Component-level Parallelization of Triangular
Decompositions

Marc Moreno Maza & Yuzhen Xie

University of Western Ontario, Canada

February 1, 2007

Interactive Parallel Computation in Support of Research in Algebra,
Geometry and Number Theory
MSRI Workshop 2007, Berkeley.

Solving polynomial systems symbolically

e Strengths of symbolic solving:

- parametric polynomial systems solving,
- real algebraic geometry,
- solving in non-zero characteristic.

e Increasing number of applications:

- cryptology, robotics, signal processing

- geometric modeling (AGGM community),

- algebraic study of dynamical systems (in biology, chemsitry, ...).

e Strengths of triangular decomposition:

- size of coefficients, running time complexity estimates,
- fast arithmetic, sharp modular methods,

- geometrical information.

Grobner bases and triangular decompositions

2 4+y+z=1
r+yP+z=1
r+y+22=1

has Grobner basis :

20— 4zt 4423 — 22 =0

222y + 24— 22 =0

v —y—22+2=0

and triangular decomposition :

r+y+22—1=0

z=1
y=0 U A
r =0 \

z=20
y=0 U 1
r=1

(22 4+92:—-1=0

y==z

r =z

Triangular decompositions

e The zero set V(F') admits a decomposition (unique when minimal)
V(F)=V(F1)U --- UV (F,),
s.t. Fp,...,F. C K[X] and every V(F;) cannot be decomposed further.

e Moreover, up to technical details, each V (Fj;) is the zero set of a
triangular system, which can view as a solved system

2

T (T1, . Xdy Tga1, Tgaoy -+, Tp_1,Xn) =0
Tn,(T1,.. ., %4, Tga1, Tda2y---,Xn-1) =0

\
Tiio(x1,...,Tq,Tgr1,Xdr2) =0
Tii1(x1,...,2q,%Xq+1) =0

L (1, q) #0

Parallelizing the computation of Grobner bases

Input: F' C K[X] and an admissible monomial ordering <.

Output: G a reduced Grobner basis w.r.t. < of the ideal (F)
generated by F'.

repeat
(S) B := MinimalAutoreducedSubset(F, <)
(R) A := S_Polynomials(B) U F’;
R := Reduce(A, B, <)
(U R:=R\ {0}; F:=FUR
until R = ()

return B

The parallel characteristic set method

Input: F C K[X].
Output: C an autoreduced characteristic set of F' (in the sense of Wu).

repeat

(S) B := MinimalAutoreducedSubset(F, <)
(R) A:=F \ B;
R := PseudoReduce(A4, B, <)
(U) R:=R\ {0}; F:=FUR
until R = ()

return B

e Repeated calls to this procedure computes a decomposition of V (F').

e Cannot start computing the 2nd component before the 1st is completed.

Solving polynomial systems symbolically and in
parallel!

e Related work :

- Parallelizing the computation of Grobner bases (R. Biindgen,
M. Gébel & W. Kiichlin, 1994) (S. Chakrabarti & K. Yelick, 1993 -
1994) (G. Attardi & C. Traverso, 1996) (A. Leykin, 2004)

- Parallelizing the computation of characteristic sets (I.A. Ajwa, 1998),
(Y.W. Wu, W.D. Liao, D.D. Liu & P.S. Wang, 2003) (Y.W. Wu,
G.W. Yang, H. Yang, H.M. Zheng & D.D. Liu, 2005)

Solving polynomial systems symbolically and in
parallel!

e New motivations:

— renaissance of parallelism,

— new algorithms offering better opportunities for parallel execution.

e Our goal:

— multi-level parallelism:
x coarse grained “component-level” for tasks computing geometric
objects,
+ medium/fine grained level for polynomial arithmetic within each
task.

— to develop a solver for which the number of processes in use

depends on the geometry of the solution set

z=1
=0
r=0

Ideally:

Processor P,

Processor P

:ﬁ+y+z :ﬁ?

r+yi+z = 1

r+y+22 = 1
z=0 z2=0
=1 =0
z =20 r=1

Processor FP;

~

224+22—-1=0
y==z

Processor Ps

_ o

Processor Py

Dynamic and very irregular computations (1/2)

e How do splits occur during decompositions? Given a polynomial ideal Z

and polynomials p, a, b, there are two rules:
e 7 — (Z+p,I:p>).
e I+ (ab) — (IT+(a), T+ (b))

e The second one is more likely to split computations evenly. But

geometrically, it means that a component is reducible.

e Unfortunately, most polynomial systems F' C Q|X| are equiprojectable,
that is, they can be represented by a single triangular set.

- This is true in theory, shape lemma: (Becker, Mora, Marinari &
Traverso, 1994).

- and in practice: SymbolicData.org.

e However, for F' C Z/pZ|X| where p prime, the second rule is more likely

to be used.
10

Dynamic and very irregular computations (2/2)

e Very irregular tasks (CPU time, memory, data-communication)

T0

11

Initial task [{f1, fo, f3}, 0]

~

/fl = -2+ (y—-1)°
for= (@-1Dy—-1+(@-2)y
3 = (x—1)z

L f (z —1)

-~ N
:U—l—l—y2—2y
2y — 1)z +1-3y

\ z

12

Even worse: redundant and irregular tasks

L L L L R
-5 -4

The red and blue surfaces intersect on the line x — 1 = y = 0 contained in

the green plane x = 1. With the other green plane z = 0, they intersect at
(2,1,0), (£,2,0) but also at + — 1 = y = z = 0, which is redundant.

4727

13

How to create and exploit parallelism?

e We start from an algorithm (Triade, MMMM 2000)
- based on incremental solving for exploiting geometrical information,

- solving by decreasing order of dimension for removing redundant
components efficiently:.

e This algorithm
- uses a task model for the intermediate computations,

- but a naive parallelization would be unsuccessful, for the reasons
mentioned earlier.

e So, we rely also

- on the modular algorithm (Dahan, MMM, Schost, Wu and Xie, 2005)

- in order to create opportunities for parallel execution with input
systems over QQ.

e We adapt the Triade algorithm to exploit the opportunities created by

the modular techniques. ”

Triangular Decompositions: a geometrical approach

Incremental solving: by solving one equation after the other, lead to a
more geometric approach

(.2
zc+y+z2=1
2+ y+z=1
{x2+y+z:1 z+y*+z2=1
r+y?+z=1
\ r+y+22=1

D3

15

{a@+y+z:1<

y4

+ y+z=1
+ (22 — 2)y?
+ y—z+22=0

A

VA

VAYAY.
g

> i

)
Tr+y=
y VY=
\ £ =
(2r + 22 =1
2y + 22 =1

23+ 22 -3z2=-1

Triangular sets and regular chains

e let T=T1,...,Ts CKlx; < - < x,]. with main variables
o, < --- < xy,, that is, a triangular set.

e For 7 < s, the initial h; is the leading coefficient of T; in Xy,.
e Define Satz(T) = (Tl, c. 7Tz) . (hl c. hz)oo

T is a regular chain if h; is regular mod Sat;_1(T) for all ¢ > 2.
e The quasi-component W(T) := V(T)\ V(hy---hy) satisfies
W(T) = V(Sat,(T)) | where | dim(Sat,,(T)) =n — |T] |

e The algebraic variables of I' are those which appear as main variables.

EXAMPLE

TQ = (X1 + XQ)X32 + X3 + 1 . mvar(Tg) = X3
, with

Ty = X;2 + 1. mvar(Ty) = X;

17

Task Model

e A task is any [F,S] whith F' C K[X] finite and S C K[X] triangular set.
e The task [F, S] is solved if F' = () and S is a regular chain.

e Solving |F, S| means computing regular chains T, ..., T, such that:

V(F) N W(S) C U, W(T}) C V(F)n W(&S).

° [Fl,Sl] < [FQ,SQ] if either S; <S5 or (E|f1 c Fl) (Vfg < FQ) f1 -<f2 and
Sl ’;JSQ.

e The tasks [F1,S51],...,[Fe, Se] form a delayed split of [F, S| if for all
1 <i<ewehave [F;,5;] <|F,S]| and the following holds

V(F) N W(S) C U, V(E) N W(S;) C V(F)n WS

18

The main operations

e Triangularize(F, S) returns regular chains 711, ..., T, solving [F,S].
e When F' = () we write Extend(.S) instead of Triangularize(F,S).

e For p a polynomial and T a regular chain, Decompose(p,T') returns a
delayed split of [{p}.T]. Hence Decompose(p,T") computes V (p) "W (T') by

lazy evaluation.

e For p,t polynomials with same main variable and 1" a regular chain,
GCD(p, t,T) returns pairs (g1,71), - .-, (ge, Te) such that

- whenever |T;| = |T'| holds, g; is a GCD of p and ¢ modulo Tj,

- Ty,..., T, solve T, that is, W(T') C US_W(T;) € W(T).

e Regularizelnitial(p, T') returns regular chains 77, ..., T, solving T and

such that p mod Sat(7T;) is constant or its initial is regular.

These operations rely on the D5 Principle (Della Dora et al., 1985).

19

The Triangularize algorithm

Input: a task [F,T]
Output: regular chains 71, ...,T, solving [F, T

Triangularize(F,T') == generate
1 R:=|[[F,T]]
2 # R is a list of tasks
3 while R # [] repeat
4 choose and remove a task [F},U;] from R
Fi =) = yield U;
choose a polynomial p € F}
G1 = F1\{p}
for |H,T] € Decompose(p,U;) repeat
R :=cons (|[G1 UH,T|,R)

© 00 J O Ot

20

The Decompose algorithm

Input: a polynomial p and a regular chain 7" such
that p & Sat(T).

Output: a delayed split of [{p}, T].

Decompose(p,T') == generate
for C € Regularizelnitial(p, T') repeat
f := Reduce(p, C)
f=0= yield [0, C]
f € K = iterate
v := mvar(f)
v ¢ mvar(C') = yield [{init(f), p}, C]
for D € Extend(C' U {f}) repeat yield [}, D]
for [F, E| € AlgebraicDecompose(f,C., U Cs,,C,)
repeat yield [F, F]

© 0 J O O i W N =~

21

The AlgebraicDecompose algorithm

Input: p,T,t as in the definition of GCD.
Output: a delayed split of [{p}, TU{t}].

AlgebraicDecompose(p, T',t) == generate
Let A1 be the product of the initials in T°
f:=thr
for |g;,T;] € GCD(t,p,T) repeat
Ti| > [T| =
for T; ; € Extend(T; U{f}) repeat yield |p,T; ;]
g; € K — iterate
mvar(g;) < v = yield [{g;,p},T; U {t}]
deg(g;,v) = deg(t,v) = yield [, T; U {t}]
yield [0, T; U {g;}]
yield [{init(g;),p}, T; U {t}]

© 00 J O O i W N =~

—_
-

22

Solving by decreasing order of dimension

e A task [G, C] output by Decompose(p, T') is solved, that is G = (), if and

only W(C') is a component of V (p)NW (T') with maximum dimension.

= Tasks in Triangularize can be chosen such that regular chains are

generated by decreasing order of dimension (= increasing height).

Allow efficient control of redundant components.

e To do so:

- each task [F;, T;] is assigned a priority based on rank and dimension

considerations.

- a task chosen in R has maximum priority.

= This leads to a first parallel version of Triangularize where all tasks of

maximum priority are executed concurrently.

23

Create parallelism: Using modular techniques

4)
Modular Solving:

O(d?d) T0

(' Merging: o~(d)) i

(Lifting: O(d ?)]

For solving F' C Q|X| we use modular methods. Indeed, for a prime p:

e irreducible polynomials in Q[X] are likely to factor modulo p,

e for p big enough, the result over QQ can be recovered from the one over
Z/pZ | X].

(X. Dahan, M. Moreno Maza, E. Schost, W. Wu & Y. Xie, 2005)
24

Effect of modular solving

Sys | Name p Degrees
1 ecob 105761 1,1,2,4,4,4]
2 eco7 387799 1,1,1,1,4,2,
4,4,4,4,4.9]

3 CassoulNogues2 155317 8]
4 CassoulNogues 513899 8,8]
5 | Nooburg4 7703 | [18,6,6,3,3,4,4,4,4,2.2,2,
2,2,2,2,2.1,1,1,1,1]

6 UteshevBikker 7841 [1,1,1,1,2,30]
7 | Cohn2 188261 | [3,5,2,1,2,1,1,16,12,10,8,8,

4,6,4,4,4.421.1,1,1,1,1,1,
1,1,1,1,1,1,1]

25

Exploit parallelism!

e Driving idea: limit the irregularity of tasks. In particular,

- we want to avoid inexpensive computations leading to expensive data

communication.
- we want to balance the work among the workers.
e Means:
- Reduce the number of parallel steps in Triangularize to be at most n.

- Replace Decompose by an operation SplitByHeight with a stronger

requirement, and thus, more work.
- Be able to estimate the cost of processing a task by SplitByHeight.

e We strengthen the notion of a task [F,T|: for every f € F the initial of f

is regular w.r.t. 7.

= When calling Decompose(p, T') is called, we know which operation will

be performed.

26

The Split-by-height strategy

Input: a task [F,T]

Output: a delayed split of [F,T] such that for all
output task |G,U]: |U|=|T| = G =10.

SplitByHeight(F,T') == generate
1 R:=|[|F,T]] # R is a list of tasks
2 while R # || repeat
3 choose and remove a task [Fy,U;] from R
\Uy| > |T| = yield |[F, Uy]
Fi = () = yield [Fy, Ui]
choose a polynomial p € F}
G1 = F1\{p}
for [H,T| € Decompose(p,U;) repeat
R := cons (|[G1 UH,T],R)

© 00 J O Ot =~

27

A new Triangularize(F,T') based on SplitByHeight

Triangularize(F,T') == generate
1 R:=|[|F,T]] # R is a list of tasks
2 while R # [] repeat

3

N O Ot =~

Input: a task [F,T]

Output: regular chains Tj,...,7T. solving
F,T].

choose and remove [F;,U;| € R with max priority
F, =) = yield Uy
for [H,T| € SplitByHeight(F},U;) repeat
R := cons (|H,T], R)
sort R by decreasing priority

28

Challenges in the implementation
e Encoding complex mathematical objects and sophisticated algorithms.

e Handling dynamic process creation and management (MPI is not

sufficient).
e Scheduling of highly irregular tasks.
e Managing huge intermediate data (with coefficient swell).

e Handling synchronization.

29

Preliminary implementation: Environment

e We use the ALDOR programming language:
- designed to express the structures and algorithms in computer algebra,
- which provides a two-level object model of categories and domains,

- which provides interoperability with other languages, such as C, for

high-performance computing.

e We use the BasicMath library (100,000 lines) in ALDOR which provides

a sequential implementation of the Triade algorithm.
e We targeted multi-processed parallelism on SMPs.

e Unfortunately, there was no available support in ALDOR for our needs.

30

Communication and synchronization

e We have two functional modules, which are stand-alone executable:

Manager and Worker.

e A primer run() in ALDOR allows us to launch independent processes

from the Manager.

e We rely on shared memory segments: we have developed a

SharedMemorySegment domain in ALDOR.

e Multivariate polynomials are transfered as primitive array of machine

integers via Kronecker substitution.

e Synchronization for data communication between Manager and Worker’s

is controlled by a mailbox protocol.

Manager
Write - read/free

read/free
task_| result_tag,_ | result_i

A
write
read/free write

31

Experimentation

e Machine: Silky in Canada’s Shared Hierarchical Academic Research
Computing Network (SHARCNET), SGI Altix 3700 Bx2, 128
[tanium2 Processors (1.6GHz), 64-bit, 256 GB memory, 6 MB cache,
SUSE Linux Enterprise Server 10 (ia64).

e Tests on 7 well-known problems:

— Sequential runs with and without regularized initials

— Parallel with Task Pool Dimension and Rank Guided
Scheduling (TPDRG) in Triangularize, using 3 to 21 processors.

— Parallel with Greedy Scheduling in Triangularize, using the

number of processors

x giving the best TPDRG time,
x giving the best TPDRG time + 2 processors.

— CPU time in read and write for data communication.

32

Recall: features of the testing problem

Sys | Name p Degrees
1 ecob 105761 1,1,2,4,4,4]
2 eco7 387799 1,1,1,1,4,2,
4,4,4,4,4.9]

3 CassoulNogues2 155317 8]
4 CassoulNogues 513899 8,8]
5 | Nooburg4 7703 | [18,6,6,3,3,4,4,4,4,2.2,2,
2,2,2,2,2.1,1,1,1,1]

6 UteshevBikker 7841 [1,1,1,1,2,30]
7 | Cohn2 188261 | [3,5,2,1,2,1,1,16,12,10,8,8,
46,4,44421,111,1,1,1,

1,1,1,1,1,1,1]

33

Table 1: Wall time (s) for sequential (with vs without
regularized initial) vs parallel

Sys | noregSeq | regSeq | slowBy | #CPUs | SigPara | SPD
®| © (5)
1 3.6 4.0 0.01 5 1.9 1.9
2 707.5 727.9 0.01 9 119.4 5.9
3 463.02 476.2 0.01 9 207.3 2.3
4 2132.9 | 21624 0.01 11 894.3 2.5
5 4.1 4.1 0.01 11 1.6 2.6
6 866.3 866.2 - 13 451.9 2.0
7 298.3 305.2 0.01 11 96.4 3.1

34

Table 2: Parallel timing (s) vs #processor

#CPUs | Sys1 | Sys2 | Sys 3 Sys 4 | Sysd | Sys6 | Sys 7
3 3.1 | 355.1 | 278.7 | 1401.4 2.1 | 622.9 | 105.0
5 1.9 | 225.3 | 214.2 | 1004.7 2.1 | 481.7 98.4
7 1.9 | 142.7 | 209.2 939.4 1.9 | 470.2 97.2
9 1.9 | 119.4 | 207.3 905.2 1.8 | 455.2 96.7
11 2.0 | 119.5 | 207.1 894.3 1.6 | 453.1 96.4
13 - | 119.1 | 206.4 | 874.5 1.6 | 451.9 96.4
17 - | 120.1 | 211.7 | 865.5 1.6 | 451.6 96.2
21 - | 119.2 - 852.5 - | 451.3 96.5

35

Table 3: Speedup(s) vs #processor

#CPUs | Sys1 | Sys2 | Sys3 | Sys4 | Sysd | Sys6 | Sys 7
3 1.15 1.99 1.66 1.52 1.95 1.39 2.84
5 1.87 3.14 2.16 2.12 1.95 1.80 3.03
7 1.89 4.96 2.21 2.27 2.15 1.84 3.07
9 1.89 5.92 2.23 2.36 2.31 1.90 3.09
11 1.86 5.92 2.24 2.39 2.51 1.91 3.10
13 - 5.94 2.24 2.44 2.55 1.92 3.09

36

Speedup

Speedup vs number of processors

12

T

[

Linear Speedup ———
eco6 —
eco/ -

Caou-Nogue-2 -------

Caou_Nogue
Cohn-2

Nooburg_4

Uteshev-Bikker -------

6 8 10 12
Number of Processors

Table 4: Best TPDRG timing vs Greedy scheduling (s)

System | TPDRG | #CPUs | Greedy || #CPUs | Greedy

(best) (A) (A) (B) (B)
1 1.911 7 1.792 9 1.778
2 119.093 13 | 120.505 15 | 120.516
3 206.375 13 | 213.206 15 | 213.354
4 852.488 20 | 896.787 22 | 939.618
5 1.611 13 1.631 15 1.632
6 451.357 20 | 500.504 22 | 469.354
7 96.203 17 | 100.779 19 96.169

All the examples but one are zero-dimensional (= finite number of

solutions): a situation where redundant components are very rare.

So the T'PD RG scheduling, which enhances the solving by decreasing order

of dimension, is not a necessity.

However, it compares with the Greedy scheduling!
38

Table 5: CPU time in read and write for data

communication vs workers’ total

System DataSize | Read | Write | Workers | Read + Write

(#integer) (ms) | (ms) (ms) vs Total
1 7717 80 56 1031 13.2%
2 56689 383 172 174329 0.3%
3 112802 4394 301 125830 3.7%
4 430217 | 33760 426 585112 5.8%
5 13307 123 55 1121 15.9%
6 254145 9773 386 233582 4.4%
7 77426 819 317 31858 3.6%

39

Conclusions
e By using modular methods, we have created opportunities for coarse
grained component-level parallel solving of polynomial systems in Q[X]
e To exploit these opportunities, we have transformed the Triade algorithm.

e We have strengthened its notion of a task and replaced the operation

Decompose by SplitByHeight in order to
- reduce the depth of the task tree,
- create more work at each node,
- be able to estimate the cost of each task within each parallel step.

e We have realized a preliminary implementation in ALDOR using
multi-processed parallelism with shared memory segment for

data-communication.

40

Toward Efficient Multi-level Parallelization

e We aim at developing a model for threads in Aldor to support

parallelism for symbolic computations targeting SMP and multi-cores.
— In particular, parametric types, such as polynomial data types,
shall be properly treated.
e We aim at investigating multi-level parallel algorithms for triangular
decompositions of polynomial systems.

— coarse grained level for tasks to compute geometric of the solution

sets.

— medium/fine grained level for polynomial arithmetic such as

multiplication, GCD /resultant, and factorization.

— hence, to increase speed-up.

41

Propaganda

PASCO 07 SNC 07
ondon, July 27-2 London, July 25 -2
ISSAC 07
aterloo, July 29 —

Y

ACA 07
etroit, Aug 3-6

42

