
Component-level Parallelization of Triangular
Decompositions

Marc Moreno Maza & Yuzhen Xie

University of Western Ontario, Canada

February 1, 2007

Interactive Parallel Computation in Support of Research in Algebra,

Geometry and Number Theory

MSRI Workshop 2007, Berkeley.

1

Solving polynomial systems symbolically

• Strengths of symbolic solving:

- parametric polynomial systems solving,

- real algebraic geometry,

- solving in non-zero characteristic.

• Increasing number of applications:

- cryptology, robotics, signal processing

- geometric modeling (AGGM community),

- algebraic study of dynamical systems (in biology, chemsitry, . . .).

• Strengths of triangular decomposition:

- size of coefficients, running time complexity estimates,

- fast arithmetic, sharp modular methods,

- geometrical information.
2

Gröbner bases and triangular decompositions















x2 + y + z = 1

x + y2 + z = 1

x + y + z2 = 1

has Gröbner basis :



























z6 − 4z4 + 4z3 − z2 = 0

2z2y + z4 − z2 = 0

y2 − y − z2 + z = 0

x + y + z2 − 1 = 0

and triangular decomposition :















z = 1

y = 0

x = 0

⋃















z = 0

y = 1

x = 0

⋃















z = 0

y = 0

x = 1

⋃















z2 + 2z − 1 = 0

y = z

x = z

3

Triangular decompositions

• The zero set V (F) admits a decomposition (unique when minimal)

V (F) = V (F1)∪ · · · ∪V (Fe),

s.t. F1, . . . , Fe ⊂ K[X] and every V (Fi) cannot be decomposed further.

• Moreover, up to technical details, each V (Fi) is the zero set of a

triangular system, which can view as a solved system


















































Tn(x1, . . . , xd, xd+1, xd+2, . . . , xn−1,xn) = 0

Tn1
(x1, . . . , xd, xd+1, xd+2, . . . ,xn−1) = 0

...

Td+2(x1, . . . , xd, xd+1,xd+2) = 0

Td+1(x1, . . . , xd,xd+1) = 0

h(x1, . . . , xd) 6= 0

4

Parallelizing the computation of Gröbner bases

Input: F ⊂ K[X] and an admissible monomial ordering ≤.

Output: G a reduced Gröbner basis w.r.t. ≤ of the ideal 〈F 〉

generated by F .

repeat

(S) B := MinimalAutoreducedSubset(F, ≤)

(R) A := S Polynomials(B)∪F ;

R := Reduce(A, B, ≤)

(U) R := R \ {0}; F := F ∪R

until R = ∅

return B

5

The parallel characteristic set method

Input: F ⊂ K[X].

Output: C an autoreduced characteristic set of F (in the sense of Wu).

repeat

(S) B := MinimalAutoreducedSubset(F, ≤)

(R) A := F \ B;

R := PseudoReduce(A, B, ≤)

(U) R := R \ {0}; F := F ∪R

until R = ∅

return B

• Repeated calls to this procedure computes a decomposition of V (F).

• Cannot start computing the 2nd component before the 1st is completed.

6

Solving polynomial systems symbolically and in

parallel!

• Related work :

- Parallelizing the computation of Gröbner bases (R. Bündgen,

M. Göbel & W. Küchlin, 1994) (S. Chakrabarti & K. Yelick, 1993 -

1994) (G. Attardi & C. Traverso, 1996) (A. Leykin, 2004)

- Parallelizing the computation of characteristic sets (I.A. Ajwa, 1998),

(Y.W. Wu, W.D. Liao, D.D. Liu & P.S. Wang, 2003) (Y.W. Wu,

G.W. Yang, H. Yang, H.M. Zheng & D.D. Liu, 2005)

7

Solving polynomial systems symbolically and in

parallel!

• New motivations:

– renaissance of parallelism,

– new algorithms offering better opportunities for parallel execution.

• Our goal:

– multi-level parallelism:

∗ coarse grained “component-level” for tasks computing geometric

objects,

∗ medium/fine grained level for polynomial arithmetic within each

task.

– to develop a solver for which the number of processes in use

depends on the geometry of the solution set

8

Ideally:

Processor P0

x2 + y + z = 1

x + y2 + z = 1

x + y + z2 = 1

Processor P1

z = 1

y = 0

x = 0

Processor P2

z = 0

y = 1

x = 0

Processor P3

z = 0

y = 0

x = 1

Processor P4

z2 + 2z − 1 = 0

y = z

x = z

9

Dynamic and very irregular computations (1/2)

• How do splits occur during decompositions? Given a polynomial ideal I

and polynomials p, a, b, there are two rules:

• I 7−→ (I + p, I : p∞).

• I + 〈a b〉 7−→ (I + 〈a〉, I + 〈b〉).

• The second one is more likely to split computations evenly. But

geometrically, it means that a component is reducible.

• Unfortunately, most polynomial systems F ⊆ Q[X] are equiprojectable,

that is, they can be represented by a single triangular set.

- This is true in theory, shape lemma: (Becker, Mora, Marinari &

Traverso, 1994).

- and in practice: SymbolicData.org.

• However, for F ⊆ Z/pZ[X] where p prime, the second rule is more likely

to be used.
10

Dynamic and very irregular computations (2/2)

• Very irregular tasks (CPU time, memory, data-communication)

T4

T0

T1 T2

T3
T5

T9T8T7

T6

11

Initial task [{f1, f2, f3}, ∅]

f1 = x − 2 + (y − 1)2

f2 = (x − 1)(y − 1) + (x − 2)y

f3 = (x − 1)z

y = 0

x = 1

x − 1 + y2
− 2y = 0

(2y − 1)x + 1 − 3y = 0

z = 0

z = 0

y = 0

x = 1

z = 0

y = 1

x = 2

z = 0

2y = 3

4x = 7

12

Even worse: redundant and irregular tasks

x

4

4

2

2

−2−4

0

y

5

5

31

3

0−1−3

1

−5
−1

−2

−3

−4

−5

The red and blue surfaces intersect on the line x − 1 = y = 0 contained in

the green plane x = 1. With the other green plane z = 0, they intersect at

(2, 1, 0), (7

4
, 3

2
, 0) but also at x − 1 = y = z = 0, which is redundant.

13

How to create and exploit parallelism?

• We start from an algorithm (Triade, MMMM 2000)

- based on incremental solving for exploiting geometrical information,

- solving by decreasing order of dimension for removing redundant

components efficiently.

• This algorithm

- uses a task model for the intermediate computations,

- but a naive parallelization would be unsuccessful, for the reasons

mentioned earlier.

• So, we rely also

- on the modular algorithm (Dahan, MMM, Schost, Wu and Xie, 2005)

- in order to create opportunities for parallel execution with input

systems over Q.

• We adapt the Triade algorithm to exploit the opportunities created by

the modular techniques.
14

Triangular Decompositions: a geometrical approach

Incremental solving: by solving one equation after the other, lead to a

more geometric approach

{

x2 + y + z = 1







x2 + y + z = 1

x + y2 + z = 1















x2 + y + z = 1

x + y2 + z = 1

x + y + z2 = 1

15

{

x2 + y + z = 1















x + y2 + z = 1

y4 + (2z − 2)y2

+ y − z + z2 = 0















x + y = 1

y2 − y = 0

z = 0














2x + z2 = 1

2y + z2 = 1

z3 + z2 − 3z = −1

Triangular sets and regular chains

• Let T = T1, . . . , Ts ⊂ K[x1 < · · · < xn]. with main variables

xℓ1 < · · · < xℓs
, that is, a triangular set.

• For i ≤ s, the initial hi is the leading coefficient of Ti in Xℓi
.

• Define Sati(T) = (T1, . . . , Ti) : (h1 . . . hi)
∞.

T is a regular chain if hi is regular mod Sati−1(T) for all i ≥ 2.

• The quasi-component W (T) := V (T) \ V (h1 · · ·hℓs
) satisfies

W (T) = V (Satn(T)) where dim(Satn(T)) = n − |T | .

• The algebraic variables of T are those which appear as main variables.

Example

T2 = (X1 + X2)X3
2 + X3 + 1

T1 = X1
2 + 1.

, with
mvar(T2) = X3

mvar(T1) = X1

.

17

Task Model

• A task is any [F, S] whith F ⊂ K[X] finite and S ⊂ K[X] triangular set.

• The task [F, S] is solved if F = ∅ and S is a regular chain.

• Solving [F, S] means computing regular chains T1, . . . , Te such that:

V (F) ∩ W (S) ⊆ ∪e
i=1W (Ti) ⊆ V (F) ∩ W (S).

• [F1, S1]≺ [F2, S2] if either S1 ≺S2 or (∃f1 ∈ F1) (∀f2 ∈ F2) f1 ≺ f2 and

S1 ≃S2.

• The tasks [F1, S1], . . . , [Fe, Se] form a delayed split of [F, S] if for all

1 ≤ i ≤ e we have [Fi, Si]≺ [F, S] and the following holds

V (F) ∩ W (S) ⊆ ∪e
i=1 V (Fi) ∩ W (Si) ⊆ V (F) ∩ W (S).

18

The main operations

• Triangularize(F, S) returns regular chains T1, . . . , Te solving [F, S].

• When F = ∅ we write Extend(S) instead of Triangularize(F, S).

• For p a polynomial and T a regular chain, Decompose(p, T) returns a

delayed split of [{p}.T]. Hence Decompose(p, T) computes V (p)∩W (T) by

lazy evaluation.

• For p, t polynomials with same main variable and T a regular chain,

GCD(p, t, T) returns pairs (g1, T1), . . . , (ge, Te) such that

- whenever |Ti| = |T | holds, gi is a GCD of p and t modulo Ti,

- T1, . . . , Te solve T , that is, W (T) ⊆ ∪e
i=1W (Ti) ⊆ W (T).

• RegularizeInitial(p, T) returns regular chains T1, . . . , Te solving T and

such that p mod Sat(Ti) is constant or its initial is regular.

These operations rely on the D5 Principle (Della Dora et al., 1985).

19

The Triangularize algorithm

Input: a task [F, T]

Output: regular chains T1, . . . , Te solving [F, T]

Triangularize(F, T) == generate

1 R := [[F, T]]

2 # R is a list of tasks

3 while R 6= [] repeat

4 choose and remove a task [F1, U1] from R

5 F1 = ∅ =⇒ yield U1

6 choose a polynomial p ∈ F1

7 G1 := F1 \ {p}

8 for [H, T] ∈ Decompose(p, U1) repeat

9 R := cons ([G1 ∪ H, T], R)

20

The Decompose algorithm

Input: a polynomial p and a regular chain T such

that p 6∈ Sat(T).

Output: a delayed split of [{p}, T].

Decompose(p, T) == generate

1 for C ∈ RegularizeInitial(p, T) repeat

2 f := Reduce(p, C)

3 f = 0 =⇒ yield [∅, C]

4 f ∈ K =⇒ iterate

5 v := mvar(f)

6 v 6∈ mvar(C) =⇒ yield [{init(f), p}, C]

7 for D ∈ Extend(C ∪ {f}) repeat yield [∅, D]

8 for [F, E] ∈ AlgebraicDecompose(f, C<v ∪ C>v, Cv)

9 repeat yield [F, E]

21

The AlgebraicDecompose algorithm

Input: p, T, t as in the definition of GCD.

Output: a delayed split of [{p}, T∪{t}].

AlgebraicDecompose(p, T, t) == generate

1 Let hT be the product of the initials in T

2 f := t hT

3 for [gi, Ti] ∈ GCD(t, p, T) repeat

4 |Ti| > |T | =⇒

5 for Ti,j ∈ Extend(Ti ∪{f}) repeat yield [p, Ti,j]

6 gi ∈ K =⇒ iterate

7 mvar(gi) < v =⇒ yield [{gi, p}, Ti ∪ {t}]

8 deg(gi, v) = deg(t, v) =⇒ yield [∅, Ti ∪ {t}]

9 yield [∅, Ti ∪ {gi}]

10 yield [{init(gi), p}, Ti ∪ {t}]

22

Solving by decreasing order of dimension

• A task [G, C] output by Decompose(p, T) is solved, that is G = ∅, if and

only W (C) is a component of V (p)∩W (T) with maximum dimension.

⇒ Tasks in Triangularize can be chosen such that regular chains are

generated by decreasing order of dimension (= increasing height).

Allow efficient control of redundant components.

• To do so:

- each task [Fi, Ti] is assigned a priority based on rank and dimension

considerations.

- a task chosen in R has maximum priority.

⇒ This leads to a first parallel version of Triangularize where all tasks of

maximum priority are executed concurrently.

23

Create parallelism: Using modular techniques

Modular Solving:

O(d)3

Merging: O (d)~

2Lifting: O(d)

T0

For solving F ⊆ Q[X] we use modular methods. Indeed, for a prime p:

• irreducible polynomials in Q[X] are likely to factor modulo p,

• for p big enough, the result over Q can be recovered from the one over

Z/pZ[X].

(X. Dahan, M. Moreno Maza, É. Schost, W. Wu & Y. Xie, 2005)
24

Effect of modular solving

Sys Name n d p Degrees

1 eco6 6 3 105761 [1,1,2,4,4,4]

2 eco7 7 3 387799 [1,1,1,1,4,2,

4,4,4,4,4,2]

3 CassouNogues2 4 6 155317 [8]

4 CassouNogues 4 8 513899 [8,8]

5 Nooburg4 4 3 7703 [18,6,6,3,3,4,4,4,4,2,2,2,

2,2,2,2,2,1,1,1,1,1]

6 UteshevBikker 4 3 7841 [1,1,1,1,2,30]

7 Cohn2 4 6 188261 [3,5,2,1,2,1,1,16,12,10,8,8,

4,6,4,4,4,4,2,1,1,1,1,1,1,1,

1,1,1,1,1,1,1]

25

Exploit parallelism!

• Driving idea: limit the irregularity of tasks. In particular,

- we want to avoid inexpensive computations leading to expensive data

communication.

- we want to balance the work among the workers.

• Means:

- Reduce the number of parallel steps in Triangularize to be at most n.

- Replace Decompose by an operation SplitByHeight with a stronger

requirement, and thus, more work.

- Be able to estimate the cost of processing a task by SplitByHeight.

• We strengthen the notion of a task [F, T]: for every f ∈ F the initial of f

is regular w.r.t. T .

⇒ When calling Decompose(p, T) is called, we know which operation will

be performed.

26

The Split-by-height strategy

Input: a task [F, T]

Output: a delayed split of [F, T] such that for all

output task [G, U]: |U | = |T | =⇒ G = ∅.

SplitByHeight(F, T) == generate

1 R := [[F, T]] # R is a list of tasks

2 while R 6= [] repeat

3 choose and remove a task [F1, U1] from R

4 |U1| > |T | =⇒ yield [F1, U1]

5 F1 = ∅ =⇒ yield [F1, U1]

6 choose a polynomial p ∈ F1

7 G1 := F1 \ {p}

8 for [H, T] ∈ Decompose(p, U1) repeat

9 R := cons ([G1 ∪ H, T], R)

27

A new Triangularize(F, T) based on SplitByHeight

Input: a task [F, T]

Output: regular chains T1, . . . , Te solving

[F, T].

Triangularize(F, T) == generate

1 R := [[F, T]] # R is a list of tasks

2 while R 6= [] repeat

3 choose and remove [F1, U1] ∈ R with max priority

4 F1 = ∅ =⇒ yield U1

5 for [H, T] ∈ SplitByHeight(F1, U1) repeat

6 R := cons ([H, T], R)

7 sort R by decreasing priority

28

Challenges in the implementation

• Encoding complex mathematical objects and sophisticated algorithms.

• Handling dynamic process creation and management (MPI is not

sufficient).

• Scheduling of highly irregular tasks.

• Managing huge intermediate data (with coefficient swell).

• Handling synchronization.

29

Preliminary implementation: Environment

• We use the Aldor programming language:

- designed to express the structures and algorithms in computer algebra,

- which provides a two-level object model of categories and domains,

- which provides interoperability with other languages, such as C, for

high-performance computing.

• We use the BasicMath library (100,000 lines) in Aldor which provides

a sequential implementation of the Triade algorithm.

• We targeted multi-processed parallelism on SMPs.

• Unfortunately, there was no available support in Aldor for our needs.

30

Communication and synchronization

• We have two functional modules, which are stand-alone executable:

Manager and Worker.

• A primer run() in Aldor allows us to launch independent processes

from the Manager.

• We rely on shared memory segments: we have developed a

SharedMemorySegment domain in Aldor.

• Multivariate polynomials are transfered as primitive array of machine

integers via Kronecker substitution.

• Synchronization for data communication between Manager and Worker’s

is controlled by a mailbox protocol.

task_i result_i

Manager

Worker

result_tag_i

write

write

read/free
write

read/free

read/free

31

Experimentation

• Machine: S
¯
ilky in Canada’s Shared Hierarchical Academic Research

Computing Network (SHARCNET), SGI Altix 3700 Bx2, 128

Itanium2 Processors (1.6GHz), 64-bit, 256 GB memory, 6 MB cache,

SUSE Linux Enterprise Server 10 (ia64).

• Tests on 7 well-known problems:

– Sequential runs with and without regularized initials

– Parallel with Task Pool Dimension and Rank Guided

Scheduling (TPDRG) in Triangularize, using 3 to 21 processors.

– Parallel with Greedy Scheduling in Triangularize, using the

number of processors

∗ giving the best TPDRG time,

∗ giving the best TPDRG time + 2 processors.

– CPU time in read and write for data communication.

32

Recall: features of the testing problem

Sys Name n d p Degrees

1 eco6 6 3 105761 [1,1,2,4,4,4]

2 eco7 7 3 387799 [1,1,1,1,4,2,

4,4,4,4,4,2]

3 CassouNogues2 4 6 155317 [8]

4 CassouNogues 4 8 513899 [8,8]

5 Nooburg4 4 3 7703 [18,6,6,3,3,4,4,4,4,2,2,2,

2,2,2,2,2,1,1,1,1,1]

6 UteshevBikker 4 3 7841 [1,1,1,1,2,30]

7 Cohn2 4 6 188261 [3,5,2,1,2,1,1,16,12,10,8,8,

4,6,4,4,4,4,2,1,1,1,1,1,1,1,

1,1,1,1,1,1,1]

33

Table 1: Wall time (s) for sequential (with vs without

regularized initial) vs parallel

Sys noregSeq regSeq slowBy #CPUs SigPara SPD

(s) (s) (s)

1 3.6 4.0 0.01 5 1.9 1.9

2 707.5 727.9 0.01 9 119.4 5.9

3 463.02 476.2 0.01 9 207.3 2.3

4 2132.9 2162.4 0.01 11 894.3 2.5

5 4.1 4.1 0.01 11 1.6 2.6

6 866.3 866.2 - 13 451.9 2.0

7 298.3 305.2 0.01 11 96.4 3.1

34

Table 2: Parallel timing (s) vs #processor

#CPUs Sys 1 Sys 2 Sys 3 Sys 4 Sys 5 Sys 6 Sys 7

3 3.1 355.1 278.7 1401.4 2.1 622.9 105.0

5 1.9 225.3 214.2 1004.7 2.1 481.7 98.4

7 1.9 142.7 209.2 939.4 1.9 470.2 97.2

9 1.9 119.4 207.3 905.2 1.8 455.2 96.7

11 2.0 119.5 207.1 894.3 1.6 453.1 96.4

13 - 119.1 206.4 874.5 1.6 451.9 96.4

17 - 120.1 211.7 865.5 1.6 451.6 96.2

21 - 119.2 - 852.5 - 451.3 96.5

35

Table 3: Speedup(s) vs #processor

#CPUs Sys 1 Sys 2 Sys 3 Sys 4 Sys 5 Sys 6 Sys 7

3 1.15 1.99 1.66 1.52 1.95 1.39 2.84

5 1.87 3.14 2.16 2.12 1.95 1.80 3.03

7 1.89 4.96 2.21 2.27 2.15 1.84 3.07

9 1.89 5.92 2.23 2.36 2.31 1.90 3.09

11 1.86 5.92 2.24 2.39 2.51 1.91 3.10

13 - 5.94 2.24 2.44 2.55 1.92 3.09

36

Speedup vs number of processors

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

S
p

e
e

d
u

p

Number of Processors

Linear Speedup
eco6
eco7

Caou-Nogue-2
Caou-Nogue

Cohn-2
Nooburg-4

Uteshev-Bikker

37

Table 4: Best TPDRG timing vs Greedy scheduling (s)

System TPDRG #CPUs Greedy #CPUs Greedy

(best) (A) (A) (B) (B)

1 1.911 7 1.792 9 1.778

2 119.093 13 120.505 15 120.516

3 206.375 13 213.206 15 213.354

4 852.488 20 896.787 22 939.618

5 1.611 13 1.631 15 1.632

6 451.357 20 500.504 22 469.354

7 96.203 17 100.779 19 96.169

All the examples but one are zero-dimensional (= finite number of

solutions): a situation where redundant components are very rare.

So the TPDRG scheduling, which enhances the solving by decreasing order

of dimension, is not a necessity.

However, it compares with the Greedy scheduling!
38

Table 5: CPU time in read and write for data

communication vs workers’ total

System DataSize Read Write Workers Read + Write

(#integer) (ms) (ms) (ms) vs Total

1 7717 80 56 1031 13.2%

2 56689 383 172 174329 0.3%

3 112802 4394 301 125830 3.7%

4 430217 33760 426 585112 5.8%

5 13307 123 55 1121 15.9%

6 254145 9773 386 233582 4.4%

7 77426 819 317 31858 3.6%

39

Conclusions

• By using modular methods, we have created opportunities for coarse

grained component-level parallel solving of polynomial systems in Q[X]

• To exploit these opportunities, we have transformed the Triade algorithm.

• We have strengthened its notion of a task and replaced the operation

Decompose by SplitByHeight in order to

- reduce the depth of the task tree,

- create more work at each node,

- be able to estimate the cost of each task within each parallel step.

• We have realized a preliminary implementation in Aldor using

multi-processed parallelism with shared memory segment for

data-communication.

40

Toward Efficient Multi-level Parallelization

• We aim at developing a model for threads in Aldor to support

parallelism for symbolic computations targeting SMP and multi-cores.

– in particular, parametric types, such as polynomial data types,

shall be properly treated.

• We aim at investigating multi-level parallel algorithms for triangular

decompositions of polynomial systems.

– coarse grained level for tasks to compute geometric of the solution

sets.

– medium/fine grained level for polynomial arithmetic such as

multiplication, GCD/resultant, and factorization.

– hence, to increase speed-up.

41

Propaganda

ISSAC 07

PASCO 07 SNC 07

ACA 07

London, July 27−28 London, July 25 −27

Waterloo, July 29 −1

Detroit, Aug 3−6

42

