

Introduction

- **Solving** systems of polynomial equations with **parameter bolically** is in demand for an increasing number of appl such as dynamic systems and optimization.
- > ParametricSystemTools is a new module of the REC CHAINS library, which implements comprehensive tr decomposition (CTD), a new algorithmic approach fo ing polynomial systems with parameters.
- \triangleright In board terms, a CTD of a polynomial system F in ters **u** and unknowns **x** over a field \mathcal{K} (\mathbb{Q} or \mathbb{Z}_p) consist ▶ a partition $\mathcal{C} = C_1, \ldots, C_e$ of the parameter space in ▶ a well-behaved and generic decomposition of $Z_{C_i}(F)$,
 - set of F arising from the parameter values $u \in C_i$,

Being "generic" and "well-behaved", this decompose $Z_{C_i}(F)$ allows us to study the geometrical properties any parameter value u of C_i without solving F at $\mathbf{u} =$

⊳ A constructible set is the zero set of a system of the fo

$$\begin{cases} a_1 = 0, \\ \cdots \\ a_e \neq 0, \end{cases} \qquad \begin{cases} b_1 = 0, \\ \cdots \\ b_f \neq 0, \end{cases} \qquad \bigcup \cdots$$

where a_i 's and b_i 's are polynomials.

▷ ConstructibleSetTools module of the REGULAR library in MAPLE, is the first complete computer algeb age providing constructible set as a type and supporting collection of operations for doing algebraic geometry. while, this module provides basic routines for solving mial systems with parameters.

	A Glimpse of the User-Interface
> with(Re [ChainTool IsRegula	egularChains); 's, ConstructibleSetTools, DisplayPolynomialRing, Equations, ExtendedRegularGcd, Inequations, Initial, I 1r, MainDegree, MainVariable, MatrixCombine, MatrixTools, NormalForm, ParametricSystemTools, Poly
Rank, R • with(Con Compleme	egularGcd, RegularizeInitial, Separant, SparsePseudoRemainder, Tail, Triangularize] nstructibleSetTools); ent_ConstructibleSet_Difference_EmptyConstructibleSet_GeneralConstruct_Info_Intersection_IsContain
MakePa Regular	irwiseDisjoint, PolynomialMapImage, PolynomialMapPreimage, Projection, QuasiComponent, RefiningF System, ReaularSystemDifference, RepresentinaChain, RepresentinaIneauations, RepresentinaReaular.
> with(Pa [BelongsTo	arametricSystemTools); , CoefficientsInParameters, ComprehensiveTriangularize, DefiningSet, DiscriminantSet,
PreCom	prehensiveTriangularize, Specialize]
> R := Po	olynomialRing([x, y, s]); R := polynomial_ring
> pctd, c	cells := ComprehensiveTriangularize([x*(y+1)-s, (x+1)*y-s], 1, R); td, cells := [regular_chain, regular_chain, regular_chain], [[constructible_set, [3, 2]], [constructible_set
> map(Equ	uations, pctd, R);
_	$\left[\left[x (y+1) - s, y^2 + y - s \right], \left[x + 1, y + 1, s \right], \left[x, y, s \right] \right]$
> Info(ce	ells[1][1], R); [[s], [1]]
> Info(ce	ells[2][1], R);

[[], [s]]

Two New Modules of the REGULARCHAINS library in MAPLE: ParametricSystemTools and ConstructibleSetTools

Changbo Chen[†], François Lemaire[‡], Liyun Li[†], Marc Moreno Maza[†], Wei Pan[†], & Yuzhen Xie[†] [†]ORCCA and Computer Science Department [‡]Université de Lille l, LIFL 59655 Villeneuve d'Ascq Cedex, France University of Western Ontario, London, Canada

verse, momialRing,

ned, IsEmpty, Partition, Systems, Union]

set, [1]]]

An Example from Invariant Theory

 \triangleright THE SETTING. While regarding u and v as parameters, the following polynomials g_1 and g_2 define two families of elliptic curves, respectively,

$$g_1 = x^3 + ux - y^2 + 1$$
, and $g_2 = x^3 + vx - y^2 + 1$.

 \triangleright THE QUESTION. In invariant theory, a classical question is to ask whether there exists a linear rational map f between these two curves:

$$f:(x,y)\mapsto \left(\frac{A\,x+B\,y+C}{G\,x+H\,y+K},\frac{D\,x+E\,y+F}{G\,x+H\,y+K}\right)$$

 \triangleright THE MODEL. The above question is equivalent to ask for which value (u, v) the following equation always holds:

$$g_1(x,y) - (Gx + Hy + K)^3$$

For simplicity, assume that the origin is mapped to the origin which sets C = F = 0. Collecting the coefficients of (1) in x and y, we have the following polynomial equations:

$$\left\{ \begin{aligned} &K^3-1=0\\ &(vA+3G)K^2-u=0\\ &(vB+3H)K^2=0\\ &A^3+G^3+vAG^2-D^2G-1=0\\ &B^3+H^3+vBH^2-E^2H=0\\ &(E^2-2vBH-3H^2)K-1=0\\ &(D^2-2vAG-3G^2)K=0\\ &3A^2B+3G^2H+vBG^2+2vAGH-2GDE-HD^2=0\\ &3AB^2+3GH^2+vAH^2+2vBGH-2HDE-GE^2=0\\ &(3GH+vBG+vAH-DE)K=0. \end{aligned} \right.$$

\triangleright THE RESOLUTION. A CTD of the system (\star) is

[regular_chain, regular_chain, regular_chain, regular_chain, regular_chain, regular_chain, regular_chain,regular_chain,regular_chain,regular_chain,regular_chain], [[constructible_set, [1, 2, 3, 10, 11]], [constructible_set, [4, 5, 6, 7, 8, 9]], [constructible_set, [1, 2, 3]]]

There are three constructible sets in the output given by:

$$\begin{cases} C_1 : u^3 = v^3 = 9, \\ C_2 : u = v = 0, \\ C_3 : u^3 = v^3, \ u \neq 0 \end{cases}$$

The union of the C_i 's is the answer to our question; taking the union produces a single component, namely $C: u^3 = v^3$.

 $g_{2}(f(x,y)) = 0.$ (1)

 $0, v^3 \neq 9.$

An Algorithmic Realization of the **Chevalley Theorem**

- in elimination theory.
- tions

$$\frac{g_i(x_1, \cdot)}{h_i(x_1, \cdot)}$$

Let W be a constructible set in \mathcal{K}^n ; for simplicity assume that W is given by $t_1(x_1,\ldots,x_n) = \cdots = t_e(x_1,\ldots,x_n) = 0$ and $\ell(x_1,\ldots,x_n) \neq 0$, where t_1,\ldots,t_e,ℓ are polynomials.

Construct the polynomial system

$$F : \{ f_1 = \cdots = f_n \}$$

Conclusions and References

- constructible sets.
- ▷ SOME REFERENCES:
- composition, 2007.
- for constructible sets, 2002.

▷ The Chevalley Theorem states that the rational map image of a constructible set is still constructible, which is a classical result

 \triangleright Let $\pi : \mathcal{K}^n \to \mathcal{K}^m$ be a rational map given by rational func-

 $\underbrace{g_i(x_1,\ldots,x_n)}_{i} \quad \text{for } i = 1 \cdots m.$ $h_i(x_1,\ldots,x_n)$

 \triangleright Our new modules can compute the image $\pi(W)$ as follows. Consider new variables y_1, \ldots, y_m and the polynomials

$$\begin{cases} f_1 = h_1 y_1 - g_1, \\ \dots \\ f_m = h_m y_m - g_m \end{cases}$$

 $f_m = t_1 = \cdots = t_e = 0, (h_1 \cdots h_m \ell) \neq 0\},$

where y_i 's are regarded as parameters and x_j 's as unknowns.

 \triangleright Compute a CTD of F and let C_1, \ldots, C_e be the corresponding **partition** of the parameter space in y_i 's. Then the constructible set $\pi(W)$ is the union of the C_i 's with $Z_{C_i}(F) \neq \emptyset$.

▷ The REGULARCHAINS library in MAPLE provides new software tools for studying parametric systems and manipulating

▷ We are currently working on a new module for manipulating semi-algebraic sets $(=, \neq, >)$, which will enhance the library for solving systems over the real number field.

► Changbo Chen, Oleg Golubitsky, François Lemaire, Marc Moreno Maza, and Wei Pan. Comprehensive Triangular De-

► François Lemaire, Marc Moreno Maza, and Yuzhen Xie. The REGULARCHAINS library in MAPLE 10, 2005.

► Joyce O'Halloran and Michael Schilmoeller. Gröbner bases