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Solving polynomial systems symbolically

e Strengths of symbolic solving:

- parametric polynomial systems solving,
- real algebraic geometry,
- solving in non-zero characteristic.

e Increasing number of applications:

- cryptology, robotics, signal processing

- geometric modeling (AGGM community),

- algebraic study of dynamical systems (in biology, chemsitry, ... ).

e Strengths of triangular decomposition:

- size of coefficients, running time complexity estimates,
- fast arithmetic, sharp modular methods,

- geometrical information.



Grobner bases and triangular decompositions
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Triangular decompositions

e The zero set V(F') admits a decomposition (unique when minimal)
V(F)=V(F1)U --- UV (F,),
s.t. Fp,...,F. C K[X] and every V(F;) cannot be decomposed further.

e Moreover, up to technical details, each V (Fj;) is the zero set of a
triangular system, which can view as a solved system
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Parallelizing the computation of Grobner bases

Input: F' C K[X] and an admissible monomial ordering <.

Output: G a reduced Grobner basis w.r.t. < of the ideal (F)
generated by F'.

repeat
(S) B := MinimalAutoreducedSubset(F, <)
(R) A := S_Polynomials(B) U F’;
R := Reduce(A, B, <)
(U R:=R\ {0}; F:=FUR
until R = ()

return B




The parallel characteristic set method

Input: F C K[ X].
Output: C an autoreduced characteristic set of F' (in the sense of Wu).

repeat

(S) B := MinimalAutoreducedSubset(F, <)
(R) A:=F \ B;
R := PseudoReduce(A4, B, <)
(U) R:=R\ {0}; F:=FUR
until R = ()

return B

e Repeated calls to this procedure computes a decomposition of V (F').

e Cannot start computing the 2nd component before the 1st is completed.




Solving polynomial systems symbolically and in
parallel!

e Related work :

- Parallelizing the computation of Grobner bases (R. Biindgen,
M. Gébel & W. Kiichlin, 1994) (S. Chakrabarti & K. Yelick, 1993 -
1994) (G. Attardi & C. Traverso, 1996) (A. Leykin, 2004)

- Parallelizing the computation of characteristic sets (I.A. Ajwa, 1998),
(Y.W. Wu, W.D. Liao, D.D. Liu & P.S. Wang, 2003) (Y.W. Wu,
G.W. Yang, H. Yang, H.M. Zheng & D.D. Liu, 2005)



Solving polynomial systems symbolically and in
parallel!

e New motivations:

— renaissance of parallelism,

— new algorithms offering better opportunities for parallel execution.

e Our goal:

— multi-level parallelism:
x coarse grained “component-level” for tasks computing geometric
objects,
+ medium/fine grained level for polynomial arithmetic within each
task.

— to develop a solver for which the number of processes in use

depends on the geometry of the solution set



z=1
=0
r=0

Ideally:

Processor P,

Processor P

:ﬁ+y+z :ﬁ?

r+yi+z = 1

r+y+22 = 1
z=0 z2=0
=1 =0
z =20 r=1

Processor FP;

~

224+22—-1=0
y==z

Processor Ps

\_ o

Processor Py




Dynamic and very irregular computations (1/2)

e How do splits occur during decompositions? Given a polynomial ideal Z

and polynomials p, a, b, there are two rules:
e 7 — (Z+p,I:p>).
e I+ (ab) — (IT+(a), T+ (b))

e The second one is more likely to split computations evenly. But

geometrically, it means that a component is reducible.

e Unfortunately, most polynomial systems F' C Q|X| are equiprojectable,
that is, they can be represented by a single triangular set.

- This is true in theory, shape lemma: (Becker, Mora, Marinari &
Traverso, 1994).

- and in practice: SymbolicData.org.

e However, for F' C Z/pZ|X| where p prime, the second rule is more likely

to be used.
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Dynamic and very irregular computations (2/2)

e Very irregular tasks (CPU time, memory, data-communication)

T0
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Initial task [{f1, fo, f3}, 0]
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Even worse: redundant and irregular tasks
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The red and blue surfaces intersect on the line x — 1 = y = 0 contained in

the green plane x = 1. With the other green plane z = 0, they intersect at
(2,1,0), (£,2,0) but also at + — 1 = y = z = 0, which is redundant.
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How to create and exploit parallelism?

e We start from an algorithm (Triade, MMMM 2000)
- based on incremental solving for exploiting geometrical information,

- solving by decreasing order of dimension for removing redundant
components efficiently:.

e This algorithm
- uses a task model for the intermediate computations,

- but a naive parallelization would be unsuccessful, for the reasons
mentioned earlier.

e So, we rely also

- on the modular algorithm (Dahan, MMM, Schost, Wu and Xie, 2005)

- in order to create opportunities for parallel execution with input
systems over QQ.

e We adapt the Triade algorithm to exploit the opportunities created by

the modular techniques. ”



Triangular Decompositions: a geometrical approach

Incremental solving: by solving one equation after the other, lead to a
more geometric approach
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Triangular sets and regular chains

e let T=T1,...,Ts CKlx; < - < x,]. with main variables
o, < --- < xy,, that is, a triangular set.

e For 7 < s, the initial h; is the leading coefficient of T; in Xy,.
e Define Satz(T) = (Tl, c. 7Tz) . (hl c. hz)oo

T is a regular chain if h; is regular mod Sat;_1(T) for all ¢ > 2.
e The quasi-component W(T) := V(T)\ V(hy---hy ) satisfies
W(T) = V(Sat,(T)) | where | dim(Sat,,(T)) =n — |T] |

e The algebraic variables of I' are those which appear as main variables.

EXAMPLE

TQ = (X1 + XQ)X32 + X3 + 1 . mvar(Tg) = X3
, with

Ty = X;2 + 1. mvar(Ty) = X;
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Task Model

e A task is any [F,S] whith F' C K[X] finite and S C K[X] triangular set.
e The task [F, S] is solved if F' = () and S is a regular chain.

e Solving |F, S| means computing regular chains T, ..., T, such that:

V(F) N W(S) C U, W(T}) C V(F)n W(&S).

° [Fl,Sl] < [FQ,SQ] if either S; <S5 or (E|f1 c Fl) (Vfg < FQ) f1 -<f2 and
Sl ’;JSQ.

e The tasks [F1,S51],...,[Fe, Se] form a delayed split of [F, S| if for all
1 <i<ewehave [F;,5;] <|F,S]| and the following holds

V(F) N W(S) C U, V(E) N W(S;) C V(F)n WS
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The main operations

e Triangularize(F, S) returns regular chains 711, ..., T, solving [F,S].
e When F' = () we write Extend(.S) instead of Triangularize(F,S).

e For p a polynomial and T a regular chain, Decompose(p,T') returns a
delayed split of [{p}.T]. Hence Decompose(p,T") computes V (p) "W (T') by

lazy evaluation.

e For p,t polynomials with same main variable and 1" a regular chain,
GCD(p, t,T) returns pairs (g1,71), - .-, (ge, Te) such that

- whenever |T;| = |T'| holds, g; is a GCD of p and ¢ modulo Tj,

- Ty,..., T, solve T, that is, W(T') C US_W(T;) € W(T).

e Regularizelnitial(p, T') returns regular chains 77, ..., T, solving T and

such that p mod Sat(7T;) is constant or its initial is regular.

These operations rely on the D5 Principle (Della Dora et al., 1985).

19



The Triangularize algorithm

Input: a task [F,T]
Output: regular chains 71, ...,T, solving [F, T

Triangularize(F,T') == generate
1 R:=|[[F,T]]
2 # R is a list of tasks
3 while R # [] repeat
4 choose and remove a task [F},U;] from R
Fi =) = yield U;
choose a polynomial p € F}
G1 = F1\{p}
for |H,T] € Decompose(p,U;) repeat
R :=cons (|[G1 UH,T|,R)

© 00 J O Ot
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The Decompose algorithm

Input: a polynomial p and a regular chain 7" such
that p & Sat(T).

Output: a delayed split of [{p}, T].

Decompose(p,T') == generate
for C € Regularizelnitial(p, T') repeat
f := Reduce(p, C)
f=0= yield [0, C]
f € K = iterate
v := mvar(f)
v ¢ mvar(C') = yield [{init(f), p}, C]
for D € Extend(C' U {f}) repeat yield [}, D]
for [F, E| € AlgebraicDecompose(f,C., U Cs,,C,)
repeat yield [F, F]

© 0 J O O i W N =~
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The AlgebraicDecompose algorithm

Input: p,T,t as in the definition of GCD.
Output: a delayed split of [{p}, TU{t}].

AlgebraicDecompose(p, T',t) == generate
Let A1 be the product of the initials in T°
f:=thr
for |g;,T;] € GCD(t,p,T) repeat
Ti| > [T| =
for T; ; € Extend(T; U{f}) repeat yield |p,T; ;]
g; € K — iterate
mvar(g;) < v = yield [{g;,p},T; U {t}]
deg(g;,v) = deg(t,v) = yield [, T; U {t}]
yield [0, T; U {g;}]
yield [{init(g;),p}, T; U {t}]

© 00 J O O i W N =~
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-
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Solving by decreasing order of dimension

e A task [G, C] output by Decompose(p, T') is solved, that is G = (), if and

only W(C') is a component of V (p)NW (T') with maximum dimension.

= Tasks in Triangularize can be chosen such that regular chains are

generated by decreasing order of dimension (= increasing height).

Allow efficient control of redundant components.

e To do so:

- each task [F;, T;] is assigned a priority based on rank and dimension

considerations.

- a task chosen in R has maximum priority.

= This leads to a first parallel version of Triangularize where all tasks of

maximum priority are executed concurrently.
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Create parallelism: Using modular techniques

4 )
Modular Solving:

O(d?d) T0

(' Merging: o~(d) ) i

( Lifting: O(d ?) ]

For solving F' C Q|X| we use modular methods. Indeed, for a prime p:

e irreducible polynomials in Q[X] are likely to factor modulo p,

e for p big enough, the result over QQ can be recovered from the one over
Z/pZ | X].

(X. Dahan, M. Moreno Maza, E. Schost, W. Wu & Y. Xie, 2005)
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Effect of modular solving

Sys | Name p Degrees
1 ecob 105761 1,1,2,4,4,4]
2 eco7 387799 1,1,1,1,4,2,
4,4,4,4,4.9]

3 CassoulNogues2 155317 8]
4 CassoulNogues 513899 8,8]
5 | Nooburg4 7703 | [18,6,6,3,3,4,4,4,4,2.2,2,
2,2,2,2,2.1,1,1,1,1]

6 UteshevBikker 7841 [1,1,1,1,2,30]
7 | Cohn2 188261 | [3,5,2,1,2,1,1,16,12,10,8,8,

4,6,4,4,4.421.1,1,1,1,1,1,
1,1,1,1,1,1,1]
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Exploit parallelism!

e Driving idea: limit the irregularity of tasks. In particular,

- we want to avoid inexpensive computations leading to expensive data

communication.
- we want to balance the work among the workers.
e Means:
- Reduce the number of parallel steps in Triangularize to be at most n.

- Replace Decompose by an operation SplitByHeight with a stronger

requirement, and thus, more work.
- Be able to estimate the cost of processing a task by SplitByHeight.

e We strengthen the notion of a task [F,T|: for every f € F the initial of f

is regular w.r.t. 7.

= When calling Decompose(p, T') is called, we know which operation will

be performed.
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The Split-by-height strategy

Input: a task [F,T]

Output: a delayed split of [F,T] such that for all
output task |G,U]: |U|=|T| = G =10.

SplitByHeight(F,T') == generate
1 R:=|[|F,T]] # R is a list of tasks
2 while R # || repeat
3 choose and remove a task [Fy,U;] from R
\Uy| > |T| = yield |[F, Uy]
Fi = () = yield [Fy, Ui]
choose a polynomial p € F}
G1 = F1\{p}
for [H,T| € Decompose(p,U;) repeat
R := cons (|[G1 UH,T],R)

© 00 J O Ot =~
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A new Triangularize(F,T') based on SplitByHeight

Triangularize(F,T') == generate
1 R:=|[|F,T]] # R is a list of tasks
2 while R # [] repeat

3

N O Ot =~

Input: a task [F,T]

Output: regular chains Tj,...,7T. solving
F,T].

choose and remove [F;,U;| € R with max priority
F, = ) = yield Uy
for [H,T| € SplitByHeight(F},U;) repeat
R := cons (|H,T], R)
sort R by decreasing priority
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Challenges in the implementation
e Encoding complex mathematical objects and sophisticated algorithms.

e Handling dynamic process creation and management (MPI is not

sufficient).
e Scheduling of highly irregular tasks.
e Managing huge intermediate data (with coefficient swell).

e Handling synchronization.
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Preliminary implementation: Environment

e We use the ALDOR programming language:
- designed to express the structures and algorithms in computer algebra,
- which provides a two-level object model of categories and domains,

- which provides interoperability with other languages, such as C, for

high-performance computing.

e We use the BasicMath library (100,000 lines) in ALDOR which provides

a sequential implementation of the Triade algorithm.
e We targeted multi-processed parallelism on SMPs.

e Unfortunately, there was no available support in ALDOR for our needs.
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Communication and synchronization

e We have two functional modules, which are stand-alone executable:

Manager and Worker.

e A primer run() in ALDOR allows us to launch independent processes

from the Manager.

e We rely on shared memory segments: we have developed a

SharedMemorySegment domain in ALDOR.

e Multivariate polynomials are transfered as primitive array of machine

integers via Kronecker substitution.

e Synchronization for data communication between Manager and Worker’s

is controlled by a mailbox protocol.

Manager
Write - read/free

read/free
task_| result_tag,_ | result_i

A
write
read/free write
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Experimentation

e Machine: Silky in Canada’s Shared Hierarchical Academic Research
Computing Network (SHARCNET), SGI Altix 3700 Bx2, 128
[tanium2 Processors (1.6GHz), 64-bit, 256 GB memory, 6 MB cache,
SUSE Linux Enterprise Server 10 (ia64).

e Tests on 7 well-known problems:

— Sequential runs with and without regularized initials

— Parallel with Task Pool Dimension and Rank Guided
Scheduling (TPDRG) in Triangularize, using 3 to 21 processors.

— Parallel with Greedy Scheduling in Triangularize, using the

number of processors

x giving the best TPDRG time,
x giving the best TPDRG time + 2 processors.

— CPU time in read and write for data communication.

32



Recall: features of the testing problem

Sys | Name p Degrees
1 ecob 105761 1,1,2,4,4,4]
2 eco7 387799 1,1,1,1,4,2,
4,4,4,4,4.9]

3 CassoulNogues2 155317 8]
4 CassoulNogues 513899 8,8]
5 | Nooburg4 7703 | [18,6,6,3,3,4,4,4,4,2.2,2,
2,2,2,2,2.1,1,1,1,1]

6 UteshevBikker 7841 [1,1,1,1,2,30]
7 | Cohn2 188261 | [3,5,2,1,2,1,1,16,12,10,8,8,
46,4,44421,111,1,1,1,

1,1,1,1,1,1,1]
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Table 1: Wall time (s) for sequential (with vs without
regularized initial) vs parallel

Sys | noregSeq | regSeq | slowBy | #CPUs | SigPara | SPD
®| © (5)
1 3.6 4.0 0.01 5 1.9 1.9
2 707.5 727.9 0.01 9 119.4 5.9
3 463.02 476.2 0.01 9 207.3 2.3
4 2132.9 | 21624 0.01 11 894.3 2.5
5 4.1 4.1 0.01 11 1.6 2.6
6 866.3 866.2 - 13 451.9 2.0
7 298.3 305.2 0.01 11 96.4 3.1
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Table 2: Parallel timing (s) vs #processor

#CPUs | Sys1 | Sys2 | Sys 3 Sys 4 | Sysd | Sys6 | Sys 7
3 3.1 | 355.1 | 278.7 | 1401.4 2.1 | 622.9 | 105.0
5 1.9 | 225.3 | 214.2 | 1004.7 2.1 | 481.7 98.4
7 1.9 | 142.7 | 209.2 939.4 1.9 | 470.2 97.2
9 1.9 | 119.4 | 207.3 905.2 1.8 | 455.2 96.7
11 2.0 | 119.5 | 207.1 894.3 1.6 | 453.1 96.4
13 - | 119.1 | 206.4 | 874.5 1.6 | 451.9 96.4
17 - | 120.1 | 211.7 | 865.5 1.6 | 451.6 96.2
21 - | 119.2 - 852.5 - | 451.3 96.5
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Table 3: Speedup(s) vs #processor

#CPUs | Sys1 | Sys2 | Sys3 | Sys4 | Sysd | Sys6 | Sys 7
3 1.15 1.99 1.66 1.52 1.95 1.39 2.84
5 1.87 3.14 2.16 2.12 1.95 1.80 3.03
7 1.89 4.96 2.21 2.27 2.15 1.84 3.07
9 1.89 5.92 2.23 2.36 2.31 1.90 3.09
11 1.86 5.92 2.24 2.39 2.51 1.91 3.10
13 - 5.94 2.24 2.44 2.55 1.92 3.09
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Speedup

Speedup vs number of processors
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Table 4: Best TPDRG timing vs Greedy scheduling (s)

System | TPDRG | #CPUs | Greedy || #CPUs | Greedy

(best) (A) (A) (B) (B)
1 1.911 7 1.792 9 1.778
2 119.093 13 | 120.505 15 | 120.516
3 206.375 13 | 213.206 15 | 213.354
4 852.488 20 | 896.787 22 | 939.618
5 1.611 13 1.631 15 1.632
6 451.357 20 | 500.504 22 | 469.354
7 96.203 17 | 100.779 19 96.169

All the examples but one are zero-dimensional (= finite number of

solutions): a situation where redundant components are very rare.

So the T'PD RG scheduling, which enhances the solving by decreasing order

of dimension, is not a necessity.

However, it compares with the Greedy scheduling!
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Table 5: CPU time in read and write for data

communication vs workers’ total

System DataSize | Read | Write | Workers | Read + Write

(#integer) (ms) | (ms) (ms) vs Total
1 7717 80 56 1031 13.2%
2 56689 383 172 174329 0.3%
3 112802 4394 301 125830 3.7%
4 430217 | 33760 426 585112 5.8%
5 13307 123 55 1121 15.9%
6 254145 9773 386 233582 4.4%
7 77426 819 317 31858 3.6%
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Conclusions
e By using modular methods, we have created opportunities for coarse
grained component-level parallel solving of polynomial systems in Q[X]
e To exploit these opportunities, we have transformed the Triade algorithm.

e We have strengthened its notion of a task and replaced the operation

Decompose by SplitByHeight in order to
- reduce the depth of the task tree,
- create more work at each node,
- be able to estimate the cost of each task within each parallel step.

e We have realized a preliminary implementation in ALDOR using
multi-processed parallelism with shared memory segment for

data-communication.

40



Toward Efficient Multi-level Parallelization

e We aim at developing a model for threads in Aldor to support

parallelism for symbolic computations targeting SMP and multi-cores.
— In particular, parametric types, such as polynomial data types,
shall be properly treated.
e We aim at investigating multi-level parallel algorithms for triangular
decompositions of polynomial systems.

— coarse grained level for tasks to compute geometric of the solution

sets.

— medium/fine grained level for polynomial arithmetic such as

multiplication, GCD /resultant, and factorization.

— hence, to increase speed-up.

41



Propaganda

PASCO 07 SNC 07
ondon, July 27-2 London, July 25 -2
ISSAC 07
aterloo, July 29 —

Y

ACA 07
etroit, Aug 3-6

42




