
–— On the Factor Refinement Principle and its
Implementation on Multicore Architectures —

Mohsin Ali, Marc Moreno Maza and Yuzhen Xie

Overview

The factor refinement principle turns a partial factorization of integers

(or polynomials) into a more complete factorization represented by ba-

sis elements and exponents, where basis elements are pairwise coprime.

There are many applications of this refinement technique such as sim-

plifying polynomial systems and, more generally, to algebraic algorithms

generating redundant expressions during intermediate computations.

In this work, we design parallel adaptations of factor refinement al-

gorithms. We consider several optimization techniques such as data

locality analysis, balancing subproblems, etc. to fully exploit multicore

architectures. The Cilk++ implementation of our parallel algorithm

achieves linear speedup for input data of sufficiently large size.

Definitions

Let n1, n2, . . . , ns be integers (or polynomials). We say that they form

a GCD-free basis whenever gcd(ni, nj) = 1 for all 1 ≤ i < j ≤ s.

Let m1,m2, . . . ,mr be other elements of the same type as the ni’s and

letm be the product of themj’s. Let e1, e2, . . . , es be positive integers.

We say that the pairs (n1, e1), (n2, e2), . . . , (ns, es) form a refinement

of m1,m2, . . . ,mr if the following conditions hold:

(i)n1, n2, . . . , ns is a GCD-free basis,

(ii) for every 1 ≤ i ≤ r there exists non-negative integers f1, . . . , fs such

that we have
∏

1≤j≤s n
fj
j = mi,

When this holds, we also say that (n1, e1), (n2, e2), . . . , (ns, es) is a co-

prime factorization of m. For instance, 51, 62, 71 is a refinement of 30

and 42 while 51, 62, 71 is a coprime factorization of 1260.

The contribution of Bach, Driscoll and Shallit

Given a partial factorization of an integer m, say m = m1m2, we com-

pute d = gcd(m1,m2) and write

m = (m1/d)(d
2)(m2/d).

If this process is continued until all the factors are pairwise coprime, one

obtains a coprime factorization within O(size(m)3) bit operations.

In their landmark 1988 paper, Bach, Driscoll and Shallit observed that,

by keeping track of the pairs (nj, nk) in an ordered pair list such that

only elements adjacent in the list can have a nontrivial GCD, one com-

putes a coprime factorization within O(size(m)2) bit operations.

In their proof, they simply rely on plain (or quadratic) arithmetic. Using

asymptotically fast algorithms for the case of univariate polynomials, D.

Bernstein on one hand and, Dahan, Moreno Maza, Schost, Xie on an-

other, have obtained an estimate of O(d log42(d) log2(log2(d))), where d

is the sum of the degrees of the input polynomials.

A Divide and Conquer Approach

We have developed a divide and conquer algorithm illustrated hereafter.

2, 6, 7, 10, 15, 21, 22, 26

2, 6, 7, 10 15, 21, 22, 26

2, 6 7, 10 15, 21 22, 26

2 6 7 10 15 21 22 26

2
1

6
1

7
1 10

1
15

1
21

1
22

1
26

1

3
1
, 2

2
7
1
, 10

1
5
1
, 7

1
, 3

2
11

1
, 13

1
, 2

2

3
1
, 7

1
, 5

1
, 2

3
5
1
, 7

1
, 3

2
, 11

1
, 13

1
, 2

2

11
1
, 13

1
, 3

3
, 7

2
, 5

2
, 2

5

Input

Output

E
x
p
a
n
d

M
er
g
e

Done in parallel

Done in parallel

Figure 2: Example of algorithm execution.

On input data of size n, under the condition that each arithmetic opera-

tion (integer division and integer GCD computation) has a unit cost, this

parallel algorithm features O(n2) work, O(Cn) span, and thus O(n/C)

parallelism, where C is the size threshold below which serial code is run.

For an ideal cache of Z words, with L words per cache-line, with C

small enough, for any input of size n, the number of cache misses is

Q(n) = O(n2/ZL + n2/Z2),

under the assumption that each input or output sequence is packed, and

each sequence item is stored in one machine word. These assumptions

hold in our implementation for the case of univariate polynomials over

a small prime field. Moreover, we enforce balancing of subproblems for

optimizing the share of computer resources among threads.

Experimental Results

We have implemented our algorithm in Cilk++ and tested successfully

with both integers and polynomials. The figure below shows scalability

results with an input data set of 5,000 polynomials of various degrees

up to 200. Coefficients are taken modulo a machine word prime.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  2  4  6  8  10  12  14  16

S
pe

ed
up

Cores

Parallelism = 136.931277, Ideal Speedup
Lower Performance Bound

Measured Speedup

Acknowledgments


