
Triangular Decomposition of Polynomial Systems:
Algorithmic Advances and Remaining Challenges

Marc Moreno Maza
(Univ. of Western Ontario)

ICMM’09
In honor of Prof. Wen-Tsün Wu

Beijing, China,
May 13, 2009

Wu’s Characteristic Set Method

Input: F ⊂ k[x1, . . . , xn] and a variable ordering ≤.

Output: C a Wu characteristic set of F .

repeat

(S) B := MinimalAutoreducedSubset(F , ≤)
(R) A := F \ B;

R := prem (A, B)
(U) R := R \ {0}; F := F ∪R

until R = ∅
return B

• Repeated calls decomposes V (F) into quasi-components.

Buchberger’s Algorithm

Input: F ⊂ k[x1, . . . , xn] and a term order ≤.

Output: G a reduced Gröbner basis w.r.t. ≤ of the ideal 〈F 〉
generated by F .

repeat

(S) B := MinimalAutoreducedSubset(F , ≤)
(R) A := S Polynomials (B)∪F ;

R := Reduce (A, B, ≤)
(U) R := R \ {0}; F := F ∪R

until R = ∅
return B

The Notion of a Regular Chain (1/2)

◮ Let T ⊂ k[x1 < · · · < xn] \ k be a triangular set, hence the
polynomials of T have pairwise distinct main variables.

The Notion of a Regular Chain (1/2)

◮ Let T ⊂ k[x1 < · · · < xn] \ k be a triangular set, hence the
polynomials of T have pairwise distinct main variables.

◮ Let mvar(T) := {mvar(t) | t ∈ T}, init(t) := lc(t, mvar(t))
for all t ∈ T , and hT :=

∏

t∈T init(t).

The Notion of a Regular Chain (1/2)

◮ Let T ⊂ k[x1 < · · · < xn] \ k be a triangular set, hence the
polynomials of T have pairwise distinct main variables.

◮ Let mvar(T) := {mvar(t) | t ∈ T}, init(t) := lc(t, mvar(t))
for all t ∈ T , and hT :=

∏

t∈T init(t).

◮ Tv is the polynomial of T with main variable v , for
v ∈ mvar(T), and T<v := {t ∈ T | mvar(t) < v}.

The Notion of a Regular Chain (1/2)

◮ Let T ⊂ k[x1 < · · · < xn] \ k be a triangular set, hence the
polynomials of T have pairwise distinct main variables.

◮ Let mvar(T) := {mvar(t) | t ∈ T}, init(t) := lc(t, mvar(t))
for all t ∈ T , and hT :=

∏

t∈T init(t).

◮ Tv is the polynomial of T with main variable v , for
v ∈ mvar(T), and T<v := {t ∈ T | mvar(t) < v}.

◮ The quasi-component of T is W (T) = V (T) \ V (hT).

The Notion of a Regular Chain (1/2)

◮ Let T ⊂ k[x1 < · · · < xn] \ k be a triangular set, hence the
polynomials of T have pairwise distinct main variables.

◮ Let mvar(T) := {mvar(t) | t ∈ T}, init(t) := lc(t, mvar(t))
for all t ∈ T , and hT :=

∏

t∈T init(t).

◮ Tv is the polynomial of T with main variable v , for
v ∈ mvar(T), and T<v := {t ∈ T | mvar(t) < v}.

◮ The quasi-component of T is W (T) = V (T) \ V (hT).

◮ The saturated ideal of T is the ideal of k[x1 < · · · < xn]

sat(T) := 〈T 〉 : (hT)∞.

The Notion of a Regular Chain (1/2)

◮ Let T ⊂ k[x1 < · · · < xn] \ k be a triangular set, hence the
polynomials of T have pairwise distinct main variables.

◮ Let mvar(T) := {mvar(t) | t ∈ T}, init(t) := lc(t, mvar(t))
for all t ∈ T , and hT :=

∏

t∈T init(t).

◮ Tv is the polynomial of T with main variable v , for
v ∈ mvar(T), and T<v := {t ∈ T | mvar(t) < v}.

◮ The quasi-component of T is W (T) = V (T) \ V (hT).

◮ The saturated ideal of T is the ideal of k[x1 < · · · < xn]

sat(T) := 〈T 〉 : (hT)∞.

◮ T is a regular chain if for each v ∈ mvar(T) the initial of Tv

is regular modulo sat(T<v) (Michael Kalkbrener 91).

The Notion of a Regular Chain (2/2)

◮ Let p ∈ k[x1 < · · · < xn] and
T := T<w ∪Tw ⊂ k[x1 < · · · < xn] be a triangular set. The
iterated resultant of p w.r.t. T is:

res(p, T) =

{

p if deg(f , w) = 0
res(res(p, Tw , w), T<w) otherwise

The Notion of a Regular Chain (2/2)

◮ Let p ∈ k[x1 < · · · < xn] and
T := T<w ∪Tw ⊂ k[x1 < · · · < xn] be a triangular set. The
iterated resultant of p w.r.t. T is:

res(p, T) =

{

p if deg(f , w) = 0
res(res(p, Tw , w), T<w) otherwise

◮ T is a regular chain iff

res(hT , T) 6= 0

(Lu Yang, Jingzhong Zhang 91).

The Notion of a Regular Chain (2/2)

◮ Let p ∈ k[x1 < · · · < xn] and
T := T<w ∪Tw ⊂ k[x1 < · · · < xn] be a triangular set. The
iterated resultant of p w.r.t. T is:

res(p, T) =

{

p if deg(f , w) = 0
res(res(p, Tw , w), T<w) otherwise

◮ T is a regular chain iff

res(hT , T) 6= 0

(Lu Yang, Jingzhong Zhang 91).

◮ T is a regular chain iff

{p | prem(p, T) = 0} = sat(T)

(Philippe Aubry, Daniel Lazard, Marc Moreno Maza 97).

Regular Chain under Specialization

◮ Let u = u1, . . . , ud be parameters, y = y1, . . . , ym be
unknowns, ΠU be the projection from Km+d to Kd .

Regular Chain under Specialization

◮ Let u = u1, . . . , ud be parameters, y = y1, . . . , ym be
unknowns, ΠU be the projection from Km+d to Kd .

◮ A regular chain T ⊂ k[u, y] specializes well at u ∈ Kd if T (u)
is a regular chain in K[y] and rank(T (u)) = rank(T>Ud

).

Regular Chain under Specialization

◮ Let u = u1, . . . , ud be parameters, y = y1, . . . , ym be
unknowns, ΠU be the projection from Km+d to Kd .

◮ A regular chain T ⊂ k[u, y] specializes well at u ∈ Kd if T (u)
is a regular chain in K[y] and rank(T (u)) = rank(T>Ud

).

◮ Let T ⊂ k[u, y] be a reg. chain and u ∈ ΠU(W(T ∩ k[U])).
T specializes well at u ⇐⇒ res(hT>Ud

, T>Ud
) 6= 0 at u = u

Regular Chain under Specialization

◮ Let u = u1, . . . , ud be parameters, y = y1, . . . , ym be
unknowns, ΠU be the projection from Km+d to Kd .

◮ A regular chain T ⊂ k[u, y] specializes well at u ∈ Kd if T (u)
is a regular chain in K[y] and rank(T (u)) = rank(T>Ud

).

◮ Let T ⊂ k[u, y] be a reg. chain and u ∈ ΠU(W(T ∩ k[U])).
T specializes well at u ⇐⇒ res(hT>Ud

, T>Ud
) 6= 0 at u = u

◮ Replacing regular chain by squarefree reg. ch. in char. 0 and
hT>Ud

by SepT>Ud
one obtains the border polynomial of T .

Regular Chain under Specialization

◮ Let u = u1, . . . , ud be parameters, y = y1, . . . , ym be
unknowns, ΠU be the projection from Km+d to Kd .

◮ A regular chain T ⊂ k[u, y] specializes well at u ∈ Kd if T (u)
is a regular chain in K[y] and rank(T (u)) = rank(T>Ud

).

◮ Let T ⊂ k[u, y] be a reg. chain and u ∈ ΠU(W(T ∩ k[U])).
T specializes well at u ⇐⇒ res(hT>Ud

, T>Ud
) 6= 0 at u = u

◮ Replacing regular chain by squarefree reg. ch. in char. 0 and
hT>Ud

by SepT>Ud
one obtains the border polynomial of T .

Related Work
On a projection theorem of quasi-varieties in elimination theory
(Wen-Tsün Wu 90). (Xiao-Shan Gao, Shang-Ching Chou 92)
(Dongming Wang 00 & 01) (Lu Yang, Xiaorong Hou, Bican Xia
01) (Xiao-Shan Gao, Ding-Kang Wang 03) (Changbo Chen, Oleg
Golubitsky, François Lemaire, Marc Moreno Maza, Wei Pan 07)

Incremental Solving

◮ Let F ⊂ k[x], f ∈ k[x], T , Tm . . . ,T e ⊂ k[x] reg. chains.
Assume we have solved F as V (F) = W (T i) ∪ · · · ∪ W (T e).

Incremental Solving

◮ Let F ⊂ k[x], f ∈ k[x], T , Tm . . . ,T e ⊂ k[x] reg. chains.
Assume we have solved F as V (F) = W (T i) ∪ · · · ∪ W (T e).

◮ Assume that we have an operation
(f , T) 7−→ Intersect(f , T) = (C1, . . . ,Cd) such that

V (f) ∩ W (T) ⊆ ∪iW (Ci) ⊆ V (f) ∩ W (T).

Then solving F ∪ f reduces to Intersect(f , T i) for all i .

Incremental Solving

◮ Let F ⊂ k[x], f ∈ k[x], T , Tm . . . ,T e ⊂ k[x] reg. chains.
Assume we have solved F as V (F) = W (T i) ∪ · · · ∪ W (T e).

◮ Assume that we have an operation
(f , T) 7−→ Intersect(f , T) = (C1, . . . ,Cd) such that

V (f) ∩ W (T) ⊆ ∪iW (Ci) ⊆ V (f) ∩ W (T).

Then solving F ∪ f reduces to Intersect(f , T i) for all i .

=⇒ the core routine operates on well behaved objects.

Incremental Solving

◮ Let F ⊂ k[x], f ∈ k[x], T , Tm . . . ,T e ⊂ k[x] reg. chains.
Assume we have solved F as V (F) = W (T i) ∪ · · · ∪ W (T e).

◮ Assume that we have an operation
(f , T) 7−→ Intersect(f , T) = (C1, . . . ,Cd) such that

V (f) ∩ W (T) ⊆ ∪iW (Ci) ⊆ V (f) ∩ W (T).

Then solving F ∪ f reduces to Intersect(f , T i) for all i .

=⇒ the core routine operates on well behaved objects.

=⇒ the decomposition can be reduced to regular GCD
computation, allowing modular methods and fast arithmetic.

Incremental Solving

◮ Let F ⊂ k[x], f ∈ k[x], T , Tm . . . ,T e ⊂ k[x] reg. chains.
Assume we have solved F as V (F) = W (T i) ∪ · · · ∪ W (T e).

◮ Assume that we have an operation
(f , T) 7−→ Intersect(f , T) = (C1, . . . ,Cd) such that

V (f) ∩ W (T) ⊆ ∪iW (Ci) ⊆ V (f) ∩ W (T).

Then solving F ∪ f reduces to Intersect(f , T i) for all i .

=⇒ the core routine operates on well behaved objects.

=⇒ the decomposition can be reduced to regular GCD
computation, allowing modular methods and fast arithmetic.

Related Work
(D. Lazard 91) proposes the principle. (M. M. M. 00) introduces
regular GCDs and gives a complete incremental algorithm which, in
addition, generates components by decreasing order of dimension.

The notion of a Regular GCD

◮ Let P, Q, G ∈ k[x1 < · · · < xn][y] and T ⊂ k[x1 < · · · < xn]
reg. chain. G is a regular GCD of P, Q modulo sat(T) if

(i) lc(G , y) is a regular modulo sat(T),
(ii) G ∈ 〈P,Q〉 modulo sat(T),
(iii) degy (G) > 0 ⇒ premy (P,G),premy (Q,G) ∈ sat(T).

The notion of a Regular GCD

◮ Let P, Q, G ∈ k[x1 < · · · < xn][y] and T ⊂ k[x1 < · · · < xn]
reg. chain. G is a regular GCD of P, Q modulo sat(T) if

(i) lc(G , y) is a regular modulo sat(T),
(ii) G ∈ 〈P,Q〉 modulo sat(T),
(iii) degy (G) > 0 ⇒ premy (P,G),premy (Q,G) ∈ sat(T).

◮ If both T ∪ P and T ∪Q are regular chains and if G is a GCD
of P, Q modulo sat(T) with degy (G) > 0 then we have

W (T ∪ P) ∩ V (Q) ⊆ W (T ∪ G) ∪

W (T ∪ P) ∩ V (Q, hG) ⊆ W (T ∪ P) ∩ V (Q).

The notion of a Regular GCD

◮ Let P, Q, G ∈ k[x1 < · · · < xn][y] and T ⊂ k[x1 < · · · < xn]
reg. chain. G is a regular GCD of P, Q modulo sat(T) if

(i) lc(G , y) is a regular modulo sat(T),
(ii) G ∈ 〈P,Q〉 modulo sat(T),
(iii) degy (G) > 0 ⇒ premy (P,G),premy (Q,G) ∈ sat(T).

◮ If both T ∪ P and T ∪Q are regular chains and if G is a GCD
of P, Q modulo sat(T) with degy (G) > 0 then we have

W (T ∪ P) ∩ V (Q) ⊆ W (T ∪ G) ∪

W (T ∪ P) ∩ V (Q, hG) ⊆ W (T ∪ P) ∩ V (Q).

◮ One can compute T 1, . . . ,T e and G1, . . . ,Ge such that Gi is
a reg. GCD of P, Q mod sat(Ti) and
√

sat(T) = ∩e
i=0

√

sat(T i).

The notion of a Regular GCD

◮ Let P, Q, G ∈ k[x1 < · · · < xn][y] and T ⊂ k[x1 < · · · < xn]
reg. chain. G is a regular GCD of P, Q modulo sat(T) if

(i) lc(G , y) is a regular modulo sat(T),
(ii) G ∈ 〈P,Q〉 modulo sat(T),
(iii) degy (G) > 0 ⇒ premy (P,G),premy (Q,G) ∈ sat(T).

◮ If both T ∪ P and T ∪Q are regular chains and if G is a GCD
of P, Q modulo sat(T) with degy (G) > 0 then we have

W (T ∪ P) ∩ V (Q) ⊆ W (T ∪ G) ∪

W (T ∪ P) ∩ V (Q, hG) ⊆ W (T ∪ P) ∩ V (Q).

◮ One can compute T 1, . . . ,T e and G1, . . . ,Ge such that Gi is a
reg. GCD of P, Q mod sat(Ti) and

√

sat(T) = ∩e
i=0

√

sat(T i).

Related Work
(M. Kalkbrener 91) (M. M. M., Renaud Rioboo 95) (M. M. M. 00)

Regular GCDs: Bottom-up or Top-down?

◮ Let P, Q ∈ k[x1 < · · · < xn][y] and T ⊂ k[x1 < · · · < xn] reg.
chain. How to compute a regular GCD of P, Q mod sat(T)?

◮ (M. Kalkbrener 91) uses Pseudo-Remainder Sequences.
Inefficient!

Regular GCDs: Bottom-up or Top-down?

◮ Let P, Q ∈ k[x1 < · · · < xn][y] and T ⊂ k[x1 < · · · < xn] reg.
chain. How to compute a regular GCD of P, Q mod sat(T)?

◮ (M. Kalkbrener 91) uses Pseudo-Remainder Sequences.
Inefficient!

◮ (Jean Della Dora, Claire Dicrescenzo, Dominique Duval 85)
assume sat(T) radical and compute (naively) the subresultant
chain of P, Q in k[x1 < · · · < xn][y] . Limited and practically
inefficient!

Regular GCDs: Bottom-up or Top-down?

◮ Let P, Q ∈ k[x1 < · · · < xn][y] and T ⊂ k[x1 < · · · < xn] reg.
chain. How to compute a regular GCD of P, Q mod sat(T)?

◮ (M. Kalkbrener 91) uses Pseudo-Remainder Sequences.
Inefficient!

◮ (Jean Della Dora, Claire Dicrescenzo, Dominique Duval 85)
assume sat(T) radical and compute (naively) the subresultant
chain of P, Q in k[x1 < · · · < xn][y] . Limited and practically
inefficient!

◮ (M. M. M. and R. Rioboo 95) assume sat(T) radical +
0-dimensional and use the subresultant chain of P, Q directly
in k[x1 < · · · < xn][y] mod sat(T). Better but removing the
assumptions removes the efficiency.

Equiprojectable Decomposition (1/2)

C

∣

∣

∣

∣

C2 = y2 + 6yx2 + 2y + x
C1 = x3 + 6x2 + 5x + 2

, D

∣

∣

∣

∣

D2 = y + 6
D1 = x + 6

↓ Split C : GCD ↓

E

∣

∣

∣

∣

C2
′ = y2 + x

C1
′ = x2 + 5

, F

∣

∣

∣

∣

C ′′
2 = y2 + y + 1

C ′′
1 = x + 6

, D

∣

∣

∣

∣

D2 = y + 6
D1 = x + 6

↓ Merge F and D : CRT ↓

E

∣

∣

∣

∣

C ′
2 = y2 + x

C ′
1 = x2 + 5

, G

∣

∣

∣

∣

G2 = y3 + 6
G1 = x + 6

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

C
D

Split
→

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������������������������������

E

D

F

Merge
→

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������������������������������

E

G

Equiprojectable Decomposition (2/2)

F ⊂ Q[x1, . . . , xn]
p prime, p > A(F)

−−−−−−−−−−−−−→ Eq.D.Q(F)

Triang.(F mod p) Lifting

Triang.(F mod p)







y

x







Lifting

Triang.(F mod p) Lifting
{T 1, . . . , T s}

⊂ Fp[x1, . . . , xn]
Split + Merge

−−−−−−−−−−−−−→ Eq.D.Fp(F)

◮ A(F) := 2n2d2n+1(3h + 7 log(n + 1) + 5n log d + 10) where h
and d upper bound coeff. sizes and total degrees for f ∈ F .
Assumes F square and generates a 0-dimensional radical ideal.

Equiprojectable Decomposition (2/2)

F ⊂ Q[x1, . . . , xn]
p prime, p > A(F)

−−−−−−−−−−−−−→ Eq.D.Q(F)

Triang.(F mod p) Lifting

Triang.(F mod p)







y

x







Lifting

Triang.(F mod p) Lifting
{T 1, . . . , T s}

⊂ Fp[x1, . . . , xn]
Split + Merge

−−−−−−−−−−−−−→ Eq.D.Fp(F)

◮ A(F) := 2n2d2n+1(3h + 7 log(n + 1) + 5n log d + 10) where h
and d upper bound coeff. sizes and total degrees for f ∈ F .
Assumes F square and generates a 0-dimensional radical ideal.

◮ If p 6 |A(F), the equiprojectable decomposition specializes well
mod p.

Equiprojectable Decomposition (2/2)

F ⊂ Q[x1, . . . , xn]
p prime, p > A(F)

−−−−−−−−−−−−−→ Eq.D.Q(F)

Triang.(F mod p) Lifting

Triang.(F mod p)







y

x







Lifting

Triang.(F mod p) Lifting
{T 1, . . . , T s}

⊂ Fp[x1, . . . , xn]
Split + Merge

−−−−−−−−−−−−−→ Eq.D.Fp(F)

◮ A(F) := 2n2d2n+1(3h + 7 log(n + 1) + 5n log d + 10) where h
and d upper bound coeff. sizes and total degrees for f ∈ F .
Assumes F square and generates a 0-dimensional radical ideal.

◮ If p 6 |A(F), the equiprojectable decomposition specializes well
mod p.

◮ In practice we choose p much smaller with a probability of
success, i.e. > 99% with p ≈ ln(A(F)) (Xavier Dahan, M. M.
M., Éric Schost, Wenyuan Wu, Yuzhen Xie 05).

Fast Polynomial Arithmetic (1/2)

◮ Let A and B in k[x1, . . . , xn] reduced w.r.t. T := {T1, . . . ,Tn}
0-dimensional reg. chain with all init(Ti) = 1.

◮ The size of input is δT = deg(T1, x1) · · · deg(Tn, xn).

Fast Polynomial Arithmetic (1/2)

◮ Let A and B in k[x1, . . . , xn] reduced w.r.t. T := {T1, . . . ,Tn}
0-dimensional reg. chain with all init(Ti) = 1.

◮ The size of input is δT = deg(T1, x1) · · · deg(Tn, xn).

◮ One can compute A B mod 〈T1, . . . ,Tn} in O (̃4nδT)
operations in k (Xin Li, M.M.M., É. Schost 07).

Fast Polynomial Arithmetic (1/2)

◮ Let A and B in k[x1, . . . , xn] reduced w.r.t. T := {T1, . . . ,Tn}
0-dimensional reg. chain with all init(Ti) = 1.

◮ The size of input is δT = deg(T1, x1) · · · deg(Tn, xn).

◮ One can compute A B mod 〈T1, . . . ,Tn} in O (̃4nδT)
operations in k (Xin Li, M.M.M., É. Schost 07).

◮ Two key ideas: using the fast division trick of (Sieveking 72)
(Kung 74) and avoid mod 〈T1, . . . ,Tn} as much as possible.

ModMul(A, B, {T1, . . . ,Tn})

1 D := AB computed in k[x1, . . . , xn]

2 return NormalFormn(D, {T1, . . . ,Tn})

Fast Polynomial Arithmetic (2/2)

NormalForm1(A : R[x1], {T1 : R[x1]})

1 S1 := Rev(T1)
−1 mod x

deg(A)−deg(T1)+1
1

2 D := Rev(A)S1 mod x
deg(A)−deg(T1)+1
1

3 D := T1 Rev(D)

4 return A − D

NormalForm2(A : R[x1, x2], {T1 : R[x1], T2 : R[x1, x2]})

1 A := map(NormalForm1, Coeffs(A, x2), {T1})

2 S2 := Rev(T2)
−1 mod T1, x

deg(A,x2)−deg(T2,x2)+1
2

3 D := Rev(A)S2 mod x
deg(A,x2)−deg(T2,x2)+1
2

4 D := map(NormalForm1, Coeffs(D, x2), {T1})

5 D := T2 Rev(D)

6 D := map(NormalForm1, Coeffs(D, x2), {T1})

7 return A − D

Subresultants and Regular GCDs

◮ Let P, Q ∈ k[x1 < · · · < xn][y] with main variable y .

◮ Let Sj for the j-th subresultant (w.r.t. y) of P, Q. Let
T ⊂ k[x1 < · · · < xn] be regular chain.

Subresultants and Regular GCDs

◮ Let P, Q ∈ k[x1 < · · · < xn][y] with main variable y .

◮ Let Sj for the j-th subresultant (w.r.t. y) of P, Q. Let
T ⊂ k[x1 < · · · < xn] be regular chain.

◮ Assume
◮ res(P,Q, y) ∈ sat(T),
◮ init(P) and init(Q) are regular modulo sat(T),
◮ Let 1 ≤ d ≤ deg(Q, y) such that Sj ∈ sat(T) for all 0 ≤ j < d .
◮ lc(Sd , y) is regular modulo sat(T),

Subresultants and Regular GCDs

◮ Let P, Q ∈ k[x1 < · · · < xn][y] with main variable y .

◮ Let Sj for the j-th subresultant (w.r.t. y) of P, Q. Let
T ⊂ k[x1 < · · · < xn] be regular chain.

◮ Assume
◮ res(P,Q, y) ∈ sat(T),
◮ init(P) and init(Q) are regular modulo sat(T),
◮ Let 1 ≤ d ≤ deg(Q, y) such that Sj ∈ sat(T) for all 0 ≤ j < d .
◮ lc(Sd , y) is regular modulo sat(T),

Theorem (Xin Li, M.M.M., Wei Pan 2009)

Assume that one of the following conditions holds:

◮ sat(T) is radical,

◮ for all d < k ≤ mdeg(Q), the coefficient of yk in Sk is either
null or regular modulo sat(T).

Then, Sd is a regular GCD of P, Q modulo sat(T).

Computing Regular GCDs: Bottom-up!

◮ Assume that the subresultants Sj for 1 ≤ j < mdeg(Q) are
computed.

◮ Then one can compute a regular GCD of P, Q modulo sat(T)
by performing a bottom-up search.

B

C

A

D

E

O

Computing Regular GCDs: Complexity Estimates!

◮ Let xn+1 := y . Define di := max(deg(P, xi), deg(Q, xi)).
Define bi := 2didn+1 and B := (b1 + 1) · · · (bn + 1).

Computing Regular GCDs: Complexity Estimates!

◮ Let xn+1 := y . Define di := max(deg(P, xi), deg(Q, xi)).
Define bi := 2didn+1 and B := (b1 + 1) · · · (bn + 1).

◮ We compute Sj for 1 ≤ j < mdeg(Q) via FFT on an n-dim.
grid of points not cancelling init(P) and init(Q) in

O(dn+1B log(B) + d2
n+1B) where B ∈ O(2ndn

n+1d1 . . . dn).

Computing Regular GCDs: Complexity Estimates!

◮ Let xn+1 := y . Define di := max(deg(P, xi), deg(Q, xi)).
Define bi := 2didn+1 and B := (b1 + 1) · · · (bn + 1).

◮ We compute Sj for 1 ≤ j < mdeg(Q) via FFT on an n-dim.
grid of points not cancelling init(P) and init(Q) in

O(dn+1B log(B) + d2
n+1B) where B ∈ O(2ndn

n+1d1 . . . dn).

◮ Then res(P, Q, y) = S0 is interpolated in time O(B log(B)).

Computing Regular GCDs: Complexity Estimates!

◮ Let xn+1 := y . Define di := max(deg(P, xi), deg(Q, xi)).
Define bi := 2didn+1 and B := (b1 + 1) · · · (bn + 1).

◮ We compute Sj for 1 ≤ j < mdeg(Q) via FFT on an n-dim.
grid of points not cancelling init(P) and init(Q) in

O(dn+1B log(B) + d2
n+1B) where B ∈ O(2ndn

n+1d1 . . . dn).

◮ Then res(P, Q, y) = S0 is interpolated in time O(B log(B)).

◮ If sat(T) is radical, a regular GCD is interpolated within
O(dn+1B log(B)) otherwise O(d2

n+1B log(B)).

Computing Regular GCDs: Complexity Estimates!

◮ Let xn+1 := y . Define di := max(deg(P, xi), deg(Q, xi)).
Define bi := 2didn+1 and B := (b1 + 1) · · · (bn + 1).

◮ We compute Sj for 1 ≤ j < mdeg(Q) via FFT on an n-dim.
grid of points not cancelling init(P) and init(Q) in

O(dn+1B log(B) + d2
n+1B) where B ∈ O(2ndn

n+1d1 . . . dn).

◮ Then res(P, Q, y) = S0 is interpolated in time O(B log(B)).

◮ If sat(T) is radical, a regular GCD is interpolated within
O(dn+1B log(B)) otherwise O(d2

n+1B log(B)).

◮ Regularity tests (and normal forms) also fit these bounds.

Computing Regular GCDs: Complexity Estimates!

◮ Let xn+1 := y . Define di := max(deg(P, xi), deg(Q, xi)).
Define bi := 2didn+1 and B := (b1 + 1) · · · (bn + 1).

◮ We compute Sj for 1 ≤ j < mdeg(Q) via FFT on an n-dim.
grid of points not cancelling init(P) and init(Q) in

O(dn+1B log(B) + d2
n+1B) where B ∈ O(2ndn

n+1d1 . . . dn).

◮ Then res(P, Q, y) = S0 is interpolated in time O(B log(B)).

◮ If sat(T) is radical, a regular GCD is interpolated within
O(dn+1B log(B)) otherwise O(d2

n+1B log(B)).

◮ Regularity tests (and normal forms) also fit these bounds.

◮ Best known results for practical sizes, say dn+1 < 500.

Computing Regular GCDs: Complexity Estimates!

◮ Let xn+1 := y . Define di := max(deg(P, xi), deg(Q, xi)).
Define bi := 2didn+1 and B := (b1 + 1) · · · (bn + 1).

◮ We compute Sj for 1 ≤ j < mdeg(Q) via FFT on an n-dim.
grid of points not cancelling init(P) and init(Q) in

O(dn+1B log(B) + d2
n+1B) where B ∈ O(2ndn

n+1d1 . . . dn).

◮ Then res(P, Q, y) = S0 is interpolated in time O(B log(B)).

◮ If sat(T) is radical, a regular GCD is interpolated within
O(dn+1B log(B)) otherwise O(d2

n+1B log(B)).

◮ Regularity tests (and normal forms) also fit these bounds.

◮ Best known results for practical sizes, say dn+1 < 500.

◮ If a regular GCD is expected to have degree 1 in y all
computations fit in O (̃dn+1B) which is essentially optimal.

The RegularChains library in Maple

◮ 80,000 lignes of Maple code, 36,000 lignes of C code, 121
Commands, 6 modules ChainTools, MatrixTools,
ConstructibleSetTools. ParametricSystemTools,
SemiAlgebraicSetTools , FastArithmeticTools .

◮ Main new commnands in Maple 13: IsPrimitive,
ComplexRootClassification, RealRootClassification,
RealRootIsolate RealRootCounting, BorderPolynomial,
+ those of FastArithmeticTools (see demo).

◮ Current contributors: Changbo Chen, Francçois Lemaire,
Liyun Li, Xin Li, M.M.M., Wei Pan, Bican Xia, Rong Xiao,
Yuzhen Xie.

The Modpn library

Maple−Dag

Maple−

Recursive−

Dense

C−Dag

C−Cube

C level

Maple Level1

6

7

3

2

4

5
C−2−Vector

8
9

- C-Dag for straight-line program.

- C-Cube for FFT-based computations.

- C-2-Vector for compact dense representation.

- Maple-Dag for calling RegularChains library.

- Maple-Recursive-Dense for calling Recden library.

Fast Normal Form Benchmarks

[left] comparison of classical (plain) and asymptotically
fast strategies.

[right] comparison with MAGMA.

 60 120 180 240 300 0 20 40 60 80 100 120 0

 5

 10

 15

 20

 25

Time Plain
Fast

d1 d2 d3

Time

 60 120 180 240 300 0 20 40 60 80 100 120
 0
 2
 4
 6
 8

 10
 12
 14
 16

Time
Magma

Our code

d1 d2
d3

Time

◮ Asymptotically fast strategy dominates the classical one.

◮ Our fast implementation is better than Magma’s one (the
best known implementation).

Generic Bivariate Systems

◮ “our code” means BivariateModularTriangularize in Maple
13.

◮ Random generic input systems, thus equiprojectable.

◮ For the largest examples (having about 5700 solutions), the ratio is
about 460/7 in our favor.

 6 12 18 24 30 36 0 5 10 15 20 25 30 35 40
 0

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

Time
Magma

our code

d1
d2

Time

Non-generic Bivariate Systems

◮ Examples designed to enforce many “splittings” (many
equiprojectable components).

◮ For the largest examples, the ratio is 5260/80, in our favor.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60 70 80

tim
e

d

Magma
our code

Figure: Non-generic bivariate systems: Magma vs. us.

Generic Trivariate Systems

◮ Maple means the experimental and fast version of
Triangularize to be integrated in Maple 14.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14 16 18 20

T
im

e

Degree

Magma
Maple

Figure: Generic dense 3-variable.

Regularity Test (= Saturation)

d1 d2 d3 Regularize Fast Regularize Magma
2 2 3 0.032 0.004 0.010
3 4 6 0.160 0.016 0.020
4 6 9 0.404 0.024 0.060
5 8 12 >100 0.129 0.330
6 10 15 >100 0.272 1.300
7 12 18 >100 0.704 5.100
8 14 21 >100 1.276 14.530
9 16 24 >100 5.836 40.770
10 18 27 >100 9.332 107.280
11 20 30 >100 15.904 229.950
12 22 33 >100 33.146 493.490

Table: Generic dense 3-variable.

◮ In the non-generic case, both gaps are even larger.

◮ “Fast Regularize” means RegularizeDim0 in Maple 13.

Do Triangular Decompositions Have the Rigth Size?

Do Triangular Decompositions Have the Rigth Size?

◮ Let T ⊂ k[x1, . . . , xn] be a 0-dimensional reg. chain with all
init(Ti) = 1. There exists a 0-dimensional reg. chain N such
that V (T) = V (N) and the height (or “size”) of each
coefficient in N is upper bounded by

◮ the height of V(T), that is, the minimum size of a data set
encoding V(T), if k = Q,

◮ the degree of V(T ↓), if k is a field Fp(t1, . . . , tm) of rational
functions and T ↓ is T regarded in k[t1, . . . , tm, x1, . . . , xn].

See (X. Dahan, É. Schost 04) for precise statements.

Do Triangular Decompositions Have the Rigth Size?

◮ Let T ⊂ k[x1, . . . , xn] be a 0-dimensional reg. chain with all
init(Ti) = 1. There exists a 0-dimensional reg. chain N such
that V (T) = V (N) and the height (or “size”) of each
coefficient in N is upper bounded by

◮ the height of V(T), that is, the minimum size of a data set
encoding V(T), if k = Q,

◮ the degree of V(T ↓), if k is a field Fp(t1, . . . , tm) of rational
functions and T ↓ is T regarded in k[t1, . . . , tm, x1, . . . , xn].

See (X. Dahan, É. Schost 04) for precise statements.

◮ Let I ⊂ k[x1 < x2] be 0-dimensional radical with degree d
and h be the height of V (I). There exists a (non-reduced)
lexicographical Gröbner basis G of I such that the height of a
coefficient is essentially quadratic in both h and d . These
estimatas are sharp. Estimates become cubic for the reduced
basis. (X. Dahan 09).

What Plays the Role of Degree Bases for Triangular
Decompositions ?

What Plays the Role of Degree Bases for Triangular
Decompositions ?

◮ In my opinionm Triangular Decompositions themselves do:
◮ Even if degree bases instead of lex bases are used in the

previous benchmarks, the bivariate and triavariate
Triangularize solvers remain faster.

◮ Keep in mind that a triangular decomposition is “essentially” a
factored lex basis (D. Lazard 92)

◮ For Generic input system Fp[x1, . . . , xn] in degree d = 2,

n = 3 the output of Triangularize vs that of Basis gies 7200 vs

13400 characters long

n = 4 the output of Triangularize vs that of Basis gies 23000 vs

1005000.

What Plays the Role of Degree Bases for Triangular
Decompositions ?

◮ In my opinionm Triangular Decompositions themselves do:
◮ Even if degree bases instead of lex bases are used in the

previous benchmarks, the bivariate and triavariate
Triangularize solvers remain faster.

◮ Keep in mind that a triangular decomposition is “essentially” a
factored lex basis (D. Lazard 92)

◮ For Generic input system Fp[x1, . . . , xn] in degree d = 2,

n = 3 the output of Triangularize vs that of Basis gies 7200 vs

13400 characters long

n = 4 the output of Triangularize vs that of Basis gies 23000 vs

1005000.

◮ Size estimates are promising but not enough. More on this
another time.

Can Triangular Decomposition Preserve
Multiplicities?

Can Triangular Decomposition Preserve
Multiplicities?

◮ See previous talk.

Which Types of Polynomial Systems for Which
Method?

Which Types of Polynomial Systems for Which
Method?

◮ Incremental Methods are probably best for square systems,
regular sequences and probably bad for overconstrained
systems.

Which Types of Polynomial Systems for Which
Method?

◮ Incremental Methods are probably best for square systems,
regular sequences and probably bad for overconstrained
systems.

◮ For overconstrained systems one may conider restarting from
the elimnation methods (Wen-Tsün Wu, Dongming Wang,
Kalkbrener, . . .) making use of modular methods, fast
arithmetic, multivariate resultants, etc.

Can we unify terminology?

Xie Xie! Thank You!

