
Fundamental Algorithms and
Implementation Techniques

for Computing with Regular Chains

Marc Moreno Maza
(Ontario Research Center for Computer Algebra)

(Univ. of Western Ontario)

SSSC’09
Chengdu, China,
August 12, 2009

How did regular chains emerge? (1/3)

◮ Let K be an algebraically closed field, say C, and k be a
subfield of K, say Q. Consider n variables x1 < · · · < xn.

How did regular chains emerge? (1/3)

◮ Let K be an algebraically closed field, say C, and k be a
subfield of K, say Q. Consider n variables x1 < · · · < xn.

◮ A subset V ⊂ Kn is a (affine) variety over k if there exists
F ⊂ k[x1, · · · , xn] such that V = V (F) where

V (F) := {z ∈ Kn | f (z) = 0 (∀ f ∈ F)}.

The variety V is irreducible if for all varieties V1, V2 ⊂ Kn

V = V1 ∪ V2 ⇒ V = V1 or V = V2.

How did regular chains emerge? (1/3)

◮ Let K be an algebraically closed field, say C, and k be a
subfield of K, say Q. Consider n variables x1 < · · · < xn.

◮ A subset V ⊂ Kn is a (affine) variety over k if there exists
F ⊂ k[x1, · · · , xn] such that V = V (F) where

V (F) := {z ∈ Kn | f (z) = 0 (∀ f ∈ F)}.

The variety V is irreducible if for all varieties V1, V2 ⊂ Kn

V = V1 ∪ V2 ⇒ V = V1 or V = V2.

◮ Theorem (E. Lasker) For each variety V ⊂ Kn there exist
finitely many irreducible varieties V1, . . . ,Ve ⊂ Kn such that

V = V1 ∪ · · · ∪ Ve .

Moreover, if Vi 6⊆ Vj for 1 ≤ i < j ≤ e then {V1, . . . ,Ve} is
unique. This is the irreducible decomposition of V .

How did regular chains emerge? (2/3)

◮ Theorem (J.F. Ritt) Let V ⊂ Kn be an irreducible non-empty
variety and let F ⊂ k[x1, · · · , xn] s.t. V = V (F). Then, one
can compute a (reduced) triangular set T ⊂ 〈F 〉 s.t.

(∀ g ∈ 〈F 〉) prem(g , T) = 0.

Combined with algebraic factorization one can (in theory)
compute irreducible decompositions.

How did regular chains emerge? (2/3)

◮ Theorem (J.F. Ritt) Let V ⊂ Kn be an irreducible non-empty
variety and let F ⊂ k[x1, · · · , xn] s.t. V = V (F). Then, one
can compute a (reduced) triangular set T ⊂ 〈F 〉 s.t.

(∀ g ∈ 〈F 〉) prem(g , T) = 0.

Combined with algebraic factorization one can (in theory)
compute irreducible decompositions.

◮ Theorem (W.T. Wu) Let V ⊂ Kn be a variety and let
F ⊂ k[x1, · · · , xn] s.t. V = V (F). Then, one can compute a
(reduced) triangular set T ⊂ 〈F 〉 s.t.

(∀ g ∈ F) prem(g , T) = 0.

This leads to a factorization free algorithm for decomposing
varieties (but not into irreducible components).

How did regular chains emerge? (3/3)

◮ Example. Applying the charset procedure to
F = {x2

2 − x1, x1x
2
3 − 2x2x3 + 1, (x2x3 − 1)x2

4 + x2
2} produces

T = F . However V (F) = ∅. Indeed

x1x
2
3 − 2x2x3 + 1 ≡ (x2x3 − 1)2 mod x2

2 − x1.

Thus, the initial (x2x3 − 1) is a zero-divisor modulo
〈x2

2 − x1, x1x
2
3 − 2x2x3 + 1〉.

How did regular chains emerge? (3/3)

◮ Example. Applying the charset procedure to
F = {x2

2 − x1, x1x
2
3 − 2x2x3 + 1, (x2x3 − 1)x2

4 + x2
2} produces

T = F . However V (F) = ∅. Indeed

x1x
2
3 − 2x2x3 + 1 ≡ (x2x3 − 1)2 mod x2

2 − x1.

Thus, the initial (x2x3 − 1) is a zero-divisor modulo
〈x2

2 − x1, x1x
2
3 − 2x2x3 + 1〉.

◮ The notion of a regular chain (Lu Yang, Jingzhong Zhang 91)
(Michael Kalkbrener 91) solves this difficulty: for any input
F ⊆ k[x1, . . . , xn] one can compute regular chains T1, . . . ,Te

such that a point z ∈ Kn is a zero of F if and only if z is a
zero of one of the T1, . . . ,Te (in some technical sense).
(Dong Ming Wang 2000) (Marc Moreno Maza 2000)

Outline

◮ Regular chains

◮ Normal Forms

◮ Regular GCDs

◮ Regularity test

◮ The RegularChains library

Outline

◮ Regular chains

◮ Normal Forms : using fast polynomial arithmetic

◮ Regular GCDs

◮ Regularity test

◮ The RegularChains library

Outline

◮ Regular chains

◮ Normal Forms : using fast polynomial arithmetic

◮ Regular GCDs : using modular techniques

◮ Regularity test

◮ The RegularChains library

Outline

◮ Regular chains

◮ Normal Forms : using fast polynomial arithmetic

◮ Regular GCDs : using modular techniques

◮ Regularity test : recycling intermediate computations

◮ The RegularChains library

Part I: The Notion of a Regular Chain

◮ Regular chain, saturated ideal

◮ Algorithmic properties

◮ Zero-dimensional case (as many equations as variables)

Regular Chain, Saturated Ideal

◮ Let T ⊂ k[x1 < · · · < xn] \ k be a triangular set, hence the
polynomials of T have pairwise distinct main variables.

Regular Chain, Saturated Ideal

◮ Let T ⊂ k[x1 < · · · < xn] \ k be a triangular set, hence the
polynomials of T have pairwise distinct main variables.

◮ Let mvar(T) := {mvar(t) | t ∈ T}, init(t) := lc(t, mvar(t))
for all t ∈ T , and hT :=

∏

t∈T init(t).

Regular Chain, Saturated Ideal

◮ Let T ⊂ k[x1 < · · · < xn] \ k be a triangular set, hence the
polynomials of T have pairwise distinct main variables.

◮ Let mvar(T) := {mvar(t) | t ∈ T}, init(t) := lc(t, mvar(t))
for all t ∈ T , and hT :=

∏

t∈T init(t).

◮ Tv is the polynomial of T with main variable v , for
v ∈ mvar(T), and T<v := {t ∈ T | mvar(t) < v}.

Regular Chain, Saturated Ideal

◮ Let T ⊂ k[x1 < · · · < xn] \ k be a triangular set, hence the
polynomials of T have pairwise distinct main variables.

◮ Let mvar(T) := {mvar(t) | t ∈ T}, init(t) := lc(t, mvar(t))
for all t ∈ T , and hT :=

∏

t∈T init(t).

◮ Tv is the polynomial of T with main variable v , for
v ∈ mvar(T), and T<v := {t ∈ T | mvar(t) < v}.

◮ The quasi-component of T is W (T) = V (T) \ V (hT).

Regular Chain, Saturated Ideal

◮ Let T ⊂ k[x1 < · · · < xn] \ k be a triangular set, hence the
polynomials of T have pairwise distinct main variables.

◮ Let mvar(T) := {mvar(t) | t ∈ T}, init(t) := lc(t, mvar(t))
for all t ∈ T , and hT :=

∏

t∈T init(t).

◮ Tv is the polynomial of T with main variable v , for
v ∈ mvar(T), and T<v := {t ∈ T | mvar(t) < v}.

◮ The quasi-component of T is W (T) = V (T) \ V (hT).

◮ The saturated ideal of T is the ideal of k[x1 < · · · < xn]

sat(T) := 〈T 〉 : (hT)∞.

Regular Chain, Saturated Ideal

◮ Let T ⊂ k[x1 < · · · < xn] \ k be a triangular set, hence the
polynomials of T have pairwise distinct main variables.

◮ Let mvar(T) := {mvar(t) | t ∈ T}, init(t) := lc(t, mvar(t))
for all t ∈ T , and hT :=

∏

t∈T init(t).

◮ Tv is the polynomial of T with main variable v , for
v ∈ mvar(T), and T<v := {t ∈ T | mvar(t) < v}.

◮ The quasi-component of T is W (T) = V (T) \ V (hT).

◮ The saturated ideal of T is the ideal of k[x1 < · · · < xn]

sat(T) := 〈T 〉 : (hT)∞.

◮ T is a regular chain if for each v ∈ mvar(T) the initial of Tv

is regular modulo sat(T<v) (Michael Kalkbrener 91).

Algorithmic Properties

◮ Let p ∈ k[x1 < · · · < xn] and T ⊂ k[x1 < · · · < xn] be a
triangular set. If T is empty then, the iterated resultant of p
w.r.t. T is res(T , p) = p. Otherwise, writing T = T<w ∪Tw

res(T , p) =

{

p if deg(p, w) = 0
res(T<w , res(Tw , p, w)) otherwise

Algorithmic Properties

◮ Let p ∈ k[x1 < · · · < xn] and T ⊂ k[x1 < · · · < xn] be a
triangular set. If T is empty then, the iterated resultant of p
w.r.t. T is res(T , p) = p. Otherwise, writing T = T<w ∪Tw

res(T , p) =

{

p if deg(p, w) = 0
res(T<w , res(Tw , p, w)) otherwise

◮ T is a regular chain iff

res(T , hT) 6= 0

(Lu Yang, Jingzhong Zhang 91).

Algorithmic Properties

◮ Let p ∈ k[x1 < · · · < xn] and T ⊂ k[x1 < · · · < xn] be a
triangular set. If T is empty then, the iterated resultant of p
w.r.t. T is res(T , p) = p. Otherwise, writing T = T<w ∪Tw

res(T , p) =

{

p if deg(p, w) = 0
res(T<w , res(Tw , p, w)) otherwise

◮ T is a regular chain iff

res(T , hT) 6= 0

(Lu Yang, Jingzhong Zhang 91).

◮ T is a regular chain iff

{p | prem(p, T) = 0} = sat(T)

(Philippe Aubry, Daniel Lazard, Marc Moreno Maza 97).

Zero-dimensional Regular Chains

◮ Let T ⊂ k[x1, . . . , xn] be a regular chain such that |T | = n.

Zero-dimensional Regular Chains

◮ Let T ⊂ k[x1, . . . , xn] be a regular chain such that |T | = n.

◮ Then each init(t) for t ∈ T is invertible modulo 〈T 〉 (using

GCD computations)

Zero-dimensional Regular Chains

◮ Let T ⊂ k[x1, . . . , xn] be a regular chain such that |T | = n.

◮ Then each init(t) for t ∈ T is invertible modulo 〈T 〉 (using

GCD computations)

◮ Thus sat(T) = 〈T 〉 (consider the primary components of 〈T 〉)

Zero-dimensional Regular Chains

◮ Let T ⊂ k[x1, . . . , xn] be a regular chain such that |T | = n.

◮ Then each init(t) for t ∈ T is invertible modulo 〈T 〉 (using

GCD computations)

◮ Thus sat(T) = 〈T 〉 (consider the primary components of 〈T 〉)

◮ Let N be the regular chain obtained from T by normalization:
multiplying each t ∈ T by the inverse of init(t) modulo 〈T 〉.

Zero-dimensional Regular Chains

◮ Let T ⊂ k[x1, . . . , xn] be a regular chain such that |T | = n.

◮ Then each init(t) for t ∈ T is invertible modulo 〈T 〉 (using

GCD computations)

◮ Thus sat(T) = 〈T 〉 (consider the primary components of 〈T 〉)

◮ Let N be the regular chain obtained from T by normalization:
multiplying each t ∈ T by the inverse of init(t) modulo 〈T 〉.

◮ Let G be the regular chain obtained from N by auto-reduction
in Gröbner basis sense. Then G is a reduced Gröbner basis.

Zero-dimensional Regular Chains

◮ Let T ⊂ k[x1, . . . , xn] be a regular chain such that |T | = n.

◮ Then each init(t) for t ∈ T is invertible modulo 〈T 〉 (using

GCD computations)

◮ Thus sat(T) = 〈T 〉 (consider the primary components of 〈T 〉)

◮ Let N be the regular chain obtained from T by normalization:
multiplying each t ∈ T by the inverse of init(t) modulo 〈T 〉.

◮ Let G be the regular chain obtained from N by auto-reduction
in Gröbner basis sense. Then G is a reduced Gröbner basis.

◮ Example:
T = {x2

1 + 1, x1x
2
2 + 1} ⇒ G = {x2

1 + 1, x2
2 − x1}.

Zero-dimensional Regular Chains

◮ Let T ⊂ k[x1, . . . , xn] be a regular chain such that |T | = n.

◮ Then each init(t) for t ∈ T is invertible modulo 〈T 〉 (using

GCD computations)

◮ Thus sat(T) = 〈T 〉 (consider the primary components of 〈T 〉)

◮ Let N be the regular chain obtained from T by normalization:
multiplying each t ∈ T by the inverse of init(t) modulo 〈T 〉.

◮ Let G be the regular chain obtained from N by auto-reduction
in Gröbner basis sense. Then G is a reduced Gröbner basis.

◮ Example:
T = {x2

1 + 1, x1x
2
2 + 1} ⇒ G = {x2

1 + 1, x2
2 − x1}.

◮ Unless k is finite, normalization blows up coefficients.

Part II: Normal Forms

◮ Ideal membership, normal form computation

◮ The fast division trick

◮ FFT-based multiplication

◮ Fast Normal form computation

Ideal membership, normal form computation

◮ Let T ⊂ k[x1 < · · · < xn] be a regular chain s.t. |T | = n,
hT = 1 and T is auto-reduced. Hence T is a Gröbner basis.

Ideal membership, normal form computation

◮ Let T ⊂ k[x1 < · · · < xn] be a regular chain s.t. |T | = n,
hT = 1 and T is auto-reduced. Hence T is a Gröbner basis.

◮ For p ∈ k[x1, . . . , xn], we want to compute NormalForm(p, T)
as fast as possible.

Ideal membership, normal form computation

◮ Let T ⊂ k[x1 < · · · < xn] be a regular chain s.t. |T | = n,
hT = 1 and T is auto-reduced. Hence T is a Gröbner basis.

◮ For p ∈ k[x1, . . . , xn], we want to compute NormalForm(p, T)
as fast as possible.

◮ A descending approach

rem(rem(· · · , rem(p, Txn), · · · , Tx2), Tx1)

blows up intermediate expression

Ideal membership, normal form computation

◮ Let T ⊂ k[x1 < · · · < xn] be a regular chain s.t. |T | = n,
hT = 1 and T is auto-reduced. Hence T is a Gröbner basis.

◮ For p ∈ k[x1, . . . , xn], we want to compute NormalForm(p, T)
as fast as possible.

◮ A descending approach

rem(rem(· · · , rem(p, Txn), · · · , Tx2), Tx1)

blows up intermediate expression

◮ A naive ascending approach

rem(· · · , rem(rem(rem(p, Tx1), Tx2), Tx1), · · ·Tx1)

blows up algebraic complexity

The fast division trick (1/2)

◮ Let a, b ∈ A[x] with n := deg(a) ≥ m := deg(b) > 0, b monic
and A any commutative ring with 1.

The fast division trick (1/2)

◮ Let a, b ∈ A[x] with n := deg(a) ≥ m := deg(b) > 0, b monic
and A any commutative ring with 1.

◮ We want the quotient q and the remainder r of a w.r.t. b:

a(x) = q(x) b(x) + r(x)

The fast division trick (1/2)

◮ Let a, b ∈ A[x] with n := deg(a) ≥ m := deg(b) > 0, b monic
and A any commutative ring with 1.

◮ We want the quotient q and the remainder r of a w.r.t. b:

a(x) = q(x) b(x) + r(x)

◮ Replacing x by 1/x and multiplying the equation by xn:

xn a(1/x) =
(

xn−mq(1/x)
)

(xm b(1/x)) + xn−m+1
(

xm−1 r(1/x)
)

That is:

revn(a) = revn−m(q) revm(b) + xn−m+1 revm−1(r)

The fast division trick (1/2)

◮ Let a, b ∈ A[x] with n := deg(a) ≥ m := deg(b) > 0, b monic
and A any commutative ring with 1.

◮ We want the quotient q and the remainder r of a w.r.t. b:

a(x) = q(x) b(x) + r(x)

◮ Replacing x by 1/x and multiplying the equation by xn:

xn a(1/x) =
(

xn−mq(1/x)
)

(xm b(1/x)) + xn−m+1
(

xm−1 r(1/x)
)

That is:

revn(a) = revn−m(q) revm(b) + xn−m+1 revm−1(r)

◮ Computing (revm(b))−1 mod xn−m+1 is a truncated inverse
of a power series. (S. Cook, 1966) (H. T. Kung, 1974) and
(M. Sieveking, 1972)

The fast division trick (2/2)

Input: f ∈ A[x] such that f (0) = 1 and ℓ ∈ N .

Output: g ∈ A[x] such that f g ≡ 1 mod xℓ

g0 := 1
r := ⌈log2(ℓ)⌉
for i = 1 · · · r repeat

gi :=
(

2gi−1 − f gi−1
2
)

mod x2i

return gr

◮ This algorithm runs in 3M(ℓ) + 0(ℓ) operations in A.

◮ Improved versions run in 2 M(ℓ) + O(ℓ) operations in A.

◮ Finally, the quotient q and the remainder r are computed in
3 M(n − m) + M(max(n − m, m)) + O(n) operations in A

◮ Modern Computed Algebra (Gathen Gerhard 99)

FFT-based multiplication

M(d) number of coefficient operations in degree less than d.

Classical Multiplication M(d) = 2d2

Karatsuba Multiplication M(d) = 9d1.59

FFT over appropriate ring M(d) = 9/2d log d + 3 d

Input: f , g ∈ k[x] and ω a s-primitive root of unity for
s > deg(f) + deg(g) and s is a power of 2.

Output: the product fg

(1) Evaluate f and g at ωi for i = 0 · · · s − 1
(2) Evaluate fg at ωi for i = 0 · · · s − 1
(3) Interpolate and return fg

See (M.M.M. Yuzhen Xie 2009) for implementation techniques.

Fast Normal form computation (1/3)

◮ Let A and B in k[x1, . . . , xn] reduced w.r.t. T := {T1, . . . ,Tn}
0-dimensional, reduced and all init(Ti) = 1.

Fast Normal form computation (1/3)

◮ Let A and B in k[x1, . . . , xn] reduced w.r.t. T := {T1, . . . ,Tn}
0-dimensional, reduced and all init(Ti) = 1.

◮ The size of input is δT = deg(T1, x1) · · · deg(Tn, xn).

Fast Normal form computation (1/3)

◮ Let A and B in k[x1, . . . , xn] reduced w.r.t. T := {T1, . . . ,Tn}
0-dimensional, reduced and all init(Ti) = 1.

◮ The size of input is δT = deg(T1, x1) · · · deg(Tn, xn).

◮ One can compute A B mod 〈T1, . . . ,Tn} in O (̃4nδT)
operations in k (Xin Li, M.M.M., É. Schost 07).

Fast Normal form computation (1/3)

◮ Let A and B in k[x1, . . . , xn] reduced w.r.t. T := {T1, . . . ,Tn}
0-dimensional, reduced and all init(Ti) = 1.

◮ The size of input is δT = deg(T1, x1) · · · deg(Tn, xn).

◮ One can compute A B mod 〈T1, . . . ,Tn} in O (̃4nδT)
operations in k (Xin Li, M.M.M., É. Schost 07).

◮ Three key ideas: using the fast division trick and avoid
mod 〈T1, . . . ,Tn} as much as possible and reduce to
multiplying polynomials over the base field k using FFT.

ModMul(A, B, {T1, . . . ,Tn})
1 D := AB computed in k[x1, . . . , xn]

2 return NormalFormn(D, {T1, . . . ,Tn})

Fast Normal form computation (2/3)

NormalForm1(A : R[x1], {T1 : R[x1]})
1 S1 := Rev(T1)

−1 mod x
deg(A)−deg(T1)+1
1

2 D := Rev(A)S1 mod x
deg(A)−deg(T1)+1
1

3 D := T1 Rev(D)

4 return A − D

NormalForm2(A : R[x1, x2], {T1 : R[x1], T2 : R[x1, x2]})
1 A := map(NormalForm1, Coeffs(A, x2), {T1})
2 S2 := Rev(T2)

−1 mod T1, x
deg(A,x2)−deg(T2,x2)+1
2

3 D := Rev(A)S2 mod x
deg(A,x2)−deg(T2,x2)+1
2

4 D := map(NormalForm1, Coeffs(D, x2), {T1})
5 D := T2 Rev(D)

6 D := map(NormalForm1, Coeffs(D, x2), {T1})
7 return A − D

Fast Normal form computation (3/3)

[left] comparison of classical (plain) and asymptotically
fast strategies.

[right] comparison with MAGMA.

 60 120 180 240 300 0 20 40 60 80 100 120 0

 5

 10

 15

 20

 25

Time Plain
Fast

d1 d2 d3

Time

 60 120 180 240 300 0 20 40 60 80 100 120
 0
 2
 4
 6
 8

 10
 12
 14
 16

Time
Magma

Our code

d1 d2
d3

Time

◮ Asymptotically fast strategy dominates the classical one.

◮ Our fast implementation is better than Magma’s one (the
best known implementation).

Part III: Regular GCDs

◮ Plane curve intersection

◮ The notion of a regular GCD

◮ Subresultants

◮ Regular GCDs via subresultants

◮ Complexity estimates

◮ Experimental results

Plane curve intersection

A historical application of the resultant is to compute the
intersection of two plane curves. Up to details, there are two steps:

◮ eliminate one variable by computing a resultant,

◮ compute a GCD modulo this resultant.

Example (From Modern Computer Algebra, Chapter 6)

. Let P =
(

y2 + 6
)

(x − 1) − y
(

x2 + 1
)

and
Q =

(

x2 + 6
)

(y − 1) − x
(

y2 + 1
)

◮ res(P, Q, y) = 2
(

x2 − x + 4
)

(x − 2)2 (x − 3)2.

◮ gcd(P, Q, x − 2 = 0) = (y − 2)(y − 3).

◮ gcd(P, Q, x − 3 = 0) = (y − 2)(y − 3).

◮ gcd(P, Q, x2 − x + 4 = 0) = (2 x − 1) y − 7 − x.

Regular GCD

◮ Let B be a commutative ring with units. Let P, Q ∈ B[y] be
non-constant with regular leading coefficients.

◮ G ∈ B[y] is a regular GCD of P, Q if we have:

(i) lc(G , y) is a regular element of B,
(ii) G ∈ 〈P,Q〉 in B[y],
(iii) deg(G , y) > 0 ⇒ prem(P,G , y) = prem(Q,G , y) = 0.

Regular GCD

◮ Let B be a commutative ring with units. Let P, Q ∈ B[y] be
non-constant with regular leading coefficients.

◮ G ∈ B[y] is a regular GCD of P, Q if we have:

(i) lc(G , y) is a regular element of B,
(ii) G ∈ 〈P,Q〉 in B[y],
(iii) deg(G , y) > 0 ⇒ prem(P,G , y) = prem(Q,G , y) = 0.

◮ In practice B = k[x1, . . . , xn]/sat(T), with T being a regular
chain.

Regular GCD

◮ Let B be a commutative ring with units. Let P, Q ∈ B[y] be
non-constant with regular leading coefficients.

◮ G ∈ B[y] is a regular GCD of P, Q if we have:

(i) lc(G , y) is a regular element of B,
(ii) G ∈ 〈P,Q〉 in B[y],
(iii) deg(G , y) > 0 ⇒ prem(P,G , y) = prem(Q,G , y) = 0.

◮ In practice B = k[x1, . . . , xn]/sat(T), with T being a regular
chain.

◮ Such a regular GCD may not exist. However one can compute
Ii = sat(Ti) and non-zero polynomials Gi such that

√
I = ∩e

i=0

√

Ii and Gi regular GCD of P, Q mod Ii

Regularity test

◮ Regularity test is a fundamental operation:

Regularize(p, I) 7−→ (I1, . . . , Ie)

such that:

√
I = ∩e

i=0

√

Ii and p ∈ Ii or p regular modulo Ii

◮ Regularity test reduces to regular GCD computation.

Related work

◮ This notion of a regular GCD was proposed in (M. M. 2000)

◮ In previous work (Kalkbrener 1993) and (Rioboo & M. M.
1995), other regular GCDs modulo regular chains were
introduced, but with limitations.

◮ In other work (Wang 2000), (Yang etc. 1995) and (Jean Della
Dora, Claire Dicrescenzo, Dominique Duval 85), related
techniques are used to construct triangular decompositions.

◮ Regular GCDs modulo regular chains generalize GCDs over
towers of field extensions for which specialized algorithms are
available, (van Hoeij and Monagan 2002 & 2004).

◮ Asymptotically fast algorithms (when sat(T) is
zero-dimensional and radical) appear in (Xavier Dahan,
M. M. , Éric Schost, Yuzhen Xie, 2006)

◮ The next results appear in (Xin Li, M. M. , Wei Pan, 2009).

Subresultants (1/2)

◮ Let P, Q ∈ (k[x1])[x2] with deg(P, x2) > deg(Q, x2).

Subresultants (1/2)

◮ Let P, Q ∈ (k[x1])[x2] with deg(P, x2) > deg(Q, x2).

◮ The polynomials computed by SubresultantPRS(P, Q) form a
sequence, denoted by Chain(P, Q), starting at Q and ending
at res(P, Q, x2)

Subresultants (1/2)

◮ Let P, Q ∈ (k[x1])[x2] with deg(P, x2) > deg(Q, x2).

◮ The polynomials computed by SubresultantPRS(P, Q) form a
sequence, denoted by Chain(P, Q), starting at Q and ending
at res(P, Q, x2)

◮ This chain contains deg(Q, x2) + 1 polynomials for each
j ∈ deg(Q, x2) · · · 0, the polynomial of index j is called the
subresultant of index j , denoted by Sj .

Subresultants (1/2)

◮ Let P, Q ∈ (k[x1])[x2] with deg(P, x2) > deg(Q, x2).

◮ The polynomials computed by SubresultantPRS(P, Q) form a
sequence, denoted by Chain(P, Q), starting at Q and ending
at res(P, Q, x2)

◮ This chain contains deg(Q, x2) + 1 polynomials for each
j ∈ deg(Q, x2) · · · 0, the polynomial of index j is called the
subresultant of index j , denoted by Sj .

◮ The coefficients of Sj ∈ k[x1] are minors of the Sylvester
Matrix.

Subresultants (1/2)

◮ Let P, Q ∈ (k[x1])[x2] with deg(P, x2) > deg(Q, x2).

◮ The polynomials computed by SubresultantPRS(P, Q) form a
sequence, denoted by Chain(P, Q), starting at Q and ending
at res(P, Q, x2)

◮ This chain contains deg(Q, x2) + 1 polynomials for each
j ∈ deg(Q, x2) · · · 0, the polynomial of index j is called the
subresultant of index j , denoted by Sj .

◮ The coefficients of Sj ∈ k[x1] are minors of the Sylvester
Matrix.

◮ If Sj 6= 0, then deg(Sj) ≤ j . If deg(Sj) = j then Sj is said
non-defective, otherwise it is said defective.

Subresultants (1/2)

◮ Let P, Q ∈ (k[x1])[x2] with deg(P, x2) > deg(Q, x2).

◮ The polynomials computed by SubresultantPRS(P, Q) form a
sequence, denoted by Chain(P, Q), starting at Q and ending
at res(P, Q, x2)

◮ This chain contains deg(Q, x2) + 1 polynomials for each
j ∈ deg(Q, x2) · · · 0, the polynomial of index j is called the
subresultant of index j , denoted by Sj .

◮ The coefficients of Sj ∈ k[x1] are minors of the Sylvester
Matrix.

◮ If Sj 6= 0, then deg(Sj) ≤ j . If deg(Sj) = j then Sj is said
non-defective, otherwise it is said defective.

◮ (Chee K. Yap 1993) (Lionel Ducos 1997) (M’hammed El
Kahoui, 2003)

Subresultants (2/2)

◮ Example.
The Chain of P = X 4

2 + X1X2 + 1 and Q = 4X 3
2 + X1 in

(Q[X1])[X2] produces the following sequence of polynomials:

S4 = X 4
2 + X1X2 + 1

S3 = 4X 3
2 + X1

S2 = −4(3X1X2 + 4)
S1 = −12X1(3X1X2 + 4)
S0 = −27X 4

1 + 256

Subresultants (2/2)

◮ Example.
The Chain of P = X 4

2 + X1X2 + 1 and Q = 4X 3
2 + X1 in

(Q[X1])[X2] produces the following sequence of polynomials:

S4 = X 4
2 + X1X2 + 1

S3 = 4X 3
2 + X1

S2 = −4(3X1X2 + 4)
S1 = −12X1(3X1X2 + 4)
S0 = −27X 4

1 + 256

◮ Let Φ be a homomorphism from k[x1, x2] to K[x2]. Assume
Φ(a) 6= 0 where a = lc(P, X2). Then we have the
specialization property of subresultants:

Φ(sresi (P, Q)) = Φ(a)n−ksresi (Φ(P), Φ(Q))

where n = deg(Q, x2) and k = deg(Φ(Q), x2).

Regular GCDs (1/6)

◮ Let P, Q ∈ k[x][y] with mvar(P) = mvar(Q) = y .

◮ Define R = res(P, Q, y).

Regular GCDs (1/6)

◮ Let P, Q ∈ k[x][y] with mvar(P) = mvar(Q) = y .

◮ Define R = res(P, Q, y).

◮ Let T ⊂ k[x1, . . . , xn] be a regular chain such that
◮ R ∈ sat(T),
◮ init(P) and init(Q) are regular modulo sat(T).

Regular GCDs (1/6)

◮ Let P, Q ∈ k[x][y] with mvar(P) = mvar(Q) = y .

◮ Define R = res(P, Q, y).

◮ Let T ⊂ k[x1, . . . , xn] be a regular chain such that
◮ R ∈ sat(T),
◮ init(P) and init(Q) are regular modulo sat(T).

◮ A = k[x1, . . . , xn] and B = k[x1, . . . , xn]/sat(T).

◮ For 0 ≤ j ≤ mdeg(Q), we write Sj for the j-th subresultant of
P, Q in A[y].

Regular GCDs (1/6)

◮ Let P, Q ∈ k[x][y] with mvar(P) = mvar(Q) = y .

◮ Define R = res(P, Q, y).

◮ Let T ⊂ k[x1, . . . , xn] be a regular chain such that
◮ R ∈ sat(T),
◮ init(P) and init(Q) are regular modulo sat(T).

◮ A = k[x1, . . . , xn] and B = k[x1, . . . , xn]/sat(T).

◮ For 0 ≤ j ≤ mdeg(Q), we write Sj for the j-th subresultant of
P, Q in A[y].

◮ Recall that Sd regular GCD of P, Q modulo sat(T) means

(i) lc(Sd , y) is a regular element of B,
(ii) Sd ∈ 〈P,Q〉 in B[y],
(iii) deg(Sd , y) > 0 ⇒ prem(P,Sd , y) = prem(Q,Sd , y) = 0.

Regular GCDs (2/6)

◮ Let 1 ≤ d ≤ q such that Sj ∈ sat(T) for all 0 ≤ j < d .

Lemma
If lc(Sd , y) is regular modulo sat(T), then Sd is non-defective over
k[x].

Regular GCDs (2/6)

◮ Let 1 ≤ d ≤ q such that Sj ∈ sat(T) for all 0 ≤ j < d .

Lemma
If lc(Sd , y) is regular modulo sat(T), then Sd is non-defective over
k[x].

◮ Consequently, Sd is the last nonzero subresultant over B, and
it is also non-defective over B.

Regular GCDs (2/6)

◮ Let 1 ≤ d ≤ q such that Sj ∈ sat(T) for all 0 ≤ j < d .

Lemma
If lc(Sd , y) is regular modulo sat(T), then Sd is non-defective over
k[x].

◮ Consequently, Sd is the last nonzero subresultant over B, and
it is also non-defective over B.

◮ If lc(Sd , xn) is not regular modulo sat(T) then Sd may be
defective over B.

Regular GCDs (3/6)

◮ Let 1 ≤ d ≤ q such that Sj ∈ sat(T) for all 0 ≤ j < d .

Lemma
If lc(Sd , y) is in sat(T), then Sd is nilpotent modulo sat(T).

Regular GCDs (3/6)

◮ Let 1 ≤ d ≤ q such that Sj ∈ sat(T) for all 0 ≤ j < d .

Lemma
If lc(Sd , y) is in sat(T), then Sd is nilpotent modulo sat(T).

◮ Up to sufficient splitting of sat(T), Sd will vanish on all the
components of sat(T).

Regular GCDs (3/6)

◮ Let 1 ≤ d ≤ q such that Sj ∈ sat(T) for all 0 ≤ j < d .

Lemma
If lc(Sd , y) is in sat(T), then Sd is nilpotent modulo sat(T).

◮ Up to sufficient splitting of sat(T), Sd will vanish on all the
components of sat(T).

◮ The above two lemmas completely characterize the last
non-zero subresultant of P and Q over B.

Regular GCDs (4/6)

Example

◮ Consider P and Q in Q[x1, x2][y]:

P = x2
2y2 − x4

1 and Q = x2
1y2 − x4

2 .

◮ We have:

S1 = x6
1 − x6

2 and R = (x6
1 − x6

2)2.

◮ Let T = {R}. Then we observe:
◮ The last subresultant of P,Q modulo sat(T) is S1, which is a

defective one.
◮ S1 is nilpotent modulo sat(T).

◮ P and Q do not admit a regular GCD over Q[x1, x2]/sat(T).

Regular GCDs (5/6)

◮ Let 1 ≤ d ≤ q such that Sj ∈ sat(T) for all 0 ≤ j < d .

Proposition
Assume

◮ lc(Sd , y) is regular modulo sat(T),
◮ sat(T) is radical.

Then, Sd is a regular GCD of P, Q modulo sat(T).

Regular GCDs (5/6)

◮ Let 1 ≤ d ≤ q such that Sj ∈ sat(T) for all 0 ≤ j < d .

Proposition
Assume

◮ lc(Sd , y) is regular modulo sat(T),
◮ sat(T) is radical.

Then, Sd is a regular GCD of P, Q modulo sat(T).

Recall that Sd regular GCD of P, Q modulo sat(T) means

(i) lc(Sd , y) is a regular element of B,
(ii) Sd ∈ 〈P,Q〉 in B[y],
(iii) deg(Sd , y) > 0 ⇒ prem(P,Sd , y) = prem(Q,Sd , y) = 0.

Regular GCDs (5/6)

◮ Let 1 ≤ d ≤ q such that Sj ∈ sat(T) for all 0 ≤ j < d .

Proposition
Assume

◮ lc(Sd , y) is regular modulo sat(T),
◮ sat(T) is radical.

Then, Sd is a regular GCD of P, Q modulo sat(T).

Proposition
Assume

◮ lc(Sd , y) is regular modulo sat(T),
◮ for all d < k ≤ q, coeff(Sk , y

k) is either 0 or regular modulo
sat(T).

Then, Sd is a regular GCD of P, Q modulo sat(T).

Regular GCDs (6/6)

◮ Assume that the subresultants Sj for 1 ≤ j < q are computed.

◮ Then one can compute a regular GCD of P, Q modulo sat(T)
by performing a bottom-up search.

B

C

A

D

E

O

Implementation and Complexity Estimates (1/2)

We assume that the the base field k supports FFT.

◮ Recall P, Q ∈ k[x1, . . . , xn][y]. Let xn+1 := y .

Implementation and Complexity Estimates (1/2)

We assume that the the base field k supports FFT.

◮ Recall P, Q ∈ k[x1, . . . , xn][y]. Let xn+1 := y .

◮ We regard P, Q as univariate polynomials in xn+1.

Implementation and Complexity Estimates (1/2)

We assume that the the base field k supports FFT.

◮ Recall P, Q ∈ k[x1, . . . , xn][y]. Let xn+1 := y .

◮ We regard P, Q as univariate polynomials in xn+1.

◮ We evaluate their coefficients at sufficiently many points s.t.
Chain(P, Q) can be computed by evaluation / interpolation
(thus via Chinese Remaindering Theorem).

Implementation and Complexity Estimates (1/2)

We assume that the the base field k supports FFT.

◮ Recall P, Q ∈ k[x1, . . . , xn][y]. Let xn+1 := y .

◮ We regard P, Q as univariate polynomials in xn+1.

◮ We evaluate their coefficients at sufficiently many points s.t.
Chain(P, Q) can be computed by evaluation / interpolation
(thus via Chinese Remaindering Theorem).

◮ To do so, we need bounds. We consider the Sylvester Matrix.
Define di := max(deg(P, xi), deg(Q, xi)). We have

deg(R, xi) ≤ bi := 2didn+1.

Implementation and Complexity Estimates (1/2)

We assume that the the base field k supports FFT.

◮ Recall P, Q ∈ k[x1, . . . , xn][y]. Let xn+1 := y .

◮ We regard P, Q as univariate polynomials in xn+1.

◮ We evaluate their coefficients at sufficiently many points s.t.
Chain(P, Q) can be computed by evaluation / interpolation
(thus via Chinese Remaindering Theorem).

◮ To do so, we need bounds. We consider the Sylvester Matrix.
Define di := max(deg(P, xi), deg(Q, xi)). We have

deg(R, xi) ≤ bi := 2didn+1.

◮ B := (b1 + 1) · · · (bn + 1) is the number of points at which
we need to evaluate P, Q.

Implementation and Complexity Estimates (2/2)

◮ We choose the B points not cancelling init(P) and init(Q).

Implementation and Complexity Estimates (2/2)

◮ We choose the B points not cancelling init(P) and init(Q).

◮ We evaluate P, Q at these B points via n-dimensional FFT in
time O(dn+1B log(B)).

Implementation and Complexity Estimates (2/2)

◮ We choose the B points not cancelling init(P) and init(Q).

◮ We evaluate P, Q at these B points via n-dimensional FFT in
time O(dn+1B log(B)).

◮ At each of the B points we compute the subresultants of P
and Q in time O(d2

n+1B).

Implementation and Complexity Estimates (2/2)

◮ We choose the B points not cancelling init(P) and init(Q).

◮ We evaluate P, Q at these B points via n-dimensional FFT in
time O(dn+1B log(B)).

◮ At each of the B points we compute the subresultants of P
and Q in time O(d2

n+1B).

◮ We interpolate res(P, Q, y) = S0 in time O(B log(B)) via
n-dimensional FFT .

Implementation and Complexity Estimates (2/2)

◮ We choose the B points not cancelling init(P) and init(Q).

◮ We evaluate P, Q at these B points via n-dimensional FFT in
time O(dn+1B log(B)).

◮ At each of the B points we compute the subresultants of P
and Q in time O(d2

n+1B).

◮ We interpolate res(P, Q, y) = S0 in time O(B log(B)) via
n-dimensional FFT .

◮ If sat(T) is radical, a regular GCD is interpolated within
O(dn+1B log(B)); otherwise O(d2

n+1B log(B)).

Implementation and Complexity Estimates (2/2)

◮ We choose the B points not cancelling init(P) and init(Q).

◮ We evaluate P, Q at these B points via n-dimensional FFT in
time O(dn+1B log(B)).

◮ At each of the B points we compute the subresultants of P
and Q in time O(d2

n+1B).

◮ We interpolate res(P, Q, y) = S0 in time O(B log(B)) via
n-dimensional FFT .

◮ If sat(T) is radical, a regular GCD is interpolated within
O(dn+1B log(B)); otherwise O(d2

n+1B log(B)).

◮ Regularity tests (and normal forms) also fit these bounds.

Implementation and Complexity Estimates (2/2)

◮ We choose the B points not cancelling init(P) and init(Q).

◮ We evaluate P, Q at these B points via n-dimensional FFT in
time O(dn+1B log(B)).

◮ At each of the B points we compute the subresultants of P
and Q in time O(d2

n+1B).

◮ We interpolate res(P, Q, y) = S0 in time O(B log(B)) via
n-dimensional FFT .

◮ If sat(T) is radical, a regular GCD is interpolated within
O(dn+1B log(B)); otherwise O(d2

n+1B log(B)).

◮ Regularity tests (and normal forms) also fit these bounds.

◮ If a regular GCD is expected to have degree 1 in y all
computations fit in O (̃dn+1B).

Generic Bivariate Systems

◮ “our code” means BivariateModularTriangularize in Maple

13.

◮ Random generic input systems, thus equiprojectable.

◮ For the largest examples (having about 5700 solutions), the ratio is
about 460/7 in our favor.

 6 12 18 24 30 36 0 5 10 15 20 25 30 35 40
 0

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

Time
Magma

our code

d1
d2

Time

Non-generic Bivariate Systems

◮ Examples designed to enforce many “splittings” (many
equiprojectable components).

◮ For the largest examples, the ratio is 5260/80, in our favor.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60 70 80

tim
e

d

Magma
our code

Figure: Non-generic bivariate systems: Magma vs. us.

Generic Trivariate Systems

◮ Maple means the experimental and fast version of
Triangularize to be integrated in Maple 14.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14 16 18 20

T
im

e

Degree

Magma
Maple

Figure: Generic dense 3-variable.

Part IV: Regularity test

◮ Testing regularity

◮ Experimental results

Regularity Test

For T 0-dim, auto-reduced and with hT = 1 this procedure returns
T 1, . . . ,T e such that Q is either zero or invertible modulo T i .

RegularizeDim0(Q, T) ==
(0) if Q ∈ k then return [T]
(1) Results := []; v := mvar(Q)
(2) R := res(Q, Tv , v)
(3) for D ∈ RegularizeDim0(R, T<v) do
(4) s := NormalForm(R, D)
(5) if s 6= 0 then
(7) Results := {{D ∪ {Tv} ∪ T>v}} ∪ Results
(8) else for (g , E) ∈ RegularGcd(Q, Tv , D) do
(9) g := NormalForm(g , E)
(11) Results := {{E ∪ {g} ∪ T>v}} ∪ Results
(12) c := NormalForm(quo(Tv , g), E)
(13) if deg(c , v) > 0 then
(14) Results := RegularizeDim0(q, E ∪ c ∪ T>v) ∪ Results
(15) return Results

Regularity Test (= Saturation)

d1 d2 d3 Regularize Fast Regularize Magma
2 2 3 0.032 0.004 0.010
3 4 6 0.160 0.016 0.020
4 6 9 0.404 0.024 0.060
5 8 12 >100 0.129 0.330
6 10 15 >100 0.272 1.300
7 12 18 >100 0.704 5.100
8 14 21 >100 1.276 14.530
9 16 24 >100 5.836 40.770
10 18 27 >100 9.332 107.280
11 20 30 >100 15.904 229.950
12 22 33 >100 33.146 493.490

Table: Generic dense 3-variable.

◮ In the non-generic case, both gaps are even larger.

◮ “Fast Regularize” means RegularizeDim0 in Maple 13.

Conclusions

◮ Modular methods help reducing expression swell and algebraic
complexity.

◮ Modular methods create opportunities for fast arithmetic and
parallelism.

◮ Fast arithmetic reduces algebraic complexity further.

◮ Performance improvements can come also from other factors:
avoiding re-computations, controlling memory traffic

◮ Controlling expression swell may require to understand the
structure of the computed objects.

Xie Xie! Thank You!

Positive Dimensional Regular Chains

◮ Let u = u1, . . . , ud be parameters, y = y1, . . . , ym be
unknowns, ΠU be the projection from Km+d to Kd .

Positive Dimensional Regular Chains

◮ Let u = u1, . . . , ud be parameters, y = y1, . . . , ym be
unknowns, ΠU be the projection from Km+d to Kd .

◮ A regular chain T ⊂ k[u, y] specializes well at u ∈ Kd if T (u)
is a regular chain in K[y] and rank(T (u)) = rank(T>Ud

).

Positive Dimensional Regular Chains

◮ Let u = u1, . . . , ud be parameters, y = y1, . . . , ym be
unknowns, ΠU be the projection from Km+d to Kd .

◮ A regular chain T ⊂ k[u, y] specializes well at u ∈ Kd if T (u)
is a regular chain in K[y] and rank(T (u)) = rank(T>Ud

).

◮ Let T ⊂ k[u, y] be a reg. chain and u ∈ ΠU(W(T ∩ k[U])).
T specializes well at u ⇐⇒ res(hT>Ud

, T>Ud
) 6= 0 at u = u

Positive Dimensional Regular Chains

◮ Let u = u1, . . . , ud be parameters, y = y1, . . . , ym be
unknowns, ΠU be the projection from Km+d to Kd .

◮ A regular chain T ⊂ k[u, y] specializes well at u ∈ Kd if T (u)
is a regular chain in K[y] and rank(T (u)) = rank(T>Ud

).

◮ Let T ⊂ k[u, y] be a reg. chain and u ∈ ΠU(W(T ∩ k[U])).
T specializes well at u ⇐⇒ res(hT>Ud

, T>Ud
) 6= 0 at u = u

◮ Replacing regular chain by squarefree reg. ch. in char. 0 and
hT>Ud

by SepT>Ud
one obtains the border polynomial of T .

Positive Dimensional Regular Chains

◮ Let u = u1, . . . , ud be parameters, y = y1, . . . , ym be
unknowns, ΠU be the projection from Km+d to Kd .

◮ A regular chain T ⊂ k[u, y] specializes well at u ∈ Kd if T (u)
is a regular chain in K[y] and rank(T (u)) = rank(T>Ud

).

◮ Let T ⊂ k[u, y] be a reg. chain and u ∈ ΠU(W(T ∩ k[U])).
T specializes well at u ⇐⇒ res(hT>Ud

, T>Ud
) 6= 0 at u = u

◮ Replacing regular chain by squarefree reg. ch. in char. 0 and
hT>Ud

by SepT>Ud
one obtains the border polynomial of T .

Related Work
On a projection theorem of quasi-varieties in elimination theory
(Wen-Tsün Wu 90). (Xiao-Shan Gao, Shang-Ching Chou 92)
(Dongming Wang 00 & 01) (Lu Yang, Xiaorong Hou, Bican Xia
01) (Xiao-Shan Gao, Ding-Kang Wang 03) (Changbo Chen, Oleg
Golubitsky, François Lemaire, Marc Moreno Maza, Wei Pan 07)

Equiprojectable Decomposition (1/2)

C

∣

∣

∣

∣

C2 = y2 + 6yx2 + 2y + x
C1 = x3 + 6x2 + 5x + 2

, D

∣

∣

∣

∣

D2 = y + 6
D1 = x + 6

↓ Split C : GCD ↓

E

∣

∣

∣

∣

C2
′ = y2 + x

C1
′ = x2 + 5

, F

∣

∣

∣

∣

C ′′

2 = y2 + y + 1
C ′′

1 = x + 6
, D

∣

∣

∣

∣

D2 = y + 6
D1 = x + 6

↓ Merge F and D : CRT ↓

E

∣

∣

∣

∣

C ′

2 = y2 + x
C ′

1 = x2 + 5
, G

∣

∣

∣

∣

G2 = y3 + 6
G1 = x + 6

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

C
D

Split→

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������������������������������

E

D

F

Merge→
��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������������������������������

E

G

Equiprojectable Decomposition (2/2)

F ⊂ Q[x1, . . . , xn]
p prime, p > A(F)

−−−−−−−−−−−−−→ Eq.D.Q(F)

Triang.(F mod p) Lifting

Triang.(F mod p)

y

x

Lifting

Triang.(F mod p) Lifting
{T 1, . . . , T s}

⊂ Fp[x1, . . . , xn]
Split + Merge−−−−−−−−−−−−−→ Eq.D.Fp(F)

◮ A(F) := 2n2d2n+1(3h + 7 log(n + 1) + 5n log d + 10) where h
and d upper bound coeff. sizes and total degrees for f ∈ F .
Assumes F square and generates a 0-dimensional radical ideal.

Equiprojectable Decomposition (2/2)

F ⊂ Q[x1, . . . , xn]
p prime, p > A(F)

−−−−−−−−−−−−−→ Eq.D.Q(F)

Triang.(F mod p) Lifting

Triang.(F mod p)

y

x

Lifting

Triang.(F mod p) Lifting
{T 1, . . . , T s}

⊂ Fp[x1, . . . , xn]
Split + Merge−−−−−−−−−−−−−→ Eq.D.Fp(F)

◮ A(F) := 2n2d2n+1(3h + 7 log(n + 1) + 5n log d + 10) where h
and d upper bound coeff. sizes and total degrees for f ∈ F .
Assumes F square and generates a 0-dimensional radical ideal.

◮ If p 6 |A(F), the equiprojectable decomposition specializes well
mod p.

Equiprojectable Decomposition (2/2)

F ⊂ Q[x1, . . . , xn]
p prime, p > A(F)

−−−−−−−−−−−−−→ Eq.D.Q(F)

Triang.(F mod p) Lifting

Triang.(F mod p)

y

x

Lifting

Triang.(F mod p) Lifting
{T 1, . . . , T s}

⊂ Fp[x1, . . . , xn]
Split + Merge−−−−−−−−−−−−−→ Eq.D.Fp(F)

◮ A(F) := 2n2d2n+1(3h + 7 log(n + 1) + 5n log d + 10) where h
and d upper bound coeff. sizes and total degrees for f ∈ F .
Assumes F square and generates a 0-dimensional radical ideal.

◮ If p 6 |A(F), the equiprojectable decomposition specializes well
mod p.

◮ In practice we choose p much smaller with a probability of
success, i.e. > 99% with p ≈ ln(A(F)) (Xavier Dahan, M. M.
M., Éric Schost, Wenyuan Wu, Yuzhen Xie 05).

Incremental Solving

◮ Let F ⊂ k[x], f ∈ k[x], T , Tm . . . ,T e ⊂ k[x] reg. chains.
Assume we have solved F as V (F) = W (T i) ∪ · · · ∪ W (T e).

Incremental Solving

◮ Let F ⊂ k[x], f ∈ k[x], T , Tm . . . ,T e ⊂ k[x] reg. chains.
Assume we have solved F as V (F) = W (T i) ∪ · · · ∪ W (T e).

◮ Assume that we have an operation
(f , T) 7−→ Intersect(f , T) = (C1, . . . ,Cd) such that

V (f) ∩ W (T) ⊆ ∪iW (Ci) ⊆ V (f) ∩ W (T).

Then solving F ∪ f reduces to Intersect(f , T i) for all i .

Incremental Solving

◮ Let F ⊂ k[x], f ∈ k[x], T , Tm . . . ,T e ⊂ k[x] reg. chains.
Assume we have solved F as V (F) = W (T i) ∪ · · · ∪ W (T e).

◮ Assume that we have an operation
(f , T) 7−→ Intersect(f , T) = (C1, . . . ,Cd) such that

V (f) ∩ W (T) ⊆ ∪iW (Ci) ⊆ V (f) ∩ W (T).

Then solving F ∪ f reduces to Intersect(f , T i) for all i .

=⇒ the core routine operates on well behaved objects.

Incremental Solving

◮ Let F ⊂ k[x], f ∈ k[x], T , Tm . . . ,T e ⊂ k[x] reg. chains.
Assume we have solved F as V (F) = W (T i) ∪ · · · ∪ W (T e).

◮ Assume that we have an operation
(f , T) 7−→ Intersect(f , T) = (C1, . . . ,Cd) such that

V (f) ∩ W (T) ⊆ ∪iW (Ci) ⊆ V (f) ∩ W (T).

Then solving F ∪ f reduces to Intersect(f , T i) for all i .

=⇒ the core routine operates on well behaved objects.

=⇒ the decomposition can be reduced to regular GCD
computation, allowing modular methods and fast arithmetic.

Incremental Solving

◮ Let F ⊂ k[x], f ∈ k[x], T , Tm . . . ,T e ⊂ k[x] reg. chains.
Assume we have solved F as V (F) = W (T i) ∪ · · · ∪ W (T e).

◮ Assume that we have an operation
(f , T) 7−→ Intersect(f , T) = (C1, . . . ,Cd) such that

V (f) ∩ W (T) ⊆ ∪iW (Ci) ⊆ V (f) ∩ W (T).

Then solving F ∪ f reduces to Intersect(f , T i) for all i .

=⇒ the core routine operates on well behaved objects.

=⇒ the decomposition can be reduced to regular GCD
computation, allowing modular methods and fast arithmetic.

Related Work
(D. Lazard 91) proposes the principle. (M. M. M. 00) introduces
regular GCDs and gives a complete incremental algorithm which, in
addition, generates components by decreasing order of dimension.

The notion of a Regular GCD

◮ Let P, Q, G ∈ k[x1 < · · · < xn][y] and T ⊂ k[x1 < · · · < xn]
reg. chain. G is a regular GCD of P, Q modulo sat(T) if

(i) lc(G , y) is a regular modulo sat(T),
(ii) G ∈ 〈P,Q〉 modulo sat(T),
(iii) degy (G) > 0 ⇒ premy (P,G),premy (Q,G) ∈ sat(T).

The notion of a Regular GCD

◮ Let P, Q, G ∈ k[x1 < · · · < xn][y] and T ⊂ k[x1 < · · · < xn]
reg. chain. G is a regular GCD of P, Q modulo sat(T) if

(i) lc(G , y) is a regular modulo sat(T),
(ii) G ∈ 〈P,Q〉 modulo sat(T),
(iii) degy (G) > 0 ⇒ premy (P,G),premy (Q,G) ∈ sat(T).

◮ If both T ∪ P and T ∪Q are regular chains and if G is a GCD
of P, Q modulo sat(T) with degy (G) > 0 then we have

W (T ∪ P) ∩ V (Q) ⊆ W (T ∪ G) ∪
W (T ∪ P) ∩ V (Q, hG) ⊆ W (T ∪ P) ∩ V (Q).

The notion of a Regular GCD

◮ Let P, Q, G ∈ k[x1 < · · · < xn][y] and T ⊂ k[x1 < · · · < xn]
reg. chain. G is a regular GCD of P, Q modulo sat(T) if

(i) lc(G , y) is a regular modulo sat(T),
(ii) G ∈ 〈P,Q〉 modulo sat(T),
(iii) degy (G) > 0 ⇒ premy (P,G),premy (Q,G) ∈ sat(T).

◮ If both T ∪ P and T ∪Q are regular chains and if G is a GCD
of P, Q modulo sat(T) with degy (G) > 0 then we have

W (T ∪ P) ∩ V (Q) ⊆ W (T ∪ G) ∪
W (T ∪ P) ∩ V (Q, hG) ⊆ W (T ∪ P) ∩ V (Q).

◮ One can compute T 1, . . . ,T e and G1, . . . ,Ge such that Gi is
a reg. GCD of P, Q mod sat(Ti) and
√

sat(T) = ∩e
i=0

√

sat(T i).

Regularity test

◮ Regularity test is a fundamental operation:

Regularize(p, I) 7−→ (I1, . . . , Ie)

such that:

√
I = ∩e

i=0

√

Ii and p ∈ Ii or p regular modulo Ii

◮ Regularity test reduces to regular GCD computation.

Related work

◮ This notion of a regular GCD was proposed in (M. M. 2000)

◮ In previous work (Kalkbrener 1993) and (Rioboo & M. M.
1995), other regular GCDs modulo regular chains were
introduced, but with limitations.

◮ In other work (Wang 2000), (Yang etc. 1995) and (Jean Della
Dora, Claire Dicrescenzo, Dominique Duval 85), related
techniques are used to construct triangular decompositions.

◮ Regular GCDs modulo regular chains generalize GCDs over
towers of field extentions for which specialized algorithms are
available, (van Hoeij and Monagan 2002 & 2004).

◮ Asymptotically fast algorithms (when sat(T) is
zero-dimensional and radical) appear in (Xavier Dahan,
M. M. , Éric Schost, Yuzhen Xie, 2006)

◮ The next results appear in (Xin Li, M. M. , Wei Pan, 2009).

Regular GCDs: Bottom-up or Top-down?

◮ Let P, Q ∈ k[x1 < · · · < xn][y] and T ⊂ k[x1 < · · · < xn] reg.
chain. How to compute a regular GCD of P, Q mod sat(T)?

◮ (M. Kalkbrener 91) uses Pseudo-Remainder Sequences.
Inefficient!

Regular GCDs: Bottom-up or Top-down?

◮ Let P, Q ∈ k[x1 < · · · < xn][y] and T ⊂ k[x1 < · · · < xn] reg.
chain. How to compute a regular GCD of P, Q mod sat(T)?

◮ (M. Kalkbrener 91) uses Pseudo-Remainder Sequences.
Inefficient!

◮ (Jean Della Dora, Claire Dicrescenzo, Dominique Duval 85)
assume sat(T) radical and compute (naively) the subresultant
chain of P, Q in k[x1 < · · · < xn][y] . Limited and practically
inefficient!

Regular GCDs: Bottom-up or Top-down?

◮ Let P, Q ∈ k[x1 < · · · < xn][y] and T ⊂ k[x1 < · · · < xn] reg.
chain. How to compute a regular GCD of P, Q mod sat(T)?

◮ (M. Kalkbrener 91) uses Pseudo-Remainder Sequences.
Inefficient!

◮ (Jean Della Dora, Claire Dicrescenzo, Dominique Duval 85)
assume sat(T) radical and compute (naively) the subresultant
chain of P, Q in k[x1 < · · · < xn][y] . Limited and practically
inefficient!

◮ (M. M. M. and R. Rioboo 95) assume sat(T) radical +
0-dimensional and use the subresultant chain of P, Q directly
in k[x1 < · · · < xn][y] mod sat(T). Better but removing the
assumptions removes the efficiency.

Subresultants (3/3

◮ Let P, Q ∈ B[y] with p = deg(P) ≥ deg(Q) = q > 0.

◮ For 0 ≤ d < q let Sd = Sd(P, Q) be the d-th subresultant of
P and Q. Let sd = coeff(Sd , xd). If sd = 0 we say Sd is
defective, otherwise we say Sd is non-defective.

◮ Let d = q − 1, . . . , 1. Assume Sd , Sd−1 nonzero, with resp.
degrees d and e. Assume sd regular in B. Then we have

lc(Sd−1)
d−e−1Sd−1 = sd

d−e−1Se .

◮ Moreover, there exists Cd ∈ B[X] such that we have:

(−1)d−1lc(Sd−1)seSd + CdSd−1 = sd
2Se−1.

In addition Sd−2 = Sd−3 = · · · = Se+1 = 0 also holds.

◮ (Yap 1993) (Ducos 1997) (El Kahoui, 2003)

The RegularChains library in Maple

◮ 80,000 lines of Maple code, 36,000 lines of C code, 121
Commands, 6 modules ChainTools, MatrixTools,
ConstructibleSetTools. ParametricSystemTools,
SemiAlgebraicSetTools , FastArithmeticTools .

◮ Main new commnands in Maple 13: IsPrimitive,
ComplexRootClassification, RealRootClassification,
RealRootIsolate RealRootCounting, BorderPolynomial,
+ those of FastArithmeticTools (see demo).

◮ Current contributors: Changbo Chen, Francçois Lemaire,
Liyun Li, Xin Li, M.M.M., Wei Pan, Bican Xia, Rong Xiao,
Yuzhen Xie.

The Modpn library

Maple−Dag

Maple−

Recursive−

Dense

C−Dag

C−Cube

C level

Maple Level1

6

7

3

2

4

5
C−2−Vector

8
9

- C-Dag for straight-line program.

- C-Cube for FFT-based computations.

- C-2-Vector for compact dense representation.

- Maple-Dag for calling RegularChains library.

- Maple-Recursive-Dense for calling Recden library.

Generic Bivariate Systems

◮ “our code” means BivariateModularTriangularize in
Maple 13.

◮ Random generic input systems, thus equiprojectable.

◮ For the largest examples (having about 5700 solutions), the ratio is
about 460/7 in our favor.

 6 12 18 24 30 36 0 5 10 15 20 25 30 35 40
 0

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

Time
Magma

our code

d1
d2

Time

