

Component-level Parallelization of Triangular Decompositions

Marc Moreno Maza & Yuzhen Xie

University of Western Ontario, Canada

February 1, 2007

Interactive Parallel Computation in Support of Research in Algebra, Geometry and Number Theory MSRI Workshop 2007, Berkeley.

Solving polynomial systems symbolically

- <u>Strengths of symbolic solving</u>:
 - parametric polynomial systems solving,
 - real algebraic geometry,
 - solving in non-zero characteristic.
- Increasing number of applications:
 - cryptology, robotics, signal processing
 - geometric modeling (AGGM community),
 - algebraic study of dynamical systems (in biology, chemsitry, ...).
- Strengths of triangular decomposition:
 - size of coefficients, running time complexity estimates,
 - fast arithmetic, sharp modular methods,
 - geometrical information.

Gröbner bases and triangular decompositions

$$\begin{cases} x^{2} + y + z = 1 \\ x + y^{2} + z = 1 \\ x + y + z^{2} = 1 \end{cases} \xrightarrow{\text{has Gröbner basis}} : \\ x + y + z^{2} = 1 \\ \end{cases}$$

$$\begin{cases} z^{6} - 4z^{4} + 4z^{3} - z^{2} = 0 \\ 2z^{2}y + z^{4} - z^{2} = 0 \\ y^{2} - y - z^{2} + z = 0 \\ x + y + z^{2} - 1 = 0 \end{cases} \xrightarrow{\text{and triangular decomposition}} : \\ x + y + z^{2} - 1 = 0 \\ \end{cases}$$

$$\begin{cases} z = 1 \\ y = 0 \\ x = 0 \end{cases} \qquad \begin{cases} z = 0 \\ y = 1 \\ x = 0 \end{cases} \qquad \begin{cases} z = 0 \\ y = 0 \\ x = 1 \end{cases} \qquad \begin{cases} z^{2} + 2z - 1 = 0 \\ y = z \\ x = z \end{cases}$$

Triangular decompositions

• The zero set V(F) admits a decomposition (unique when minimal)

$$V(F) = V(F_1) \cup \cdots \cup V(F_e),$$

s.t. $F_1, \ldots, F_e \subset \mathbb{K}[X]$ and every $V(F_i)$ cannot be decomposed further.

• Moreover, up to technical details, each $V(F_i)$ is the zero set of a **triangular system**, which can view as a **solved system**

$$\begin{cases} T_n(x_1, \dots, x_d, x_{d+1}, x_{d+2}, \dots, x_{n-1}, \mathbf{x_n}) = 0 \\ T_{n_1}(x_1, \dots, x_d, x_{d+1}, x_{d+2}, \dots, \mathbf{x_{n-1}}) = 0 \\ \vdots \\ T_{d+2}(x_1, \dots, x_d, x_{d+1}, \mathbf{x_{d+2}}) = 0 \\ T_{d+1}(x_1, \dots, x_d, \mathbf{x_{d+1}}) = 0 \\ h(x_1, \dots, x_d) \neq 0 \end{cases}$$

Parallelizing the computation of Gröbner bases

Input: $F \subset \mathbb{K}[X]$ and an admissible monomial ordering \leq .

Output: G a reduced Gröbner basis w.r.t. \leq of the ideal $\langle F \rangle$ generated by F.

```
repeat

(S) B := MinimalAutoreducedSubset(F, \leq)

(R) A := S_Polynomials(B) \cup F;

R := Reduce(A, B, \leq)

(U) R := R \setminus \{0\}; F := F \cup R

until R = \emptyset

return B
```

The parallel characteristic set method

Output: *C* an autoreduced characteristic set of *F* (in the sense of Wu). repeat (S) B := MinimalAutoreducedSubset(F, \leq) (R) $A := F \setminus B;$ R := PseudoReduce(A, B, \leq) (U) $R := R \setminus \{0\}; F := F \cup R$ until $R = \emptyset$ return *B*

Input: $F \subset \mathbb{K}[X]$.

- Repeated calls to this procedure computes a decomposition of V(F).
- Cannot start computing the 2nd component before the 1st is completed.

Solving polynomial systems symbolically and in parallel!

- <u>Related work</u> :
 - Parallelizing the computation of Gröbner bases (R. Bündgen, M. Göbel & W. Küchlin, 1994) (S. Chakrabarti & K. Yelick, 1993 -1994) (G. Attardi & C. Traverso, 1996) (A. Leykin, 2004)
 - Parallelizing the computation of characteristic sets (I.A. Ajwa, 1998), (Y.W. Wu, W.D. Liao, D.D. Liu & P.S. Wang, 2003) (Y.W. Wu, G.W. Yang, H. Yang, H.M. Zheng & D.D. Liu, 2005)

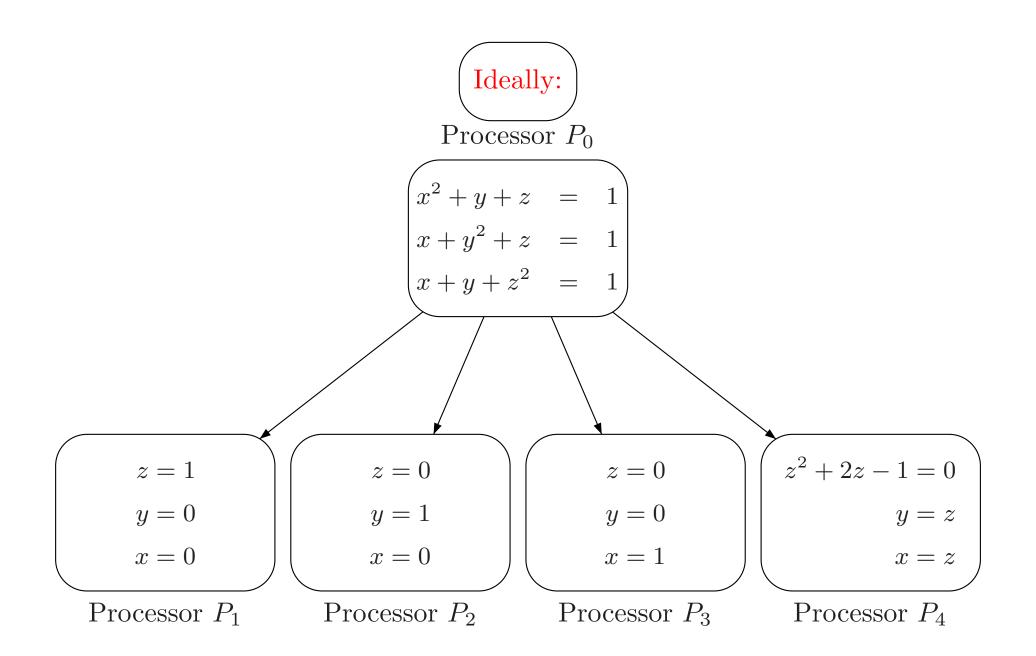
Solving polynomial systems symbolically and in parallel!

• <u>New motivations</u>:

- renaissance of parallelism,
- new algorithms offering better opportunities for parallel execution.

• Our goal:

- multi-level parallelism:
 - * coarse grained "component-level" for tasks computing geometric objects,
 - * medium/fine grained level for polynomial arithmetic within each task.
- to develop a solver for which the number of processes in use depends on the geometry of the solution set



Dynamic and very irregular computations (1/2)

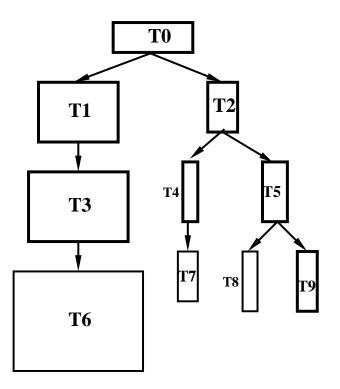
• How do splits occur during decompositions? Given a polynomial ideal \mathcal{I} and polynomials p, a, b, there are two rules:

- $\mathcal{I} \longmapsto (\mathcal{I} + p, \mathcal{I} : p^{\infty}).$
- $\mathcal{I} + \langle a b \rangle \longmapsto (\mathcal{I} + \langle a \rangle, \mathcal{I} + \langle b \rangle).$
- The second one is more likely to **split computations evenly**. But geometrically, it means that a component is **reducible**.
- Unfortunately, most polynomial systems $F \subseteq \mathbb{Q}[X]$ are **equiprojectable**, that is, they can be represented by a single triangular set.
 - This is true in theory, shape lemma: (Becker, Mora, Marinari & Traverso, 1994).
 - and in practice: SymbolicData.org.

• However, for $F \subseteq Z/pZ[X]$ where p prime, the second rule is more likely to be used.

Dynamic and very irregular computations (2/2)

• Very irregular tasks (CPU time, memory, data-communication)



Initial task
$$[\{f_1, f_2, f_3\}, \emptyset]$$

$$f_1 = x - 2 + (y - 1)^2$$

$$f_2 = (x - 1)(y - 1) + (x - 2)y$$

$$f_3 = (x - 1)z$$

$$x - 1 + y^2 - 2y = 0$$

$$(2y - 1)x + 1 - 3y = 0$$

$$z = 0$$

$$z = 0$$

$$z = 0$$

$$y = 0$$

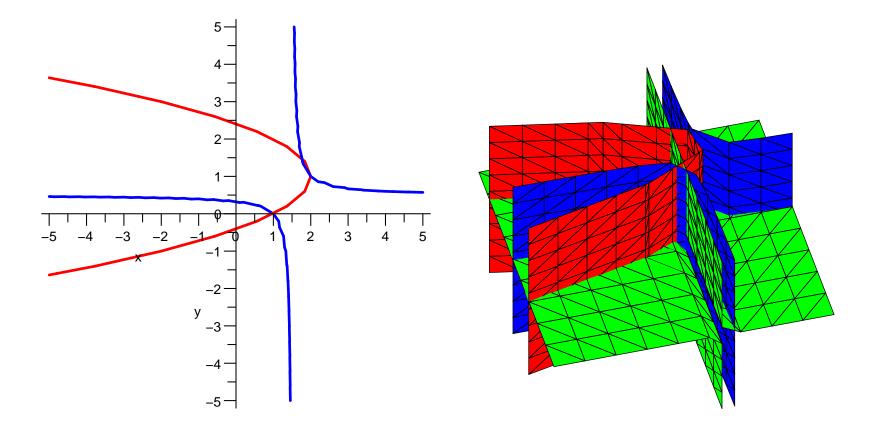
$$y = 0$$

$$y = 1$$

$$x = 2$$

$$x = 7$$

Even worse: redundant and irregular tasks



The red and blue surfaces intersect on the line x - 1 = y = 0 contained in the green plane x = 1. With the other green plane z = 0, they intersect at $(2, 1, 0), (\frac{7}{4}, \frac{3}{2}, 0)$ but also at x - 1 = y = z = 0, which is redundant.

How to create and exploit parallelism?

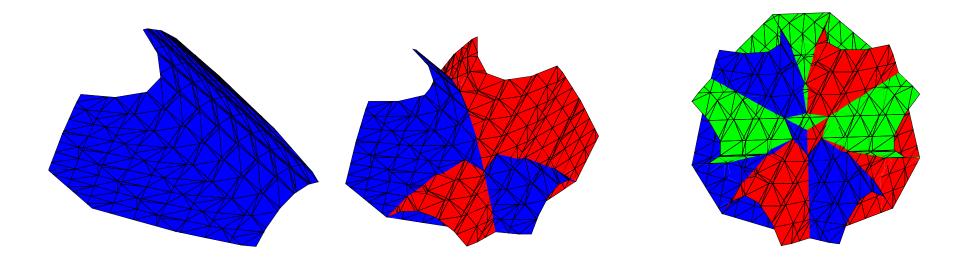
- We start from an algorithm (Triade, MMMM 2000)
 - based on incremental solving for exploiting geometrical information,
 - solving by decreasing order of dimension for removing redundant components efficiently.
- This algorithm
 - uses a task model for the intermediate computations,
 - but a naive parallelization would be unsuccessful, for the reasons mentioned earlier.
- So, we rely also
 - on the modular algorithm (Dahan, MMM, Schost, Wu and Xie, 2005)
 - in order to create opportunities for parallel execution with input systems over \mathbb{Q} .

• We adapt the Triade algorithm to exploit the opportunities created by the modular techniques.

Triangular Decompositions: a geometrical approach

Incremental solving: by solving one equation after the other, lead to a **more geometric approach**

$$\begin{cases} x^{2} + y + z = 1 \\ x + y^{2} + z = 1 \end{cases} \begin{cases} x^{2} + y + z = 1 \\ x + y^{2} + z = 1 \\ x + y + z^{2} = 1 \end{cases}$$



$$\begin{cases} x^{2} + y + z = 1 \\ x^{2} + y + z = 1 \\ x^{4} + (2z - 2)y^{2} \\ y^{4} + y - z + z^{2} = 0 \end{cases} \begin{cases} x + y = 1 \\ y^{2} - y = 0 \\ z = 0 \\ 2x + z^{2} = 1 \\ 2y + z^{2} = 1 \\ z^{3} + z^{2} - 3z = -1 \end{cases}$$

Triangular sets and regular chains

• Let $\mathbf{T} = T_1, \ldots, T_s \subset \mathbb{K}[x_1 < \cdots < x_n]$. with main variables $x_{\ell_1} < \cdots < x_{\ell_s}$, that is, a triangular set.

- For $i \leq s$, the initial h_i is the leading coefficient of T_i in X_{ℓ_i} .
- Define $\operatorname{Sat}_i(\mathbf{T}) = (T_1, \ldots, T_i) : (h_1 \ldots h_i)^{\infty}$.

T is a regular chain if h_i is regular mod $\operatorname{Sat}_{i-1}(\mathbf{T})$ for all $i \geq 2$.

- The quasi-component $W(\mathbf{T}) := V(\mathbf{T}) \setminus V(h_1 \cdots h_{\ell_s})$ satisfies $\overline{W(\mathbf{T})} = V(\operatorname{Sat}_n(\mathbf{T}))$ where $dim(\operatorname{Sat}_n(\mathbf{T})) = n - |T|$.
- The algebraic variables of T are those which appear as main variables.

EXAMPLE

$$\begin{vmatrix} T_2 = (X_1 + X_2)X_3^2 + X_3 + 1 \\ T_1 = X_1^2 + 1. \end{vmatrix}$$
, with
$$\begin{vmatrix} \operatorname{mvar}(T_2) = X_3 \\ \operatorname{mvar}(T_1) = X_1 \end{vmatrix}$$

Task Model

- A task is any [F, S] whith $F \subset \mathbb{K}[X]$ finite and $S \subset \mathbb{K}[X]$ triangular set.
- The task [F, S] is solved if $F = \emptyset$ and S is a regular chain.
- Solving [F, S] means computing regular chains T_1, \ldots, T_e such that: $V(F) \cap W(S) \subseteq \cup_{i=1}^e W(T_i) \subseteq V(F) \cap \overline{W(S)}.$
- $[F_1, S_1] \prec [F_2, S_2]$ if either $S_1 \prec S_2$ or $(\exists f_1 \in F_1)$ $(\forall f_2 \in F_2)$ $f_1 \prec f_2$ and $S_1 \simeq S_2$.
- The tasks $[F_1, S_1], \ldots, [F_e, S_e]$ form a delayed split of [F, S] if for all $1 \leq i \leq e$ we have $[F_i, S_i] \prec [F, S]$ and the following holds

 $V(F) \cap W(S) \subseteq \bigcup_{i=1}^{e} V(F_i) \cap W(S_i) \subseteq V(F) \cap \overline{W(S)}.$

The main operations

- Triangularize(F, S) returns regular chains T_1, \ldots, T_e solving [F, S].
- When $F = \emptyset$ we write $\mathsf{Extend}(S)$ instead of $\mathsf{Triangularize}(F, S)$.
- For p a polynomial and T a regular chain, Decompose(p, T) returns a delayed split of $[\{p\},T]$. Hence Decompose(p,T) computes $V(p) \cap W(T)$ by lazy evaluation.
- For p, t polynomials with same main variable and T a regular chain, $\mathsf{GCD}(p, t, T)$ returns pairs $(g_1, T_1), \ldots, (g_e, T_e)$ such that
 - whenever $|T_i| = |T|$ holds, g_i is a GCD of p and t modulo T_i ,
 - T_1, \ldots, T_e solve T, that is, $W(T) \subseteq \bigcup_{i=1}^e W(T_i) \subseteq \overline{W(T)}$.
- RegularizeInitial(p, T) returns regular chains T_1, \ldots, T_e solving T and such that $p \mod \operatorname{Sat}(T_i)$ is constant or its initial is regular.

These operations rely on the D5 Principle (Della Dora et al., 1985).

The *Triangularize* algorithm

```
Input: a task [F, T]
 Output: regular chains T_1, \ldots, T_e solving [F, T]
Triangularize(F, T) == generate
1 \ R := [[F, T]]
2 \# R is a list of tasks
3 while R \neq [] repeat
    choose and remove a task [F_1, U_1] from R
4
5 F_1 = \emptyset \Longrightarrow  yield U_1
6
  choose a polynomial p \in F_1
  G_1 := F_1 \setminus \{p\}
7
8 for [H, T] \in \mathsf{Decompose}(p, U_1) repeat
       R := \operatorname{cons} \left( [G_1 \cup H, T], R \right)
9
```

The *Decompose* algorithm

```
Input: a polynomial p and a regular chain T such
     that p \notin \operatorname{Sat}(T).
 Output: a delayed split of [\{p\}, T].
Decompose(p, T) == generate
      for C \in \text{RegularizeInitial}(p, T) repeat
1
   f := \mathsf{Reduce}(p, C)
2
3 f = 0 \Longrightarrow yield [\emptyset, C]
4 f \in \mathbb{K} \Longrightarrow iterate
5 v := mvar(f)
    v \notin \operatorname{mvar}(C) \Longrightarrow \mathbf{yield} \left[ \{ \operatorname{init}(f), p \}, C \right]
6
               for D \in \mathsf{Extend}(C \cup \{f\}) repeat yield [\emptyset, D]
7
         for [F, E] \in \mathsf{AlgebraicDecompose}(f, C_{< v} \cup C_{> v}, C_v)
8
9
            repeat yield [F, E]
```

The AlgebraicDecompose algorithm

```
Input: p, T, t as in the definition of GCD.
  Output: a delayed split of [\{p\}, T \cup \{t\}].
AlgebraicDecompose(p, T, t) == generate
      Let h_T be the product of the initials in T
1
2 \quad f := t h_T
3
  for [q_i, T_i] \in \mathsf{GCD}(t, p, T) repeat
4
         |T_i| > |T| \Longrightarrow
5
            for T_{i,j} \in \mathsf{Extend}(T_i \cup \{f\}) repeat yield [p, T_{i,j}]
6
   q_i \in \mathbb{K} \Longrightarrow \mathbf{iterate}
7
         \operatorname{mvar}(q_i) < v \Longrightarrow \operatorname{yield} [\{q_i, p\}, T_i \cup \{t\}]
         \deg(q_i, v) = \deg(t, v) \Longrightarrow yield [\emptyset, T_i \cup \{t\}]
8
9
    yield [\emptyset, T_i \cup \{g_i\}]
         yield [{init(q_i), p}, T_i \cup \{t\}]
10
```

Solving by decreasing order of dimension

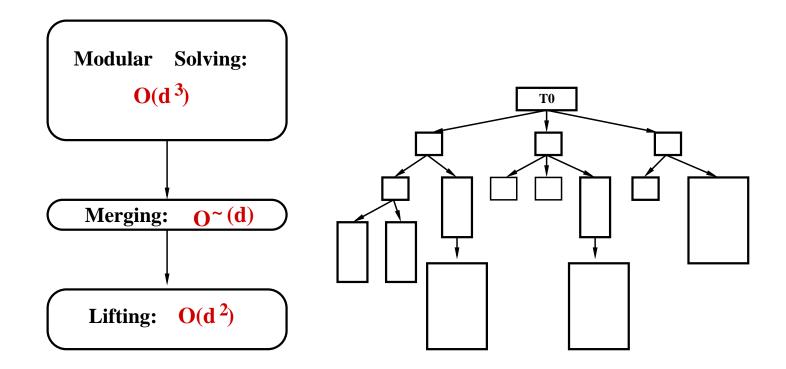
• A task [G, C] output by $\mathsf{Decompose}(p, T)$ is solved, that is $G = \emptyset$, if and only $\overline{W(C)}$ is a component of $V(p) \cap \overline{W(T)}$ with maximum dimension.

 $\Rightarrow Tasks in Triangularize can be chosen such that regular chains are$ generated by decreasing order of dimension (= increasing height).Allow efficient control of redundant components.

- To do so:
 - each task $[F_i, T_i]$ is assigned a priority based on *rank* and *dimension* considerations.
 - a task chosen in R has maximum priority.

 \Rightarrow This leads to a first parallel version of Triangularize where all tasks of maximum priority are executed concurrently.

Create parallelism: Using modular techniques



For solving $F \subseteq \mathbb{Q}[X]$ we use modular methods. Indeed, for a prime p:

- irreducible polynomials in $\mathbb{Q}[X]$ are likely to factor modulo p,
- for p big enough, the result over \mathbb{Q} can be recovered from the one over Z/pZ[X].

(X. Dahan, M. Moreno Maza, É. Schost, W. Wu & Y. Xie, 2005)

Effect of modular solving

Sys	Name	n	d	p	Degrees
1	есоб	6	3	105761	[1, 1, 2, 4, 4, 4]
2	eco7	7	3	387799	[1, 1, 1, 1, 4, 2,
					$4,\!4,\!4,\!4,\!4,\!2]$
3	CassouNogues2	4	6	155317	[8]
4	CassouNogues	4	8	513899	[8,8]
5	Nooburg4	4	3	7703	[18, 6, 6, 3, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
					$2,\!2,\!2,\!2,\!2,\!1,\!1,\!1,\!1,\!1]$
6	UteshevBikker	4	3	7841	$[1,\!1,\!1,\!1,\!2,\!30]$
7	Cohn2	4	6	188261	[3, 5, 2, 1, 2, 1, 1, 16, 12, 10, 8, 8, 8]
					4, 6, 4, 4, 4, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
					$1,\!1,\!1,\!1,\!1,\!1,\!1,\!1]$

Exploit parallelism!

- Driving idea: limit the irregularity of tasks. In particular,
 - we want to avoid inexpensive computations leading to expensive data communication.
 - we want to balance the work among the workers.
- Means:
 - Reduce the number of parallel steps in Triangularize to be at most n.
 - Replace Decompose by an operation SplitByHeight with a stronger requirement, and thus, more work.
 - Be able to estimate the cost of processing a task by SplitByHeight.
- We strengthen the notion of a task [F, T]: for every $f \in F$ the initial of f is regular w.r.t. T.

 \Rightarrow When calling $\mathsf{Decompose}(p, T)$ is called, we know which operation will be performed.

The *Split-by-height* strategy

Input: a task [F, T]**Output:** a delayed split of [F, T] such that for all output task [G, U]: $|U| = |T| \implies G = \emptyset$. SplitByHeight(F,T) == generate1 R := [[F, T]] # R is a list of tasks 2 while $R \neq []$ repeat choose and remove a task $[F_1, U_1]$ from R 3 $|U_1| > |T| \Longrightarrow$ yield $[F_1, U_1]$ 4 5 $F_1 = \emptyset \Longrightarrow$ yield $[F_1, U_1]$ choose a polynomial $p \in F_1$ 6 7 $G_1 := F_1 \setminus \{p\}$ 8 for $[H, T] \in \mathsf{Decompose}(p, U_1)$ repeat $R := \operatorname{cons} \left([G_1 \cup H, T], R \right)$ 9

A new Triangularize(F, T) based on SplitByHeight

Input: a task [F, T]**Output:** regular chains T_1, \ldots, T_e solving [F,T].Triangularize(F,T) == generate1 R := [[F, T]] # R is a list of tasks 2 while $R \neq []$ repeat choose and remove $[F_1, U_1] \in R$ with max priority 3 4 $F_1 = \emptyset \Longrightarrow$ **yield** U_1 5 for $[H,T] \in \mathsf{SplitByHeight}(F_1,U_1)$ repeat $6 \qquad R := \operatorname{cons} \left([H, T], R \right)$ sort R by decreasing priority $\overline{7}$

Challenges in the implementation

- Encoding complex mathematical objects and sophisticated algorithms.
- Handling dynamic process creation and management (MPI is not sufficient).
- Scheduling of highly irregular tasks.
- Managing huge intermediate data (with coefficient swell).
- Handling synchronization.

Preliminary implementation: Environment

- We use the ALDOR programming language:
 - designed to express the structures and algorithms in computer algebra,
 - which provides a two-level object model of *categories* and *domains*,
 - which provides interoperability with other languages, such as C, for high-performance computing.
- We use the **BasicMath** library (100,000 lines) in ALDOR which provides a sequential implementation of the **Triade** algorithm.
- We targeted multi-processed parallelism on SMPs.
- Unfortunately, there was no available support in ALDOR for our needs.

Communication and synchronization

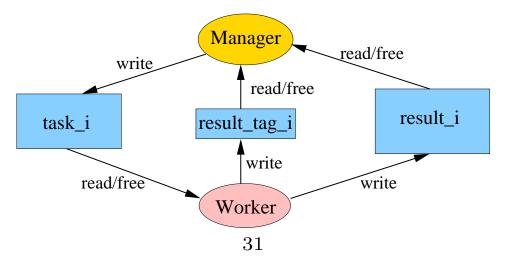
• We have two functional modules, which are stand-alone executable: Manager and Worker.

• A primer **run()** in ALDOR allows us to launch independent processes from the Manager.

• We rely on *shared memory segments*: we have developed a **SharedMemorySegment** domain in ALDOR.

• Multivariate polynomials are transferred as primitive array of machine integers via **Kronecker substitution**.

• Synchronization for data communication between Manager and Worker's is controlled by a mailbox protocol.



Experimentation

- Machine: Silky in Canada's Shared Hierarchical Academic Research Computing Network (SHARCNET), SGI Altix 3700 Bx2, 128 Itanium2 Processors (1.6GHz), 64-bit, 256 GB memory, 6 MB cache, SUSE Linux Enterprise Server 10 (ia64).
- Tests on 7 well-known problems:
 - Sequential runs with and without regularized initials
 - Parallel with Task Pool Dimension and Rank Guided
 Scheduling (TPDRG) in Triangularize, using 3 to 21 processors.
 - Parallel with *Greedy Scheduling* in Triangularize, using the number of processors
 - * giving the best TPDRG time,
 - * giving the best TPDRG time + 2 processors.
 - CPU time in **read and write** for data communication.

Recall: features of the testing problem

Sys	Name	n	d	p	Degrees
1	eco6	6	3	105761	$[1,\!1,\!2,\!4,\!4,\!4]$
2	eco7	7	3	387799	[1, 1, 1, 1, 4, 2,
					$4,\!4,\!4,\!4,\!4,\!2]$
3	CassouNogues2	4	6	155317	[8]
4	CassouNogues	4	8	513899	[8,8]
5	Nooburg4	4	3	7703	[18, 6, 6, 3, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
					$2,\!2,\!2,\!2,\!2,\!1,\!1,\!1,\!1,\!1]$
6	UteshevBikker	4	3	7841	$[1,\!1,\!1,\!1,\!2,\!30]$
7	Cohn2	4	6	188261	[3, 5, 2, 1, 2, 1, 1, 16, 12, 10, 8, 8, 8]
					4, 6, 4, 4, 4, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
					$1,\!1,\!1,\!1,\!1,\!1,\!1,\!1]$

Table 1: Wall time (s) for sequential (with vs withoutregularized initial) vs parallel

Sys	noregSeq	regSeq	slowBy	#CPUs	SigPara	SPD
	(s)	(s)			(s)	
1	3.6	4.0	0.01	5	1.9	1.9
2	707.5	727.9	0.01	9	119.4	5.9
3	463.02	476.2	0.01	9	207.3	2.3
4	2132.9	2162.4	0.01	11	894.3	2.5
5	4.1	4.1	0.01	11	1.6	2.6
6	866.3	866.2	-	13	451.9	2.0
7	298.3	305.2	0.01	11	96.4	3.1

Table 2: Parallel timing (s) vs #processor

#CPUs	Sys 1	Sys 2	Sys 3	Sys 4	Sys 5	Sys 6	Sys 7
3	3.1	355.1	278.7	1401.4	2.1	622.9	105.0
5	1.9	225.3	214.2	1004.7	2.1	481.7	98.4
7	1.9	142.7	209.2	939.4	1.9	470.2	97.2
9	1.9	119.4	207.3	905.2	1.8	455.2	96.7
11	2.0	119.5	207.1	894.3	1.6	453.1	96.4
13	-	119.1	206.4	874.5	1.6	451.9	96.4
17	-	120.1	211.7	865.5	1.6	451.6	96.2
21	-	119.2	-	852.5	-	451.3	96.5

#CPUs	Sys 1	Sys 2	Sys 3	Sys 4	Sys 5	Sys 6	Sys 7
3	1.15	1.99	1.66	1.52	1.95	1.39	2.84
5	1.87	3.14	2.16	2.12	1.95	1.80	3.03
7	1.89	4.96	2.21	2.27	2.15	1.84	3.07
9	1.89	5.92	2.23	2.36	2.31	1.90	3.09
11	1.86	5.92	2.24	2.39	2.51	1.91	3.10
13	-	5.94	2.24	2.44	2.55	1.92	3.09

Table 3: Speedup(s) vs #processor

Speedup vs number of processors

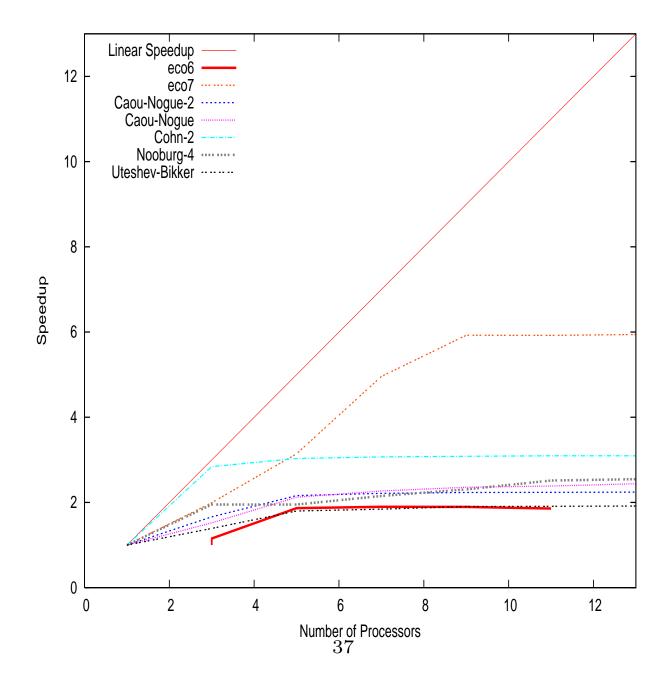


Table 4: Best TPDRG timing vs *Greedy* scheduling (s)

System	TPDRG	#CPUs	Greedy	#CPUs	Greedy
	(best)	(A)	(A)	(B)	(B)
1	1.911	7	1.792	9	1.778
2	119.093	13	120.505	15	120.516
3	206.375	13	213.206	15	213.354
4	852.488	20	896.787	22	939.618
5	1.611	13	1.631	15	1.632
6	451.357	20	500.504	22	469.354
7	96.203	17	100.779	19	96.169

All the examples but one are zero-dimensional (= finite number of solutions): a situation where redundant components are very rare.

So the *TPDRG* scheduling, which enhances the solving by decreasing order of dimension, is not a necessity.

However, it compares with the Greedy scheduling!

Table 5: CPU time in read and write for data communication vs workers' total

System	DataSize	Read	Write	Workers	Read + Write
	(#integer)	(ms)	(ms)	(ms)	vs Total
1	7717	80	56	1031	13.2%
2	56689	383	172	174329	0.3%
3	112802	4394	301	125830	3.7%
4	430217	33760	426	585112	5.8%
5	13307	123	55	1121	15.9%
6	254145	9773	386	233582	4.4%
7	77426	819	317	31858	3.6%

Conclusions

• By using modular methods, we have created opportunities for coarse grained **component-level** parallel solving of polynomial systems in $\mathbb{Q}[X]$

- To exploit these opportunities, we have transformed the Triade algorithm.
- We have strengthened its notion of a task and replaced the operation Decompose by SplitByHeight in order to
 - reduce the depth of the task tree,
 - create more work at each node,
 - be able to estimate the cost of each task within each parallel step.

• We have realized a preliminary implementation in ALDOR using multi-processed parallelism with shared memory segment for data-communication.

Toward Efficient Multi-level Parallelization

- We aim at developing a model for threads in Aldor to support parallelism for symbolic computations targeting SMP and multi-cores.
 - in particular, parametric types, such as polynomial data types, shall be properly treated.
- We aim at investigating multi-level parallel algorithms for triangular decompositions of polynomial systems.
 - coarse grained level for tasks to compute geometric of the solution sets.
 - medium/fine grained level for polynomial arithmetic such as multiplication, GCD/resultant, and factorization.
 - hence, to increase speed-up.

