hypergraphs, our Cilk++ code reaches a linear speedup

9

factor on 32 cores. This latter work is reported in a paper [43] co-authored with

Charles E. Leiserson, Marc Moreno Maza and Yuzhen Xie.

1.1.3 Evaluation Schedule and Experimental Results

Once a syntactic decomposition of the input polynomial has been obtained, we apply

to it a widely used common subexpression elimination (CSE) technique, which turns a

syntactic decomposition to a DAG and reduces the evaluation cost. Targeting multi-

core computer architectures, our next objective is to decompose the DAG constructed

from the syntactic decomposition into p sub-DAGs for a specified parameter p, the

number of available processors. These sub-DAGs should be independent to each

other in the sense that the evaluation of one does not depend on the evaluation of

the others. In this manner, these sub-DAGs can be assigned to different processors

independently. Ideally, we also expect the size of these sub-DAGs to be balanced

such that the “span” of the intended parallel evaluation is minimal. Our method for

generating these sub-DAGs (see Chapter 7) provides an efficient evaluation schedule

of the input polynomial in terms of work, data locality and parallelism.

The experimental results reported in Chapter 8 illustrate the effectiveness of our

approach compared with other available software tools. For 2 ≤ n,m ≤ 8, we have

applied our techniques to the resultant R(a, b) defined before. For (n,m) = (7, 6),

our resulting schedule evaluates 10 times faster than the direct evaluation of its

straight-line program (SLP) representation (both conducted sequentially). For this

case (n,m) = (7, 6), no code optimization software tools we have tried produces a

satisfactory result.

1.2 Organization of the Thesis

Related work and background notions are reviewed in Chapter 2. After introducing

the concept of a syntactic decomposition in Chapter 3, the hypergraph method is

presented in Chapter 4. The following chapter is devoted to estimating the algebraic

complexity of the proposed algorithm. The parallelization and implementation of the

hypergraph method are reported in Chapter 6. In Chapter 7, we discuss our strategy

for generating the parallel evaluation schedule of our SLPs. The experimentation

is reported in Chapter 8. In Chapter 9, we discuss the parallel computation of the

minimal elements of a partially ordered set. We conclude this thesis by some future

work directions in Chapter 10.

10

Chapter 2

Background and Literature Review

Encodings for multivariate polynomials in computer programs are at the core of this

study. Thus we start this chapter by reviewing popular representations of multivari-

ate polynomials. Section 2.1 is dedicated to those representations which are called

canonical, that is, those representations which establish a one-to-one map between the

mathematical objects and their computer representations. Section 2.2 is dedicated

to straight-line programs (SLPs) as a way of representing polynomials. In this case,

the representation is no longer canonical as two different SLPs may encode the same

polynomial.

From Section 2.3, we discuss techniques that make the evaluation of polynomials

more efficient. This includes the well-known Horner scheme and its generalizations,

the parallel evaluation of DAGs and other related works.

2.1 Canonical Representation of Multivariate

Polynomials

In computer programs, polynomials can be represented in various ways. These differ-

ent representations facilitate different operations on polynomials. For example, dense

representations provide fast retrieval of coefficients; however this feature is to the

cost of recording every possible coefficient of the polynomial, no matter it is zero or

not. Sparse representations save on memory consumption but this makes the access

to coefficients less easy than with dense representations. In 1984 David Stoutemyer

in [56] discussed different canonical representation of polynomials.

In the sequel of this chapter, we consider a commutative ring R with unity. We

11

denote by X = {x1, . . . , xn} a finite set of variables. We review hereafter some of the

classical representations of multivariate polynomials in R[X].

2.1.1 Recursive Representation

If n = 1 we can use any possible univariate representations such as the following ones.

� For the polynomial f = anx
n + · · · + a1x + a0 one can use an array A of size

n + 1 indexed from 0 to n, such that the slot A[i] contains the coefficient ai, for

all i = 0 · · ·n. Such representation is called univariate dense.

� For the polynomial f = anx
n + · · ·+a1x+a0 one can use a sorted list of all pairs

[i, ai] such that ai 6= 0 holds. Such representation is called univariate sparse.

When n > 1, we can view R[X] as the univariate polynomial ring R[x1, . . . , xn−1][xn]

and proceed recursively. This implies to choose an ordering on the variables.

2.1.2 Sparse Distributed Representation

Each polynomial can be viewed as a linear combination of monomials (with coefficients

in R). Then the polynomial

p = a1m1 + · · ·+ apmp

where the mi are pairwise different monomials and the ai are nonzero coefficients,

can be represented as an aggregate of terms [ai,mi]. To have a fast equality-test,

the aggregate of terms must be linear and sorted. In other words, there should be

a first term, a second term, and so on. Thus this aggregate should better be a list

or an array and the monomials should be totally ordered. Two types of monomial

orderings are frequently used.

� The lexicographical ordering. With X = {x > y > z} we have

1 < z < · · · < zn · · · < y < yz < · · · < yzn · · · < y2 < y2z < · · · < y2zn · · ·

(2.1)

� The degree-lexicographical ordering. With X = {x > y > z} we have

1 < z < y < x < z2 < zy < y2 < zx < xy < x2 < · · · < (2.2)

12

2.2 Straight-Line Programs

In this section, we give a formal definition of straight-line programs. Our definition

is in the spirit of others such as the one of [45], but slightly more general and thus

simpler. This mathematical definition allows us to consider different possible com-

puter representations for SLPs. The one used in our Cilk++ code is described in

Section 2.2.2.

Let R be a commutative ring with unity. Let V be a finite set of symbols

{v1, . . . , vτ} and let S be a finite sequence (s1, . . . , sℓ) of assignments where each

si is one of the following forms:

� v ← r,

� w ← u + v,

� w ← u− v,

� w ← u× v,

� w ← u/v, if R is a field,

where r ∈ R and u, v, w ∈ V .

Definition 1. Let i be in the range 1 · · · ℓ. The assignment si is said to be valid if

the following condition holds:

1. if 1 < i ≤ ℓ holds and if a symbol v ∈ V appears on the right-hand side of the

assignment si ∈ S then there exists an assignment sj ∈ S with 1 ≤ j < i such

that v appears on the left-hand side of the assignment sj,

2. if 1 = i ≤ ℓ then the assignment si is of the form v ← r, for some r ∈ R and

some v ∈ V .

The assignment si is said to be useful in the sequence (s1, . . . , sℓ) if one of the following

conditions holds:

1. if 1 ≤ i < ℓ holds and if v ∈ V is the symbol on the left-hand side of the

assignment si, then there exists an assignment sj ∈ S with i < j ≤ n such that

v appears on the right-hand side of the assignment sj,

2. if 1 < i = ℓ holds then the assignment si is not of the form v ← r, for some

r ∈ R and some v ∈ V .

13

Definition 2. We say that the pair P = (V, S) is a straight-line program (SLP for

short) over R if for all i = 1 · · · ℓ, the statement si is valid and useful in S.

Let P = (V, S) be an SLP over R. The requirement that every statement of S is

useful and valid in S permits to establish Proposition 1 which endows our SLP with

a recursive structure, leading to Definition 4. Another advantage of our formalism is

that it supports a natural extension to SLPs with multiple output values.

We observe that, if ℓ > 1 holds, then (V, (s1, . . . , sℓ−1)) is not necessarily an SLP

over R. Consider for instance V = {x, y} and S = (x← 1, y ← 1, y ← x + y).

Suppose that ℓ > 1 holds. Then sℓ is of the form x ← y op z, for x, y, z ∈ V and

where op is one of the binary arithmetic operators. Let i (resp. j) be the largest

index in the range 1 · · · ℓ− 1 such that si (resp. sj) is an assignment whose left-hand

side is x (resp. y). If si (resp. sj) is of the form v ← r, for v ∈ V and r ∈ R we

define S+ = (si) (resp. S− = (sj)). Otherwise, let S+ (resp. S−) be the subse-

quence of (s1, . . . , si) (resp, (s1, . . . , sj)) obtained by removing from (s1, . . . , si) (resp,

(s1, . . . , sj)) any assignments which are not useful in (s1, . . . , si) (resp, (s1, . . . , sj)).

Define P+ = (V, S+) and P− = (V, S−). The following proposition is easy to check.

Proposition 1. Either i = ℓ− 1 or j = ℓ− 1 holds. Moreover P+ and P− are SLPs

over R.

Definition 3. Let P = (V, S) be an SLP over R. The integer ℓ is called the length of

P and is denoted by length(P). The number of statements in P which are of the form

w ← u op v, with u, v, w ∈ V and op ∈ {+,−,×, /}, is called the work and is denoted

by work(P). The symbol of the left-hand side of sℓ is called the output of P and is

denoted by output(P). The set of the elements r ∈ R that appear on the right-hand

side of a rule of the form v ← r, for v ∈ V , is denoted by input(P).

Definition 4. Let P = (V, S) be an SLP over R. We define inductively the value of

P , denoted by value(P), as follows:

� if length(P) = 1, then there exists (v, r) ∈ V × R such that s1 = v ← r and we

define value(P) = r,

� if length(P) > 1, then sℓ is of the form x ← y op z, for x, y, z ∈ V and where

op is one of the binary arithmetic operators. In this case we define

value(P) = value(P+) op value(P−).

Observe that value(P) is an element of R.

14

The purpose of Definition 5 is to obtain the following natural notion of equivalence

between SLPs: two SLPs are equivalent if they have the same value, that is, essentially

if they compute the same thing. This is formalized below.

Definition 5. Let P1 = (V1, S1) and P2 = (V2, S2) be two SLPs over R. We say that

P1 and P2 are equivalent if we have value(P1) = value(P2).

To represent a polynomial of K[X] using the previous concept of straight-line

program in a natural manner, we can set R to K[X] and impose that for each rule

of the form v ← r (with r ∈ R) the right-hand side element r is a literal, that is,

r ∈ K ∪ X. Then the value of the SLP equals that of the represented polynomial.

2.2.1 Related Work on Straight-Line Program Representa-

tion

SLP representations can help reveal the structure of a polynomial expression. Con-

sider the following multivariate polynomial proposed in [49]:

f = (x2
1 + x1 + 1)(x2

2 + x2 + 1) · · · (x2
n + xn + 1).

We can represent it by an SLP without expanding it. Note that the number of terms

in this polynomial grows exponentially with n. Thus the size of a canonical repre-

sentations of f grows exponentially with n while the length of an SLP representation

grows linearly with n.

The advantages of SLP representations over classical representations have drawn

many research interests. Here are some applications which have been studied in the

literature:

� interpolation of polynomials given by this representation [25],

� solving zero-dimensional polynomial systems [28].

� computation of multihomogeneous resultants using SLPs [36],

� factorization of polynomials given by SLPs [38].

� greatest common divisors (GCDs) of polynomials [38, 49],

Using SLPs for computing algebraic objects that could not be computed otherwise,

due to size issues, has been used in practice in a few other works, for example, for

15

computing the characteristic polynomial of multivariate polynomial matrices in [45].

There are also available computer algebra software packages for manipulating poly-

nomials represented by SLPs, like Dagwood [22]. In [49], Bill Naylor reports on an

Axiom domain which supports various operations on polynomials given by SLPs.

2.2.2 Implementation of Straight-Line Programs

We describe here our data structure for representing SLPs. For now, we do not allow

subtraction or division with our SLPs. We represent an SLP by a flat array of lines,

where each line is encoded by four integer fields, namely:

� id: this field records the index of the line in the array representing the whole

SLP.

� type: the type of a line, which could be: variable in X, element in K, addition

operation or multiplication operation.

� operand1: if the line is of type addition or multiplication, then this field records

the id of its first operand, that is, the line whose computed value is operand1.

If the line is an element in K, than its value is recorded in this field. For line of

type variable, the index of the variable in the variable list X is recorded in this

field.

� operand2: If the line is of type addition or multiplication, then this field records

the id of its second operand. For lines of type number or variable, this field is

set to NULL.

Example 3. Considering the following SLP over Z, the ring of integers.

x ← 1

y ← 5

u ← x + y

v ← x + y

w ← u× v

Its representation in our implementation is as follows:

In this encoding, each symbol (x, y, u, v or w) appearing at the left hand side

of an assignment is now assigned to an id. At the implementation level, we define a

macro for each type of a line. For example: number as 1, variable as 2, addition as

16

id type operand1 operand2
1 num 1 -
2 num 5 -
3 + 1 2
4 + 1 2
5 × 3 4

3 and multiplication as 4. If the id’s are indexed from 1, then the above SLP can be

encoded by the following array:

1 1 1 0 2 1 5 0 3 3 1 2 4 3 1 2 5 4 3 4

2.3 Optimizing the Evaluation of Polynomials

There are a number of approaches to minimize the evaluation cost of a polynomial

expression. We review here related work on this topic, namely, common subexpression

elimination techniques, the Horner scheme and the algorithms based on combinatorial

structures. The algorithm presented in Chapter 4 presented in this thesis belongs in

this latter category.

2.3.1 Common Subexpression Elimination

Conventional common subexpression elimination (CSE) techniques are well-known in

the compiler design community These techniques search instances of identical subex-

pressions among an expression, so as to avoid duplicating the same subexpressions.

For example, given two expressions,

f = a + b + c + d

g = a + b + e

the recognition of the common subexpression a + b would save one addition compu-

tation. However, by a straight left-to-right scan on the two statements

f = a + b + c + d + e

g = a + c + e

no common subexpressions may be detected. In [11], Melvin A. Breuer discusses this

problem and presents methods for finding common subexpressions to increase the

efficiency of object code. However, as general-purpose applications, CSE techniques

17

are not suited for optimizing large polynomial expressions. In particular, they do

not take full advantage of the algebraic properties of the expression to be optimized,

when this expression is a polynomial or a matrix. However, they can always serve as

a post-processing technique.

In the following we describe our implementation of CSE. By hashing expression

lines, we expose multiple copies of the same expression. Recall that each line in an

SLP is encoded by four integers (Subsection 2.2.2). The hash function used for an

expression line is given below.1

unsigned hashFunction(unsigned *line) {

int value;

int list_length;

switch(line[1]) {

case num:

case var:

list_length = 2; // [type, operand1]

for(int i = 1; i < 3; ++i){

value = (1000003 * value) ^ (line[i]);

value = value ^ list_length;

}

break;

case add:

case mul:

list_length = 3; // [type, operand1, operand2]

int op1 = (line[2] > line[3]) ? Line[2] : Line[3];

int op2 = (line[2] > line[3]) ? Line[3] : Line[2];

value = (1000003 * value) ^ (line[1]);

value = value ^ list_length;

value = (1000003 * value) ^ op1;

value = value ^ list_length;

value = (1000003 * value) ^ op2;

value = value ^ list_length;

break;

default:

printf("WRONG! line operation is %d \n", line[1]);

1The skeleton of this hash function can be found at http://effbot.org/zone/python-hash.

htm.

18

}

if(value == -1)

value = -2;

return (unsigned)(value) % HashModuli;

}

We note that the commutativity of the addition and multiplication operations is

supported by the above hash function. Indeed, this property is taken care of by the

second and third lines after case mul:. However, the associative law is not supported.

With this hash function, the algorithm for eliminating common subexpressions is

straightforward and runs in linear time w.r.t. length of the input SLP. In Algorithm 1,

L is an auxiliary array of length n, in which each entry L[i] stores the id of Si in the

output SLP S ′.

Input : an SLP S of length n
Output : an SLP S ′ has the same value as S but some common

subexpressions are eliminated

1 S ′ ← ∅, n′ ← 0;
2 L← ∅, H ← empty hash table;
3 for i← 1 to n do
4 set type of S ′

n′ same as Si;
5 switch type of Si do
6 case element in K
7 set the value of S ′

n′ same as Si;
8 case variable in X
9 set the variable index of S ′

n′ same as Si;
10 case addition or multiplication
11 let u be the id of the first operand of Si;
12 let v be the id of the second operand of Si;
13 set the id of the first operand of S ′

n′ as Lu;
14 set the id of the second operand of S ′

n′ as Lv;

15 if there exists Sj ∈ H computing the same expression as S ′
n′ then

16 Li ← j;

17 else
18 add S ′

n′ to H;
19 Li ← n′;
20 n′ ← n′ + 1;

21 return S ′;

Algorithm 1: CommonSubexpressionElimination

19

2.3.2 Horner Scheme

One economic and popular approach to reduce the size of polynomial expression and

facilitate their evaluation is the use of Horner’s rule [34] named after William Horner.

It transforms a polynomial into a sequence of nested additions and multiplications.

For example, a polynomial in variable x

f = a0 + a1x + a2x
2 + · · ·+ anx

n

can be written in Horner’s form as

f = a0 + x(a1 + x(a2 + · · ·+ x(an−1 + anx))).

To evaluate f by this transformation, it requires n additions and n multiplications.

Alexander Ostrowski [50] discussed in 1954 the optimality of Horner’s rule in the eval-

uation of univariate polynomials. He conjectured that n multiplications or divisions

are always required for the evaluation of a general univariate polynomial of degree n

regardless of the number of additions or subtractions used. It is also conjectured by

him that even if one has multiplications and divisions at free disposal, n additions

or subtractions are necessary for the same evaluation problem. These conjectures

can be proved by the method of E.G.Belaga [3] and T.S. Motzkin [48] and of Victor

Pan [51]. Horner’s rule matches these lower bounds and thus provides the small-

est overall number of arithmetic operations for the evaluation of general univariate

polynomials. Note that the transformation of Horner’s rule contains a series of multi-

plications and additions that depend on the previous instruction. This makes it hard

to be executed in parallel. Estrin’s scheme is one method that attempts to introduce

parallelism in this kind of scheme while increasing a bit the overall cost.

The multivariate Horner’s rule first chooses a variable and apply Horner’s rule

regarding all the other variables as constants, then it selects one of the remaining

variables and apply Horner’s rule using this variable and so on. There are many

different schemes [13, 14, 52, 53] to apply the multivariate Horner’s rule. However,

it is difficult to compare these extensions and obtain an optimal scheme from any

of them. Indeed, they all rely on selecting an appropriate ordering of variables.

Unfortunately, there are n! possible orderings for n variables.

Example 4 (Multivariate Horner Scheme). This example illustrates how the variable

20

ordering affects the result of multivariate Horner’s rule.

f(a, b, c) = ab + bc + c

(b > c > a) = b(a + c) + c 1 multiplication + 2 additions

(c > b > a) = ab + c(b + 1) 2 multiplication + 2 additions

2.3.3 Algorithms Based on Combinatorial Structures

It is a natural idea to consider algebraic factorization as a tool for minimizing the size

of a polynomial expression. However, this fails for a variety of reasons discussed in

Section 3. A work-around is to make use of combinatorial structures that reveal some

patterns in the input polynomial expression. In [35], Anup Hosangadi, Farzan Fallah,

and Ryan Kastner apply this principle. More precisely they generalize the algebraic

techniques which have been successfully applied to reduce the number of literals in

a set of Boolean expressions [7, 8, 9] to the optimization of polynomial expressions.

Their method works in a way that extracts so-called kernels and co-kernels from a

polynomial where the product of a kernel and the corresponding co-kernel equals part

of the input polynomial. In this sense, kernels and co-kernels serve a role similar to

our syntactic factorization (see Definition 7 p. 25).

The method presented in this thesis also fits in this category of algorithms based

on combinatorial structures. In comparison to the work of [35], our method is more

general. Indeed, our based monomial set (see Section 4.1 p. 29) which, in some sense,

plays the role of their literals, is an input parameter of our method. This provides

more flexibility. More importantly, our method runs in polynomial time w.r.t. the

degree, number of variables and number of terms of the input polynomial, whereas

the algorithm of [35] has a worst case which runs in singly exponential time w.r.t.

the same quantities. This singly exponential behavior comes from a subroutine for

common subexpression elimination (CSE). Our method does not need CSE at all.

However, CSE can be used to post-process the output produced by our method. In

our implementation, we do so and rely for that on a CSE procedure (Algorithm 1)

which runs in linear time w.r.t. the lines of the input SLP.

2.4 Parallel Evaluation of DAGs

Several theoretical works have been done on the parallel evaluation of SLPs or al-

gebraic circuits. In [10], Richard P. Brent presents a constructive proof on the par-

allelization of the parse tree of an expression. He has been shown that arithmetic

21

expression of size n can be rewritten in a straight line node of depth O(log n) under

the assumption that all atoms (variables) in the arithmetic expression are distinct.

By generalizing and parallelizing the sequential algorithms in [57], Gary L. Miller,

Vijaya Ramachandran and Erich Kaltofen propose an algorithm to compress a DAG

in a semi-ring in [46]. Their algorithm works on an arithmetic circuit satisfying the

following three conditions or constraints: the first one is that there are no edges from

multiplication nodes to multiplication nodes, the second one is that addition nodes

can have any number of children 2 ,and the last one is that all edges are associated

with certain weights. In the following paragraphs, we look at their main ideas in more

detail.

The DAG evaluation is obtained by repeated applications of a procedure called

Phase. Each phase consists of three steps, MM , Eval+ and shunt. Step MM

compresses addition chains (chains containing only addition nodes) by performing a

matrix multiplication and matrix addition on the connection matrix of the circuit.

Figure 2.1 and Figure 2.2 illustrate an SLP before and after applying procedure MM .

Notice that the plus-plus edge, node 4 to node 5, has been compressed. Without

specific mention, the edges in our examples have weight 1.

Line 1 : a = a
Line 2 : b = b
Line 3 : c = c
Line 4 : Line 1 + Line 2 = a + b
Line 5 : Line 3 + Line 4 = a + b + c

a

1

b

2

c

3

+

4

+

5

Figure 2.1: Input DAG of MM

Line 1 : a = a
Line 2 : b = b
Line 3 : c = c
Line 4 : Line 1 + Line 2 = a + b
Line 5 : Line 1 + Line 2 + Line 3 = a + b + c

a

1

b

2

c

3

+

4

+

5

Figure 2.2: DAG after applying MM

Procedure Eval+ evaluates addition nodes all of whose children are leaves and the

evaluated nodes are then marked as leaves.

2A node u is a child node of the parent node v if there exists an edge from u to v.

22

The procedure shunt works on multiplication nodes in two steps. The first step

works analogous to Eval+ which evaluates multiplication nodes both of whose children

are leaves and then regards them as leaves. The second step does partial evaluation

of multiplication nodes dealing with the case where only one of its two children is a

leaf.

For example for the DAG in Figure 2.3, node 6 (resp. node 7) has only one leaf

child c (resp. d) and the other child node 5 is not a leaf. Then node 6 (resp. node 7)

is partially evaluated in the Figure 2.4.

Line 1 : a = a
Line 2 : b = b
Line 3 : c = c
Line 3 : d = d
Line 5 : Line 1 + Line 2 = a + b
Line 6 : Line 3× Line 5 = (a + b)c
Line 7 : Line 4× Line 5 = (a + b)d
Line 8 : Line 6 + Line 7 = (a + b)c + (a + b)d

a

1

b

2

c

3

d

4

+

5

×

6

×

7

+

8

Figure 2.3: Input DAG of shunt

Line 1 : a = a
Line 2 : b = b
Line 3 : c = c
Line 3 : d = d
Line 5 : Line 1 + Line 2 = a + b
Line 6 : Line 3× Line 5 = (a + b)c
Line 7 : Line 4× Line 5 = (a + b)d
Line 8 : Line 5 · (c + d) = (a + b)(c + d)

a

1

b

2

c

3

d

4

+5

×

6

×

7

+

8

c

+

d

Figure 2.4: DAG after applying shunt

As pointed out by Gary L. Miller, Vijaya Ramachandran and Erich Kaltofen

in [46], these procedures have strong analog to the procedure Rake and Compress

for compressing expression trees in [47], where Rake is the operation to remove all

leaves of a tree and Compress compresses chains (like MM in [46] compresses addition

chains). The parallel complexity of [46] is analyzed by showing that each application

of the procedure phase reduces the height of an arithmetic circuit by at least a half.

Nathalie Revol and Jean-Louis Roch later extend this work to a larger variety of

23

algebraic structures including lattices in [54]. The classical PRAM model is used for

analyzing the parallel algorithms mentioned in this subsection. In the rest of this

thesis, we rely instead on the fork-join multithreaded parallelism model [24] which is

well adapted to implementation on multicore architectures.

2.5 Other Related Work

Rob Corless, David Jeffrey and Michael Monagan propose a method to solve fluid-

flow problems by using perturbation expansions, with special care of intermediate

expression swell in [17]. They develop tools that represents and manipulates large

expressions efficiently in Maple.

24

Chapter 3

Syntactic Decomposition

We introduce in this chapter the concepts used in our algorithm computing a

“evaluation-efficient” representation of a given polynomial. Let K be a field and

let x1 > · · · > xn be n ordered variables, with n ≥ 1. Define X = {x1, . . . , xn}. We

denote by K[X] the ring of polynomials with coefficients in K and with variables in

X. For a non-zero polynomial f ∈ K[X], the set of its monomials is monoms(f), thus

f writes

f =
∑

m∈monoms(f)

cm m,

where, for all m ∈ monoms(f), cm ∈ K is the coefficient of f w.r.t. m. The set

terms(f) = {cm m | m ∈ monoms(f)}

is the set of the terms of f . We use #terms(f) to denote the number of terms in f .

One observation is that factoring a polynomial often reduces its evaluation cost.

For example, directly evaluating

f = ac + ad + bc + bd

would take 4 multiplications and 3 additions. If we factor f as

f = (a + b)(c + d),

we reduce the evaluation cost to 1 multiplication and 2 additions. However, factor-

ing a polynomial has the following limitations for our purpose of evaluating large

polynomials. First of all, a given large polynomial is often irreducible which is the

case for generic resultants. Secondly, factoring a polynomial does not always reduce

25

its evaluation cost. In the following example, the factored form of f requires more

operations to evaluate f than its expanded form:

f = xn − 1 = (x− 1)(xn + xn−1 + · · ·+ 1).

We introduce the notion of a syntactic factorization which is guaranteed to never

increase the evaluation cost.

Definition 6 (Syntactic operations). Let g, h ∈ K[X]. We say that gh is a syntactic

product, and we write g ⊙ h, whenever

#terms(g h) = #terms(g) ·#terms(h) (3.1)

holds, that is, if no combinations of terms occurs when multiplying g and h. Similarly,

we say that g+h (resp. g−h) is a syntactic sum (resp. syntactic difference), written

g ⊕ h (resp. g ⊖ h), if we have

#terms(g + h) = #terms(g) + #terms(h) (3.2)

(resp. #terms(g − h) = #terms(g) + #terms(h)).

Remark 1. Note that if a product f = g h is not a syntactic product, i.e. there

monomials combine when multiplying g and h, then the number of terms in f is

less than the product of the number of terms in g and h. That means Equation 3.1

does not hold for non-syntactic product. Similarly, Equation 3.2 does not hold for

non-syntactic sum.

Example 5. Assume K is Q or C. Then, (a + b)(a + b) is not a syntactic product,

neither (a + b)(a− b), whereas (a + b)(c + d) is one.

Definition 7 (Syntactic factorization). For non-constant f, g, h ∈ K[X], we say that

g h is a syntactic factorization of f if f = g ⊙ h holds. A syntactic factorization is

said trivial if each factor is a single term. For a set of monomials M ⊂ K[X] we

say that g h is a syntactic factorization of f with respect to M if f = g ⊙ h and

monoms(g) ⊆M both hold. In this case, we call g the base and h the cofactor of this

syntactic factorization.

Definition 8 (Evaluation cost). Assume that f ∈ K[X] is non-constant. We call

evaluation cost of f , denoted by cost(f), the minimum number of arithmetic opera-

tions necessary to evaluate f when x1, . . . , xn are replaced by actual values from K

(or an extension field of K). For a constant f we define cost(f) = 0.

26

Proposition 2 gives an obvious upper bound for cost(f).

Proposition 2. Let f, g, h ∈ K[X] be non-constant polynomials with total degrees

df , dg, dh and numbers of terms tf , tg, th. Then, we have cost(f) ≤ tf (df + 1) − 1.

Moreover, if g ⊙ h is a nontrivial syntactic factorization of f , then we have:

min(tg, th)

2
(1 + cost(g) + cost(h)) ≤ tf (df + 1)− 1. (3.3)

Proof. The inequality cost(f) ≤ tf (df + 1) − 1 follows from the fact that evaluating

each of the tf terms requires at most df multiplications. It is easy to show

tg(dg + 1) + th(dh + 1) ≤ tf (df + 1), (3.4)

with the equalities df = dg + dh, tf = tgth and the condition tf > 1. Then we have

tf (df + 1)− 1

1 + cost(g) + cost(h)
≥

tf (df + 1)− 1

tg(dg + 1) + th(dh + 1)− 1
(3.4)

≥
tf (df + 1)

tg(dg + 1) + th(dh + 1)

≥
tf (df + 1)

tg(df + 1) + th(df + 1)

=
tgth

tg + th
≥

min(tg, th)

2
,

which implies Relation (3.3).

Proposition 2 yields the following remark. Suppose that f is given in expanded

form, that is, as the sum of its terms. Evaluating f , when x1, . . . , xn are replaced

by actual values k1, . . . , kn ∈ K, amounts then to at most tf (df + 1) − 1 arithmetic

operations in K. Assume g ⊙ h is a syntactic factorization of f . Then evaluating

both g and h at k1, . . . , kn may provide a speedup factor in the order of min(tg, th)/2.

This observation motivates the introduction of the notions introduced in this section.

Another potential speedup factor comes from the fact that dg + dh = df holds.

Definition 9 (Syntactic decomposition). Let T be a binary tree whose internal nodes

are the operators +,−,× and whose leaves belong to K∪X. Let pT be the polynomial

represented by T . We say that T is a syntactic decomposition of pT if either (1), (2)

or (3) holds:

(1) T consists of a single node which is pT .

27

(2) if T has root + (resp. −) with left subtree Tℓ and right subtree Tr then we have:

(a) Tℓ, Tr are syntactic decompositions of two polynomials pTℓ
, pTr

∈ K[X],

(b) pT = pTℓ
⊕ pTr

(resp. pT = pTℓ
⊖ pTr

) holds,

(3) if T has root ×, with left subtree Tℓ and right subtree Tr then we have:

(a) Tℓ, Tr are syntactic decompositions of two polynomials pTℓ
, pTr

∈ K[X],

(b) pT = pTℓ
⊙ pTr

holds.

We shall describe an algorithm that computes a syntactic decomposition of a

polynomial in Chapter 4. The design of this algorithm is guided by our objective of

processing polynomials with many terms. Before presenting this algorithm, we make

a few observations.

First, suppose that f admits a syntactic factorization f = g ⊙ h. Suppose also

that the monomials of g and h are known, but not their coefficients. Then, one can

easily deduce the coefficients of both g and h, see Proposition 6 hereafter.

Secondly, suppose that f admits a syntactic factorization g h while nothing is

known about g and h, except their numbers of terms. Then, one can set up a system

of polynomial equations to compute the terms of g and h. For instance with tf = 4

and tg = th = 2, let

f = M + N + P + Q, g = X + Y, h = Z + T

Up to renaming the terms of f , the following system must have a solution:

XZ = M, XT = P, Y Z = N and Y T = Q.

This implies that M/P = N/Q holds. Then, one can check that

(

g, g′,
M

g
,
N

g′

)

is a solution for (X,Y, Z, T), where g = gcd(M,P) and g′ = gcd(N,Q).

Consider another example: with tf = 6 and tg = 3 and th = 2, let

f = M + N + P + Q + S + T, g = X + Y + Z and h = U + V.

28

Up to renaming the terms of f , the following system must have a solution:

XU = P, X V = S, Y U = N, Y V = R, ZU = M, ZV = Q.

This implies that SM = QP and SN = PR must hold and one can check that

(

g,
Rg

S
,
Qg

S
,
P

g
,
S

g

)

is a solution for (X,Y, Z, U, V, V) where g = gcd(P, S).

Thirdly, suppose that f admits a syntactic factorization f = g ⊙ h while nothing

is known about g, h including numbers of terms. In the worst case, all integer pairs

(tg, th) satisfying tgth = tf need to be considered, leading to an algorithm which is

exponential in tf . This approach is too costly for our targeted large polynomials.

Finally, in practice, we do not know whether f admits a syntactic factorization or

not. Traversing every subset of terms(f) to test this property would lead to another

combinatorial explosion.

29

Chapter 4

The Hypergraph Method

In this chapter, we introduce our approach for computing a syntactic decomposition of

a given polynomial. One should bear in mind that this method was designed with the

objective of hadling very large input. This motivates the design and implementation of

our algorithms. By means of a hypergraph, our main routine, presented in Section 4.1,

extracts syntactic factorizations from the input polynomial. In section 4.2, we discuss

the choice and calculation of an important quantity in the computation of a syntactic

decomposition, the base monomial set. Finally, in Section 4.3, we state the top level

algorithm to produce a syntactic decomposition.

4.1 Partial Syntactic Factorization

Based on the concluding remarks of Chapter 3 we develop the following strategy.

Given a set of monomials M, which we call base monomial set, we look for a poly-

nomial p such that terms(p) ⊆ terms(f) holds, and p admits a syntactic factorization

gh w.r.t M. Replacing f by f − p and repeating this construction would eventu-

ally produce a partial syntactic factorization of f , as defined below. The algorithm

ParSynFactorization(f,M) (Algorithm 3 p. 34) states this strategy formally: the key

idea is to consider a hypergraph HG(f,M) which allows us to detect “candidate

syntactic factorizations”.

Definition 10 (Partial syntactic factorization). A set of pairs {(g1, h1), (g2, h2), . . . ,

(ge, he)} of polynomials and a polynomial r in K[x1, . . . , xn] is a partial syntactic

factorization of f w.r.t. M if the following conditions hold:

1. ∀i = 1 · · · e, monoms(gi) ⊆M,

2. no monomials in M divides a monomial of r,

30

3. f = (g1 ⊙ h1)⊕ (g2 ⊙ h2)⊕ · · · ⊕ (ge ⊙ he)⊕ r holds.

Assume that the above conditions hold. We say that this partial syntactic factorization

is trivial if every gi ⊙ hi is a trivial syntactic factorization.

Proposition 3. If a set of pairs {(g1, h1), (g2, h2), . . . , (ge, he)} of polynomials and a

polynomial r in K[x1, . . . , xn] is a partial syntactic factorization of f w.r.t. M, then

r does not admit any nontrivial partial syntactic factorization w.r.t. M.

This proposition can be proved by a simple contradiction to the definition of a

partial syntactic factorization.

Proposition 4. Suppose M is a monomial set satisfying the following condition,

∀mi,mj ∈M, i 6= j ⇒ mi ∤ mj (4.1)

i.e., no monomial divides any other monomials inM. Then a polynomial f satisfying

monoms(f) ⊆ M does not admit any nontrivial partial syntactic factorization w.r.t.

M.

Proof. If f admits a nontrivial partial syntactic factorization w.r.tM,

f = (g1 ⊙ h1)⊕ (g2 ⊙ h2)⊕ · · · ⊕ (ge ⊙ he)⊕ r, (4.2)

then for each product gi hi, i = 1, 2, . . . , e, we have

monoms(gi hi) ⊆ monoms(f) ⊂M.

Then there exists a monomial of hi such that after multiplying a monomial of gi results

a monomial ofM. This contradicts the assumption of setM as monoms(gi) ⊆M.

From now on and throughout this section, we assume that the base monomial set

M satisfies Condition (4.1). A direct consequence of Proposition 4 is as follows. If

(4.2) is a partial syntactic factorization of f w.r.t M, then every gi does not admit

any nontrivial partial syntactic factorization itself w.r.tM.

Definition 11 (Hypergraph HG(f,M)). Given a polynomial f and a set of mono-

mials M, we construct a hypergraph HG(f,M) as follows. Its vertex set is V = M

and its hyperedge set E consists of all nonempty sets

Eq := {m ∈M | m q ∈ monoms(f)},

31

for an arbitrary monomial q. We say a hyperedge Eq is defined by monomial q and

call q its defining monomial.

Observe that if a term of f is not the multiple of any monomials in M, then it

is not involved in the construction of HG(f,M). We call such a term isolated. Note

that sum of all the isolated terms in f forms the polynomial r of Definition 10.

Example 6. For f = ay+az+by+bz +ax+aw ∈

Q[x, y, z, w, a, b] andM = {x, y, z}, the hypergraph

HG(f,M) has 3 vertices x, y, z and 2 hyperedges

Ea = {x, y, z} and Eb = {y, z}. A partial syntactic

factorization of f w.r.t M consists of

{(y + z, a + b), (x, a)} and aw.

y

z

b

a

x

For a given polynomial f and a given monomial set M. the following algorithm

constructs HG(f,M) straightforwardly.

Input : a set of monomials M , the base monomial setM
Output : E , which is the set of hyperedges of hypergraph HG(f,M)

where monoms(f) = M

1 Q← ∅;
2 for m ∈M do
3 for m′ ∈M do
4 if m |m′ then
5 q ← m′/m;
6 if q ∈ Q then
7 Eq ← Eq ∪ {m};

8 else
9 Q← Q ∪ {q}; Eq ← {m};

10 V ← M; E ← ∅;
11 for q ∈ Q do
12 E ← E ∪ {Eq};

13 return E ;

Algorithm 2: NaiveConstructHypergraph

The following proposition suggests how HG(f,M) can be used to compute a partial

syntactic factorization of f w.r.t. M.

32

Proposition 5. Let f, g, h ∈ K[X] such that f = g⊙h⊕r and monoms(g) ⊆M both

hold. Then, the intersection of all hyperedges Eq of HG(f,M), for q ∈ monoms(h),

contains monoms(g).

Proof. Denote by N the set of monomials such that

N = {m q | m ∈ monoms(g), q ∈ monoms(h)}.

It is clear from the definition of syntactic operation that,

|N | = |monoms(g)| · |monoms(h)| and N ⊂ monoms(f).

Besides, we have monoms(g) ⊆M. Thus for each q ∈ monoms(h), the hyperedge Eq

contains all m for m ∈ monoms(g). This is followed by the definition of hypergraph

HG(f,M) since m ∈ M and m q ∈ monoms(f) both hold. The conclusion follows.

Before stating Algorithm ParSynFactorization, we make a simple observation.

Proposition 6. Let F1, F2, . . . , Fc be the monomials and f1, f2, . . . , fc be the coeffi-

cients of a polynomial f ∈ K[X], such that f =
∑c

i=1fiFi. Let a, b > 0 be two integers

such that c = ab. Suppose we are given two lists of monomials G = {G1, G2, . . . , Ga}

and H = {H1, H2, . . . , Hb} such that the products GiHj are all in monoms(f) and are

pairwise different. Then, within O(ab) operations in K and O(a2b2n) bit operations,

one can decide whether f = g ⊙ h, monoms(g) = G and monoms(h) = H all hold.

Moreover, if such a syntactic factorization exists it can be computed within the same

time bound.

Proof. Define g =
∑a

i=1giGi and h =
∑b

i=1hiHi where g1, . . . , ga and h1, . . . , hb are

unknown coefficients. The system to be solved is gihj = fij, for all i = 1 · · · a

and all j = 1 · · · b where fij is the coefficient of GiHj in p. To set up this system

gihj = fij, one needs to locate each monomial GiHj in monoms(f). Assuming that

each exponent of a monomial is a machine word, any two monomials of K[x1, . . . , xn]

are compared within O(n) bit operations. Hence, each of these ab monomials can

be located in {F1, F2, . . . , Fc} within O(cn) bit operations and the system is set up

within O(a2b2n) bit operations. We observe that if f = g⊙h holds, one can freely set

g1 to 1 since the coefficients are in a field. This allows us to deduce h1, . . . , hb and then

g2, . . . , ga using a + b − 1 equations. The remaining equations of the system should

be used to check if these values of h1, . . . , hb and g2, . . . , ga lead indeed to a solution.

33

Overall, for each of the ab equations one simply needs to perform one operation in K.

The conclusion follows.

Remark 2. Given a polynomial f and a monomial set M, we are targeting at com-

puting a syntactic factorization of f with respect to M. Relying on the property of

hypergraph HG(f,M) given by Proposition 5, we can extract two candidate monomial

sets G and H from each intersection of hyperedges in HG(f,M). A point to make

here is that with f , G and H at hand, one can check if there exists, and if it does,

compute a syntactic factorization of f with respect to M.

The above number of bit operations for locating a monomial in the monomial set

{F1, F2, . . . , Fc} only provides an upper bound. This estimate can surely be improved

in various ways. For example, when the monomial set is sorted, we can locate a

monomial in it by simply performing a binary search within O(n log c) bit operations.

Another option is to introduce a suitable hash function: this will reduce the number

of bit operations for locatong a monomial in a list to O(n) bit operations.

The execution process of ParSynFactorization (Algorithm 3) is illustrated by Fig-

ure 4.1. It works in the following manner. Given a polynomial f and a monomial set

(V, E) =

HG(f,M)
f M

is E

empty?

construct

candidate

syntactic

factorization

return

update

HG(f,M)

update

candidate

valid?

yes

no

no

yes

Figure 4.1: Computation process of partial syntactic factorization

M, our objective is to compute a partial syntactic factorization of f with respect to

M. Recall that we expect this partial syntactic factorization to reduce the evaluating

cost f as much as possible, while the construction remains practically cheap. To de-

tect possible syntactic factorizations from f , we construct the hypergraph HG(f,M)

34

Input : a polynomial f given as a set terms(f), a monomial setM
Output : a partial syntactic factorization of f w.r.tM

1 T ← terms(f); F ← ∅;
2 r ←

∑

t∈I t where I = {t ∈ terms(f) | (∀m ∈M) m ∤ t} ;
3 compute the hypergraph HG(f,M) = (V , E) by Algorithm 2;
4 while E is not empty do
5 if E contains only one edge Eq then
6 Q← {q}; M ← Eq;

7 else
8 find q, q′ such that Eq ∩ Eq′ has the maximal cardinality;
9 M ← Eq ∩ Eq′ ; Q← ∅;

10 if |M | < 1 then
11 find q such that Eq has the maximal cardinality;
12 M ← Eq; Q← {q};

13 else
14 for Eq ∈ E do
15 if M ⊆ Eq then
16 Q← Q ∪ {q} ;

17 while true do
18 N = {mq | m ∈M, q ∈ Q};
19 if |N | = |M | · |Q| then
20 let p be the polynomial such that monoms(p) = N and

terms(p) ⊆ T ;
21 if p = g ⊙ h with monoms(g) = M and monoms(h) = Q then
22 compute g, h (Proposition 6);
23 break;

24 else
25 randomly choose q ∈ Q, Q← Q \ {q}, M ← ∩q∈QEq;

26 for Eq ∈ E do
27 for m′ ∈ N do
28 if q |m′ then
29 Eq ← Eq \ {m

′/q} ;

30 if Eq = ∅ then
31 E ← E \ {Eq};

32 T ← T \ terms(p);
33 F ← F ∪ {g ⊙ h};

34 return F , r

Algorithm 3: ParSynFactorization

35

first. According to the property of this hypergraph given by Proposition 5, each in-

tersection of hyperedges may lead to a syntactic factorization. We apply a greedy

strategy here. The first attempt is to search for the largest intersection of any two

hyperedges. If there exists a nonempty intersection M , we traverse each hyperedge

to test if it is a superset of M and if it is, we add its defining monomial q to the set

Q. When there does not exist nonempty intersection, we find the largest hyperedge

and assign it to M while Q contains a single element, its defining monomial.

At this stage we have two lists of monomials M and Q at hand. They would

potentially play the role of G and H in Proposition 6. However, before that happens,

we should check whether they satisfy the assumption of Proposition 6 that there

should be no combination of monomials when multiplying the monomials of M and

Q (Line 18). This requirement is necessary to meet the definition of a syntactic

factorization. It is possible that this requirement is not satisfied. For example, when

f = a2 + 3ab + b2, we would get M = Q = {a, b}, which will lead to

|N | = 3 6= 2× 2 = |M | · |Q|.

If M and Q satisfies the assumption in Proposition 6, that is, |N | = |M | · |Q| holds,

we find polynomial p such that monoms(p) = N and terms(p) ⊆ terms(f). We can

then follow the proof of Proposition 6 to find a syntactic factorization of p, satisfying

p = g ⊙ h, monoms(g) = M and monoms(h) = Q.

It may also happen that a syntactic factorization satisfying these conditions does not

exist, i.e., the system solving the coefficients of g and h as in the proof of Proposition 6

does not have solutions. The following example illustrates this case.

M = {a, b}, Q = {c, d} and p = ac + ad + bc + 2 bd.

When the candidate M and Q does not meet the requirement of Proposition 6 or

the system to solve the coefficients of g and h does not have a solution, we randomly

remove an element from Q(Line 25) and retry to construct a syntactic factorization

from M and current Q. We would also point out that the termination of the while

loop in Line 17 is ensured by the following observation. When |Q| = 1, the equality

|N | = |M | · |Q| always holds and the system set up as in the proof of Proposition 6

always has a solution. Once a valid syntactic factorization has been built, we update

36

the hypergraph by removing all monomials in the set N and keep extracting syntactic

factorizations from the hypergraph until no hyperedges remain.

Example 7 (Partial Syntactic Factorization). Consider

f = 3ab2c + 5abc2 + 2ae + 6b2cd + 10bc2d + 4de + s and M = {a, bc, e, d}.

Following Algorithm 3, we first construct the hypergraph HG(f,M) w.r.t. which the

term s is isolated.

e

a

d ac

a d

bc^2

b^2c

bc cd

ab

 e

bd

It is easy to see that the largest edge intersection is

M = {a, d} = Eb2c ∩ Ebc2 ∩ Ee

yielding Q = {b2c, bc2, e}. The set N is therefore

{mq | m ∈M, q ∈ Q} = {ab2c, abc2, ae, b2cd, bc2d, de}.

The cardinality of N equals the product of the cardinalities of M and of Q. So we keep

searching for a polynomial p with N as monomial set and with terms(p) ⊆ terms(f).

By scanning terms(f) we obtain

p = 3ab2c + 5abc2 + 2ae + 6b2cd + 10bc2d + 4de.

Now we look for polynomials g, h with respective monomial sets M,Q and such that

p = g⊙ h holds. The following equality yields a system of equations whose unknowns

are the coefficients of g and h:

(g1a + g2d)(h1b
2c + h2bc

2 + h3e) = 3ab2c + 5abc2 + 2ae + 6b2cd + 10bc2d + 4de.

As described in Proposition 6, we can freely set g1 to 1 and then use 4 out of the

6 equations to deduce h1, h2, h3, g2; these computed values must verify the remaining

37

equations for p = g ⊙ h to hold, which is the case here.























g1h1 = 3

g1h2 = 5

g1h3 = 2

g2h1 = 6

g1=1
=⇒































g1 = 1

g2 = 2

h1 = 3

h2 = 5

h3 = 2

⇒

{

g2h2 = 10

g2h3 = 4

Now we have found a syntactic factorization of p. We update each edge in the

hypergraph, which, in this example, will make the hypergraph empty. After adding

(a + 2d, 3b2c + 5bc2 + 2e) to F , the algorithm terminates with F , s as output.

4.2 Base Monomial Set

One may notice that, until now, all our computation accepts two inputs, the given

large polynomial and the so-called base monomial setM. It is obvious that compu-

tations with different base monomial sets produce different partial syntactic factor-

izations, which will affect the number of operations to evaluate the input polynomial.

While it seems that this base monomial set is given by an oracle, there are ac-

tually many choices to construct an appropriate base monomial set for a given large

polynomial. Let us first discuss what kind of properties this base monomial set should

posses by reviewing how the base monomial set affects the computed partial syntac-

tic factorization. Note that in Algorithm 3 our main strategy is to keep extracting

syntactic factorizations from the hypergraph HG(f,M). For all the syntactic factor-

izations g ⊙ h computed in this manner, we have monoms(g) ⊆ M. Therefore, to

discover all the possible syntactic factorizations, the base monomial set should be

chosen so as to contain all the monomials from which a syntactic factorization may

be derived. We would also prefer the base monomial set to satisfy condition 4.1 such

that the computation of partial syntactic factorization of all g′
is can be avoided when

we finalize the syntactic decomposition of the input polynomial (Proposition 4). To

summarize, we would like the base monomial set satisfies the following two conditions:

� including all monomials from which a syntactic factorization may be derived;

� no monomials divides any other monomials of it (condition 4.1).

To this end, the most obvious choice is the set of all the variables X. However, to

discover possible symmetries of a partial syntactic factorization, we may also consider

38

the set G of all non constant gcds of any two distinct monomials of f . However, |G|

could be quadratic in #terms(f), which would be a bottleneck on large polynomials.

Another disadvantage of set G is that it does not always satisfy condition 4.1. Our

strategy is to choose forM as the set of the minimal elements of G for the divisibility

relation. Algorithm 4 illustrates a straightforward way to compute this set. In theory,

for base monomial computed by this algorithm, |M| fits in |G| = O(t2). In practice,

M is much smaller than G (for large dense polynomials, M = X holds) and this

choice is very effective. In [43], we formalize this problem as the computation of

minimal elements in a partially ordered set and we extend discussion on this question

in Chapter 6 and Chapter 9.

Input : a set of monomials {M1, . . . ,Mt}
Output : a base monomial setM

1 M← ∅;
2 for i← 1 to t do
3 for j ← i + 1 to t do
4 g ← Gcd(Mi,Mj); is min← true;
5 for m ∈M do
6 if m | g then
7 is min← false;
8 break;

9 else if g | m then
10 M←M\ {m};

11 if is min = true then
12 M←M∪ {g};

13 returnM;

Algorithm 4: NaiveBaseMonomialSet

4.3 Syntactic Decomposition

We report the top level algorithm to compute a syntactic decomposition of a given

polynomial in this section. The algorithm keeps applying Algorithm 3 to cofactors of

syntactic factorizations in its output. Serving as a subroutine, we assume that there

is a procedure ExpressionTree(f) that outputs an expression tree of a given polynomial

f . Algorithm 5, which we give for the only purpose of being precise, states the most

straight forward way to implement ExpressionTree(f). In this algorithm, we denote

39

a tree by T , the left child of it by Tℓ and the right child by Tr. We assume the

following operations are valid on a tree. We can initialize a tree to contain a single

node, which is usually a variable in X or a single element in K. The children of a

tree can be among variables, numbers and trees. The root of a tree is usually an

operation (+,×) on its children unless the tree contains a single node. An obvious

improvement of Algorithm 5 is to introduce the trick that reduces the nodes of the

subtree representing xn from O(n) to O(log n), for example, x8 can be represented by

((x2)2)2 rather than x · x · · · · · x.

Input : a polynomial f given as terms(f) = {t1, t2, . . . , ts}
Output : an expression tree whose value equals f

1 if ♯terms(f) = 1 say f = c · xd1

1 xd2

2 · · ·x
dk

k then
2 for i← 1 to k do
3 Ti ← xi;
4 for j ← 2 to di do
5 Ti,ℓ ← Ti, root(Ti)← ×, Ti,r ← xi;

6 root(T)← ×, Tℓ ← c, Tr ← T1;
7 for i← 2 to k do
8 Tℓ ← T, root(T)← ×, Tr ← Ti;

9 else
10 k ← s/2;

11 f1 ←
∑k

i=1 ti; f2 ←
∑s

i=k+1 ti;
12 T1 ← ExpressionTree(f1);
13 T2 ← ExpressionTree(f2);
14 root(T)← +, Tℓ ← T1, Tr ← T2;

Algorithm 5: ExpressionTree

Algorithm 6 formally states how to produce a syntactic decomposition of a given

polynomial. Given a input polynomial f , we first compute the base monomial set

M by Algorithm 4. If this set is empty, then no interesting syntactic decomposition

could be derived from f , the algorithm terminates. Otherwise, we compute a partial

syntactic factorization of f w.r.t. M by Algorithm 3, say

f = (g1 ⊙ h1)⊕ (g2 ⊙ h2)⊕ · · · ⊕ (ge ⊙ he)⊕ r.

By Proposition 3, Proposition 4 and our choice of the base monomial set, neither g′
is

for i = 1, . . . , e nor r admits any nontrivial partial syntactic factorization w.r.t. M,

40

Input : a polynomial f given as terms(f)
Output : a syntactic decomposition of f

1 M← base monomial set computed from f ;
2 if M = ∅ then
3 return ExpressionTree(f);

4 else
5 F , r ← ParSynFactorization(f,M);
6 for i← 1 to |F| do
7 (gi, hi)← Fi;
8 Ti ← empty tree, root(Ti)← ×;
9 Ti,ℓ ← ExpressionTree(gi);

10 Ti,r ← SyntacticDecomposition(hi);

11 root(T)← +, Tℓ ← ExpressionTree(r), Tr ← T1;
12 for i← 2 to |F| do
13 Tℓ ← T, root(T)← +, Tr ← Ti;

Algorithm 6: SyntacticDecomposition

whereas it is possible that one of h′
is admits one. Like in Example 7,

h = 3b2c + 5bc2 + 2e

admits a nontrivial partial syntactical factorization,

h = bc⊙ (3b + 5c)⊕ 2e.

Computing it will produce a syntactic decomposition of the input polynomial. When

a polynomial which does not admit any nontrivial partial syntactical factorizations

w.r.t. M is hit, for instance, gi or r in a partial syntactic factorization, we directly

convert it to an expression tree. For those h′
is which may derive syntactic decompo-

sitions themselves, we recursively call the same algorithm on them. The rest of the

algorithm is just routine to combine those DAGs representing g′
is, h′

is and r.

41

Chapter 5

Complexity Estimates

Given a polynomial f of t terms with total degree d in K[X], where X =

{x1, x2, . . . , xn}, we analyze the running time for Algorithm 6 to compute a syntactic

decomposition of f . We assume that the input polynomial is given in distributed

representation and that each exponent in a monomial is encoded by a machine word.

Thus each operation (GCD, division) on a pair of monomials of K[X] requires O(n)

bit operations. Due to the different manners of constructing a base monomial set, we

keep µ := |M| as an input complexity measure. We estimate the time complexity of

all algorithms although some of them may seem straight forward.

5.1 Monomial Set Construction

A base monomial set simply chosen as {x1, x2, . . . , xn} can be easily obtained in O(1)

operations and µ = n. Suppose a base monomial is computed by algorithm 4. There

are O(t2) iterations of the two nested for loops in Line 2 to Line 12, during each

of which at most one element is added to set M. Therefore µ = O(t2). The third

nested for loop in Line 5 to Line 10 iterates µ times. Overall, algorithm 4 takes

O(t2 · µ · n) = O(t4n) bit operations to produce a base monomial set of size O(t2).

5.2 Hypergraph Construction

Assume that we have computed a base monomial setM. Algorithm 2 constructs the

hypergraph HG(f,M) by traversing M and all the monomials in f . In Line 2 to

Line 9, there are µ · t iterations during each of which at most one element is added to

Q in O(n) operations. This leads to the result that |E| = |Q| ∈ O(µt) which also gives

42

the number of operations in the last for loop in Line 11. Hence algorithm 2 constructs

the hypergraph HG(f,M) of µ vertices and O(µt) edges in O(µtn) bit operations.

5.3 Computing Partial Syntactic Factorization

We proceed analyzing Algorithm 3. To do so, we follow its steps.

� The “isolated” polynomial r can be easily computed by testing the divisibility

of each term in f w.r.t each monomial inM, i.e. in µtn bit operations.

� Each hyperedge in HG(f,M) is a subset of M. The intersection of two

hyperedges can then be computed in µ · n bit operations. Thus we need

O((µt)2 · µn) = O(µ3t2n) bit operations to find the largest intersection M of

any two hyperedges (Line 8).

� If M is empty, we traverse all the hyperedges in HG(f,M) to find the largest

one. This takes no more than µt · µn = µ2tn bit operations (Line 11).

� If M is not empty, we traverse all the hyperedges in HG(f,M) to test if M is

a subset of it. This takes at most µt · µn = µ2tn bit operations (Line 14 to

Line 16).

� Line 8 to Line 16 takes O(µ3t2n) bit operations.

� The set N can be computed in µ · µt · n bit operations (Line 18).

� by Proposition 6, the candidate syntactic factorization can be either computed

or rejected in O(|M |2 · |Q|2n) = O(µ4t2n) bit operations and O(µ2t) operations

in K (Lines 20 to Line 23).

� If |N | 6= |M | · |Q| or the candidate syntactic factorization is rejected, we remove

one element from Q and repeat the work in Line 18 to Line 23. This while loop

ends before or when |Q| = 1, hence it iterates at most |Q| times. So the bit

operations of the while loop are in O(µ4t2n · µt) = O(µ5t3n) while operations

in K are within O(µ2t · µt) = O(µ3t2) (Line 17 to Line 25).

� We update the hypergraph by removing the monomials in the constructed

syntactic factorization. The two nested for loops in Line 26 to Line 31 take

O(|E| · |N | · n) = O(|E| · |M | · |Q| · n) = O(µt · µ · µt · n) = O(µ3t2n) bit

operations.

43

� Each time a syntactic factorization is found, at least one monomial in

monoms(f) is removed from the hypergraph HG(f,M). So the while loop from

Line 4 to Line 33 would terminate in t iterations.

Overall, Algorithm 3 takes O(µ5t4n) bit operations and O(µ3t3) operations in K. In

the case when terms of the input polynomial are sorted, the number of bit operations

to compute or reject a candidate syntactic factorization is reduced to O(|M ||Q| ·

log(|M ||Q|) ·n) = O(µ2tn log(µt)) (Lines 20 to Line 23). As a consequence, the whole

algorithm performs O(µ3t3n log(µt)) bit operations and O(µ3t3) operations in K.

5.4 Expression Tree Construction

One easily checks from Algorithm 5 that an expression tree can be computed from f

(where f has t terms and total degree d) within in O(ndt) bit operations.

Indeed, let S(t, d, n) be the number of operations to produce an expression tree

of f . Then it is easy to see that it satisfies the following recurrence relation

S(t, d, n) ≤

{

2S(t/2, d, n) + O(1) if t > 1,

nd if t = 1,

Therefore, it can be computed in O(ndt) operations.

5.5 Computing Syntactic Decomposition

In the sequel of this chapter, we analyze Algorithm 6. We make two preliminary

observations. First, for the input polynomial f , the cost of computing a base mono-

mial set can be covered by the cost of finding a partial syntactic factorization of f .

Secondly, the expression trees of all gi’s (Line 9) and of the isolated polynomial r

(Line 11) can be computed within O(ndt) operations. Now, we shall establish an

equation that rules the running time of Algorithm 6. Assume that F in Line 5 con-

tains e syntactic factorizations. For each gi, hi such that (gi, hi) ∈ F , let the number

of terms in hi be ti and the total degree of hi be di. By the specification of the partial

syntactic factorization, we have
∑e

i=1 ti ≤ t. It is easy to show that di ≤ d− 1 holds

for 1 ≤ i ≤ e as total degree of each gi is at least 1. We recursively call Algorithm 6

on all hi’s. Let Tb(t, d, n) and TK(t, d, n) be the number of bit operations and opera-

tions in K performed by Algorithm 6 respectively. We have the following recurrence

44

relation,

Tb(t, d, n) =
∑e

i=1 Tb(ti, di, n) + O(µ5t4n),

TK(t, d, n) =
∑e

i=1 TK(ti, di, n) + O(µ3t3),

from which we derive that Tb(t, d, n) is within O(µ5t4nd) and TK(t, d, n) is within

O(µ3t3d). Next, one can verify that if the base monomial setM is chosen as the set

of the minimal elements of all the pairwise gcd’s of monomials of f , where µ = O(t2),

then a syntactic decomposition of f can be computed in O(t14nd) bit operations

and O(t9d) operations in K. If the base monomial set is simply set to be X =

{x1, x2, . . . , xn}, then a syntactic decomposition of f can be found in O(t4n6d) bit

operations and O(t3n3d) operations in K.

When terms of the input polynomial are sorted, we have

Tb(t, d, n) ∈ O(µ3t3nd log(µt)) and TK(t, d, n) ∈ O(µ3t3d).

Therefore, if the base monomial set is computed by Algorithm 4, then the number of

bit operations and operations in K to compute a syntactic decomposition of a given

polynomial is within O(t9nd log t) and O(t9d). When base monomial set is chosen

as the set of all the variables X, then these upper bounds become t3n4d log(tn) and

t3n3d respectively.

Theorem 1. Given a polynomial of t terms with total degree d in K[X], where

X = {x1, x2, . . . , xn}, then a syntactic decomposition of it can be computed within

O(t9nd log t) bit operations and O(t9d) operations in K.

45

Chapter 6

Implementation and Parallelization

of the Hypergraph Method

As parallel hardware architectures (multi-cores, graphics processing units, etc.) and

computer memory hierarchies (from processor registers to hard disks via successive

cache memories) become more dominant in the modern computer, we focus our effort

on improving both the parallelism and the cache-efficiency of our algorithms and their

implementation. In this chapter, we parallelize the Algorithm SyntacticDecomposition

(Algorithm 6 in p.40) and its subroutines without analyzing their parallelism and

data locality. This analysis would essentially follow the same principle as the one

conducted in Chapter 9 for the parallel computations of the minimal of a partially

ordered set. Indeed, the main algorithms of the present chapter and Chapter 9 are

divide-and-conquer algorithms where the conquer part fundamentally reduces to the

parallel enumeration of the Cartesian product of two finite sets.

6.1 Data Structures

Let f be a multivariate polynomial in X = {x1, x2, . . . , xn} over a field K. To simplify

the implementation and analysis, we assume that K is a finite field Z/pZ where p is a

machine prime number 1, and that partial degrees in any variable fits into a machine

integer. In what follows, we list the major data structures used in computing the

syntactic decomposition of f .

1This assumption is irrelevant to the theory but to the implementation, and can be easily relaxed
once operations on big integers are provided (in software level, for example use the GNU Multiple
Precision Arithmetic Library).

46

6.1.1 Monomials, Terms and Polynomials

A monomial is encoded by its exponent vector of length n and a term is encoded by an

array of length n+1, where the first slot stores the coefficient, followed by the exponent

vector of its supporting monomial. For example, monomial ab2c ∈ K[a, b, c, d, e, s] is

encoded as [1, 2, 1, 0, 0, 0] and term 3ab2c is encoded as [3, 1, 2, 1, 0, 0, 0].

The following operations on monomials are supported:

Gcd: computes the gcd of two monomials by taking the smaller value of each entry

in their exponent vectors;

Mul: computes the product of two monomials by adding two exponent vectors;

Same: checks if two monomials are the same;

Compare: checks the divisibility of two monomials, that is, Compare(m1,m2) returns 1

if m1 divides m2 (i.e. m2 is a multiple of m1), returns −1 if m2 divides m1,

otherwise, returns 0 if m1 and m2 are incomparable.

A polynomial is represented by a list of terms (sparse distributed representation

reviewed in Subsection 2.1.2). In the implementation, these terms are sorted with

respect to the pure lexicographical order.

6.1.2 Hypergraphs

A hypergraph is defined by a vertex set and a set of hyperedges. The former is

encoded as a list of monomials and a hyperedge is a collection of vertices defined by

its defining monomial. Thus the fields of a Hypergraph class are

• a set of vertices, implemented as an array of monomials;

• a set of hyperedges, implemented as an array of pointers to the Hyperedge objects

defined below.

A Hyperedge is a class containing two fields:

• the defining monomial, implemented as an exponent vector,

• a set of vertices, implemented as a bitvector object. Class bitvector supports

the following standard operations:

set: sets a bit,

47

unset: unsets a bit,

is set: checks if a bit is set,

count: counts the number of set bits,

union: computes the union of two bitvectors,

intersect: computes the intersection of two bitvectors,

is superset: tests the inclusion of two bitvectors.

Class Hyperedge supports the following operations:

Intersection: intersects two hyperedges by taking the intersection of two bitvectors.

Is included: checks if a set of vertices is a subset of a hyperedge. This function accepts

a bitvector, which encodes a set of vertices, and a Hyperedge object. It calls

is superset.

Note that the introduction of bitvectors allows efficient computation on hyperedges

(Line 8, and Line 14 to Line 16 of Algorithm 3).

6.1.3 Syntactic Decomposition

The class SynDecomposition is designed to support the following partial syntactic

factorization:

f = (g1 ⊙ h1)⊕ (g2 ⊙ h2)⊕ · · · ⊕ (ge ⊙ he)⊕ r.

Recall that once a partial syntactic factorization are obtained, we recursively apply

Algorithm 6 on all cofactors h′
is. Class SynDecomposition has the following fields:

cofactor: the cofactor of a syntactic factorization as a list of terms,

cof size: the number of terms included in the cofactor,

base: the base of a syntactic factorization as a list of terms,

base size: the number of terms included in the base,

isolated terms: the isolated polynomial r as a list of terms,

iso size: the number of terms included in the polynomial r,

syntactic factors: a list of e pointers to SynDecomposition objects, where each object encodes a

syntactic factorization gi ⊙ hi,

48

syn size: the number of syntactic factorizations.

We note that SynDecomposition object does not form a binary tree as defined in the

Definition 9. As illustrated by the following example, a SynDecomposition object will

not be converted into an expression tree in this stage. The conversion to a binary tree

is performed when the final evaluation SLPs are generated (Chapter 7). In Example 7,

a syntactic decomposition of

f = 3ab2c + 5abc2 + 2ae + 6b2cd + 10bc2d + 4de + s

can be written as

(a + 2d)⊙ (bc⊙ (3b + 5c)⊕ 2e)⊕ s.

We illustrate the construction of a syntactic decomposition object by the this example.

The input polynomial is encoded as

cofactor : [3ab2c, 5abc2, 2ae, 6b2cd, 10bc2d, 4de, s]

cof size : 7

all others : NULL

The base monomial set computed by Algorithm 4 is {a, bc, e, d}. It is encoded by a

list of monomials. The hypergraph computed by Algorithm 2 contains the following

hyperedges:

Eb2c = Ebc2 = Ee = {a, d} : [1, 0, 0, 1]

Eab = Eac = Ebd = Ecd = {bc} : [0, 1, 0, 0]

Once the hypergraph is constructed, the isolated term s is identified. By applying

Algorithm 3, we extract a syntactic factorization (a + 2d)⊙ (3b2c + 5bc2 + 2e), which

itself will be encoded as a SynDecomposition object (say poly1) and a pointer will be

added to the syntactic factors field of the root SynDecomposition object,

cofactor : [3ab2c, 5abc2, 2ae, 6b2cd, 10bc2d, 4de, s]

cof size : 7

base : NULL

base size : 0

isolated terms : [s]

iso size : 1

syntactic factors : [pointer to poly1]

syn size : 1

49

The field syntactic factors is an array of pointers to SynDecomposition objects. This

array now contains one pointer to the syntactic factorization (a+2d)⊙(3b2c+5bc2+2e)

(poly1). To complete the construction of the syntactic decomposition, we apply

Algorithm 6 to poly1

cofactor : [3b2c, 5bc2, 2e]

cof size : 3

base : [a, 2d]

base size : 2

isolated terms : [2e]

iso size : 1

syntactic factors : [pointer to poly2]

syn size : 1

where SynDecomposition object poly2 is

cofactor : [3b, 5c]

cof size : 2

base : [bc]

base size : 1

all others : NULL

To sum up, the syntactic decomposition of a polynomial can be obtained recur-

sively in the following manner:

{

(cofactor +
∑

isolated terms)(
∑

base) if syntactic factors is NULL,

(
∑

syntactic factors +
∑

isolated terms)(
∑

base) otherwise.

(6.1)

6.2 Parallelization

Before describing the parallelization in more details let us first specify the program-

ming model. We adopt the multi-threaded programming model of Cilk [24]. In

our pseudo-code, the keywords spawn and sync have the same semantics as the

cilk spawn and cilk sync statement in the Cilk++ programming language [16]. A

cilk spawn tells the compiler that the function may run in parallel with the caller and

a cilk sync statement indicates that the current function can resume its execution

once all functions spawned in its body have completed.

50

Our algorithms are also cache-efficiency oriented. Most of our algorithms follow

the cache-oblivious philosophy introduced in [23]. More precisely, and similarly to the

matrix multiplication algorithm of [23], they proceed in a divide-and-conquer fashion

such that when a sub-problem fits into the cache, then all subsequent computations

can be performed with no further cache misses. However, we also use a threshold such

that, when the size of the input is within this threshold, then a base case subroutine

is called. In principle, this threshold can be set to the smallest meaningful value,

say 1, and thus our algorithms is cache-oblivious. In a software implementation,

this threshold should be large enough so as to reduce parallelization overheads and

recursive call overheads. Meanwhile, this threshold should be small enough in order

to guarantee that, in the base case, cache misses are limited to cold misses. In the

implementation of the matrix multiplication algorithm of [23], available in the Cilk++

distribution, a threshold is used for the same purpose.

6.2.1 Merging Two Sets of Minimal Elements

We will first introduce a key building block, MinMerge, of the upcoming parallelized

algorithms. It is frequently used in most of our algorithms. Intuitively, it works

on two input sets both of which possess some property. We use this procedure to

merge these two sets and obtain a set satisfying the same property. It was originally

reported in [43] to merge two sets of minimal elements on a partially ordered set. We

generalize it to a more general case where the partial order is relaxed to an arbitrary

binary relation denoted by � on a set X . We use of notion of “minimal” as in [43]

such that an element a is minimal w.r.t a subset of X , A, whenever for all elements

a′ ∈ A, we have a′�a ⇒ a′ = a. We say a subset A of X is “clean” whenever all

its elements are minimal w.r.t it. The procedure MinMerge works on two clean input

sets, say B and C. It outputs two clean sets E and F , such that for each element

b ∈ B,

� if for all elements c ∈ C, either b�c or b incomparable to c holds, than b ∈ E.

� if there exists an element c ∈ C, such that c�b then the information of b is

merged to c by a function Merge and b will not be included in E.

Similar relation holds for F and C.

We assume that the subsets of X are implemented by a data-structure which

supports the following operations for any subsets A,B of X :

51

Split: if |A| ≥ 2 then Split(A) returns a partition A−, A+ of A such that the poten-

tial work to be done on A− and A+ are balanced. Hereafter, without explicit

mention, it means that |A−| and |A+| differ at most by 1.

Union: Union(A,B) accepts two disjoint sets A, B and returns C where C = A ∪B;

In addition, we assume that each subset A of X , with k = |A|, is encoded in a C/C++

fashion by an array A of size ℓ ≥ k. Elements in A would also support the following

operations when applicable:

Mark: An element in A can be marked at trivial cost.

Merge: When an element b�a is detected, there is a function Merge(a, b) that merge

the information of a to b. This function is only needed for some applications.

If not mentioned, it does nothing.

When we refer to the following two algorithms (Algorithm 7 and Algorithm 8) on cer-

tain element type, we would specify how Split, Union, Mark and Merge are performed.

Input: two “clean” sets B, C

1 if |B| = 0 or |C| = 0 then
2 return (B,C);

3 else
4 for i← 1 to |B| do
5 for j ← 1 to |C| do
6 if cj is unmarked then
7 if cj � bi then
8 Merge(bi, cj), Mark bi and break inner loop;

9 if bi� cj then
10 Merge(cj, bi), Mark cj;

11 B ← {unmarked elements in B};
12 C ← {unmarked elements in C};
13 return (B,C);

Algorithm 7: SerialMinMerge

The straight forward Algorithm 7 presents a trivial way to achieve the objective

described above. However, it can not be parallelized while taking advantage of the

sparsity in the output. In addition, unless the input data fits in cache, Algorithm 7

is not cache-efficient. We apply a divide-and-conquer strategy in the parallelized

52

Input: two “clean” sets B, C

1 if |B| ≤ MIN MERGE BASE and |C| ≤ MIN MERGE BASE then
2 return SerialMinMerge(B,C);

3 else if |B| > MIN MERGE BASE and |C| > MIN MERGE BASE then
4 (B−, B+)← Split(B);
5 (C−, C+)← Split(C);
6 (B−, C−)← spawn ParallelMinMerge(B−, C−);
7 (B+, C+)← spawn ParallelMinMerge(B+, C+);
8 sync;
9 (B−, C+)← spawn ParallelMinMerge(B−, C+);

10 (B+, C−)← spawn ParallelMinMerge(B+, C−);
11 sync;
12 return (Union(B−, B+), Union(C−, C+));

13 else if |B| > MIN MERGE BASE and |C| ≤ MIN MERGE BASE then
14 (B−, B+)← Split(B);
15 (B−, C)← ParallelMinMerge(B−, C);
16 (B+, C)← ParallelMinMerge(B+, C);
17 return (Union(B−, B+), C);

18 else
19 (C−, C+)← Split(C);
20 (B,C−)← ParallelMinMerge(B,C−);
21 (B,C+)← ParallelMinMerge(B,C+);
22 return (B, Union(C−, C+));

Algorithm 8: ParallelMinMerge

Algorithm 8. To this end, we discuss the following four cases depending on the values

of |B| and |C| w.r.t. the threshold MIN MERGE BASE.

C− C+

B−

B+

C

B−

B+

Figure 6.1: Illustration of Algorithm 8 ParallelMinMerge

Case 1: both |B| and |C| are no more than MIN MERGE BASE which ensures that

the computation of Algorithm 8 on |B| and |C| can completely fit in cache. We

simply call the operation SerialMinMerge of Algorithm 7 The minimal elements

from B and C are stored separately in an ordered pair (the same order as in

the input pair) to remember the provenance of each result. In Cases 2, 3 and 4,

53

this output specification helps clarifying the successive cross-comparisons when

the input posets are divided into subsets.

Case 2: both |B| and |C| are greater than MIN MERGE BASE. We split B and

C into balanced pairs of subsets B−, B+ and C−, C+ respectively. Then, we

recursively merge these 4 subsets, as described in Lines 6–10 in Algorithm 8.

Merging B−, C− and merging B+, C+ can be executed in parallel without data

races. These two computations complete half of the cross-comparisons between

B and C. Then, we perform the other half of the cross-comparisons between

B and C by merging B−, C+ and merging B+, C− in parallel. At the end, we

return the union of the subsets from B and the union of the subsets from C.

The left graph in Figure 6.2.1 illustrates this case.

Case 3, 4: either |B| or |C| is greater than MIN MERGE BASE, but not both. Here,

we split the larger set into two subsets and make the appropriate cross-

comparisons via two recursive calls, see Lines 14–22 in Algorithm 8. The right

graph in Figure 6.2.1 illustrates this case.

We will back on the computation of minimal elements at Chapter 9, where the

parallelism of Algorithm 8 and cache complexity of its C elision will be analyzed.

6.2.2 Computation of Base Monomial Set

We report the parallel computation of the base monomial set in this subsection. Recall

that the base monomial set is chosen as the minimal elements of the pairwise Gcd’s of

all monomials in the input polynomial where the partial order is defined as divisibility.

Intuitively, given a set of t monomials, one can first compute the list G of pairwise gcds

of this set and then pass G to existing algorithm to compute the minimal elements,

for example, Algorithm 28 in Chapter 9. However, G can be too large to fit into

memory because |G| = t(t− 1)/2. It then becomes desirable to compute the minimal

elements concurrently to the generation of the Gcd set itself, thus avoiding storing

the entire Gcd set in memory. Applying this strategy allows computations that could

not be conducted otherwise. Moreover, by introducing a divide-and-conquer strategy,

the proposed parallel algorithm becomes more cache friendly than Algorithm 4. The

top-level routine is Algorithm 9 which takes as input a set A of monomials. In practice

one would first call this routine with A = monoms(f). Algorithm 9 integrates the

computation of G andM (as defined above) into a “single pass” divide-and-conquer

process.

54

We now describe our divide-and-conquer method for computing the base monomial

set of A, that is, Min(GA), where GA consists of all non-constant gcd(a1, a2) for a1, a2 ∈

A and a1 6= a2. The top-level function is ParallelBaseMonomial of Algorithm 9. If |A|

is within a threshold, namely MIN BASE, the operation SerialInnerBaseMonomials(A)

is called. Otherwise, we partition A as A− ·∪A+ and observe that

Min(GA) = Min(Min(GA−) ∪Min(GA+) ∪Min(GA−,A+))

holds where GA−,A+ consists of all non-constant gcd(x, y) for (x, y) ∈ A− × A+. Fol-

lowing the above formula, our parallel algorithm proceed in the following manner.

� Top level Algorithm 9 creates two independent computational branches:

– one for Min(Min(GA−) ∪ Min(GA+)) which is computed by the operation

SelfBaseMonomials of Algorithm 10;

– one for Min(GA−,A+) which is computed by the operation

CrossBaseMonomials of Algorithm 11.

A− A+

A−

A+

Figure 6.2: Illustration of Algorithm 9 ParallelBaseMonomials

� Algorithm 10 makes two recursive calls in parallel, then merges their results

with Algorithm 8.

B

C

B

C

Figure 6.3: Illustration of Algorithm 10 SelfBaseMonomials

� In Algorithm 11 for CrossBaseMonomials, we uses a threshold, when

the computation fits in cache, we do the computation serially by call-

ing Algorithm 13. Otherwise, we split each B and C into two

55

subsets B−, B+ and C−, C+. Therefore, computing the base mono-

mial set of CrossBaseMonomials(B−, C−) ∪ CrossBaseMonomials(B+, C+) and

CrossBaseMonomials(B−, C+)∪CrossBaseMonomials(B+, C−) can be performed

in parallel and recursively with an auxiliary function HalfCrossBaseMonomials

of Algorithm 12. The results of these two concurrent calls to Algorithm 12 are

then merged with Algorithm 8.

C− C+

B−

B+

Figure 6.4: Illustration of Algorithm 11 CrossBaseMonomials

� Algorithm 12 simply performs two concurrent calls to Algorithm 11 whose re-

sults are merged with Algorithm 8.

A

C
B

D

Figure 6.5: Illustration of Algorithm 12 HalfCrossBaseMonomials

To merge two sets of minimal elements, we rely on the procedure ParallelMinMerge

(Algorithm 8). We now specify the operations on monomials that are required by

Algorithm 8.

� A monomial represented by an exponent vector can be marked by setting its

first slot to −1.

� The function “merge” is not needed in this case. If a monomial can be divided by

another, then its information is not needed in the base monomial set anymore.

� A set of monomials can be split by partitioning the array representing it to two

halves.

� The union of two sets of disjoint monomials can be computed by concatenating

the two arrays representing them.

56

Input : a monomial set A
Output : Min(GA) where GA consists of all non-constant gcd(a1, a2)

for a1, a2 ∈ A and a1 6= a2

1 if |A| ≤ MIN BASE then
2 return NaiveBaseMonomialSet(A);

3 else
4 (A−, A+)← Split(A);
5 B ← spawn SelfBaseMonomials(A−, A+);
6 C ← spawn CrossBaseMonomials(A−, A+);
7 sync;
8 (D1, D2)← ParallelMinMerge(B,C);
9 return Union(D1, D2);

Algorithm 9: ParallelBaseMonomials

Input : two disjoint monomial sets B,C
Output : Min(GB ∪ GC) where GB (resp. GC) consists of all

non-constant gcd(x, y) for x, y ∈ B (resp. C) with x 6= y

1 E ← spawn ParallelBaseMonomials(B);
2 F ← spawn ParallelBaseMonomials(C);
3 sync;
4 (D1, D2)← ParallelMinMerge(E,F);
5 return Union(D1, D2);

Algorithm 10: SelfBaseMonomials

Input : two disjoint monomial sets B,C where B and C differ at
most 1

Output : Min(GB,C) where GB,C consists of all non-constant
gcd(b, c) for (b, c) ∈ B × C

1 if |B| ≤ MIN MERGE BASE then
2 return SerialCrossBaseMonomials(B,C);

3 else
4 (B−, B+)← Split(B);
5 (C−, C+)← Split(C);
6 E ← spawn HalfCrossBaseMonomials(B−, C−, B+, C+);
7 F ← spawn HalfCrossBaseMonomials(B−, C+, B+, C−);
8 sync;
9 (D1, D2)← ParallelMinMerge(E,F);

10 return Union(D1, D2);

Algorithm 11: CrossBaseMonomials

57

Input : four monomial sets A,B,C,D pairwise disjoint
Output : Min(GA,B ∪ GC,D) where GA,B (resp. GC,D) consists of all

non-constant gcd(x, y) for (x, y) ∈ A×B (resp. C ×D)

1 E ← spawn CrossBaseMonomials(A,B);
2 F ← spawn CrossBaseMonomials(C,D);
3 sync;
4 (G1, G2)← ParallelMinMerge(E,F);
5 return Union(G1, G2);

Algorithm 12: HalfCrossBaseMonomials

Input : two disjoint monomial sets B,C
Output : Min(GB,C) where GB,C consists of all non-constant

gcd(b, c) for (b, c) ∈ B × C

1 M← ∅;
2 for i← 1 to |B| do
3 for j ← 1 to |C| do
4 g ← Gcd(Bi, Cj); is min← true;
5 for m ∈M do
6 if m | g then
7 is min← false;
8 break;

9 else if g | m then
10 M←M\ {m};

11 if is min = true then
12 M←M∪ {g};

13 returnM;

Algorithm 13: SerialCrossBaseMonomials

At the end of this subsection, we discuss some implementation details.

� Both in Algorithm 4 and Algorithm 13, in the worst case, to compare each pair

g and m, we may traverse these two pairs twice. In the implementation, we are

actually testing their divisibility by the function Compare which implements the

partial order used on the monomials. In this way, we traverse the two arrays

representing these monomials no more than once.

� In Algorithm 11, to test if the input is in base case, we only compare |B| with

the threshold. Different from Algorithm 8, we do not do case discuss on the size

of B and C. This is due to the fact that we are calling this function initially

58

with A− and A+ whose sizes differ at most 1. This function is also called in

Algorithm 12 where the four input are initially with size ⌊|A|−/2⌋, ⌈|A|−/2⌉,

⌊|A|+/2⌋, ⌈|A|+/2⌉. The call to Algorithm 11 in Algorithm 12 also maintains

the property that the sizes of the two inputs differ at most 1 ensured by the

following equations,

|a− b| ≤ 1 ⇒ |⌈a/2⌉ − ⌊b/2⌋| ≤ 1;

|a− b| ≤ 1 ⇒ |⌈b/2⌉ − ⌊a/2⌋| ≤ 1,

where a, b > 0 ∈ Z.

� The Algorithm 12 could have been integrated to Algorithm 11. Algebraically,

it makes no difference. However, we make it a separate function considering the

locality. We expect that once a function is spawned with an input data set, it

will work on these data as much as possible without interchanging with other

processors.

6.2.3 Construction of the Hypergraph

The Algorithm 2 introduced in Chapter 4 to construct the hypergraph HG(f,M) pro-

ceeds in a very similar manner of Algorithm 4. While the algebraic complexity stays

the same, we propose again a divide-and-conquer algorithm to do the same job but

taking advantage of the parallelism and data locality. The principle of Algorithm 14

is similar to that of Algorithm 9. However, there are two differences to be pointed

out, namely

� When the input size is larger than the threshold, we only split the monomial

set of the input polynomial but not the base monomial set, as we expect this

base monomial set to be small.

� To merge two hypergraphs sharing the same vertices set, the operations to per-

form on their hyperedges are different from those on monomials in Algorithm 9.

If hyperedge ei shares its defining monomial with hyperedge ej, then ej is re-

placed by its union with ei and only ej stays in the merged hypergraph.

The top level Algorithm 14 uses threshold as well. When the input fits into cache,

the computation is done serially. Otherwise, we split M = monoms(f) into two even

parts and create two independent computational branches on each of them. These

two concurrent calls return two set of hyperedges E− and E+. Each of these two sets is

59

“clean” in the sense that there are no hyperedges in them that share the same defining

monomials. However, it is possible that there exists e1 ∈ E
− and e2 ∈ E

+ that e1

shares defining monomial with e2. Therefore we merge E− with E+ with Algorithm 8.

The relation � on hyperedges is defined as

ei�ej whenever defining monomials of ei and ej are the same.

Note that this relation is not antisymmetric. Our Algorithm 7 and Algorithm 8

actually work in a more general structure than partially ordered set.

Input : a set of monomials M , the base monomial setM
Output : E , which is the set of hyperedges of hypergraph HG(f,M)

where monoms(f) = M

1 if |M | ≤ HG BASE then
2 return NaiveConstructHypergraph(M,M);

3 else
4 (M−,M+)← Split(M);
5 E− ← spawn ParallelConstructHypergraph(M−,M);
6 E+ ← spawn ParallelConstructHypergraph(M+,M);
7 sync;
8 (E−, E+)← ParallelMinMerge(E−, E+);
9 return Union(E−, E+);

Algorithm 14: ParallelConstructHypergraph

We present here the operations on hyperedges that are necessary to support Al-

gorithm 8.

� A hyperedge can be marked by setting the first slot of the exponent vector

representing its defining monomial to −1.

� When a hyperedge ei shares its defining monomial with another hyperedge ej,

these two hyperedges will be merged by a function “merge” on hyperedges. It

overwrites ej by its union with ei.

� A set of hyperedges can be split by partitioning the array representing it to two

halves.

� The union of two sets of disjoint hyperedges can be computed by appending the

array representing one of them to another.

60

6.2.4 Computation of the Largest Intersection of Hyperedges

Another procedure that can be parallelized in Algorithm 3 is the computation of the

largest intersection of all pairs of hyperedges. To make the story complete, we first

state a naive serial way to do this by Algorithm 15. This algorithm will also serve as a

base routine of the parallel algorithm (Algorithm 16). The parallel algorithm proceed

in a divide-and-conquer manner. It uses also a threshold (INTER BASE) to control

parallel overhead while ensures that the base case computation could fit in cache.

When the input size grows, it creates two balanced independent recursive calls which

therefore run concurrently. To merge the results of these two recursive functions, we

simply leave the larger intersection as output.

Input : a set of hyperedges E
Output : a hyperedge intersection of maximum cardinality

1 I ← ∅ ;
2 for i← 1 to |E| do
3 for j ← i + 1 to |E| do
4 I ′ ← Intersection(Ei, Ej);
5 if |I| < |I ′| then
6 I ← I ′;

7 return I;

Algorithm 15: NaiveIntersection

Input : a set of hyperedges E
Output : a hyperedge intersection of maximum cardinality

1 if |E| ≤ INTER BASE then
2 return NaiveIntersection(E);

3 else
4 (E−, E+)← Split(E);
5 I− ← spawn ParallelIntersection(E−);
6 I+ ← spawn ParallelIntersection(E+);
7 sync;
8 if |I−| < |I+| then
9 return I+;

10 else return I−;

Algorithm 16: ParallelIntersection

61

6.2.5 Identification of Largest Hyperedge

Similar to the computation of the largest intersection, we can also parallelly identify

the largest hyperedge in a given set of hyperedges. We recursively break the problem

into sub-problems until they becomes small enough to be solved serially. The base

case size is controlled by a threshold LARGE EDGE BASE. We will state the algorithm

without further discussion on it as the principle is the same as Algorithm 15 and

Algorithm 16.

Input : a set of hyperedges E
Output : a hyperedge e of maximum cardinality

1 if |E| ≤ LARGE EDGE BASE then
2 e← ∅ ;
3 for i← 1 to |E| do
4 if |e| < |Ei| then
5 e← Ei;

6 return e;

7 else
8 (E−, E+)← Split(E);
9 e− ← spawn ParallelLargestEdge(E−);

10 e+ ← spawn ParallelLargestEdge(E+);
11 sync;
12 if |e−| < |e+| then
13 return e+;

14 else
15 return e−;

Algorithm 17: ParallelLargestEdge

6.2.6 Collecting Hyperedges Including the Largest Intersec-

tion

Once the largest intersection of two hyperedges (computed by Algorithm 16 in p.60)

is found, we traverse the hypergraph to test if it is a subset of more hyperedges. We

collecting the defining monomials of all these hyperedges in a set Q and this set forms

the monomial set of the cofactor of the candidate syntactic factorization. (Line 14 to

Line 16 of Algorithm 3). This procedure can be parallelized via a divide-and-conquer

strategy as well. We show the straight forward algorithm without further explanation

(the principle is also the same as Algorithm 15 and Algorithm 16).

62

Input : a set of hyperedges E and an intersection I of hyperedges
Output : Esup such that {E ∈ Esup | E ∈ E , I ⊂ E}

1 if |E| ≤ LARGE EDGE BASE then
2 Esup ← ∅ ;
3 for i← 1 to |E| do
4 if I ⊂ Ei then
5 Esup ← Union(Esup, {Ei});

6 return E;

7 else
8 (E−, E+)← Split(E);
9 E−sup ← spawn ParallelSuperSet(E−);

10 E+
sup ← spawn ParallelSuperSet(E+);

11 sync;
12 return Union(E−sup, E

+
sup);

Algorithm 18: ParallelSuperSet

6.2.7 Multiplication of Two Sets of Monomials

Once the monomial sets of the base and cofactor of a candidate syntactic factorization

have been established (set M and set Q in Line 18 in Algorithm 3), We need to com-

pute the pairwise product of monomials in these two sets, that is, given a monomial

set M and monomial set Q, compute the set N such that

N = {mq | m ∈M, q ∈ Q}.

This set N will only be useful when there is no combination of monomials, i.e.

|N | = |M | · |Q|.

Therefore, our algorithm could work in the following manner. Until there is no

combination of monomials, compute the set N . To compute it, serially, we can

compute each product of monomials from the set M and Q and add it to the

current set N . If there is no combination of monomials, then continue; otherwise

we break the computation. This serial procedure is presented by Algorithm 19

NaiveMulMonomials. Parallelly, we would apply the very similar strategy as procedure

ParallelConstructHypergraph (Algorithm 14). As the base monomial set is expected

to be small, we do not split it when the input size is large. The difference is how

63

Input : two monomial sets M,Q
Output : N = {mq | m ∈M, q ∈ Q}. If |N | = |M | · |Q|, return

(true, N); otherwise return (false, ∅).

1 N ← ∅;
2 for i← 1 to |M | do
3 for j ← 1 to |Q| do
4 m←Mi ·Qj;
5 for m′ ∈ N do
6 if m = m′ then
7 return (false, ∅);

8 N ← N ∪ {m};

9 return (true, N);

Algorithm 19: NaiveMulMonomials

Input : two monomial sets M,Q
Output : N = {mq | m ∈M, q ∈ Q}. If |N | = |M | · |Q|, return

(true, N); otherwise return (false, ∅).

1 if |Q| ≤ MUL MONOMIAL BASE then
2 return NaiveMulMonomials(M,Q);

3 else
4 (Q−, Q+)← Split(Q);
5 (b−, N−)← MulMonomials(M,Q−);
6 (b+, N+)← MulMonomials(M,Q+);
7 if b− = b+ = true then
8 return MulMerge(N−, N+);

9 else
10 return (false, ∅);

Algorithm 20: MulMonomials

64

Input : two monomial sets N1, N2

Output : if N1 ∩N2 = ∅, return (true, N1 ∪N2); otherwise return
(false, ∅).

1 if |N1| ≤ MUL Merge BASE and |N2| ≤ MUL Merge BASE then
2 return NaiveMulMerge(N1, N2);

3 else if |N1| > MUL Merge BASE and |N2| > MUL Merge BASE then
4 (N−

1 , N+
1)← Split(N1);

5 (N−
2 , N+

2)← Split(N2);
6 (b−1 , S−

1)← spawn MulMerge(N−
1 , N−

2);
7 (b+

1 , S+
1)← spawn MulMerge(N−

1 , N+
2);

8 (b−2 , S−
2)← spawn MulMerge(N+

1 , N−
2);

9 (b+
2 , S+

2)← spawn MulMerge(N+
1 , N+

2);
10 sync;
11 if b−1 = b+

1 = b−2 = b+
2 = true then

12 return Union(Union(S−
1 , S+

1), Union(S−
2 , S+

2));

13 else
14 return (false, ∅);

15 else if |N1| > MUL Merge BASE and |N2| ≤ MUL Merge BASE then
16 (N−

1 , N+
1)← Split(N1);

17 (b−, S−)← spawn MulMerge(N−
1 , N2);

18 (b+, S+)← spawn MulMerge(N+
1 , N2);

19 sync;
20 if b− = b+ = true then
21 return Union(S−, S+);

22 else
23 return (false, ∅);

24 else
25 (N−

2 , N+
2)← Split(N2);

26 (b−, S−)← spawn MulMerge(N1, N
−
2);

27 (b+, S+)← spawn MulMerge(N1, N
+
2);

28 sync;
29 if b− = b+ = true then
30 return Union(S−, S+);

31 else
32 return (false, ∅);

Algorithm 21: MulMerge

65

Input : two monomial sets N1, N2

Output : if N1 ∩N2 = ∅, return (true, N1 ∪N2); otherwise return
(false, ∅).

1 for i← 1 to |N1| do
2 for j ← 1 to |N2| do
3 if N1i

= N2j
then

4 return (false, ∅);

5 return (true, Union(N1, N2));

Algorithm 22: NaiveMulMerge

the results of two recursive calls are merged. As we would return (false, ∅) immedi-

ately after combination of monomials is detected, we first check if this happens before

merging the two product monomial sets. Due to the same reason, more parallelism

is allowed to be introduced to procedure MulMerge in Algorithm 21 than procedure

ParallelMinMerge in Algorithm 8. The objective of Algorithm 21 may be stated as

computing the union of two input monomial sets if they are disjoint. On the other

hand, if we want to compute the union of two sets no matter they are disjoint or not,

we should call Algorithm 8 with the relation � defined as equality test. As a result,

the four recursive calls in Line 6 to Line 9 are now performed concurrently. In the

case when one set is small and the other one is large, the two recursive calls (Line 17,

18 and Line 26, 27) are also performed parallelly. This leads to larger parallelism

than ParallelMinMerge (Algorithm 8).

6.2.8 Solving Coefficients of a Candidate Syntactic Factor-

ization

We discuss the parallelism of the procedure to compute or reject a candidate syntactic

factorization in this subsection. Its serial version has been presented by Proposition 6.

We will follow the same notation used in the proposition. Now we are given the set G

and set H satisfying the assumption of Proposition 6, the next thing to do is finding

the polynomial p such that it may admit a syntactic factorization. To set up the

system mentioned in Proposition 6, we do a binary search to locate |G|·|H|monomials

in monoms(f). These binary search can be performed concurrently on each of these

|G| · |H| monomials. Once the system is set up, as described in Proposition 6, one

can freely set g1 to 1 since the coefficients are in a field. After that, we can parallelly

deduce h1, . . . , hb. By h1, parallelly to each i, we can then obtain gi and then check if

66

gi hj lead to a solution for all j. However, the parallel version has not been included in

the current implementation and our benchmarks are done without this parallelization.

Therefore, we only mention the possible parallelism without stating detail algorithms.

6.2.9 Updating Hypergraph by a Syntactic Factorization

Once a syntactic factorization has been established, the hypergraph should be up-

dated accordingly. We state this problem formally as the following. Given a set of

monomials N and a set of hyperedges E , we wish to remove from each hyperedge

those elements that after multiplying with its defining monomial result a monomial

in set N . That is, for each hyperedge Eq = {m1,m2, . . . ,mk}, we want to remove

from it mi, i = 1, . . . , k such that mi q ∈ N . Serially, it can be done via a straight

forward algorithm stated by Algorithm 24. The parallel algorithm can be obtained

by simply applying the divide-and-conquer strategy. We state it by Algorithm 23.

An interesting feature of this parallel algorithm is that it does not require to merge

the results of the recursive calls.

We mention one implementation technique of the operation that removes one

monomial from a hyperedge in Line 5 of Algorithm 24. Theoretically, there should

be no data race if two threads concurrently remove two different monomials from

the hyperedge. However, recall that the collection of monomials in a hyperedge is

encoded by a bitvector. Thus to remove a monomial from a hyperedge we unset its

corresponding bit in the bitvector. This may cause data race on the array encoded

bitvector. For example, if two monomials correspond to two bits that reside in the

same word and two independent threads are trying to remove these two monomials

respectively. These two threads are going to write to the same word concurrently. Due

to this reason, our class bitvector supports two types of operation unset, the common

serial version and a thread-safe version. The thread safe version is implemented by

atomic operation such that before modifying a certain bit, a thread locks the word

where this bit resides. The lock is released when the thread finishes modifying the

word.

6.2.10 Syntactic Decomposition

For the current implementation, the parallelization of Algorithm 6 SyntacticDecompo-

sition is simply realized by making the for loop at Line 6 a parallel for loop. This paral-

lelization is straight forward as all the syntactic factorizations (gi, hi) for i = 1, 2, . . . , e

are independent from each other. Thus the computation on each syntactic factoriza-

67

Input : a set of monomials N , a set of hyperedges E
Output : for each Eq ∈ E , Eq ← Eq \ {m ∈ Eq | mq ∈ N}

1 if |N | ≤ UPDATE BASE and |E| ≤ UPDATE BASE then
2 return NaiveUpdate(N, E);

3 else if |N | > UPDATE BASE and |E| > UPDATE BASE then
4 (N−, N+)← Split(N);
5 (E−, E+)← Split(E);
6 spawn Update(N−, E−);
7 spawn Update(N−, E+);
8 spawn Update(N+, E−);
9 spawn Update(N+, E+);

10 sync;

11 else if |N | > UPDATE BASE and |E| ≤ UPDATE BASE then
12 (N−, N+)← Split(N);
13 spawn Update(N−, E);
14 spawn Update(N+, E);
15 sync;

16 else
17 (E−, E+)← Split(E);
18 spawn Update(N, E−);
19 spawn Update(N, E+);
20 sync;

Algorithm 23: Update

Input : a set of monomials N , a set of hyperedges E
Output : for each Eq ∈ E , Eq ← Eq \ {m ∈ Eq | mq ∈ N}

1 for i← 1 to |N | do
2 for j ← 1 to |E| do
3 q ← defining monomial of Ej;
4 if q |Ni then
5 Ej ← Ej \ {Ni/q};

Algorithm 24: NaiveUpdate

68

tions can be made concurrent. Ideally, we also wish to make this parallelization a

divide-and-conquer algorithm such that the cache locality could be exploited better.

However, to split a set of syntactic factorizations evenly in the sense that the work

intended to be done on the two resulting halves are balanced requires much more care

than splitting a set of monomials or hyperedges. Furthermore, the base case should

not only been decided by the cardinality of the set. Indeed, as we would like the

base case computation fits into cache while performs enough work to reduce parallel

overhead, the parameters to decide a base case should contain at least the number of

terms, the degree of each (gi, hi) and of course the number of syntactic factorizations.

For now we simply spawn all syntactic factorizations and rely on the Cilk++ scheduler

to balance the work between processors. Further research needs to be done on the

divide-and-conquer parallelization of this top level algorithm.

69

Chapter 7

Evaluation Scheduling

In this chapter, we describe how to statically compute a schedule for efficient par-

allel evaluation of a syntactic decomposition. Recall that, by definition, a syntac-

tic decomposition is a binary tree whose internal nodes are operators +,−,× and

whose leaves belong to K ∪ X. As mentioned in (Subsection 6.1.3 p. 47), at im-

plementation level, a syntactic decomposition is represented by the data structure

SynDecomposition. With procedure ExpressionTree (Algorithm 5 p. 39) at hand, fol-

lowing the Formula (6.1) (p. 49), we recursively convert a syntactic decomposition

encoded by a SynDecomposition object to a binary tree, represented by an SLP (data

structure presented in Section 2.2).

After eliminating common subexpressions (for instance by Algorithm 1 p. 18), a

binary tree becomes a directed acyclic graph (DAG) which can be evaluated in its

topological ordering. However, targeting multi-core platforms, our objective is to

decompose a DAG into p sub-DAGs for a given parameter p, the number of available

processors. The requirement on these sub-DAGs is that the evaluation of one sub-

DAG does not depend on the evaluation of the other. which guarantees the correctness

of DAG evaluation on multi-processors. We also expect that these sub-DAGs to be

balanced in size such that the “span” of the intended parallel evaluation is minimized.

Roughly, a schedule, a finite set of sub-DAGs, is generated in two steps. We first

collect all common subexpressions, and treat them as leaves. Then the problem of

scheduling DAGs reduces to that of scheduling binary trees, where broadcasting com-

mon subexpressions may be necessary. We explain this with the following example.

Example 8. The DAG on the left in Figure 7.1 represents the polynomial

abc(d + e) + f(abc + h),

70

where the shaded nodes represent the common subexpression abc. We evaluate this

×

×

f +

×

h × +

c × d e

a b

×

c ×

a b

×

×

f +

×

h g g +

d e

Figure 7.1: Evaluate a DAG in two steps

DAG in two steps. First the common subexpression abc is separated. Then the eval-

uation of the binary tree on the right is considered, where the common subexpression

abc is treaded as an input leaf labelled as g. This may also be understood as adding

an additional line g = abc into the equivalent SLP of the input DAG.

From now on, we concentrate on the following question. Let T be a binary tree.

Given a fixed parameter p, the number of subprograms intended, we describe a way

to partition T into p groups of subtrees of T such that each group can be evaluated

independently. More precisely, G = {G1, . . . , Gp} is p-schedule of T if

(1) Gi is a set of maximal subtrees of T for all i,

(2) no node in Gi appears in Gj for all i 6= j,

where a subtree of T is maximal if it contains all the children of its root node. Before

presenting the algorithm in detail, we introduce some notations.

Definition 12 (the load of a node). We assume that there are two constants, ADD

and MULT representing the cost to perform an addition or an multiplication in the

field K respectively. For each node t in a binary tree T , we associate to it a cost

load(t) as follows.

� If t is an element in K or a variable in X, then the load of t is defined as 0;

� if t is an addition node with first operand t1 and second operand t2, then the load

of t is the sum of the load of these two operands plus an addition cost, written

as
load(t) = load(t1) + load(t2) + ADD;

71

� if t is a multiplication node with first operand t1 and second operand t2, then

the load of t is the sum of the load of these two operands plus an multiplication

cost, written as
load(t) = load(t1) + load(t2) + MULT.

The load of a maximal subtree G of a binary tree T , denoted by load(G), is defined

as the load of its root. Note that T is a maximal subtree of itself. The load of all

nodes can be computed by traversing the binary tree once, illustrated by the following

example.

Example 9. We compute the load of each node in the binary tree in Figure 7.1. We

assume we are in a field where the cost to perform an addition or multiplication can

be counted as unit cost. The load of each node is marked inside the node in the right

part of Figure 7.2.

×

×

f +

×

h g g +

d e

5

2

0 1

2

0 0 0 1

0 0

Figure 7.2: The load of nodes in a binary tree.

The load of a set of maximal subtrees is defined as the sum of the load of each

subtree. More precisely, let G = {T1, T2, . . . , Tk}, where each Ti for i = 1, . . . , k is a

maximal subtree. The load of G is defined as

load(G) =
∑

1≤i≤k

load(Ti).

More generally, the load of a p-schedule G = {G1, . . . , Gp} of a binary tree T is defined

as

load(G) =
∑

1≤i≤p

load(Gi).

Note that there are usually some nodes of T which do not belong to any subtree in

the p-schedule G, and they may be regarded as synchronization nodes. Clearly, the

inequality load(G) ≤ load(T) holds.

72

Given a scheduling G of a binary tree T , the objective is to minimize the span of

G with respect to T , defined as

span(G) = max
1≤i≤p

load(Gi) + load(T)− load(G) (7.1)

Formula (7.1) can be understood as the following. To evaluate a binary tree T using

p processors, given a p-schedule G = {G1, . . . , Gp} of T , we assign each Gi for i =

1, . . . , p to one of p processors. These evaluation can be done concurrently. After all

the nodes in the p-schedule G have been evaluated, we sequentially evaluate the rest

nodes of T that are not included in G.

Assume that each node t in T is associated with its load. Now we describe how

to obtain a p-schedule of T .

By choosing a cut-off value K > 0, with a tree traversal, one can find the set M

of the maximal subtrees of T such that each root of the maximal subtree has load at

most K (Algorithm 26). Then we construct the set

L = {load(m) | m ∈M}

(assume that subtrees have different load, otherwise use a multi-set instead). It is not

hard to see that a partition of L with size p produces a p-schedule of T . However,

finding a balanced partition of L is hard, and this is the well-known multiproces-

sor scheduling problem, which is an NP-complete problem. Fortunately, the simple

LPT-algorithm (Longest Processing Time) achieves a partition within a factor 4/3

of optimal [29], and the formal algorithm to produce a p-schedule of a binary tree is

given by Algorithm 25 and Algorithm 26.

In summary, to minimize span(G), one need to balance the load among all Gi’s

while keeping load(G) close to load(T). We set the cut-off value K = ⌈load(T) / p⌉,

the average number of nodes in a group, and expect this cut-off value works well in

practice as observed in our experimentation.

Example 10. Consider a binary tree T with load 615 as in Figure 7.3. For p = 4,

the cut-off value for this binary tree is ⌈load(T) / p⌉ = ⌈615 / 4⌉ = 154. The load of

the roots of maximal subtrees discovered are

L = {22, 80, 126, 29, 52, 13, 101, 121, 18, 44},

which can be partitioned, by the LPT algorithm, into four groups {126, 22}, {121, 29},

{101, 44, 13}, {80, 52, 18} with load 148, 150, 158, 150, respectively. The total load

73

Input : a binary tree T , the number of intended sub-trees p
Output : a p-schedule of T

1 K ← ⌈load(T)/p⌉;
2 M ← MaximalTreeRoots(T, K);
3 for i← 1 to p do
4 Gi ← ∅;
5 load(Gi)← 0;

6 sort M decreasingly by the load of each node;
7 for i← 1 to |M | do
8 find j such that Gj has the minimal load;
9 add the maximal tree with root Mi to Gj;

10 load(Gj)← load(Gj) + load(Mi) ;

11 return {G1,G2, . . . ,Gp};

Algorithm 25: ScheduleBinaryTree

Input : a binary tree T , a cut-off value K
Output : a set of nodes each of which as the root of a maximal

subtree has load less than K

1 if load(T) ≤ K then
2 return {Root(T)};

3 else
4 Mℓ ← MaximalTreeRoots(Tℓ);
5 Mr ← MaximalTreeRoots(Tr);
6 return Mℓ ∪Mr;

Algorithm 26: MaximalTreeRoots

615

313 301

260 52 256 44

22 237 237 18

207 29 13 223

80 126 101 121

Figure 7.3: A portion of a binary tree with 615 nodes. Each shaded node is the root
of a maximal subtree, with children omitted.

74

of nodes which do not appear in any subtrees is 9, and the span of this schedule is

158 + 9 = 167.

As of implementation, given an input DAG, we first evaluate its common subex-

pressions and then evaluate the p-schedule of the resulting binary tree. Thus after

a p-schedule has been computed, we reorder the array representing the input DAG

such that common subexpressions appear together, followed by p groups of nodes.

This reordering allows cache-efficient evaluations of the DAG and potentially reduces

false sharings among different processors.

75

Chapter 8

Experimentation

In this section we discuss the performances of different software tools for reducing the

evaluation cost of large polynomials. These tools are based respectively on a multi-

variate Horner’s scheme [13], the optimize function with tryhard option provided

by the computer algebra system Maple and our algorithm presented in Chapter 4 and

Chapter 6. As described in the introduction, we use the evaluation of resultants of

generic polynomials as a driving example. Our input is taken as the resultant of two

generic univariate polynomials with degrees ranging from 4 to 8. For larger generic

resultant, we are not aware of any software that can finish computing it (mainly due

to memory exhaustion). We have implemented our algorithm in the Cilk++ program-

ming language. We report on different performance measures of our optimized DAG

representations as well as those obtained with the other software tools.

8.1 Evaluation Cost

After a syntactic decomposition of the input polynomial is obtained, we eliminate

common subexpressions in it to further reduce its evaluation cost. As a result, while

talking about the output size, there are two columns, one before and one after the

common subexpression elimination. We count each arithmetic operation (addition,

multiplication) to the same unit cost.

Table 8.1 shows the cost to evaluate the representation of the resultant R(a, b) of

two generic polynomials a = amxm + · · · + a0 and b = bnxn + · · · + b0 of degrees m

and n, after optimized by different approaches. The first two columns of Table 8.1

gives m and n. The third column indicates the number of monomials appearing in

R(a, b). The number of arithmetic operations required to evaluate the input poly-

nomial naively term by term, as computed by Maple, is given by the fourth col-

76

umn Input. The fifth column Horner is the evaluation cost of the polynomial after

Maple’s multivariate Horner’s rule is applied. The sixth column tryhard records the

evaluation cost after Maple’s optimize function with the tryhard option is applied.

This command has integrated multivariate Horner’s scheme, common subexpression

elimination technique and some heuristic methods. The last two columns reports the

evaluation cost of the syntactic decomposition of the input polynomial computed by

Algorithm 6, before and after removing common subexpressions. We notice that in

our tested examples, the cost to evaluate a syntactic decomposition can be reduced by

at least a half by applying this post-processing technique (for which we use standard

techniques running in time linear w.r.t. input size). The typical output of these opti-

mization tools has been shown in Appendix A (p. 104). We note that the evaluation

cost of the representation returned by SD + CSE is less than the ones obtained with

the Horner’s rule and Maple’s optimize function.

m n #Mon Input Horner tryhard SD SD + CSE
4 4 219 1,876 977 620 899 549
5 4 549 5,199 2,673 1,496 2,211 1,263
5 5 1,696 18,185 7,779 4,056 7,134 3,543
6 4 1,233 13,221 6,539 3,230 4,853 2,547
6 5 4,605 54,269 22,779 10,678 18,861 8,432
6 6 14,869 190,890 69,909 31,760 63,492 24,701
7 4 2,562 30,438 14,948 6,707 9,862 4,905
7 5 11,380 146,988 61,399 27,363 45,546 19,148
7 6 43,166 601,633 219,341 - 179,870 65,770
7 7 145,330 2,166,653 697,743 - 627,584 206,840
8 4 4,970 63,731 19,547 12,191 18,730 8,826
8 5 25,917 359,487 106,800 - 101,327 39,816
8 6 114,080 1,700,662 498,410 - 464,593 157,312
8 7 441,145 7,028,510 2,042,037 - 1,863,653 565,020
8 8 1,524,326 25,838,829 * - 6,648,972 1,844,464

* means that the computation is killed due to 0% CPU usage and 90% memory usage.

- means that the computation does not terminate after 5 days.

Table 8.1: Cost to evaluate resultants by different approaches

We also generated some examples other than resultants to test the output size of

out algorithm. Those input data are generated by randomly taking the product or

sum of a certain number of random forms. We expect more sophisticated syntactic

factorizations can be extracted from these input polynomials than generic resultants.

It has been shown in Table 8.2 that at these input our algorithm performs much

better than the other two approaches.

77

#Mon Input Horner tryhard SD SD + CSE
2,000 23,624 12,907 4,079 4,950 1,681
3,125 46,874 26,215 6,320 7,890 3,200
3,750 54,374 30,877 7,929 12,193 4,445
6,245 93,679 42,462 14,147 13,613 6,405
9,065 132,093 55,537 17,375 19,222 9,034

15,121 227,242 106,076 29,709 36,529 16,614

Table 8.2: Cost to evaluation hand made input polynomials

8.2 Timing to Optimize Large Polynomials

Table 8.3 shows the timing in seconds that each approach takes to optimize the poly-

nomials analyzed in Table 8.1. The first three columns of Table 8.3 have the same

meaning as in Table 8.1. The columns Horner, tryhard show the timing of opti-

mizing these polynomials. The last column SD shows the timing of our parallelized

procedure SyntacticDecomposition to produce the syntactic decompositions with our

Cilk++ implementation running on 1 core. All the sequential benchmarks (Horner,

tryhard) were conducted on a 64bit Intel Quad CPU 2.40 GHZ machine with 4 MB

L2 cache and 3 GB main memory. The parallel benchmarks were carried out on a

machine with 8 Quad Core AMD Opteron 8354 @ 2.2 GHz connected by 8 sock-

ets. Each core has 64 KB L1 data cache and 512 KB L2 cache. Every four cores

share 2 MB of L3 cache. The total memory is 128.0 GB. Note that in Table 8.3,

our implementation SD is conducted on a different machine with the other two com-

pared approaches Horner and tryhard. However, running on 1 core, this machine

is actually the weaker one. We have tested our program on the same machine (also

running on 1 core) with the one on which the other two methods are conducted. For

(m,n) = (7, 6), our computation terminates in 273.188 seconds. For (m,n) = (7, 7),

it terminates in 2868.011 seconds.

As the input size grows, the timing of the Maple Optimize command (with

tryhard option) grows dramatically and takes more than 40 hours to optimize the

resultant of two generic polynomials with degrees 6 and 6. For the generic polynomials

larger than degree 7 and 6, it does not terminate after 136 hours. For the input (7, 6),

our algorithm completes within 7 minutes on one core. For the largest input (8, 8),

even Horner’s rule, which is known for its efficiency, would not process it due to

memory problem.

We report the parallel time of our algorithm in Table 8.4. The first three columns

of Table 8.4 have the same meaning as in Table 8.1. The last six columns shows

78

m n #Mon Horner tryhard SD
4 4 219 0.116 7.776 0.028
5 4 549 0.332 49.207 0.080
5 5 1,696 1.276 868.118 0.617
6 4 1,233 0.988 363.970 0.409
6 5 4,605 4.868 8,658.037 4.820
6 6 14,869 24.378 145,602.915 43.764
7 4 2,562 4.377 1,459.343 2.407
7 5 11,380 24.305 98,225.730 33.156
7 6 43,166 108.035 >5 days 404.708
7 7 145,330 191.184 >5 days 4,252.534
8 4 4,970 3.744 6,528.992 8.497
8 5 25,917 23.858 >5 days 189.259
8 6 114,080 145.385 >5 days 3,240.737
8 7 441,145 930.966 >5 days 45,380.056
8 8 1,524,326 * >5 days 494,362.097

* means that the computation is killed due to 0% CPU usage and 90% memory usage.

Table 8.3: Timing to optimize large polynomials

the timing of our algorithm running on 1, 2, 4, 8, 16 and 32 cores respectively.

On large enough input, our implementation shows a near linear speedup when the

number of available processors is within 16. However, the speedup does not scale

linearly anymore when the number of processors grows up to 32. For example, on

the input (8, 7), we achieve speedup around 19 when using 20 cores. The largest

speedup is 26 when 30 cores are available. However, with 32 cores the speedup is

also around 26 though we have abundant parallelism (11444) according to Cilkview.

In the following Figure 8.1, we also notice that the ideal parallelism and the lower

performance bound estimated by Cilkview are very high but our measured speedup

curve is lower than the lower performance bound. We attribute this performance

degradation to parallel overhead due to unbalanced load between processors. With

a project of this size, the data movement from one procedure to another would also

contribute to its performance.

We point out the following possible improvement of parallelizing the computation

of a syntactic decomposition. The most effective one we believe would be design-

ing a reasonable divide-and-conquer algorithm to parallelize the top level algorithm

SyntacticDecompostition (Algorithm 6). For now, our implementation to parallelize

Algorithm 6 is simply making the for loop at its Line 6 a parallel for loop. This paral-

lelization is straight forward and should have the same span as a possible divide-and-

79

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Cores

Computing the syntactic decomposition of degree pattern (7, 7)

Lower Performance Bound
Measured Speedup

Parallelism = 3755, Ideal Speedup

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Cores

Computing the syntactic decomposition of degree pattern (8, 7)

Lower Performance Bound
Measured Speedup

Parallelism = 11444, Ideal Speedup

Figure 8.1: Scalability analysis for parallelized SyntacticDecomposition by Cilkview

80

m n #Mon 1-core 2-core 4-core 8-core 16-core 32-core

4 4 219 0.028 0.021 0.015 0.014 0.019 0.036
5 4 549 0.080 0.052 0.037 0.038 0.042 0.067
5 5 1,696 0.617 0.333 0.197 0.164 0.126 0.183
6 4 1,233 0.409 0.237 0.144 0.107 0.107 0.157
6 5 4,605 4.820 2.502 1.498 0.818 0.571 0.597
6 6 14,869 43.764 22.319 11.295 6.013 3.422 2.517
7 4 2,562 2.407 1.119 0.603 0.371 0.308 0.346
7 5 11,380 33.156 16.579 8.629 4.608 2.668 1.974
7 6 43,166 404.708 204.736 105.188 53.336 28.147 16.785
7 7 145,330 4,252.534 2,117.413 1,065.108 540.890 287.396 178.443
8 4 4,970 8.497 4.257 2.289 1.361 0.867 0.773
8 5 25,917 189.259 95.391 48.601 24.968 13.901 8.581
8 6 114,080 3,240.737 1,631.613 817.980 412.707 214.442 126.666
8 7 441,145 45,380.056 22,846.633 11,259.994 5,601.333 2,922.776 1,747.997
8 8 1,524,326 494,362.097 254,547.387 128,589.919 63,356.012 33,261.262 19,804.056

Table 8.4: Speedup of parallel SyntacticDecomposition

conquer realization. However, according to the documentation of Cilk++ ([16]), the

compiler executes a parallel for loop by generating a divide-and-conquer recursion.

This transformation would in general work well on inputs where simply partition-

ing the for loop into two halves would create two balanced computational branches.

Our case is on the contrary. As Algorithm 3 is developed following greedy strategy,

the intended computations on the syntactic factorizations returned by it are highly

unbalanced. Relying on the work stealing scheduler of Cilk++ to balance these com-

putations causes parallel overhead and therefore prevents the implementation from

achieving linear speedup on cores more than 30. Another possible improvement would

be parallelizing the process to solve the system mentioned in Proposition 6. The way

to parallelize it has been suggested at Subsection 6.2.8.

8.3 Evaluation Schedule

We report in this section the evaluation schedule computed by Algorithm Schedule

from syntactic decompositions of the generic resultants described at Section 8.1. In

Table 8.5 and Table 8.6, the columns m and n are the degrees of generic polyno-

mials whose resultants we are taking as input. The column T records the size of

a syntactic decomposition after removing of common subexpressions, counting the

number of operations. The column T ′ indicates the number of nodes got scheduled

by ScheduleBinaryTree as defined in Chapter 7. The last column indicates the number

of operations in each group of the computed 4-schedule and 8-schedule.

For p = 4 and 8, we notice that the value T − T ′ − #CS is less than 0.5% of

81

m n T #CS T ′ 4-schedule
6 5 8510 1455 7030 1760, 1761, 1755, 1754
6 6 24820 4491 20294 5082, 5069, 5072, 5071
7 5 19293 3169 16073 4029, 4012, 4017, 4015
7 6 66022 11167 54792 13694, 13699, 13717, 13682
7 7 207289 35096 172073 43195, 42981, 42949, 42948
8 5 40051 6812 33186 8305, 8287, 8292, 8302
8 6 157784 28461 129217 32347, 32289, 32281, 32300
8 7 565909 103311 462395 115625, 115589, 115603, 115578
8 8 1846280 345446 1500295 375772, 374969, 374779, 374775

Table 8.5: Parallel evaluation 4-schedule

m n T #CS T ′ 8-schedule
6 5 8510 1455 7015 879, 877, 873, 871, 874, 884, 881, 876
6 6 24820 4491 20277 2514, 2579, 2513, 2538, 2538, 2514, 2552, 2529
7 5 19293 3169 16053 2000, 2005, 2002, 2009, 2007, 2002, 2025, 2003
7 6 66022 11167 54773 6846, 6856, 6836, 6836, 6845, 6843, 6850, 6861
7 7 207289 35096 172052 21491, 21578, 21457, 21485, 21449, 21489, 21646, 21457
8 5 40051 6812 33172 4145, 4138, 4144, 4159, 4145, 4153, 4157, 4131
8 6 157784 28461 129198 16140, 16162, 16128, 16159, 16137, 16188, 16148, 16136
8 7 565909 103311 462368 57826, 57949, 57741, 57817, 57742, 57741, 57806, 57746
8 8 1846280 345446 1500270 187461, 187465,187492, 187456, 187513, 187585, 187469, 187829

Table 8.6: Parallel evaluation 8-schedule

T for all the schedules. It indicates that except those common expressions, most of

nodes in these syntactic decompositions got scheduled for parallel evaluation. On the

other hand, the load of each schedule is close to the other, which indicates that the

amount of work assigned to p different processors are balanced. Hence, the method

described before works very well for the syntactic decompositions of generic resultants.

However, if we serially compute these common subexpressions prior to all the other

operations, it would eventually dominant the span of the resulting schedule as the

number of processors grows. Therefore, we suggest future work to further discover

the dependency between common subexpressions and the other operations and among

common subexpressions themselves.

m n #point Input SD SD+CSE 4-schedule
6 5 10K 14.490 2.675 1.816 0.997
6 6 10K 57.853 18.618 4.281 2.851
7 5 10K 46.180 11.423 4.053 2.104
7 6 10K 190.397 54.552 13.896 8.479

6 5 10K 6.611 1.241 0.836 0.435

Table 8.7: Timing to evaluate large polynomials at 10K Points

We generated 4-schedules of our syntactic decompositions and compared with

three other methods for evaluating our test polynomials on a large number of uni-

82

m n #point Input SD SD+CSE 4-schedule
6 5 100K 144.838 26.681 18.103 9.343
6 6 100K 577.624 185.883 42.788 28.716
7 5 100K 461.981 114.026 40.526 19.560
7 6 100K 1902.813 545.569 138.656 81.270
6 5 100K 66.043 12.377 8.426 4.358

Table 8.8: Timing to evaluate large polynomials at 100K Points

formly generated random points over Z/pZ where p = 2147483647 is the largest 31-bit

prime number. Our experimental data are summarized in Table 8.7 and Table 8.8.

Out the four different evaluation methods, the first three are sequential and are based

on the following representations: the original input polynomial Input, the syntactic

decomposition SD, the common subexpression elimination technique applied syntac-

tic decomposition SD + CSE. The last method uses the 4-schedule generated from

the representation of the third method SD + CSE. All these evaluation schemes

are automatically generated as a list of SLPs. When an SLP is generated as one

procedure in a source file, the file size grows linearly with the number of lines in this

SLP. We observe that gcc 4.2.4 failed to compile the resultant of generic polynomials

of degree 6 and 6 (the optimization level is 2). In Table 8.7 and Table 8.8, we report

the timings of the four approaches to evaluate the input at 10K and 100K points

respectively. The first four data rows report timings where the gcc optimization level

is 0 during the compilation, and the last row shows the timings with the optimization

at level 2. We observe that the optimization level affects the evaluation time by a

factor of 2, for each of the four methods. Among the four methods, the 4-schedule

method is the fastest and it is about 20 times faster than the first method.

83

Chapter 9

Parallel Computation of the

Minimal Elements of a Partially

Ordered Set

Inspired by the computation of base monomial set, we are lead to a more general

question: how to compute the minimal elements in a partially ordered set? In [43],

a joint work with Charles E. Leiserson, Marc Moreno Maza and Yuzhen Xie, we

propose a cache-friendly parallel algorithm to solve this general problem and report

on its application to the transversal hypergraph generation. This Chapter and the

presentation of Algorithm 8 in Chapter 6 are essentially taken from [43].

Partially ordered sets arise in many topics of mathematical sciences. Typically,

they are one of the underlying algebraic structures of a more complex entity. For

instance, a finite collection of algebraic sets V = {V1, . . . , Ve} (subsets of some affine

space Kn where K is an algebraically closed field) naturally forms a partially ordered

set (poset, for short) for the set-theoretical inclusion. Removing from V any Vi

which is contained in some Vj for i 6= j is an important practical question which

simply translates to computing the maximal elements of the poset (V,⊆). This simple

problem is in fact challenging since testing the inclusion Vi ⊆ Vj may require costly

algebraic computations. Therefore, one may want to avoid unnecessary inclusion

tests by using an efficient algorithm for computing the maximal elements of the poset

(V,⊆). However, this problem has received little attention in the literature [15] since

the questions attached to algebraic sets (like decomposing polynomial systems) are

of much more complex nature.

Another important application of the calculation of the minimal elements of a fi-

nite poset is the computation of the transversal of a hypergraph [4, 31], which itself has

84

numerous applications, like artificial intelligence [20], data mining [30], computational

biology [32], mobile communication systems [55], etc. For a given hypergraph H, with

vertex set V , the transversal hypergraph Tr(H) consists of all minimal transversals of

H: a transversal T is a subset of V having nonempty intersection with every hyper-

edge of H, and is minimal if no proper subset of T is a transversal. Articles discussing

the computation of transversal hypergraphs, as those discussing the removal of the

redundant components of an algebraic set generally take for granted the availability

of an efficient routine for computing the maximal (or minimal) elements of a finite

poset.

Today’s parallel hardware architectures (multi-cores, graphics processing units,

etc.) and computer memory hierarchies (from processor registers to hard disks via

successive cache memories) enforce revisiting many fundamental algorithms which

were often designed with algebraic complexity as the main complexity measure and

with sequential running time as the main performance counter. In the case of the

computation of the maximal (or minimal) elements of a poset this is, in fact, almost

a first visit. Up to our knowledge, there is no published papers dedicated to a general

algorithm solving this question. The procedure analyzed in [41] is specialized to

posets that are Cartesian products of totally ordered sets.

In this section, we propose an algorithm for computing the minimal elements of

an arbitrary finite poset. Our motivation is to obtain an efficient implementation in

terms of parallelism and data locality. This divide-and-conquer algorithm, presented

in Section 9.1, follows the cache-oblivious philosophy introduced in [23]. Referring

to the multithreaded fork-join parallelism model of Cilk [24], our algorithm has work

O(n2) and span (or critical path length) O(n), counting the number of comparisons,

on an input poset of n elements. A straightforward algorithmic solution with a span

of O(log(n)) can be achieved in principle. This algorithm does not, however, take ad-

vantage of sparsity in the output, where the discovery that an element is nonminimal

allows it to be removed from future comparisons with other elements. Our algorithm

eliminates nonminimal elements immediately so that no work is wasted by comparing

them with other elements. Moreover, our algorithm does not suffer from determinacy

races and can be implemented in Cilk with sync as the only synchronization primi-

tive. Experimental results show that our code can reach linear speedup on 32 cores

for n large enough.

In several applications, the poset is so large that it is desirable to compute its

minimal (or maximal) elements concurrently to the generation of the poset itself,

thus avoiding storing the entire poset in memory. Apart from its application to the

85

computation of base monomial set introduced in Subsection 6.2.2, we illustrate this

strategy with its another important applications transversal hypergraph generation

in Section 9.4. In both applications, we generate the poset in a divide-and-conquer

manner and at the same time we compute its minimal elements. Since, for these two

applications, the number of minimal elements is in general much smaller than the

poset cardinality, this strategy turns out to be very effective and allows computations

that could not be conducted otherwise.

9.1 The Algorithm

In this section, we formally review the notion of a partially ordered set and the notion

of minimal elements. Let X be a set and � be a partial order on X , that is, a binary

relation on X which is reflexive, antisymmetric, and transitive. The pair (X ,�) is

called a partially ordered set, or poset for short. If A is a subset of X , then (A,�) is

the poset induced by (X ,�) on A. When clear from context, we will often write A

instead of (A,�). Here are a few examples of posets:

1. (Z, |) where | is the divisibility relation in the ring Z of integer numbers,

2. (2S,⊆) where ⊆ is the inclusion relation in the ranked lattice of all subsets of a

given finite set S,

3. (C,⊆) where ⊆ is the inclusion relation for the set C of all algebraic curves in

the affine space of dimension 2 over the field of complex numbers.

An element x ∈ X is minimal for (X ,�) if for all y ∈ X we have: y�x ⇒ y = x.

The set of the elements x ∈ X which are minimal for (X ,�) is denoted by Min(X ,�),

or simply Min(X). From now on we assume that X is finite.

Algorithms 27 and 28 compute Min(X) respectively in a sequential and parallel

fashion. Algorithm 27 illustrates a straight-forward sequential implementation of

the computation of Min(A), which follows from this trivial observation: an element

ai ∈ A is minimal for � if for all j 6= i the relation aj � ai does not hold. However,

Algorithm 27 can not be parallelized while taking advantage of the sparsity in the

output. In addition, unless the input data fits in cache, Algorithm 27 is not cache-

efficient. We shall return to this point in Section 9.2 where cache complexity estimates

are provided.

Algorithm 28 follows the cache-oblivious philosophy introduced in [23]. More

precisely, and similarly to the matrix multiplication algorithm of [23], Algorithm 28

86

Input : a poset A
Output : Min(A)

1 for i from 0 to |A|−2 do
2 if ai is unmarked then
3 for j from i+1 to |A|−1 do
4 if aj is unmarked then
5 if aj � ai then
6 mark ai and break inner loop;

7 if ai� aj then
8 mark aj;

9 A← {unmarked elements in A};
10 return A;

Algorithm 27: SerialMinPoset

Input : a poset A
Output : Min(A)

1 if |A| ≤ MIN BASE then
2 return SerialMinPoset(A);

3 (A−, A+)← Split(A);
4 A− ← spawn ParallelMinPoset(A−);
5 A+ ← spawn ParallelMinPoset(A+);
6 sync;
7 (A−, A+)← ParallelMinMerge(A−, A+);
8 return Union(A−, A+);

Algorithm 28: ParallelMinPoset

proceeds in a divide-and-conquer fashion such that when a subproblem fits into the

cache, then all subsequent computations can be performed with no further cache

misses. However, Algorithm 28, and other algorithms in this paper, use a threshold

such that, when the size of the input is within this threshold, then a base case

subroutine is called. In principle, this threshold can be set to the smallest meaningful

value, say 1, and thus Algorithm 28 is cache-oblivious. In a software implementation,

this threshold should be large enough so as to reduce parallelization overheads and

recursive call overheads. Meanwhile, this threshold should be small enough in order

to guarantee that, in the base case, cache misses are limited to cold misses. In the

implementation of the matrix multiplication algorithm of [23], available in the Cilk++

distribution, a threshold is used for the same purpose.

87

In Algorithm 28, when |A| ≤ MIN BASE, where MIN BASE is the threshold, Algo-

rithm 27 is called. Otherwise, we partition A into a balanced pair of subsets A−, A+.

By balanced pair, we mean that the cardinalities |A−| and |A+| differ at most by 1.

The two recursive calls on A− and A+ in Lines 4 and 5 of Algorithm 28 will compare

the elements in A− and A+ separately. Thus, they can be executed in parallel and

free of data races. In Lines 4 and 5 we overwrite each input subset with the corre-

sponding output one so that at Line 6 we have A− = Min(A−) and A+ = Min(A+).

Line 6 is a synchronization point which ensures that the computations in Lines 4 and

5 complete before Line 7 is executed. At Line 7, cross-comparisons between A− and

A+ are made, by means of the operation ParallelMinMerge of Algorithm 8.

9.2 Complexity Analysis and Experimentation

We shall establish a worst case complexity for the work, the span of Algorithm 28

and the cache complexity of its C elision. More precisely, we assume that the input

poset of this algorithm has n ≥ 1 elements, which are pairwise incomparable for �,

that is, neither x� y nor y�x holds for all x 6= y. Our running time is estimated by

counting the number of comparisons, that is, the number of times that the operation

� is invoked. The costs of all other operations are neglected. The principle of

Algorithm 28 is similar to that of a parallel merge-sort algorithm with a parallel

merge subroutine, which might suggest that the analysis is standard. The use of

thresholds requires, however, a bit of care.

We introduce some notations. For Algorithms 27 and 28 the size of the input is

|A| whereas for Algorithms 8 and 7 the size of the input is |B| + |C|. We denote by

W1(n), W2(n), W3(n) and W4(n) the work of Algorithms 27, 28, 8 and 7, respectively,

on an input of size n. Similarly, we denote by S1(n), S2(n), S3(n) and S4(n) the span

of Algorithms 27, 28, 8 and 7, respectively, on an input of size n. Finally, we denote

by N2 and N3 the thresholds MIN BASE and MIN MERGE BASE, respectively.

Since Algorithm 7 is sequential, under our worst case assumption, we clearly have

W4(n) = S4(n) = Θ(n2). Similarly, we have W1(n) = S1(n) = Θ(n2).

Observe that, under our worst case assumption, the cardinalities of the input sets

B,C differ at most by 1, when each of Algorithms 8 and 7 is called. Hence, the work

of Algorithm 8 satisfies:

W3(n) =

{

W4(n) if n ≤ N3

4W3(n/2) otherwise.

88

This implies: W3(n) ≤ 4log2(n/N3)N2
3 for all n. Thus we have W3(n) = O(n2). On the

other hand, our assumption implies that every element of B needs to be compared

with every element of C. Therefore W3(n) = Θ(n2) holds. Now, the span satisfies:

S3(n) =

{

S4(n) if n ≤ N3

2S3(n/2) otherwise.

This implies: S3(n) ≤ 2log2(n/N3)N2
3 for all n. Thus we have S3(n) = O(nN3). More-

over, S3(n) = Θ(n) holds for N3 = 1.

Next, the work of Algorithm 28 satisfies:

W2(n) =

{

W1(n) if n ≤ N2

2W2(n/2) + W3(n) otherwise.

This implies: W2(n) ≤ 2log2(n/N2)N2
2 + Θ(n2) for all n. Thus we have W2(n) =

O(nN2) + Θ(n2).

Finally, the span of Algorithm 28 satisfies:

S2(n) =

{

S1(n) if n ≤ N2

S2(n/2) + S3(n) otherwise.

Thus we have S2(n) = O(N2
2 + nN3). Moreover, for N3 = N2 = 1, we have S2(n) =

Θ(n).

We proceed now with cache complexity analysis, using the ideal cache model

of [23]. We consider a cache of Z words where each cache line has L words. For sim-

plicity, we assume that the elements of a given poset are packed in an array, occupying

consecutive slots, each of size 1 word. We focus on the C elision of Algorithms 28 and

8, denoting by Q2(n) and Q3(n) the number of cache misses that they incur respec-

tively on an input data of size n. We assume that the thresholds in Algorithms 28

and 8 are set to 1. Indeed, Algorithms 27 and 7 are not cache-efficient. Both may

incur Θ(n2/L) cache misses, for n large enough, whereas Q2(n) ∈ O(n/L + n2/(ZL))

and Q3(n) ∈ O(n2/(ZL)) hold, as we shall prove now. Observe first that there exist

positive constants α2 and α3 such that we have:

Q2(n) =

{

Θ(n/L + 1) if n ≤ α2Z

2Q2(n/2) + Q3(n) + Θ(1) otherwise,

89

and:

Q3(n) =

{

Θ(n/L + 1) if n ≤ α3Z

4Q3(n/2) + Θ(1) otherwise.

This implies: Q3(n) ≤ 4log2(n/(α3Z))Θ(Z/L) for all n, since Z ∈ Ω(L2) holds. Thus we

have Q3(n) ∈ O(n2/(ZL)). We deduce:

Q2(n) ≤ 2kΘ(Z/L) +
∑i=k−1

i=0
2iQ3(n/2i) + Θ(2k)

where k = log2(n/(α2Z)). This leads to: Q2(n) ≤ O(n/L + n2/(ZL)). Therefore, we

have proved the following result.

Proposition 7. Assume that X has n ≥ 1 elements, such that neither x� y nor

y�x holds for all x, y ∈ X . Set the thresholds in Algorithms 28 and 8 to 1. Then,

the work and span of Min(X), as computed by Algorithm 28, are Θ(n2) and Θ(n)

respectively. The cache complexity of its C elision are O(n/L + n2/(ZL)).

We turn now our attention to experimentation. We have implemented the opera-

tion ParallelMinPoset of Algorithm 28 as a template function in Cilk++. It is designed

to work for any poset providing a method Compare(ai, aj) that, for any two elements

ai and aj, determines whether aj � ai, or ai� aj, or ai and aj are incomparable. Our

code offers two data structures for encoding the subsets of the poset X : one is based

on arrays and the other uses the bag structure introduced by the first Author in [44].

For the benchmarks reported in this section, X is a finite set of natural numbers

compared for the divisibility relation. For example, the set of the minimal elements

of X = {6, 2, 7, 3, 5, 8} is {2, 7, 3, 5}. Clearly, we implement natural numbers using

the type int of C/C++. Since checking integer divisibility is cheap, we expect that

these benchmarks could illustrate the intrinsic parallel efficiency of our algorithm.

We have benchmarked our program on sets of random natural numbers, with

sizes ranging from 50, 000 to 500, 000 on a 32-core machine. This machine has 8

Quad Core AMD Opteron 8354 @ 2.2 GHz connected by 8 sockets. Each core has 64

KB L1 data cache and 512 KB L2 cache. Every four cores share 2 MB of L3 cache.

The total memory is 128.0 GB. We have compared the timings with MIN BASE and

MIN MERGE BASE being 8, 16, 32, 64 and 128 for different sizes of input. As a result,

we choose 64 for both MIN BASE and MIN MERGE BASE to reach the best timing for

all the test cases.

Figure 9.1 shows the results measured by the Cilkview [33] scalability analyzer for

computing the minimal elements of 100, 000 and 500, 000 random natural numbers.

The reference sequential algorithm for the speedup is Algorithm 28 running on 1 core;

90

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Cores

Computing the minimal elements of 100,000 random natural numbers

Parallelism = 1001, Ideal Speedup
Lower Performance Bound

Measured Speedup

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Cores

Computing the minimal elements of 500,000 random natural numbers

Parallelism = 4025, Ideal Speedup
Lower Performance Bound

Measured Speedup

Figure 9.1: Scalability analysis for ParallelMinPoset by Cilkview

the running time of this latter code differs only by 0.5% or 1% from the C elision of

Algorithm 28. On 1 core, the timing for computing the minimal elements of 100, 000

and 500, 000 random natural numbers is respectively 260 and 6454 seconds, which is

slightly better (0.5%) than Algorithm 27. The number of minimal elements for the

two sets of random natural numbers is respectively 99, 919 and 498, 589. These results

demonstrate the abundant parallelism created by our divide-and-conquer algorithm

and the very low parallel overhead of our program in Cilk++. We have also used

Cilkview to check that our program is indeed free of data races.

91

9.3 Base Monomial Set Computation

Computation of the base monomial set as the set of all minimal elements in the

pairwise Gcd set where the partial order is defined as divisibility of monomials is an

inspiring application of algorithms proposed in the last section. As the Algorithms 9,

10, 11 and 12, have been presented in Chapter 6, we report in this section only the

performance of them.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Cores

Computing a base monomial set of 14869 monomials

Parallelism = 7366, Ideal Speedup
Lower Performance Bound

Measured Speedup

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Cores

Computing a base monomial set of 38860 monomials

Parallelism = 121798, Ideal Speedup
Lower Performance Bound

Measured Speedup

Figure 9.2: Scalability analysis for ParallelBaseMonomials by Cilkview

Figure 9.2 gives the scalability analysis results by Cilkview for computing the base

monomial sets of two large monomial sets. The first one has 14869 monomials with

28 variables; its number of minimal elements here 14. Both thresholds MIN BASE and

92

MIN MERGE BASE are set to 64. Its timing on 1 core is about 3.5 times less than the

serial loop method, which is the function SerialInnerBaseMonomials. Using 32 cores we

gain a speedup factor of 27 with respect to the timing on 1 core. Another monomial

set has 38860 monomials with 30 variables. There are 15 minimal elements. The

serial loop method for this case aborted due to memory allocation failure. However,

our parallel execution reaches a speedup of 30 on 32 cores. We also notice that the

ideal parallelism and the lower performance bound estimated by Cilkview for both

benchmarks are very high but our measured speedup curve is lower than the lower

performance bound. We attribute this performance degradation to the cost of our

dynamic memory allocation.

9.4 Transversal Hypergraph Generation

Hypergraphs generalize graphs in the following way. A hypergraph H is a pair (V, E)

where V is a finite set and E is a set of subsets of V , called the edges (or hyperedges)

of H. The elements of V are called the vertices of H. The number of vertices and

edges of H are denoted here by n(H) and |H| respectively; they are called the order

and the size of H. We denote by Min(H) the hypergraph whose vertex set is V and

whose hyperedges are the minimal elements of the poset (E ,⊆). The hypergraph H

is said simple if none of its hyperedges is contained in another, that is, whenever

Min(H) = H holds.

We denote by Tr(H) the hypergraph whose vertex set is V and whose hyperedges

are the minimal elements of the poset (T ,⊆) where T consists of all subsets A of

V such that A∩E 6= ∅ holds for all E ∈ E . We call Tr(H) the transversal of H.

Let H′ = (V, E ′) and H′′ = (V, E ′′) be two hypergraphs. We denote by H′∪H′′ the

hypergraph whose vertex set is V and whose hyperedge set is E∪E ′. Finally, we

denote by H′ ∨ H′′ the hypergraph whose vertex set is V and whose hyperedges are

the E ′∪E ′′ for all (E ′, E ′′) ∈ E ′ × E ′′. The following proposition [4] is the basis of

most algorithms for computing the transversal of a hypergraph.

Proposition 8. For two hypergraphs H′ = (V, E ′) and H′′ = (V, E ′′) we have

Tr(H′∪H′′) = Min(Tr(H′) ∨ Tr(H′′)).

All popular algorithms for computing transversal hypergraphs, see [31, 39, 2, 19,

40], make use of the formula in Proposition 8 in an incremental manner. That is,

writing E = E1, . . . , Em and Hi = (V, {E1, . . . , Ei}) for i = 1 · · ·m, these algorithms

93

compute Tr(Hi+1) from Tr(Hi) as follows

Tr(Hi+1) = Min(Tr(Hi) ∨ (V, {{v} | v ∈ Ei+1}))

Input : A hypergraph H
Output : Tr(H)

1 if |H| ≤ TR BASE then
2 return SerialTransversal(H);

3 (H−,H+)← Split(H);
4 H− ← spawn ParallelTransversal(H−);
5 H+ ← spawn ParallelTransversal(H+);
6 sync;
7 return ParallelHypMerge(H−,H+);

Algorithm 29: ParallelTransversal

The differences between these algorithms consist of various techniques to minimize

the construction of unnecessary intermediate hyperedges. While we believe that these

techniques are all important, we propose to apply Berge’s formula à la lettre, that is,

to divide the input hypergraph H into hypergraphs H′, H′′ of similar sizes and such

that H′∪H′′ = H. Our intention is to create opportunity for parallel execution. At

the same time, we want to control the intermediate expression swell resulting from

the computation of

Tr(H) ∨ Tr(H′).

To this end, we compute this expression in a divide-and-conquer manner and apply

the Min operator to the intermediate results.

Algorithm 29 is our main procedure. Similarly to Algorithm 28, it proceeds

in a divide-and-conquer manner with a threshold. For the base case, we call

SerialTransversal(H), which can implement any serial algorithms for computing the

transversal of hypergraph H. When the input hypergraph is large enough, then this

hypergraph is split into two so as to apply Proposition 8 with the two recursive calls

performed concurrently. When these recursive calls return, their results are merged

by means of Algorithm 30.

Given two hypergraphs H and K, with the same vertex set, satisfying Tr(H) = H

and Tr(K) = K, the operation ParallelHypMerge of Algorithm 30 returns Min(H∨K).

This operation is another instance of an application where the poset can be so large

that it is desirable to compute its minimal elements concurrently to the generation

94

Input : H, K such that Tr(H) = H and Tr(K) = K.
Output : Min(H ∨K)

1 if |H| ≤ MERGE HYP BASE and
2 |K| ≤ MERGE HYP BASE then
3 return SerialHypMerge(H,K);

4 else if |H| > MERGE HYP BASE and
5 |K| > MERGE HYP BASE then
6 (H−,H+)← Split(H);
7 (K−,K+)← Split(K);
8 L ← spawn
9 HalfParallelHypMerge(H−,K−,H+,K+);

10 M← spawn
11 HalfParallelHypMerge(H−,K+,H+,K−);
12 return Union(ParallelMinMerge(L,M));

13 else if |H| > MERGE HYP BASE and
14 |K| ≤ MERGE HYP BASE then
15 (H−,H+)← Split(H);
16 M− ← ParallelHypMerge(H−,K);
17 M+ ← ParallelHypMerge(H+,K);
18 return Union(ParallelMinMerge(M−,M+));

19 else
// |H| ≤ MERGE HYP BASE and

// |K| > MERGE HYP BASE

20 (K−,K+)← Split(K);
21 M− ← ParallelHypMerge(K−,H);
22 M+ ← ParallelHypMerge(K+,H);
23 return Union(ParallelMinMerge(M−,M+));

Algorithm 30: ParallelHypMerge

Input : four hypergraphs H, K,L,M
Output : Min(Min(H ∨K) ∪ Min(L ∨M))

1 N ← spawn ParallelHypMerge(K,H);
2 P ← spawn ParallelHypMerge(L,M);
3 sync;
4 return Union(ParallelMinMerge(N ,P));

Algorithm 31: HalfParallelHypMerge

95

of the poset itself, thus avoiding storing the entire poset in memory. As for the

application described in Section 9.3, one can indeed efficiently generate the elements

of the poset and compute its minimal elements simultaneously.

The principle of Algorithm 30 is very similar to that of Algorithm 8. Thus, we

should simply mention two points. First, Algorithm 30 uses a subroutine, namely

HalfParallelHypMerge of Algorithm 31, for clarity. Secondly, the base case of Algo-

rithm 30, calls SerialHypMerge(H,K), which can implement any serial algorithms for

computing Min(H ∨K).

We have implemented our algorithms in Cilk++ and benchmarked our code with

some well-known problems on the same 32-core machine reported in Section 9.2. An

implementation detail which is worth to mention is data representation. We represent

each hyperedge as a bit-vector. For a hypergraph with n vertices, each hyperedge is

encoded by n bits. By means of this representation, the operations on the hyperedges

such as inclusion test and union can be reduced to bit operations. Thus, a hypergraph

with m edges is encoded by an array of m n bits. Traversing the hyperedges is simply

by moving pointers to the bit-vectors in this array.

Our test problems can be classified into three groups. The first one consists of three

types of large examples reported in [39]. We summarize their features and compare

the timing results in Table 9.1. A scalability analysis for the three large problems in

data mining on a 32-core is illustrated in Figure 9.3. The second group considers an

enumeration problem (Kuratowski hypergraph), as listed in Table 9.2 and Figure 9.4.

The third group is Lovasz hypergraph [4], reported in Table 9.3. The sizes of the

three base cases used here (TR BASE, MERGE HYP BASE and MIN MERGE BASE) are

respectively 32, 16 and 128. Our experimentation shows that the base case threshold

is an important influential factor on performance. In this work, they are determined

by our test runs. To predict the feasible values based on the type of a poset and the

hierarchical memory of a machine would definitely help. We shall develop a tool for

this purpose when we deploy our software.

In Table 9.1, we describe the parameters of each problem following the same

notation as in [39]. The first three columns indicate respectively the number of

vertices, n, the number of hyperedges, m, and the number of minimal transversals,

t. The problems classified as Threshold, Dual Matching and Data Mining are large

examples selected from [39]. We have used thg, a Linux executable program developed

by Kavvadias and Stavropoulos in [39] for their algorithm, named KS, to measure the

time for solving these problems on our machine. We observed that the timing results

of thg on our machine were very close to those reported in [39]. Thus, we show

96

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Cores

Data mining large dataset 1 (n = 287, m = 48226, t = 97)

Parallelism = 450, Ideal Speedup
Lower Performance Bound

Measured Speedup

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Cores

Data mining large dataset 2 (n = 287, m = 92699, t = 99)

Parallelism = 1157, Ideal Speedup
Lower Performance Bound

Measured Speedup

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Cores

Data mining large dataset 3 (n = 287, m = 108721, t = 99)

Parallelism = 1474, Ideal Speedup
Lower Performance Bound

Measured Speedup

Figure 9.3: Scalability analysis on ParallelTransversal for data mining problems by Cilkview

97

here the timing results (seconds) presented in [39] in the fourth column (KS) in our

Table 9.1. From the comparisons in [39], the KS algorithm outperforms the algorithm

of Bailey et al. given in [2] (BMR) and the algorithm of Fredman and Khachiyan

as implemented by Boros et al. in [6] (BEGK) for the Dual Matching and Threshold

graphs. However, for the three large problems from data mining, the KS algorithm

is about 30 to 60 percent slower than the best ones between BEGK and BMR.

In the last three columns in Table 9.1, we report the timing (in seconds) of our

program for solving these problems using 1 core and 32 cores, and the speedup factor

on 32-core w.r.t on 1-core. On 1-core, our method is about 6 to 18 times faster for

the selected Dual Matching problems and the large problems in data mining. Our

program is particularly efficient for the Threshold graphs, for which it takes only about

0.01 seconds for each of them, while thg took about 11 to 82 seconds. In addition, our

method shows significant speedup on multi-cores for the problems of large input size.

As shown in Figure 9.3, for the three data mining problems, our code demonstrates

linear speedup on 32 cores w.r.t the timing of the same algorithm on 1 core.

There are three sets of hypergraphs in [39] on which our method does not perform

well, namely Matching, Self-Dual Threshold and Self-Dual Fano-Plane graphs. For

these examples our code is about 2 to 50 times slower than the KS algorithm presented

in [39]. Although the timing of such examples is quite small (from 0.01 to 178 s), they

demonstrate the efficient techniques used in [39]. In-cooperating such techniques into

our algorithm is our future work.

Instance parameters KS ParallelTransversal Speedup Ratio
n m t (s) 1-core (s) 32-core (s) KS/1-core KS/32-core

Threshold problems
140 4900 71 11 0.01 - 1000 -
160 6400 81 23 0.01 - 2000 -
180 8100 91 44 0.01 - 4000 -
200 10000 101 82 0.02 - 4000 -

Dual Matching problems
34 131072 17 57 9 0.57 6 100
36 262144 18 197 23 1.77 9 111
38 524288 19 655 56 3.53 12 186
40 1048576 20 2167 131 7.13 17 304

Data Mining problems
287 48226 97 1648 92 3 18 549
287 92699 99 6672 651 21 10 318
287 108721 99 9331 1146 36 8 259

Table 9.1: Tests for examples from [39]

98

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Cores

Enumeration problem (n = 40, r = 5)

Parallelism = 2156, Ideal Speedup
Lower Performance Bound

Measured Speedup

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Cores

Enumeration problem (n = 30, r = 7)

Parallelism = 24216, Ideal Speedup
Lower Performance Bound

Measured Speedup

Figure 9.4: Scalability analysis on ParallelTransversal for K5
40 and K7

30 by Cilkview

The first family of classical hypergraphs that we have tested is related to an

enumeration problem, namely the Kuratowski Kr
n hypergraphs. Table 9.2 gives two

representative ones. This type of hypergraphs are defined by two parameters n and

r. Given n distinct vertices, such a hypergraph contains all the hyperedges that have

exactly r vertices. Our program achieves linear speedup on this class of hypergraphs

with sufficiently large size, as reported in Table 9.2 and Figure 9.4 for K5
40 and K7

30.

We have also used the thg program provided by the Authors of [39] to solve these

problems. The timing for solving K5
30 by the thg program is about 6500 seconds,

which is about 70 times slower than our ParallelTransversal on 1-core. For the case of

99

K5
40 and K7

30, the thg program did not produce a result after running for more than

15 hours.

Instance parameters KS ParallelTransversal

n r m t (s) 1-core 16-core 32-core
(s) (s) Speedup (s) Speedup

30 5 142506 27405 6500 88 6 14.7 3.5 25.0
40 5 658008 91390 >15 hr 915 58 15.8 30 30.5
30 7 2035800 593775 >15 hr 72465 4648 15.6 2320 31.2

Table 9.2: Tests for the Kuratowski hypergraphs

Another classical hypergraph is the Lovasz hypergraph, which is defined by a

positive integer r. Consider r finite disjoint sets X1, . . . , Xr such that Xj has exactly

j elements, for j = 1 · · · r. The Lovasz hypergraph of rank r, denoted by Lr, has all

its hyperedges of the form

Xj ∪ {xj+1, . . . , xr},

where xj+1, . . . , xr belong respectively to Xj+1, . . . , Xr, for j = 1 . . . r. We have

tested our implementation with the Lovasz hypergraphs up to rank 10. For the rank

9 problem, we obtained 25 speedup on 32-core. For the one of rank 10, due to time

limit, we only obtained the timing on 32-core and 16-core, which shows a linear

speedup from 16 cores to 32 cores. The thg program solves the problem of rank 8 in

8000 seconds. For the problems of rank 9 and 10, the thg program did not complete

within 15 hours.

Instance parameters KS ParallelTransversal

n r m t (s) 1-core 16-core 32-core
(s) (s) Speedup (s) Speedup

36 8 69281 69281 8000 119 13 8.9 10 11.5
45 9 623530 623530 >15 hr 8765 609 14.2 347 25.3
55 10 6235301 6235301 >15 hr - 60509 - 30596

Table 9.3: Tests for the Lovasz hypergraphs

9.5 Some Remarks

The implementation in Cilk++ on multi-cores of the proposed a parallel algorithm

for computing the minimal elements of a finite poset is capable of processing large

posets that a serial implementation could not process. Moreover, for sufficiently large

input data set, our code reaches linear speedup on 32 cores.

100

We control intermediate expression swell by generating the poset and comput-

ing its minimal elements concurrently. Our Cilk++ code for computing transver-

sal hypergraphs is competitive with the implementation reported by Kavvadias and

Stavropoulos in [39]. Moreover, our code outperforms the one of our colleagues on

three sets of large input problems, in particular the problems from data mining. How-

ever, our code is slower than theirs on other data sets. In fact, our code is a prelim-

inary implementation, which simply applies Berge’s formula in a divide-and-conquer

manner. We still need to enhance our implementation with the various techniques

which have been developed for controlling expression swell in transversal hypergraph

computations [2, 19, 31, 39, 40].

This work can be extended in different directions. For example, a deeper com-

plexity analysis of our algorithm for computing the minimal elements of a finite poset

could be discussed. It is also interesting to adapt this algorithm to the computation

of GCD-free bases and the removal of redundant components.

101

Chapter 10

Conclusions and Future Work

Minimizing the evaluation cost of a polynomial expression is a fundamental problem

in computer science. In this thesis, we have proposed tools that, for a polynomial f

given as the sum of its terms, compute a syntactic decomposition of it that permits

a more efficient evaluation. Our algorithm runs in O(t9nd log t) bit operations plus

O(t9d) operations in the base field where d, n and t are the total degree, number

of variables and number of terms of f . These estimation is based on the worst

case where the cardinality of base monomial set is quadratic with the number of

terms in the input polynomial. In practice, given a large dense polynomial, its base

monomial set is often the variable set which is much smaller than our estimation.

We have implemented our algorithm in the Cilk++ concurrency platform and our

implementation achieves near linear speedup on 16 cores with large enough input.

Besides, we have introduced an algorithm to generate a parallel evaluation schedule of

a syntactic decomposition. Our experimental results reported in Chapter 8 illustrate

that our approach can handle much larger polynomials than other available software

solutions. Moreover, for some large polynomial, our resulting schedule provides a

10-times-faster evaluation comparing with the direct evaluation of its straight-line

program (SLP) representation (both conducted sequentially).

We indicate two possible relaxation of our hypergraph method. As mentioned in

Chapter 3, our definition on syntactic operation is designed to avoid factorizations of

the following typical form

f = xn − 1 = (x− 1)(xn + xn−1 + · · ·+ 1),

where expanding the product leads to term cancellation. Our syntactic decomposition

imposes the condition that after expanding it there is no combination of monomials,

102

such that its evaluation cost never grows comparing to the input expanded polyno-

mial. However, distributing a term may sometimes lead to a better representation

than syntactic decomposition. Consider this polynomial in Z[x, y, a, b, c, d]:

f = xy + xd + yb + ac + ad + bc + 2bd.

Its syntactic decomposition computed by our hypergraph method is

x(y + d) + a(c + d) + (y + c + 2d)b

which requires 6 additions and 4 multiplications to evaluate whereas there exists a

better representation of f

(a + b)(c + d) + (x + b)(y + d)

which allows evaluation of f with 5 additions and 2 multiplications.

To this end, we discuss two possible relaxations on the algorithm ParSynFactor-

ization. The first one aims at computing factorization of the form (a + b)(a + b).

Consider algorithm ParSynFactorization with input f = a2 + 2ab + b2. Our definition

of syntactic factorization and thus the algorithm ParSynFactorization prevents the fac-

torization f = (a + b)(a + b) due to the combination of monomial ab. When we get

the monomial set M = {a, b} of the base and monomial set Q = {a, b} of cofactor in

a candidate syntactic factorization, we compute their product monomial set N as in

Line 18 of Algorithm 3. We find that N = {a2, ab, b2} thus |N | 6= |M | · |Q|. We are

then led to Line 25 and a monomial in the monomial set Q = {a, b}, say b, will be

randomly removed. The algorithm terminates with the partial syntactic factorization

f = a (a + 2 b) + b2.

Evaluating it requires two more multiplications than evaluating

f = (a + b)(a + b).

Thus we propose the first relaxation that we do not immediately break the compu-

tation of a syntactic factorization (directly goes to Line 25 once |N | 6= |M | · |Q|)

but continue attempting to build a syntactic factorization. We continue to solve

103

coefficients of the candidate syntactic factorization by the following equality,

(g1a + g2b) (h1a + h2b) = a2 + 2ab + b2











g1h1 = 1

g1h2 + g2h1 = 2

g2h2 = 1

g1=1
=⇒























g1 = 1

g2 = 1

h1 = 1

h2 = 1

which leads to the factorization f = (a + b)(a + b). Note that to solve coefficients of

this factorization, we are lead to a non-linear equation system.

Once we allow combination of monomials in algorithm ParSynFactorization, the

next possible relaxation is on the computation of coefficients of a candidate syntactic

factorization. Note that the system to solve the coefficients contains |M |·|Q| equations

and |M |+ |Q| unknowns. Hence it is possible that the system does not have solutions.

As described in Proposition 6, we first set g1 to one, and then the value of h1, . . . , hb

and then of g2, . . . , ga can be deduced using a + b − 1 equations. After that, we use

the remaining equations to verify these values. The second relaxation we proposed

is that if these values do not lead to a solution, instead of rejecting these values, we

allow the necessary distribution of terms in the input polynomial. For example, for

the input f = ac + ad + bc + 2bd, after obtaining the two monomial sets M = {a, b},

Q = {c, d} and the product monomial set N = {ac, ad, bc, bd}, we set up the following

system to solve the candidate coefficients.

(g1a + g2b) (h1c + h2d) = ac + ad + bc + 2bd











g1h1 = 1

g1h2 = 1

g2h1 = 1

g1=1
=⇒











h1 = 1

h2 = 1

g2 = 1

⇒
{

g2h2 6= 2

Though there does not exist solutions to this system, we do not reject this candidate

partial factorization but rewrite the polynomial f as f = ac+ad+ bc+ bd+ bd. Then

the partial factorization f = (a + b)(c + d) + bd can be produced.

If these relaxations are applied, the optimized expression may not be a syntactic

decomposition but it provides opportunity to produce a more efficient representation.

We point out the above two possible relaxation on our optimization algorithm as

future work.

104

Appendix A

An Example Illustrating the

Typical Output of Different

Optimization Techniques for a

Polynomial Expression

Input polynomial (557 operations):

a2b2cde2ghjlm + a2b2cdeh2klmn + a2bcdegh2lm2n + ab3c2de2ghij+

ab3c2deh2ikn + ab2c2de2ghjlm + ab2c2degh2imn + ab2c2deh2klmn+

ab2cd2e3ghjm + ab2cd2e2h2kmn + abc2degh2lm2n + abcd2e2gh2m2n+

b3c3de2ghij + b3c3deh2ikn + b2c3degh2imn + b2c2d2e3ghjm+

b2c2d2e2h2kmn + bc2d2e2gh2m2n + ab2ceghij2lm + ab2ch2ijklmn+

abc2de2ghjlm + abc2deh2klmn + abcgh2ijlm2n + abe2ghjklm2n+

abeh2k2lm2n2 + ac2degh2lm2n + aegh2klm3n2 + b3c2eghi2j2+

b3c2h2i2jkn + b2c3de2ghij + b2c3deh2ikn + b2c2gh2i2jmn+

b2cde2ghij2m + b2cdeh2ijkmn + b2ce2ghijkmn + b2ceh2ik2mn2+

bc3degh2imn + bc2d2e3ghjm + bc2d2e2h2kmn + bcdegh2ijm2n+

bcegh2ikm2n2 + bde3ghjkm2n + bde2h2k2m2n2 + c2d2e2gh2m2n+

de2gh2km3n2

105

Maple’s Horner scheme (382 operations):

de2gh2km3n2 + c2d2e2gh2m2n + ((k2m2n2h2 + jkm2nghe)e2d+

(egh2ikm2n2 + degh2ijm2n + ((h2m2ng + mh2kn + jmghe)e2d2+

dih2nmegc)c)c + (((k2n2imh2 + jiknmghe)e + (ijmh2kn + ij2mghe)ed+

(i2jgh2mn + (mh2kn + jmghe)e2d2 + (ih2nmg + ih2kn + ijghe)edc)c)c+

(i2j2egh + i2jh2kn + (ih2kn + ijghe)edc)c2b)b)b + (c2degh2lm2n + egh2klm3n2+

((lk2m2n2h2 + jkm2nlghe)e + (h2m2nd2e2g + lm2ijgh2n + (h2m2nlg + lmh2kn+

jlmghe)edc)c + ((ij2lmegh + jlimh2kn + (mh2kn + jmghe)e2d2 + (ih2nmg+

lmh2kn + jlmghe)edc)c + (ih2kn + ijghe)edc2b)b)b + (h2m2ndcleg + (lmh2kn+

jlmghe)edcb)ba)a

Maple’s optimize with ’tryhard’ option (153 operations):

t86 = al, t85 = de, t84 = ij, t83 = kn, t55 = c2, t82 = at55, t46 = m2, t81 = bt46,

t57 = b2, t80 = ct57, t44 = n2, t79 = kt44, t78 = t57m, t77 = a2l, t76 = t57 + b,

t52 = e2, t53 = d2, t75 = t53t52, t56 = bt57, t74 = t55t56, t73 = et86, t72 = it78,

t71 = t55t75, t49 = i2, t70 = t49t74, t69 = t81t83, t68 = ct72, t67 = it52t80, t54 = ct55,

t66 = (t56 + t57)t54, t65 = t84 + t77, t64 = (t75 + lt84)a, t63 = (dt73 + t75)t55,

t51 = et52, t50 = h2, t48 = j2, t45 = mt46,

t1 = ((et68 + (t73 + dt52)t81)k
2t44 + (jt70 + (at74 + t66)it85 + (bt63 + (t63+

(t65t85 + t64)c)t57)m)t83)t50 + (((t45t86 + cit81)et79 + (t55t49jt78 + (t71+

(t71 + ct64)b)t46)n)t50 + ((t68t86 + t70)t48e + (t52t69t86 + (t67t83 + (at80+

t76t55)t53t51)m)j)h + ((t52t45t79 + (t54t72 + (lt46 + t72)t82 + (t54im + (lt82+

t65c)t46)b)ne)t50 + (t48mt67 + (t51t69 + (ct77t78 + it66 + (t56i + t76ml)t82)t52)j)h)d)g

106

Syntactic decomposition (142 operations):

(((((bej + hmn)d(ab + bc + c) + b2ij2)c + (bej + hmn)kmn)(al + de)+

(bej + hmn)bcikn + (c(ab + bc + c) + jm)bcdihn)m + (bij + de(ab+

bc + c))b2c2ij)egh + ((((((al + de)(ab + bc + c) + bij)d + knbi)e + ajlbi)c+

(al + de)kmne)m + (bij + de(ab + bc + c))bc2i)bh2kn + (alm + bci)bcijgh2mn

Syntactic decomposition + CSE (94 operations):

t5 = bej + hmn, t8 = bc, t9 = ab + t8 + c, t11 = b2, t13 = j2, t18 = mn,

t21 = al, t22 = de, t23 = t21 + t22, t41 = bi, t42 = t41j, t44 = t42 + t22t9,

t46 = c2, t47 = t46i, t76 = h2,

t91 = ((((t5dt9 + t11it13)c + t5kt18)t23 + t5bcikn + (ct9 + jm)bcdihn)m+

t44t11t47j)egh + (((((t23t9 + t42)d + knt41)e + ajlbi)c + t23kt18e)m+

t44bt47)bt76kn + (t21m + t8i)bcijgt76mn

107

Bibliography

[1] Jounaidi Abdeljaoued and Henri Lombardi. Méthodes Matricielles: Introduction

à la Complexité Algébrique. Springer, 2003.

[2] James Bailey, Thomas Manoukian, and Kotagiri Ramamohanarao. A fast al-

gorithm for computing hypergraph transversals and its application in mining

emerging patterns. In ICDM ’03: Proceedings of the Third IEEE International

Conference on Data Mining, page 485, Washington, DC, USA, 2003. IEEE Com-

puter Society.

[3] E.G. Belaga. Evaluation of polynomials of one variable with preliminary pro-

cessing of the coeffcients. Problemy Kibernet, 5:7–15, 1961.

[4] Claude Berge. Hypergraphes : combinatoire des ensembles finis. Gauthier-Villars,

1987.

[5] Stuart J. Berkowitz. On computing the determinant in small parallel time using

a small number of processors. Inf. Process. Lett., 18(3), 1984.

[6] Endre Boros, KLeonid hachiyan, Khaled Elbassioni, and Vladimir Gurvich. An

efficient implementation of a quasi-polynomial algorithm for generating hyper-

graph transversals. In Proc. of the 11th European Symposium on Algorithms

(ESA), volume 2432, pages 556–567. LNCS, Springer, 2003.

[7] Robert K. Brayton and Curtis T. McMullen. The decomposition and factoriza-

tion of boolean expressions. In Proc. Int. Symp. Circuits Systems, pages 49–54,

1982.

[8] Robert K. Brayton, Richard Rudell, Alberto Sangiovarmi-Vincentelli, and Albert

Wang. Mis: Multiple-level logic optimization system. In IEEE Transactions on

Computer Aided Design of Integrated Circuits and Systems, pages 1062–1081,

1987.

108

[9] Robert K. Brayton, Richard Rudell, Alberto Sangiovarmi-Vincentelli, and Albert

Wang. Multi-level logic optimization and the rectangular covering problem. In

Proc. Int. Conf. Compu.-Adoded Des, pages 66–69, 1987.

[10] Richard P. Brent. The parallel evaluation of general arithmetic expressions. J.

ACM, 21(2):201–206, 1974.

[11] Melvin A. Breuer. Generation of optimal code for expressions via factorization.

Commun. ACM, 12(6):333–340, 1969.

[12] Peter Bürgisser, Michael Clausen, and Amin Shokrollahi. Algebraic complexity

theory. Springer-Verlag, Berlin, 1997.

[13] J. Carnicer and M. Gasca. Evaluation of multivariate polynomials and their

derivatives. Mathematics of Computation, 54(189):231–243, 1990.

[14] Martine Ceberio and Vladik Kreinovich. Greedy algorithms for optimizing mul-

tivariate horner schemes. SIGSAM Bull., 38(1):8–15, 2004.

[15] Changbo Chen, François Lemaire, Marc Moreno Maza, Wei Pan, and Yuzhen

Xie. Efficient computations of irredundant triangular decompositions with the

regularchains library. In Proc. of the International Conference on Computa-

tional Science (2), volume 4488 of Lecture Notes in Computer Science, pages

268–271. Springer, 2007.

[16] Cilk Arts. Cilk++. http://www.cilk.com/.

[17] Robert M. Corless, David J. Jeffrey, and Michael B. Monagan. Two perturbation

calculations in fluid mechanics using large-expression management. J. Symb.

Comput., 23(4):427–443, 1997.

[18] Matthew T. Dickerson. The functional decomposition of polynomials. Technical

report, Ithaca, NY, USA, 1989.

[19] Guozhu Dong and Jinyan Li. Mining border descriptions of emerging patterns

from dataset pairs. Knowl. Inf. Syst., 8(2):178–202, 2005.

[20] Thomas Eiter and Georg Gottlob. Hypergraph transversal computation and

related problems in logic and ai. In JELIA ’02: Proceedings of the European

Conference on Logics in Artificial Intelligence, pages 549–564, London, UK, 2002.

Springer-Verlag.

109

[21] Jean-Charles Faugère, Joachim von zur Gathen, and Ludovic Perret. Decom-

position of generic multivariate polynomials. In ISSAC ’10: Proceedings of the

2010 International Symposium on Symbolic and Algebraic Computation, pages

131–137, New York, NY, USA, 2010. ACM.

[22] Timothy S. Freeman, Gregory M. Imirzian, Erich Kaltofen, and Lakshman Ya-

gati. Dagwood: a system for manipulating polynomials given by straight-line

programs. ACM Trans. Math. Softw., 14(3):218–240, 1988.

[23] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.

Cache-oblivious algorithms. In 40th Annual Symposium on Foundations of Com-

puter Science, pages 285–297, New York, New York, October 17–19 1999.

[24] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation

of the Cilk-5 multithreaded language. In Proceedings of the ACM SIGPLAN

’98 Conference on Programming Language Design and Implementation, pages

212–223, Montreal, Quebec, Canada, June 1998. Proceedings published ACM

SIGPLAN Notices, Vol. 33, No. 5, May, 1998.

[25] Sanchit Garg and Éric Schost. Interpolation of polynomials given by straight-line

programs. Theor. Comput. Sci., 410(27-29):2659–2662, 2009.

[26] Joachim von zur Gathen. Functional decomposition of polynomials: the tame

case. J. Symb. Comput., 9(3):281–299, 1990.

[27] Joachim von zur Gathen. Functional decomposition of polynomials: The wild

case. J. Symb. Comput., 10(5):437–452, 1990.

[28] M. Giusti, J. Heintz, J. E. Morais, J. Morgenstern, and L. M. Pardo. Straight-line

programs in geometric elimination theory. Journal of Pure and Applied Algebra,

124:1–3, 1998.

[29] R. L. Graham. Bounds on multiprocessing anomalies and related packing algo-

rithms. In AFIPS ’72 (Spring): Proceedings of the May 16-18, 1972, spring joint

computer conference, pages 205–217, New York, NY, USA, 1972. ACM.

[30] Dimitrios Gunopulos, Roni Khardon, Heikki Mannila, Sanjeev Saluja, Hannu

Toivonen, and Ram Sewak Sharma. Discovering all most specific sentences.

ACM Trans. Database Syst., 28(2):140–174, 2003.

110

[31] Matthias Hagen. Lower bounds for three algorithms for transversal hypergraph

generation. Discrete Appl. Math., 157(7):1460–1469, 2009.

[32] U.-U. Haus, S. Klamt, and T. Stephen. Computing knock out strategies in

metabolic networks. ArXiv e-prints, 2008.

[33] Yuxiong He, Charles E. Leiserson, and William M. Leiserson. The cilkview

scalability analyzer. In SPAA ’10: Proceedings of the 22nd ACM symposium

on Parallelism in algorithms and architectures, pages 145–156, New York, NY,

USA, 2010. ACM.

[34] William George Horner. A new method of solving numerical equations of all

orders, by continuous approximation. Philosophical Transactions of the Royal

Society of London, pages 308–335, 1819.

[35] Anup Hosangadi, Fallah Fallah, and Ryan Kastner. Factoring and eliminating

common subexpressions in polynomial expressions. In ICCAD ’04: Proceed-

ings of the 2004 IEEE/ACM International conference on Computer-aided design,

pages 169–174, Washington, DC, USA, 2004. IEEE Computer Society.

[36] Gabriela Jeronimo and Juan Sabia. Computing multihomogeneous resultants

using straight-line programs. J. Symb. Comput., 42(1-2):218–235, 2007.

[37] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cam-

bridge University Press, 1999.

[38] Erich Kaltofen. Greatest common divisors of polynomials given by straight-line

programs. J. ACM, 35(1):231–264, 1988.

[39] Dimitris J. Kavvadias and Elias C. Stavropoulos. An efficient algorithm for the

transversal hypergraph generation. Journal of Graph Algorithms and Applica-

tions, 9(2):239–264, 2005.

[40] Leonid Khachiyan, Endre Boros, Khaled M. Elbassioni, and Vladimir Gurvich.

A new algorithm for the hypergraph transversal problem. In COCOON, pages

767–776, 2005.

[41] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of

vectors. J. ACM, 22(4):469–476, 1975.

111

[42] Charles E. Leiserson, Liyun Li, Marc Moreno Maza, and Yuzhen Xie. Efficient

evaluation of large polynomials. In Proc. International Congress of Mathematical

Software - ICMS 2010. Springer, 2010.

[43] Charles E. Leiserson, Liyun Li, Marc Moreno Maza, and Yuzhen Xie. Parallel

computation of the minimal elements of a poset. In Proc. PASCO’10. ACM

Press, 2010.

[44] Charles E. Leiserson and Tao B. Schardl. A work-efficient parallel breadth-first

search algorithm (or how to cope with the nondeterminism of reducers). In SPAA

’10: Proceedings of the 22nd ACM symposium on Parallelism in algorithms and

architectures, pages 303–314, New York, NY, USA, 2010. ACM.

[45] Juan Llovet, Bonifacio Castaño, and Raquel Mart́ınez. Computing the char-

acteristic polynomial of multivariate polynomial matrices given by straight-line

programs. Math. Comput. Simul., 45(1-2):39–57, 1998.

[46] Gary L. Miller, Vijaya Ramachandran, and Erich Kaltofen. Efficient parallel eval-

uation of straight-line code and arithmetic circuits. SIAM J. Comput., 17(4):687–

695, 1988.

[47] Gary L. Miller and John H. Reif. Parallel tree contraction and its application.

In SFCS ’85: Proceedings of the 26th Annual Symposium on Foundations of

Computer Science, pages 478–489, Washington, DC, USA, 1985. IEEE Computer

Society.

[48] T.S. Motzkin. Evaluation of polynomials. Bull. Amer. Math. Soc., 61:163, 1955.

[49] Bill Naylor. Polynomial GCD Using Straight Line Program Representation. PhD

thesis, University of Bath, United Kingdom, 2000.

[50] Alexander Ostrowski. On two problems in abstract algebra connected with

horner’s rule. Studies in Mathematics and Mechanics presented to Richard von

Mises, pages 40–48, 1954.

[51] Victor Pan. Methods of computing values of polynomials. Russian Mathematical

Surveys, 21(1):105, 1966.

[52] J. M. Peña. On the multivariate horner scheme. SIAM J. Numer. Anal.,

37(4):1186–1197, 2000.

112

[53] J. M. Peña and Thomas Sauer. On the multivariate horner scheme ii: running

error analysis. Computing, 65(4):313–322, 2000.

[54] Nathalie Revol and Jean-Louis Roch. Parallel evaluation of arithmetic circuits.

Theor. Comput. Sci., 162(1):133–150, 1996.

[55] Saswati Sarkar and Kumar N. Sivarajan. Hypergraph models for cellular mobile

communication systems. IEEE Transactions on Vehicular Technology, 47(2):460–

471, 1998.

[56] D Stoutemyer. Which polynomial representation is best? surprises abound! In

Proceedings of the 1984 Macsyma Users’ Conference, pages 221–243, New York,

NY, USA, 1984.

[57] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast parallel

computation of polynomials using few processors. SIAM J. Comput., 12(4):641–

644, 1983.

113

Curriculum Vitae

Name: Liyun Li

Post-

Secondary

Education and

Degrees:

The University of Western Ontario

London, Ontario, Canada

M.Sc. Computer Science, August 2010

Beihang University

Beijing, China

B.Sc. in Information and Computational Science, July 2004

Work

Experience:

Research Assistant & Teaching Assistant.

University of Western Ontario, London, Canada.

Sept. 2008 - Dec. 2009

Publications: Charles E. Leiserson, Liyun Li, Marc Moreno Maza and

Yuzhen Xie (2010) Efficient Evaluation of Large Polynomials.

Proceedings of International Congress of Mathematical

Software (ICMS).

Charles E. Leiserson, Liyun Li, Marc Moreno Maza and

Yuzhen Xie (2010) Parallel Computation of the Minimal

Elements of a Poset. Proceedings of International Workshop

on Parallel and Symbolic Computation (PASCO).

