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Introduction

• Constructible sets appear naturally when solving systems of

polynomial equations, in particular in presence of parameters.

• The occurrence of redundant components is a normal phe-

nomenon when computing with constructible sets, with both

numerical and symbolic methods.

• We investigate efficient algorithms for removing those redun-

dancies and we establish complexity results.

Representation of Constructible Sets

• A constructible set of C
n is a finite union

(A1 \ B1) ∪ · · · ∪ (Ae \ Be)

where Ai’s and Bi’s are algebraic varieties in C
n.

• The image of an algebraic variety under a polynomial map

is generally not an algebraic variety, rather a constructible set.
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The image of the map π is:

π(C
2) = {xy-plane} − {y-axis} + {origin}.

It can be encoded uniquely by a sequence of algebraic varieties:

({z = 0}, {x = z = 0}, {x = y = z = 0})

each of them given by a Gröbner basis (a generating set).

• In our library, the above constructible set is represented as

{x = z = 0, y 6= 0} ∪ {x = y = z = 0}.

Formally, we encode a constructible set C by a list

[[T1, h1], . . . , [Te, he]]

of so-called regular systems, where each Ti is a regular

chain and each hi is a polynomial regular modulo the satu-

rated ideal of Ti. The points of C are those which cancel all

polynomials in Ti but not hi, for some 1 ≤ i ≤ e.

Removing Redundancy

• Within a single constructible set:

MPD

Solution: make the defining regular systems pairwise disjoint
(MPD).

• Among several ones while preserving structure:

SMPD

Solution: compute an intersection-free basis by symmetrically
making the constructible sets pairwise disjoint (SMPD).

Main Results

• For practical considerations, we do not rely on asymptotically

fast algorithms for polynomial arithmetic (FFT-based). Instead,

we assume that our polynomial multiplication and GCD com-

putation rely on classical algorithms running in quadratic time

w.r.t. the size of the input data.

• Under some realistic assumptions, we establish quadratic algo-

rithms for the MPD and SMPD operations. These algorithms

are available in the ConstructibleSetTools module in the Reg-

ularChains library in Maple 12.

The RefinedDifference Operation

• Our algorithms for MPD and SMP reduce to compute the set

theoretical difference of two constructible sets. A naive approach

(based on elementary logic and standard tools for polynomial

systems such as Gröbner bases) is inefficient in practice.

• The representation of constructible sets based on regular sys-

tems has led us to an efficient algorithm which exploits the

structural properties (triangular shape) of the input data:

Case 1: T = T ′
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Complexity Results

• We consider regular chains with the same set of algebraic vari-

ables. This allows us to reduce to computations in dimension

zero by means of evaluation/interpolation techniques.

• In the sequel, all regular chains are assumed to be zero-

dimensional and squarefree. Consequently, for every regular sys-

tem [T, h] we have V (T ) ∩ V (h) = ∅ and h can be omitted.

• We assume that the base field K is perfect, for instance K is C.

• RefinedDifference relies essentially on GCD computa-

tions modulo regular chains, as shown by the previous picture.

Lemma 1 Let T be a regular chain of degree δ and let f1, f2 be

univariate polynomials with respective degrees d1 ≥ d2 and with

coefficients in the direct product of fields defined by T . There

exists a constant C > 0 such that an extended GCD of f1 and

f2 modulo T can be computed in O(Cnd1d2δ
2) operations in K.

Theorem 2 Let L = {U1, . . . , Um} be a set of regular chains,

with respective degrees δ1, . . . , δm. Then a pairwise disjoint rep-

resentation of L can be computed in O(Cn ∑

1≤i<j≤m δiδj) oper-

ations in K.

Theorem 3 Given a set L = {C1, . . . , Cm} of constructible

sets, each of which is given by pairwise disjoint regular

chains. Let Di be the number of points in Ci for 1 ≤
i ≤ m. An intersection-free basis of L can be computed in

O(Cn ∑

1≤i<j≤m DiDj) operations in K.
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