
FFT-based Dense Polynomial Arithmetic on

Multi-cores

Yuzhen Xie

Computer Science and Artificial Intelligence Laboratory, MIT
and

Marc Moreno Maza

Ontario Research Centre for Computer Algebra, UWO

ACA 2009, Montréal, June 26

Overview (1/2)

◮ Developing basic polynomial algebra subroutines (BPAS) in
support of polynomial system solvers and targeting hardware
acceleration technologies (multi-cores, GPU, . . .)

Overview (1/2)

◮ Developing basic polynomial algebra subroutines (BPAS) in
support of polynomial system solvers and targeting hardware
acceleration technologies (multi-cores, GPU, . . .)

◮ We focus on dense polynomial arithmetic over finite fields,
and therefore on FFT-based arithmetic.

Overview (1/2)

◮ Developing basic polynomial algebra subroutines (BPAS) in
support of polynomial system solvers and targeting hardware
acceleration technologies (multi-cores, GPU, . . .)

◮ We focus on dense polynomial arithmetic over finite fields,
and therefore on FFT-based arithmetic.

◮ We have identified Balanced Bivariate Multiplication

as a good kernel for dense multivariate and univariate
multiplication w.r.t. parallelism and cache complexity.

Overview (1/2)

◮ Developing basic polynomial algebra subroutines (BPAS) in
support of polynomial system solvers and targeting hardware
acceleration technologies (multi-cores, GPU, . . .)

◮ We focus on dense polynomial arithmetic over finite fields,
and therefore on FFT-based arithmetic.

◮ We have identified Balanced Bivariate Multiplication

as a good kernel for dense multivariate and univariate
multiplication w.r.t. parallelism and cache complexity.

◮ We have developed techniques (contraction, extension,
contraction + extension) to efficiently reduce to balanced
bivariate multiplication.

Overview (2/2)

◮ BPAS ring: Z/pZ[x1, . . . , xn]

Overview (2/2)

◮ BPAS ring: Z/pZ[x1, . . . , xn]

◮ BPAS operations: addition, multiplication, exact division, normal
form computation w.r.t. a reduced monic triangular set.

Overview (2/2)

◮ BPAS ring: Z/pZ[x1, . . . , xn]

◮ BPAS operations: addition, multiplication, exact division, normal
form computation w.r.t. a reduced monic triangular set.

◮ multiplication and normal form cover all implementation challenges.

Overview (2/2)

◮ BPAS ring: Z/pZ[x1, . . . , xn]

◮ BPAS operations: addition, multiplication, exact division, normal
form computation w.r.t. a reduced monic triangular set.

◮ multiplication and normal form cover all implementation challenges.

◮ BPAS assumption: 1-D FFTs are computed by a black box
program which could be non-parallel.

Overview (2/2)

◮ BPAS ring: Z/pZ[x1, . . . , xn]

◮ BPAS operations: addition, multiplication, exact division, normal
form computation w.r.t. a reduced monic triangular set.

◮ multiplication and normal form cover all implementation challenges.

◮ BPAS assumption: 1-D FFTs are computed by a black box
program which could be non-parallel.

◮ We rely on the modpn C library for serial 1-D FFTs.

Overview (2/2)

◮ BPAS ring: Z/pZ[x1, . . . , xn]

◮ BPAS operations: addition, multiplication, exact division, normal
form computation w.r.t. a reduced monic triangular set.

◮ multiplication and normal form cover all implementation challenges.

◮ BPAS assumption: 1-D FFTs are computed by a black box
program which could be non-parallel.

◮ We rely on the modpn C library for serial 1-D FFTs.

◮ We use the multi-threaded programming model of (M. Frigo, C.E.
Leiserson, K. H. Randall, 1998) and cache model of (M. Frigo, C.E.
Leiserson, H. Prokop, S. Ramachandra 1999)

◮ Our concurrency platform is Cilk++, see http://www.fftw.org/

Outline

◮ Performance evaluation of FFT- vs TFT-based balanced
bivariate multiplication.

◮ Optimizing our kernel (balanced bivariate multiplication):

(S. Huss-Lederman, E. H. Jacobson, A. Tsao, T. Turnbull, J. R. Johnson, 1996)

Outline

◮ Performance evaluation of FFT- vs TFT-based balanced
bivariate multiplication.

◮ Optimizing our kernel (balanced bivariate multiplication):

◮ Determining cut-off criteria between the different algorithms
and implementations;

(S. Huss-Lederman, E. H. Jacobson, A. Tsao, T. Turnbull, J. R. Johnson, 1996)

Outline

◮ Performance evaluation of FFT- vs TFT-based balanced
bivariate multiplication.

◮ Optimizing our kernel (balanced bivariate multiplication):

◮ Determining cut-off criteria between the different algorithms
and implementations;

◮ Starting with theoretical analysis to narrow the solutions; and

(S. Huss-Lederman, E. H. Jacobson, A. Tsao, T. Turnbull, J. R. Johnson, 1996)

Outline

◮ Performance evaluation of FFT- vs TFT-based balanced
bivariate multiplication.

◮ Optimizing our kernel (balanced bivariate multiplication):

◮ Determining cut-off criteria between the different algorithms
and implementations;

◮ Starting with theoretical analysis to narrow the solutions; and

◮ Finalizing with experimental study.

(S. Huss-Lederman, E. H. Jacobson, A. Tsao, T. Turnbull, J. R. Johnson, 1996)

Outline

◮ Performance evaluation of FFT- vs TFT-based balanced
bivariate multiplication.

◮ Optimizing our kernel (balanced bivariate multiplication):

◮ Determining cut-off criteria between the different algorithms
and implementations;

◮ Starting with theoretical analysis to narrow the solutions; and

◮ Finalizing with experimental study.

(S. Huss-Lederman, E. H. Jacobson, A. Tsao, T. Turnbull, J. R. Johnson, 1996)

◮ Obtaining efficient parallel computation of normal forms:

Outline

◮ Performance evaluation of FFT- vs TFT-based balanced
bivariate multiplication.

◮ Optimizing our kernel (balanced bivariate multiplication):

◮ Determining cut-off criteria between the different algorithms
and implementations;

◮ Starting with theoretical analysis to narrow the solutions; and

◮ Finalizing with experimental study.

(S. Huss-Lederman, E. H. Jacobson, A. Tsao, T. Turnbull, J. R. Johnson, 1996)

◮ Obtaining efficient parallel computation of normal forms:

◮ Combining parallel codes for multiplication and normal forms;

Outline

◮ Performance evaluation of FFT- vs TFT-based balanced
bivariate multiplication.

◮ Optimizing our kernel (balanced bivariate multiplication):

◮ Determining cut-off criteria between the different algorithms
and implementations;

◮ Starting with theoretical analysis to narrow the solutions; and

◮ Finalizing with experimental study.

(S. Huss-Lederman, E. H. Jacobson, A. Tsao, T. Turnbull, J. R. Johnson, 1996)

◮ Obtaining efficient parallel computation of normal forms:

◮ Combining parallel codes for multiplication and normal forms;

◮ Estimating the expected parallelism and;

Outline

◮ Performance evaluation of FFT- vs TFT-based balanced
bivariate multiplication.

◮ Optimizing our kernel (balanced bivariate multiplication):

◮ Determining cut-off criteria between the different algorithms
and implementations;

◮ Starting with theoretical analysis to narrow the solutions; and

◮ Finalizing with experimental study.

(S. Huss-Lederman, E. H. Jacobson, A. Tsao, T. Turnbull, J. R. Johnson, 1996)

◮ Obtaining efficient parallel computation of normal forms:

◮ Combining parallel codes for multiplication and normal forms;

◮ Estimating the expected parallelism and;

◮ Measuring the actual speed-up for various degree patterns of
practical interest.

FFT-based Multivariate Multiplication (Recall)

◮ Let k be a finite field and f , g ∈ k[x1 < · · · < xn] be
polynomials with n ≥ 2.

◮ Define di = deg(f , xi) and d ′

i = deg(g , xi), for all i .

◮ Assume there exists a primitive si -th root unity ωi ∈ k, for all
i , where si is a power of 2 satisfying si ≥ di + d ′

i + 1.

FFT-based Multivariate Multiplication (Recall)

◮ Let k be a finite field and f , g ∈ k[x1 < · · · < xn] be
polynomials with n ≥ 2.

◮ Define di = deg(f , xi) and d ′

i = deg(g , xi), for all i .

◮ Assume there exists a primitive si -th root unity ωi ∈ k, for all
i , where si is a power of 2 satisfying si ≥ di + d ′

i + 1.

Then fg can be computed as follows.

Step 1. Evaluate f and g at each point P (i.e. f (P), g(P)) of the
n-dimensional grid ((ωe1

1 , . . . , ωen
n), 0 ≤ e1 < s1, . . . , 0 ≤ en < sn)

via n-D FFT.

FFT-based Multivariate Multiplication (Recall)

◮ Let k be a finite field and f , g ∈ k[x1 < · · · < xn] be
polynomials with n ≥ 2.

◮ Define di = deg(f , xi) and d ′

i = deg(g , xi), for all i .

◮ Assume there exists a primitive si -th root unity ωi ∈ k, for all
i , where si is a power of 2 satisfying si ≥ di + d ′

i + 1.

Then fg can be computed as follows.

Step 1. Evaluate f and g at each point P (i.e. f (P), g(P)) of the
n-dimensional grid ((ωe1

1 , . . . , ωen
n), 0 ≤ e1 < s1, . . . , 0 ≤ en < sn)

via n-D FFT.

Step 2. Evaluate fg at each point P of the grid, simply by computing
f (P)g(P),

FFT-based Multivariate Multiplication (Recall)

◮ Let k be a finite field and f , g ∈ k[x1 < · · · < xn] be
polynomials with n ≥ 2.

◮ Define di = deg(f , xi) and d ′

i = deg(g , xi), for all i .

◮ Assume there exists a primitive si -th root unity ωi ∈ k, for all
i , where si is a power of 2 satisfying si ≥ di + d ′

i + 1.

Then fg can be computed as follows.

Step 1. Evaluate f and g at each point P (i.e. f (P), g(P)) of the
n-dimensional grid ((ωe1

1 , . . . , ωen
n), 0 ≤ e1 < s1, . . . , 0 ≤ en < sn)

via n-D FFT.

Step 2. Evaluate fg at each point P of the grid, simply by computing
f (P)g(P),

Step 3. Interpolate fg (from its values on the grid) via n-D FFT.

Balanced Bivariate Multiplication (d1 = d2 = d
′

1 = d
′

2)

8 00

10.00

12.00

14.00

16.00

e
e
d
u
p

Bivariate�Multiplication

8191

4095

2047

1023

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number�of�Cores

Bivariate�Multiplication

8191

4095

2047

1023

Balanced Bivariate Multiplication

Table: Performance evaluation by VTune for TFT- and FFT-based mult.

d1 d2 Inst. Clocks per L2 Cache Modif. Data Time on
Ret. Inst. Ret. Miss Rate Shar. Ratio 8 Cores
(×109) (CPI) (×10−3) (×10−3) (s)

TFT 2047 2047 44 0.794 0.423 0.215 0.86
2048 2048 52 0.752 0.364 0.163 1.01
2047 4095 89 0.871 0.687 0.181 2.14
2048 4096 106 0.822 0.574 0.136 2.49
4095 4095 179 0.781 0.359 0.141 3.72
4096 4096 217 0.752 0.309 0.115 4.35

FFT 2047 2047 38 0.751 0.448 0.106 0.74
2048 2048 145 0.652 0.378 0.073 2.87
2047 4095 79 0.849 0.745 0.122 1.94
2048 4096 305 0.765 0.698 0.094 7.64
4095 4095 160 0.751 0.418 0.074 3.15
4096 4096 622 0.665 0.353 0.060 12.42

Balanced Bivariate Multiplication

Table: Performance eval. by Cilkscreen for TFT- and FFT-based mult.

d1 d2 Span/ Parallelism/ Speedup
Burdened Burdened Estimate

Span (×109) Parallelism 4P 8P 16P
TFT 2047 2047 0.613/0.614 74.18/74.02 3.69-4 6.77-8 11.63-16

2048 2048 0.615/0.616 86.35/86.17 3.74-4 6.96-8 12.22-16
2047 4095 0.118/0.118 92.69/92.58 3.79-4 7.09-8 12.54-16
2048 4096 1.184/1.185 105.41/105.27 3.80-4 7.19-8 12.88-16
4095 4095 2.431/2.433 79.29/79.24 3.71-4 6.86-8 11.89-16
4096 4096 2.436/2.437 91.68/91.63 3.76-4 7.03-8 12.43-16

FFT 2047 2047 0.612/0.613 65.05/64.92 3.64-4 6.59-8 11.08-16
2048 2048 0.619/0.620 250.91/250.39 3.80-4 7.50-8 14.55-16
2047 4095 1.179/1.180 82.82/82.72 3.77-4 6.99-8 12.23-16
2048 4096 1.190/1.191 321.75/321.34 3.80-4 7.60-8 14.82-16
4095 4095 2.429/2.431 69.39/69.35 3.66-4 6.68-8 11.35-16
4096 4096 2.355/2.356 166.30/166.19 3.80-4 7.47-8 13.87-16

Cut-off Criteria Estimates

◮ Balanced input: d1 + d ′
1 ≃ d2 + d ′

2.

◮ Moreover di and d ′

i are quite close, for all i .

◮ Consequently we assume d := d1 = d ′
1 = d2 = d ′

2 with
∈ [2k , 2k−1).

◮ We have developed a Maple package for polynomials in
Q[k , 2k] targeting complexity analysis.

Cut-off Criteria Estimates

For d ∈ [2k , 2k−1) the work of FFT-based bivariate multiplication
is 48 × 4k(3k + 7).

Table: Work estimates of TFT-based bivariate multiplication

d Work

2k 3(2k+1 + 1)2(7 + 3k)

2k + 2k−1 81 4kk + 270 4k + 54 2kk + 180 2k + 9k + 30

2k + 2k−1 + 2k−2 441
4

4kk + 735
2

4k + 63 2kk + 210 2k + 9k + 30

2k + 2k−1 + 2k−2 + 2k−3 2025
16

4kk + 3375
2

4k + 135
2

2kk + 225 2k + 9k + 30

Cut-off Criteria Estimates

d := 2k + c12
k−1 + · · · + c72

k−7 where each c1, . . . , c7 ∈ {0, 1}.

Table: Degree cut-off estimate

(c1, c2, c3, c4, c5, c6, c7) Range for which this is a cut-off

(1, 1, 1, 0, 0, 0, 0) 3 ≤ k ≤ 5

(1, 1, 1, 0, 1, 0, 0) 5 ≤ k ≤ 7

(1, 1, 1, 0, 1, 1, 0) 6 ≤ k ≤ 9

(1, 1, 1, 0, 1, 1, 1) 7 ≤ k ≤ 11

(1, 1, 1, 1, 0, 0, 0) 11 ≤ k ≤ 13

(1, 1, 1, 1, 0, 1, 0) 14 ≤ k ≤ 18

(1, 1, 1, 1, 1, 0, 0) 19 ≤ k ≤ 28

These results suggest that for every range [2k , 2k−1) that occur in
practice a sharp (or minimal) degree cut-off is around
2k + 2k−1 + 2k−2 + 2k−3.

Cut-off Criteria Measurements

 2048
 2560

 3072
 3584

 4096 2048
 2560

 3072
 3584

 4096

 2

 3

 4

 5

 6

 7

 8

Time(s)

2-D FFT method on 1 core (5.85-6.60 s)
2-D TFT method on 1 core (2.27-8.13 s)

d1+d1’+1 d2+d2’+1

Time(s)

Figure: Timing of bivariate multiplication for input degree range of
[1024, 2048) on 1 core.

Cut-off Criteria Measurements

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T
im

e(
s)

Size of the Product (x106)

2-D FFT method on 1 core (1.00-1.20x faster for 25% of the range)
2-D TFT method on 1 core (2.58-1.00x faster for 75% of the range)

Figure: Size cut-off for input degree range of [1024, 2048) on 1 core.

Cut-off Criteria Measurements

 2048
 2560

 3072
 3584

 4096 2048
 2560

 3072
 3584

 4096

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

Time(s)

2-D FFT method on 8 cores (0.806-0.902 s, 7.2-7.3x speedup)
2-D TFT method on 8 cores (0.309-1.08 s, 6.8-7.6x speedup)

d1+d1’+1 d2+d2’+1

Time(s)

Figure: Timing of bivariate multiplication for input degree range of
[1024, 2048) on 8 cores.

Cut-off Criteria Measurements

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T
im

e(
s)

Size of the Product (x106)

2-D FFT method on 8 cores (1.00-1.16x faster for 22% of the range)
2-D TFT method on 8 cores (2.61-1.00x faster for 78% of the range)

Figure: Size cut-off for input degree range of [1024, 2048) on 8 cores.

Cut-off Criteria Measurements

 2048
 2560

 3072
 3584

 4096 2048
 2560

 3072
 3584

 4096

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Time(s)

2-D FFT method on 16 cores (0.588-0.661 s, 9.6-10.8x speedup)
2-D TFT method on 16 cores (0.183-0.668 s, 7.8-14.1x speedup)

d1+d1’+1 d2+d2’+1

Time(s)

Figure: Timing of bivariate multiplication for input degree range of
[1024, 2048) on 16 cores.

Cut-off Criteria Measurements

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T
im

e(
s)

Size of the Product (x106)

2-D FFT method on 16 cores (1.00-1.02x faster for 2% of the range)
2-D TFT method on 16 cores (3.18-1.00x faster for 98% of the range)

Figure: Size cut-off for input degree range of [1024, 2048) on 16 cores.

Parallel Computation of Normal Forms

◮ In symbolic computation, normal form computations are used for
simplification and equality test of algebraic expressions modulo a set
of relations.

y3x + yx2 ≡ 1 − y mod x2 + 1, y3 + x

◮ Many algorithms (computations with algebraic numbers, Gröbner
basis computation) involve intensively normal form computations.

◮ We rely on an algorithm (Li, Moreno Maza and Schost 2007) which
extends the fast division trick (Cook 66) (Sieveking 72) (Kung 74).

◮ The main idea is to efficiently reduce division to multiplication (via
power series inversion).

◮ Preliminary attemp of parallelizing this algorithm (Li, Moreno Maza,
1997) reached a limited success.

Parallel Computation of Normal Forms

NormalForm1(f , {g1} ⊂ k[x1])

1 S1 := Rev(g1)
−1

mod x
deg(f ,x1)−deg(g1,x1)+1
1

2 D := Rev(A)S1 mod x
deg(f ,x1)−deg(g1,x1)+1
1

3 D := g1 Rev(D)
4 return A − D

NormalFormi (f , {g1, . . . , gi} ⊂ k[x1, . . . , xi])
1 A := map(NormalFormi−1,Coeffs(f , xi), {g1, . . . , gi−1})

2 Si := Rev(gi)
−1

mod g1, . . . , gi−1, x
deg(f ,xi)−deg(gi ,xi)+1
i

3 D := Rev(A)Si mod x
deg(f ,xi)−deg(gi ,xi)+1
i

4 D := map(NormalFormi−1,Coeffs(D, x), {g1, . . . , gi−1})
5 D := gi Rev(D)
6 D := map(NormalFormi−1,Coeffs(D, xi), {g1, . . . , gi−1})
7 return A − D

Parallel Computation of Normal Forms

Define δi := deg(gi , xi) and ℓi =
∏j=i

j=1 lg(δj). Denote by WM(δi)
and SM(δi) the work and span of a multiplication algorithm.

(1) Span estimate with serial multiplication:

SNF(δi) = 3 ℓi SNF(δi−1) + 2 WM(δi) + ℓi .

(2) Span estimate with parallel multiplication

SNF(δi) = 3 ℓi SNF(δi−1) + 2 SM(δi) + ℓi .

Parallel Computation of Normal Forms

Define δi := deg(gi , xi) and ℓi =
∏j=i

j=1 lg(δj). Denote by WM(δi)
and SM(δi) the work and span of a multiplication algorithm.

(1) Span estimate with serial multiplication:

SNF(δi) = 3 ℓi SNF(δi−1) + 2 WM(δi) + ℓi .

(2) Span estimate with parallel multiplication

SNF(δi) = 3 ℓi SNF(δi−1) + 2 SM(δi) + ℓi .

◮ Work, span and parallelism are all exponential in the number
of variables.

◮ Moreover, the number of joining threads per synchronization
point grows with the partial degrees of the input polynomials.

Parallel Computation of Normal Forms

Table: Span estimates of TFT-based Normal Form for δi = (2k , 1, . . . , 1).

i With serial multiplication With parallel multiplication

2 144 k 2k + 642 2k + 76 k + 321 72 k 2k + 144 2k + 160 k + 312

4 4896 k 2k + 45028 2k + 2488 k + 22514 1296 k 2k + 2592 2k + 6304 k + 12528

8 3456576 k 2k + 71229768 2k + o(2k) 209952 k 2k + 419904 2k + o(2k)

Table: Parallelism est. of TFT-based Normal Form for δi = (2k , 1, . . . , 1).

i With serial multiplication With parallel multiplication

2 13/8 ≃ 2 13/4 ≃ 3

4 1157/272 ≃ 4 1157/72 ≃ 16

8 5462197/192032 ≃ 29 5462197/11664 ≃ 469

Parallel Computation of Normal Forms

7.49

10.37

12.45

6.00

8.00

10.00

12.00

14.00

16.00

S
p
e
e
d
u
p

Main�degs�of�triset:�8191,�8191

Partial�degs�of�poly:�16380,�16380

with�parallel�bivariate�multiplication

with�serial�bivariate�multiplication

1.00
1.68 1.90 1.99 2.04

3.90

7.49

10.37

12.45

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number�of�Cores

Main�degs�of�triset:�8191,�8191

Partial�degs�of�poly:�16380,�16380

with�parallel�bivariate�multiplication

with�serial�bivariate�multiplication

Figure: Normal form computation of a large bivariate problem.

Parallel Computation of Normal Forms

7.49

10.37

13.32

5 53

6.32
6.00

8.00

10.00

12.00

14.00

16.00

S
p
e
e
d
u
p

Main�degs�of�triset:�64,�64,�64,�64

Partial�degs�of�poly:�126,�126,�126,�126

with�parallel�bivariate�multiplication

with�serial�bivariate�multiplication

3.86

7.49

10.37

13.32

1.00

3.05

4.70

5.53

6.32

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number�of�Cores

Main�degs�of�triset:�64,�64,�64,�64

Partial�degs�of�poly:�126,�126,�126,�126

with�parallel�bivariate�multiplication

with�serial�bivariate�multiplication

Figure: Normal form computation of a medium-sized 4-variate problem.

Parallel Computation of Normal Forms

7.58

10.57

13.40

6.80

8.91

10.75

6.00

8.00

10.00

12.00

14.00

16.00

S
p
e
e
d
u
p

Main�degs�of�triset:�1024,�2,�2,�2,�2,�2,�2,�2

Partial�degs�of�poly:�2046,�2,�2,�2,�2,�2,�2,�2�

with�parallel�bivariate�multiplication

with�serial�bivariate�multiplication

3.89

7.58

10.57

13.40

1.00

3.73

6.80

8.91

10.75

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number�of�Cores

Main�degs�of�triset:�1024,�2,�2,�2,�2,�2,�2,�2

Partial�degs�of�poly:�2046,�2,�2,�2,�2,�2,�2,�2�

with�parallel�bivariate�multiplication

with�serial�bivariate�multiplication

Figure: Normal form computation of an irregular 8-variate problem.

Conclusions

Summary and future work:

◮ We have shown that (FFT-based) balanced bivariate multiplication
can be highly efficient in terms of parallelism and cache complexity.

◮ We have determined cut-off criteria between TFT and FFT-based
for balanced bivariate multiplication.

◮ Not only parallel multiplication can improve the performance of
parallel normal form computation,

◮ but also that this composition is necessary for parallel normal form
computation to reach good speed-up factors on all input patterns
that we have tested.

Conclusions

Summary and future work:

◮ We have shown that (FFT-based) balanced bivariate multiplication
can be highly efficient in terms of parallelism and cache complexity.

◮ We have determined cut-off criteria between TFT and FFT-based
for balanced bivariate multiplication.

◮ Not only parallel multiplication can improve the performance of
parallel normal form computation,

◮ but also that this composition is necessary for parallel normal form
computation to reach good speed-up factors on all input patterns
that we have tested.

Acknowledgements:

This work was supported by NSERC and MITACS NCE of Canada, and

NSF Grants 0540248, 0615215, 0541209, and 0621511. We are very

grateful for the help of Professor Charles E. Leiserson at MIT, Dr.

Matteo Frigo and all other members of Cilk Arts.

Thank You!

