
Modular algorithms for computing triangular
decompositions of polynomial systems

Marc Moreno Maza

Ontario Research Center for Computer Algebra
Departments of Computer Science and Mathematics

University of Western Ontario, Canada

RTCA 2023, Institut Henri Poincaré, France, October 16

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 1 / 44



Acknowledgements

∎ Many thanks to the RTCA organizers for this event and for bringing
all of us in this historical site.

∎ This talk is based on research projects in which many of my former
and current graduate students have played an essential role. By
alphabetic order: Alexander Brandt (Dalhousie University), Changbo
Chen (CIGIT Chinese Academy of Sciences),
Juan-Pablo Gonzàlez-Trochez (University of Western Ontario),
François Lemaire (Université de Lille), Robert Moir (Earth64), Wei
Pan (NVIDIA), Yuzhen Xie (Scotiabank), Haoze Yuan (University of
Western Ontario).

∎ This talk is also based on collaborations with Maplesoft and the
following colleagues: François Boulier (Université de Lille), Xavier
Dahan (Tohoku University), Éric Schost (University of Waterloo),
Wenyuan Wu (CIGIT Chinese Academy of Sciences).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 2 / 44

https://www.csd.uwo.ca/~abrandt5/
http://www.orcca.on.ca/~cchen/
http://www.orcca.on.ca/~cchen/
https://phenomenologica.com/
https://www.linkedin.com/in/wei-pan-96417726/
https://www.linkedin.com/in/wei-pan-96417726/
https://www.linkedin.com/in/yuzhen-xie-509b7b41/?originalSubdomain=ca


Tentative Plan

∎ Part 1: Triangular decompositions in polynomial system solving

∎ Part 2: Modular methods in polynomial system solving

∎ Part 3: A modular method for triangular decompositions

Part 3 is based on
∎ our JSC 2012 paper with Changbo Chen ,and
∎ our recent CASC 2023 paper with Alexander Brandt,

Juan-Pablo Gonzàlez-Trochez and Haoze Yuan.
A proof-of-concept implementation was done with the RegularChains
library and an efficient implementation is under development in the BPAS
library. See our CASC 2023 paper.
These slides are available here.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 3 / 44

https://dblp.org/pid/m/MarcMorenoMaza.html
http://www.csd.uwo.ca/~moreno//Publications/Decomposition_and_QE_algorithms.pdf


Tentative Plan

∎ Part 1: Triangular decompositions in polynomial system solving

∎ Part 2: Modular methods in polynomial system solving

∎ Part 3: A modular method for triangular decompositions
Part 3 is based on
∎ our JSC 2012 paper with Changbo Chen ,and
∎ our recent CASC 2023 paper with Alexander Brandt,

Juan-Pablo Gonzàlez-Trochez and Haoze Yuan.

A proof-of-concept implementation was done with the RegularChains
library and an efficient implementation is under development in the BPAS
library. See our CASC 2023 paper.
These slides are available here.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 3 / 44

https://dblp.org/pid/m/MarcMorenoMaza.html
http://www.csd.uwo.ca/~moreno//Publications/Decomposition_and_QE_algorithms.pdf


Tentative Plan

∎ Part 1: Triangular decompositions in polynomial system solving

∎ Part 2: Modular methods in polynomial system solving

∎ Part 3: A modular method for triangular decompositions
Part 3 is based on
∎ our JSC 2012 paper with Changbo Chen ,and
∎ our recent CASC 2023 paper with Alexander Brandt,

Juan-Pablo Gonzàlez-Trochez and Haoze Yuan.
A proof-of-concept implementation was done with the RegularChains
library and an efficient implementation is under development in the BPAS
library. See our CASC 2023 paper.

These slides are available here.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 3 / 44

https://dblp.org/pid/m/MarcMorenoMaza.html
http://www.csd.uwo.ca/~moreno//Publications/Decomposition_and_QE_algorithms.pdf


Tentative Plan

∎ Part 1: Triangular decompositions in polynomial system solving

∎ Part 2: Modular methods in polynomial system solving

∎ Part 3: A modular method for triangular decompositions
Part 3 is based on
∎ our JSC 2012 paper with Changbo Chen ,and
∎ our recent CASC 2023 paper with Alexander Brandt,

Juan-Pablo Gonzàlez-Trochez and Haoze Yuan.
A proof-of-concept implementation was done with the RegularChains
library and an efficient implementation is under development in the BPAS
library. See our CASC 2023 paper.
These slides are available here.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 3 / 44

https://dblp.org/pid/m/MarcMorenoMaza.html
http://www.csd.uwo.ca/~moreno//Publications/Decomposition_and_QE_algorithms.pdf


What can the RegularChains library do for you?
• Solving over C: that is, solving any system of multivariate

polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0) and inequations ℎ ≠ 0:

ë computing all its solutions symbolically, or only the generic ones
ë providing tools to extract information (dimension, degree, etc.)

about those solutions and,
ë performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate
polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0, inequations ℎ ≠ 0 and
inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

ë doing the same as above, and
ë finding sample solutions, and
ë performing cylindrical algebraic decomposition (CAD) and

quantifier elimination (QE).

• Solving parametrically over C and over R: that is:

ë finding conditions on the parameters for the solutions to have a
prescribed property (e.g. a unique real solution), or

ë computing all or part of the solutions as functions of the parameters.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 4 / 44



What can the RegularChains library do for you?
• Solving over C: that is, solving any system of multivariate

polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0) and inequations ℎ ≠ 0:
ë computing all its solutions symbolically, or only the generic ones

ë providing tools to extract information (dimension, degree, etc.)
about those solutions and,

ë performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate
polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0, inequations ℎ ≠ 0 and
inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

ë doing the same as above, and
ë finding sample solutions, and
ë performing cylindrical algebraic decomposition (CAD) and

quantifier elimination (QE).

• Solving parametrically over C and over R: that is:

ë finding conditions on the parameters for the solutions to have a
prescribed property (e.g. a unique real solution), or

ë computing all or part of the solutions as functions of the parameters.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 4 / 44



What can the RegularChains library do for you?
• Solving over C: that is, solving any system of multivariate

polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0) and inequations ℎ ≠ 0:
ë computing all its solutions symbolically, or only the generic ones
ë providing tools to extract information (dimension, degree, etc.)

about those solutions and,

ë performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate
polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0, inequations ℎ ≠ 0 and
inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

ë doing the same as above, and
ë finding sample solutions, and
ë performing cylindrical algebraic decomposition (CAD) and

quantifier elimination (QE).

• Solving parametrically over C and over R: that is:

ë finding conditions on the parameters for the solutions to have a
prescribed property (e.g. a unique real solution), or

ë computing all or part of the solutions as functions of the parameters.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 4 / 44



What can the RegularChains library do for you?
• Solving over C: that is, solving any system of multivariate

polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0) and inequations ℎ ≠ 0:
ë computing all its solutions symbolically, or only the generic ones
ë providing tools to extract information (dimension, degree, etc.)

about those solutions and,
ë performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate
polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0, inequations ℎ ≠ 0 and
inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

ë doing the same as above, and
ë finding sample solutions, and
ë performing cylindrical algebraic decomposition (CAD) and

quantifier elimination (QE).

• Solving parametrically over C and over R: that is:

ë finding conditions on the parameters for the solutions to have a
prescribed property (e.g. a unique real solution), or

ë computing all or part of the solutions as functions of the parameters.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 4 / 44



What can the RegularChains library do for you?
• Solving over C: that is, solving any system of multivariate

polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0) and inequations ℎ ≠ 0:
ë computing all its solutions symbolically, or only the generic ones
ë providing tools to extract information (dimension, degree, etc.)

about those solutions and,
ë performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate
polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0, inequations ℎ ≠ 0 and
inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

ë doing the same as above, and
ë finding sample solutions, and
ë performing cylindrical algebraic decomposition (CAD) and

quantifier elimination (QE).

• Solving parametrically over C and over R: that is:

ë finding conditions on the parameters for the solutions to have a
prescribed property (e.g. a unique real solution), or

ë computing all or part of the solutions as functions of the parameters.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 4 / 44



What can the RegularChains library do for you?
• Solving over C: that is, solving any system of multivariate

polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0) and inequations ℎ ≠ 0:
ë computing all its solutions symbolically, or only the generic ones
ë providing tools to extract information (dimension, degree, etc.)

about those solutions and,
ë performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate
polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0, inequations ℎ ≠ 0 and
inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

ë doing the same as above, and

ë finding sample solutions, and
ë performing cylindrical algebraic decomposition (CAD) and

quantifier elimination (QE).

• Solving parametrically over C and over R: that is:

ë finding conditions on the parameters for the solutions to have a
prescribed property (e.g. a unique real solution), or

ë computing all or part of the solutions as functions of the parameters.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 4 / 44



What can the RegularChains library do for you?
• Solving over C: that is, solving any system of multivariate

polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0) and inequations ℎ ≠ 0:
ë computing all its solutions symbolically, or only the generic ones
ë providing tools to extract information (dimension, degree, etc.)

about those solutions and,
ë performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate
polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0, inequations ℎ ≠ 0 and
inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

ë doing the same as above, and
ë finding sample solutions, and

ë performing cylindrical algebraic decomposition (CAD) and
quantifier elimination (QE).

• Solving parametrically over C and over R: that is:

ë finding conditions on the parameters for the solutions to have a
prescribed property (e.g. a unique real solution), or

ë computing all or part of the solutions as functions of the parameters.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 4 / 44



What can the RegularChains library do for you?
• Solving over C: that is, solving any system of multivariate

polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0) and inequations ℎ ≠ 0:
ë computing all its solutions symbolically, or only the generic ones
ë providing tools to extract information (dimension, degree, etc.)

about those solutions and,
ë performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate
polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0, inequations ℎ ≠ 0 and
inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

ë doing the same as above, and
ë finding sample solutions, and
ë performing cylindrical algebraic decomposition (CAD) and

quantifier elimination (QE).

• Solving parametrically over C and over R: that is:

ë finding conditions on the parameters for the solutions to have a
prescribed property (e.g. a unique real solution), or

ë computing all or part of the solutions as functions of the parameters.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 4 / 44



What can the RegularChains library do for you?
• Solving over C: that is, solving any system of multivariate

polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0) and inequations ℎ ≠ 0:
ë computing all its solutions symbolically, or only the generic ones
ë providing tools to extract information (dimension, degree, etc.)

about those solutions and,
ë performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate
polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0, inequations ℎ ≠ 0 and
inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

ë doing the same as above, and
ë finding sample solutions, and
ë performing cylindrical algebraic decomposition (CAD) and

quantifier elimination (QE).

• Solving parametrically over C and over R: that is:

ë finding conditions on the parameters for the solutions to have a
prescribed property (e.g. a unique real solution), or

ë computing all or part of the solutions as functions of the parameters.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 4 / 44



What can the RegularChains library do for you?
• Solving over C: that is, solving any system of multivariate

polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0) and inequations ℎ ≠ 0:
ë computing all its solutions symbolically, or only the generic ones
ë providing tools to extract information (dimension, degree, etc.)

about those solutions and,
ë performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate
polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0, inequations ℎ ≠ 0 and
inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

ë doing the same as above, and
ë finding sample solutions, and
ë performing cylindrical algebraic decomposition (CAD) and

quantifier elimination (QE).

• Solving parametrically over C and over R: that is:
ë finding conditions on the parameters for the solutions to have a

prescribed property (e.g. a unique real solution), or

ë computing all or part of the solutions as functions of the parameters.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 4 / 44



What can the RegularChains library do for you?
• Solving over C: that is, solving any system of multivariate

polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0) and inequations ℎ ≠ 0:
ë computing all its solutions symbolically, or only the generic ones
ë providing tools to extract information (dimension, degree, etc.)

about those solutions and,
ë performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate
polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0, inequations ℎ ≠ 0 and
inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

ë doing the same as above, and
ë finding sample solutions, and
ë performing cylindrical algebraic decomposition (CAD) and

quantifier elimination (QE).

• Solving parametrically over C and over R: that is:
ë finding conditions on the parameters for the solutions to have a

prescribed property (e.g. a unique real solution), or
ë computing all or part of the solutions as functions of the parameters.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 4 / 44



The design of the RegularChains library
• Hierarchy of the user-interface

ë At the top-level, 29 commands for most common tasks, e.g.
PolynomialRing, Triangularize, RealTriangularize, Display,

ë 6 sub-packages for more specialized tasks: AlgebraicGeometryTools,
ChainTools, ConstructibleSetTools, FastArithmeticTools,
ParametricSystemTools, SemiAlgebraicSetTools.

• Enforced but friendly use of types:

ë Every RegularChains object has a type, e.g. polynomial_ring,
regular_chain, constructible_set, semi_algebraic_set,

ë which ensures that the object of that type has properties,
ë while the end-user does not need to explicitly manipulate this type.

• Criteria for selecting the algorithms supporting the solvers:

ë provide a comprehensive and coherent set of tools for manipulating
polynomial systems,

ë implement solvers with both general algorithms (which may not be
the most efficient ones) and faster algorithms (which may only
work under some assumptions).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 5 / 44



The design of the RegularChains library
• Hierarchy of the user-interface

ë At the top-level, 29 commands for most common tasks, e.g.
PolynomialRing, Triangularize, RealTriangularize, Display,

ë 6 sub-packages for more specialized tasks: AlgebraicGeometryTools,
ChainTools, ConstructibleSetTools, FastArithmeticTools,
ParametricSystemTools, SemiAlgebraicSetTools.

• Enforced but friendly use of types:

ë Every RegularChains object has a type, e.g. polynomial_ring,
regular_chain, constructible_set, semi_algebraic_set,

ë which ensures that the object of that type has properties,
ë while the end-user does not need to explicitly manipulate this type.

• Criteria for selecting the algorithms supporting the solvers:

ë provide a comprehensive and coherent set of tools for manipulating
polynomial systems,

ë implement solvers with both general algorithms (which may not be
the most efficient ones) and faster algorithms (which may only
work under some assumptions).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 5 / 44



The design of the RegularChains library
• Hierarchy of the user-interface

ë At the top-level, 29 commands for most common tasks, e.g.
PolynomialRing, Triangularize, RealTriangularize, Display,

ë 6 sub-packages for more specialized tasks: AlgebraicGeometryTools,
ChainTools, ConstructibleSetTools, FastArithmeticTools,
ParametricSystemTools, SemiAlgebraicSetTools.

• Enforced but friendly use of types:

ë Every RegularChains object has a type, e.g. polynomial_ring,
regular_chain, constructible_set, semi_algebraic_set,

ë which ensures that the object of that type has properties,
ë while the end-user does not need to explicitly manipulate this type.

• Criteria for selecting the algorithms supporting the solvers:

ë provide a comprehensive and coherent set of tools for manipulating
polynomial systems,

ë implement solvers with both general algorithms (which may not be
the most efficient ones) and faster algorithms (which may only
work under some assumptions).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 5 / 44



The design of the RegularChains library
• Hierarchy of the user-interface

ë At the top-level, 29 commands for most common tasks, e.g.
PolynomialRing, Triangularize, RealTriangularize, Display,

ë 6 sub-packages for more specialized tasks: AlgebraicGeometryTools,
ChainTools, ConstructibleSetTools, FastArithmeticTools,
ParametricSystemTools, SemiAlgebraicSetTools.

• Enforced but friendly use of types:

ë Every RegularChains object has a type, e.g. polynomial_ring,
regular_chain, constructible_set, semi_algebraic_set,

ë which ensures that the object of that type has properties,
ë while the end-user does not need to explicitly manipulate this type.

• Criteria for selecting the algorithms supporting the solvers:

ë provide a comprehensive and coherent set of tools for manipulating
polynomial systems,

ë implement solvers with both general algorithms (which may not be
the most efficient ones) and faster algorithms (which may only
work under some assumptions).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 5 / 44



The design of the RegularChains library
• Hierarchy of the user-interface

ë At the top-level, 29 commands for most common tasks, e.g.
PolynomialRing, Triangularize, RealTriangularize, Display,

ë 6 sub-packages for more specialized tasks: AlgebraicGeometryTools,
ChainTools, ConstructibleSetTools, FastArithmeticTools,
ParametricSystemTools, SemiAlgebraicSetTools.

• Enforced but friendly use of types:
ë Every RegularChains object has a type, e.g. polynomial_ring,

regular_chain, constructible_set, semi_algebraic_set,

ë which ensures that the object of that type has properties,
ë while the end-user does not need to explicitly manipulate this type.

• Criteria for selecting the algorithms supporting the solvers:

ë provide a comprehensive and coherent set of tools for manipulating
polynomial systems,

ë implement solvers with both general algorithms (which may not be
the most efficient ones) and faster algorithms (which may only
work under some assumptions).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 5 / 44



The design of the RegularChains library
• Hierarchy of the user-interface

ë At the top-level, 29 commands for most common tasks, e.g.
PolynomialRing, Triangularize, RealTriangularize, Display,

ë 6 sub-packages for more specialized tasks: AlgebraicGeometryTools,
ChainTools, ConstructibleSetTools, FastArithmeticTools,
ParametricSystemTools, SemiAlgebraicSetTools.

• Enforced but friendly use of types:
ë Every RegularChains object has a type, e.g. polynomial_ring,

regular_chain, constructible_set, semi_algebraic_set,
ë which ensures that the object of that type has properties,

ë while the end-user does not need to explicitly manipulate this type.

• Criteria for selecting the algorithms supporting the solvers:

ë provide a comprehensive and coherent set of tools for manipulating
polynomial systems,

ë implement solvers with both general algorithms (which may not be
the most efficient ones) and faster algorithms (which may only
work under some assumptions).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 5 / 44



The design of the RegularChains library
• Hierarchy of the user-interface

ë At the top-level, 29 commands for most common tasks, e.g.
PolynomialRing, Triangularize, RealTriangularize, Display,

ë 6 sub-packages for more specialized tasks: AlgebraicGeometryTools,
ChainTools, ConstructibleSetTools, FastArithmeticTools,
ParametricSystemTools, SemiAlgebraicSetTools.

• Enforced but friendly use of types:
ë Every RegularChains object has a type, e.g. polynomial_ring,

regular_chain, constructible_set, semi_algebraic_set,
ë which ensures that the object of that type has properties,
ë while the end-user does not need to explicitly manipulate this type.

• Criteria for selecting the algorithms supporting the solvers:

ë provide a comprehensive and coherent set of tools for manipulating
polynomial systems,

ë implement solvers with both general algorithms (which may not be
the most efficient ones) and faster algorithms (which may only
work under some assumptions).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 5 / 44



The design of the RegularChains library
• Hierarchy of the user-interface

ë At the top-level, 29 commands for most common tasks, e.g.
PolynomialRing, Triangularize, RealTriangularize, Display,

ë 6 sub-packages for more specialized tasks: AlgebraicGeometryTools,
ChainTools, ConstructibleSetTools, FastArithmeticTools,
ParametricSystemTools, SemiAlgebraicSetTools.

• Enforced but friendly use of types:
ë Every RegularChains object has a type, e.g. polynomial_ring,

regular_chain, constructible_set, semi_algebraic_set,
ë which ensures that the object of that type has properties,
ë while the end-user does not need to explicitly manipulate this type.

• Criteria for selecting the algorithms supporting the solvers:

ë provide a comprehensive and coherent set of tools for manipulating
polynomial systems,

ë implement solvers with both general algorithms (which may not be
the most efficient ones) and faster algorithms (which may only
work under some assumptions).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 5 / 44



The design of the RegularChains library
• Hierarchy of the user-interface

ë At the top-level, 29 commands for most common tasks, e.g.
PolynomialRing, Triangularize, RealTriangularize, Display,

ë 6 sub-packages for more specialized tasks: AlgebraicGeometryTools,
ChainTools, ConstructibleSetTools, FastArithmeticTools,
ParametricSystemTools, SemiAlgebraicSetTools.

• Enforced but friendly use of types:
ë Every RegularChains object has a type, e.g. polynomial_ring,

regular_chain, constructible_set, semi_algebraic_set,
ë which ensures that the object of that type has properties,
ë while the end-user does not need to explicitly manipulate this type.

• Criteria for selecting the algorithms supporting the solvers:
ë provide a comprehensive and coherent set of tools for manipulating

polynomial systems,

ë implement solvers with both general algorithms (which may not be
the most efficient ones) and faster algorithms (which may only
work under some assumptions).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 5 / 44



The design of the RegularChains library
• Hierarchy of the user-interface

ë At the top-level, 29 commands for most common tasks, e.g.
PolynomialRing, Triangularize, RealTriangularize, Display,

ë 6 sub-packages for more specialized tasks: AlgebraicGeometryTools,
ChainTools, ConstructibleSetTools, FastArithmeticTools,
ParametricSystemTools, SemiAlgebraicSetTools.

• Enforced but friendly use of types:
ë Every RegularChains object has a type, e.g. polynomial_ring,

regular_chain, constructible_set, semi_algebraic_set,
ë which ensures that the object of that type has properties,
ë while the end-user does not need to explicitly manipulate this type.

• Criteria for selecting the algorithms supporting the solvers:
ë provide a comprehensive and coherent set of tools for manipulating

polynomial systems,
ë implement solvers with both general algorithms (which may not be

the most efficient ones) and faster algorithms (which may only
work under some assumptions).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 5 / 44



The BPAS library

A high-performance polynomial algebra library
∎ Core of library written in C, wrapped in C++ interface for usability

and object-oriented programming
Optimized algorithms and data structures, data locality, and parallelism
∎ Sparse multivariate polynomials [1], dense univariate and bivariate [7]
∎ Triangular decomposition of polynomial systems [2, 3]

User-friendly, object-oriented interface based on template
meta-programming [6]
∎ A natural encoding of the algebraic hierarchy
∎ “Dynamic” creation of algebraic types through composition
∎ Compile-time type safety between algebraic types

Generic support for parallel programming and parallel patterns (this talk)

http://www.bpaslib.org/

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 6 / 44

http://www.bpaslib.org/


Outline

1. Triangular decompositions in polynomial system solving

2. Modular methods in polynomial system solving

3. A Modular methods for incremental triangular decompositions

4. Conclusions

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 7 / 44



Milestones (1/3)

∎ Let k be a field and K its algebraic closure. Consider 𝑛 variables
𝑥1 < ⋯ < 𝑥𝑛.

∎ A subset 𝑉 ⊂ K𝑛 is a (affine) variety over k if there exists
𝐹 ⊂ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ such that 𝑉 = 𝑉 (𝐹 ) where

𝑉 (𝐹 ) ∶= {𝑧 ∈ K𝑛 ⋃︀ 𝑓(𝑧) = 0 (∀ 𝑓 ∈ 𝐹 )}.

The variety 𝑉 is irreducible if for all varieties 𝑉1, 𝑉2 ⊂ K𝑛

𝑉 = 𝑉1 ∪ 𝑉2 ⇒ 𝑉 = 𝑉1 or 𝑉 = 𝑉2.

∎ Theorem (E. Lasker, 1905) For each variety 𝑉 ⊂ K𝑛 there exist
finitely many irreducible varieties 𝑉1, . . . , 𝑉𝑒 ⊂ K𝑛 such that

𝑉 = 𝑉1 ∪ ⋯ ∪ 𝑉𝑒.

Moreover, if 𝑉𝑖 ⇑⊆ 𝑉𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑒 then {𝑉1, . . . , 𝑉𝑒} is unique. This
is the irreducible decomposition of 𝑉 .

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 8 / 44



Milestones (1/3)

∎ Let k be a field and K its algebraic closure. Consider 𝑛 variables
𝑥1 < ⋯ < 𝑥𝑛.

∎ A subset 𝑉 ⊂ K𝑛 is a (affine) variety over k if there exists
𝐹 ⊂ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ such that 𝑉 = 𝑉 (𝐹 ) where

𝑉 (𝐹 ) ∶= {𝑧 ∈ K𝑛 ⋃︀ 𝑓(𝑧) = 0 (∀ 𝑓 ∈ 𝐹 )}.

The variety 𝑉 is irreducible if for all varieties 𝑉1, 𝑉2 ⊂ K𝑛

𝑉 = 𝑉1 ∪ 𝑉2 ⇒ 𝑉 = 𝑉1 or 𝑉 = 𝑉2.

∎ Theorem (E. Lasker, 1905) For each variety 𝑉 ⊂ K𝑛 there exist
finitely many irreducible varieties 𝑉1, . . . , 𝑉𝑒 ⊂ K𝑛 such that

𝑉 = 𝑉1 ∪ ⋯ ∪ 𝑉𝑒.

Moreover, if 𝑉𝑖 ⇑⊆ 𝑉𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑒 then {𝑉1, . . . , 𝑉𝑒} is unique. This
is the irreducible decomposition of 𝑉 .

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 8 / 44



Milestones (1/3)

∎ Let k be a field and K its algebraic closure. Consider 𝑛 variables
𝑥1 < ⋯ < 𝑥𝑛.

∎ A subset 𝑉 ⊂ K𝑛 is a (affine) variety over k if there exists
𝐹 ⊂ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ such that 𝑉 = 𝑉 (𝐹 ) where

𝑉 (𝐹 ) ∶= {𝑧 ∈ K𝑛 ⋃︀ 𝑓(𝑧) = 0 (∀ 𝑓 ∈ 𝐹 )}.

The variety 𝑉 is irreducible if for all varieties 𝑉1, 𝑉2 ⊂ K𝑛

𝑉 = 𝑉1 ∪ 𝑉2 ⇒ 𝑉 = 𝑉1 or 𝑉 = 𝑉2.

∎ Theorem (E. Lasker, 1905) For each variety 𝑉 ⊂ K𝑛 there exist
finitely many irreducible varieties 𝑉1, . . . , 𝑉𝑒 ⊂ K𝑛 such that

𝑉 = 𝑉1 ∪ ⋯ ∪ 𝑉𝑒.

Moreover, if 𝑉𝑖 ⇑⊆ 𝑉𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑒 then {𝑉1, . . . , 𝑉𝑒} is unique. This
is the irreducible decomposition of 𝑉 .

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 8 / 44



Milestones (2/3)

∎ Theorem (J.F. Ritt, 1932) Let 𝑉 ⊂ K𝑛 be an irreducible non-empty
variety and let 𝐹 ⊂ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ s.t. 𝑉 = 𝑉 (𝐹 ). Then, one can
compute a (reduced) triangular set 𝑇 ⊂ ∐︀𝐹 ̃︀ s.t.

(∀ 𝑔 ∈ ∐︀𝐹 ̃︀) prem(𝑔, 𝑇 ) = 0.

Combined with algebraic factorization one can (in theory) compute
irreducible decompositions.

∎ Theorem (W.T. Wu, 1987) Let 𝑉 ⊂ K𝑛 be a variety and let
𝐹 ⊂ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ s.t. 𝑉 = 𝑉 (𝐹 ). Then, one can compute a
(reduced) triangular set 𝑇 ⊂ ∐︀𝐹 ̃︀ s.t.

(∀ 𝑔 ∈ 𝐹 ) prem(𝑔, 𝑇 ) = 0.

This leads to a factorization-free algorithm for decomposing varieties
(but not into irreducible components).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 9 / 44



Milestones (2/3)

∎ Theorem (J.F. Ritt, 1932) Let 𝑉 ⊂ K𝑛 be an irreducible non-empty
variety and let 𝐹 ⊂ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ s.t. 𝑉 = 𝑉 (𝐹 ). Then, one can
compute a (reduced) triangular set 𝑇 ⊂ ∐︀𝐹 ̃︀ s.t.

(∀ 𝑔 ∈ ∐︀𝐹 ̃︀) prem(𝑔, 𝑇 ) = 0.

Combined with algebraic factorization one can (in theory) compute
irreducible decompositions.

∎ Theorem (W.T. Wu, 1987) Let 𝑉 ⊂ K𝑛 be a variety and let
𝐹 ⊂ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ s.t. 𝑉 = 𝑉 (𝐹 ). Then, one can compute a
(reduced) triangular set 𝑇 ⊂ ∐︀𝐹 ̃︀ s.t.

(∀ 𝑔 ∈ 𝐹 ) prem(𝑔, 𝑇 ) = 0.

This leads to a factorization-free algorithm for decomposing varieties
(but not into irreducible components).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 9 / 44



Milestones (3/3)

∎ Example. Applying the charset procedure to
𝐹 = {𝑥2

2 − 𝑥1, 𝑥1𝑥2
3 − 2𝑥2𝑥3 + 1, (𝑥2𝑥3 − 1)𝑥2

4 + 𝑥2
2} produces 𝑇 = 𝐹 .

However 𝑉 (𝐹 ) = ∅. Indeed

𝑥1𝑥2
3 − 2𝑥2𝑥3 + 1 ≡ (𝑥2𝑥3 − 1)2 mod 𝑥2

2 − 𝑥1.

Thus, the initial (𝑥2𝑥3 − 1) is a zero-divisor modulo
∐︀𝑥2

2 − 𝑥1, 𝑥1𝑥2
3 − 2𝑥2𝑥3 + 1̃︀.

∎ The notion of a regular chain (Lu Yang, Jingzhong Zhang 1991),
(Michael Kalkbrener 1991), (Daniel Lazard 1991) solves this difficulty

∎ Moreover, for any input 𝐹 ⊆ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ one can compute regular
chains 𝑇1, . . . , 𝑇𝑒 such that a point 𝑧 ∈ K𝑛 is a zero of 𝐹 if and only if
𝑧 is a zero of one of the 𝑇1, . . . , 𝑇𝑒 (in some technical sense).
(Dong Ming Wang 2000), (Marc Moreno Maza 2000).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 10 / 44



Milestones (3/3)

∎ Example. Applying the charset procedure to
𝐹 = {𝑥2

2 − 𝑥1, 𝑥1𝑥2
3 − 2𝑥2𝑥3 + 1, (𝑥2𝑥3 − 1)𝑥2

4 + 𝑥2
2} produces 𝑇 = 𝐹 .

However 𝑉 (𝐹 ) = ∅. Indeed

𝑥1𝑥2
3 − 2𝑥2𝑥3 + 1 ≡ (𝑥2𝑥3 − 1)2 mod 𝑥2

2 − 𝑥1.

Thus, the initial (𝑥2𝑥3 − 1) is a zero-divisor modulo
∐︀𝑥2

2 − 𝑥1, 𝑥1𝑥2
3 − 2𝑥2𝑥3 + 1̃︀.

∎ The notion of a regular chain (Lu Yang, Jingzhong Zhang 1991),
(Michael Kalkbrener 1991), (Daniel Lazard 1991) solves this difficulty

∎ Moreover, for any input 𝐹 ⊆ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ one can compute regular
chains 𝑇1, . . . , 𝑇𝑒 such that a point 𝑧 ∈ K𝑛 is a zero of 𝐹 if and only if
𝑧 is a zero of one of the 𝑇1, . . . , 𝑇𝑒 (in some technical sense).
(Dong Ming Wang 2000), (Marc Moreno Maza 2000).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 10 / 44



Milestones (3/3)

∎ Example. Applying the charset procedure to
𝐹 = {𝑥2

2 − 𝑥1, 𝑥1𝑥2
3 − 2𝑥2𝑥3 + 1, (𝑥2𝑥3 − 1)𝑥2

4 + 𝑥2
2} produces 𝑇 = 𝐹 .

However 𝑉 (𝐹 ) = ∅. Indeed

𝑥1𝑥2
3 − 2𝑥2𝑥3 + 1 ≡ (𝑥2𝑥3 − 1)2 mod 𝑥2

2 − 𝑥1.

Thus, the initial (𝑥2𝑥3 − 1) is a zero-divisor modulo
∐︀𝑥2

2 − 𝑥1, 𝑥1𝑥2
3 − 2𝑥2𝑥3 + 1̃︀.

∎ The notion of a regular chain (Lu Yang, Jingzhong Zhang 1991),
(Michael Kalkbrener 1991), (Daniel Lazard 1991) solves this difficulty

∎ Moreover, for any input 𝐹 ⊆ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ one can compute regular
chains 𝑇1, . . . , 𝑇𝑒 such that a point 𝑧 ∈ K𝑛 is a zero of 𝐹 if and only if
𝑧 is a zero of one of the 𝑇1, . . . , 𝑇𝑒 (in some technical sense).
(Dong Ming Wang 2000), (Marc Moreno Maza 2000).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 10 / 44



A recursive view on polynomials

Let k be a field, 𝑋 = 𝑥1 < ⋯ < 𝑥𝑛 be variables and 𝑓, 𝑔 ∈ k(︀𝑋⌋︀ with 𝑔 ⇑∈ k.
mvar(𝑔): the greatest variable in 𝑔 is the leader or main variable of 𝑔,
init(𝑔): the leading coefficient of 𝑔 w.r.t. mvar(𝑔) is the initial of 𝑔,

mdeg(𝑔): the degree of 𝑔 w.r.t. mvar(𝑔),
rank(𝑔) = 𝑣𝑑 where 𝑣 = mvar(𝑔) and 𝑑 = mdeg(𝑔),

pdivide(𝑓, 𝑔) = (𝑞, 𝑟) with 𝑞, 𝑟 ∈ k(︀𝑋⌋︀, deg(𝑟, 𝑣𝑔) < 𝑑𝑔 and ℎ𝑒
𝑔𝑓 = 𝑞𝑔 + 𝑟

where ℎ𝑔 = init(𝑔), 𝑒 = max(deg(𝑓, 𝑣) − 𝑑𝑔 + 1, 0),
𝑣𝑔 = mvar(𝑔) and 𝑑𝑔 = mdeg(𝑔),

Example
Assume 𝑛 ≥ 3. If 𝑝 = 𝑥1𝑥2

3 − 2𝑥2𝑥3 + 1, then we have mvar(𝑝) = 𝑥3,
mdeg(𝑝) = 2, init(𝑝) = 𝑥1 and rank(𝑝) = 𝑥2

3.

Go to RegularChains.pdf Section 2.1.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 11 / 44

http://www.regularchains.org/Documentation/RegularChains.pdf


Regular chain

Definition
The set 𝑇 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ is triangular set if it consists of non-constant
polynomials with pair-wise different main variables.
Define ℎ𝑇 ∶=∏𝑡∈𝑇 init(𝑡), where init(𝑡) = lc(𝑡, mvar(𝑡)).
The quasi-component and saturated ideal of 𝑇 are:

𝑊 (𝑇 ) ∶= 𝑉 (𝑇 ) ∖ 𝑉 (ℎ𝑇 ) and sat(𝑇 ) = ∐︀𝑇 ̃︀ ∶ ℎ∞𝑇 .

Note that for all triangular set 𝑇 we have:
∎ 𝑊 (𝑇 ) = 𝑉 (sat(𝑇 )).
∎ if sat(𝑇 ) ≠ ∐︀1̃︀ then sat(𝑇 ) is strongly equi-dimensional.

Definition (M. Kalkbrner, 1991 - L. Yang, J. Zhang 1991)
𝑇 is a regular chain if 𝑇 = ∅ or 𝑇 ∶= 𝑇 ′ ∪ {𝑡} with mvar(𝑡) maximum s.t.
∎ 𝑇 ′ is a regular chain,
∎ init(𝑡) is regular modulo sat(𝑇 ′).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 12 / 44



Regular chain

Definition
The set 𝑇 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ is triangular set if it consists of non-constant
polynomials with pair-wise different main variables.
Define ℎ𝑇 ∶=∏𝑡∈𝑇 init(𝑡), where init(𝑡) = lc(𝑡, mvar(𝑡)).
The quasi-component and saturated ideal of 𝑇 are:

𝑊 (𝑇 ) ∶= 𝑉 (𝑇 ) ∖ 𝑉 (ℎ𝑇 ) and sat(𝑇 ) = ∐︀𝑇 ̃︀ ∶ ℎ∞𝑇 .

Note that for all triangular set 𝑇 we have:
∎ 𝑊 (𝑇 ) = 𝑉 (sat(𝑇 )).
∎ if sat(𝑇 ) ≠ ∐︀1̃︀ then sat(𝑇 ) is strongly equi-dimensional.

Definition (M. Kalkbrner, 1991 - L. Yang, J. Zhang 1991)
𝑇 is a regular chain if 𝑇 = ∅ or 𝑇 ∶= 𝑇 ′ ∪ {𝑡} with mvar(𝑡) maximum s.t.
∎ 𝑇 ′ is a regular chain,
∎ init(𝑡) is regular modulo sat(𝑇 ′).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 12 / 44



Regular chain

Definition
The set 𝑇 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ is triangular set if it consists of non-constant
polynomials with pair-wise different main variables.
Define ℎ𝑇 ∶=∏𝑡∈𝑇 init(𝑡), where init(𝑡) = lc(𝑡, mvar(𝑡)).
The quasi-component and saturated ideal of 𝑇 are:

𝑊 (𝑇 ) ∶= 𝑉 (𝑇 ) ∖ 𝑉 (ℎ𝑇 ) and sat(𝑇 ) = ∐︀𝑇 ̃︀ ∶ ℎ∞𝑇 .

Note that for all triangular set 𝑇 we have:
∎ 𝑊 (𝑇 ) = 𝑉 (sat(𝑇 )).
∎ if sat(𝑇 ) ≠ ∐︀1̃︀ then sat(𝑇 ) is strongly equi-dimensional.

Definition (M. Kalkbrner, 1991 - L. Yang, J. Zhang 1991)
𝑇 is a regular chain if 𝑇 = ∅ or 𝑇 ∶= 𝑇 ′ ∪ {𝑡} with mvar(𝑡) maximum s.t.
∎ 𝑇 ′ is a regular chain,
∎ init(𝑡) is regular modulo sat(𝑇 ′).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 12 / 44



Regular chain: alternative definition

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 13 / 44



Regular chain: alternative definition

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 14 / 44



Regular chain: algorithmic properties

Theorem (P. Aubry, D. Lazard, M., 1997)
𝑇 is a regular chain iff {𝑝 ⋃︀ prem(𝑝, 𝑇 ) = 0} = sat(𝑇 ).

Definition
Let 𝑇 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ be a triangular set and 𝑝 ∈ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀. If 𝑇 is
empty then, the iterated resultant of 𝑝 w.r.t. 𝑇 is resultant(𝑇, 𝑝) = 𝑝.
Otherwise, writing 𝑇 = 𝑇<𝑤 ∪𝑇𝑤

resultant(𝑇, 𝑝) = { 𝑝 if deg(𝑝, 𝑤) = 0
resultant(𝑇<𝑤, resultant(𝑇𝑤, 𝑝, 𝑤)) otherwise

Theorem (L. Yang, J. Zhang 1991)
𝑝 is regular modulo sat(𝑇 ) iff resultant(𝑇, 𝑝) ≠ 0.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 15 / 44



Regular chain: algorithmic properties

Theorem (P. Aubry, D. Lazard, M., 1997)
𝑇 is a regular chain iff {𝑝 ⋃︀ prem(𝑝, 𝑇 ) = 0} = sat(𝑇 ).

Definition
Let 𝑇 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ be a triangular set and 𝑝 ∈ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀. If 𝑇 is
empty then, the iterated resultant of 𝑝 w.r.t. 𝑇 is resultant(𝑇, 𝑝) = 𝑝.
Otherwise, writing 𝑇 = 𝑇<𝑤 ∪𝑇𝑤

resultant(𝑇, 𝑝) = { 𝑝 if deg(𝑝, 𝑤) = 0
resultant(𝑇<𝑤, resultant(𝑇𝑤, 𝑝, 𝑤)) otherwise

Theorem (L. Yang, J. Zhang 1991)
𝑝 is regular modulo sat(𝑇 ) iff resultant(𝑇, 𝑝) ≠ 0.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 15 / 44



Regular chain: algorithmic properties

Theorem (P. Aubry, D. Lazard, M., 1997)
𝑇 is a regular chain iff {𝑝 ⋃︀ prem(𝑝, 𝑇 ) = 0} = sat(𝑇 ).

Definition
Let 𝑇 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ be a triangular set and 𝑝 ∈ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀. If 𝑇 is
empty then, the iterated resultant of 𝑝 w.r.t. 𝑇 is resultant(𝑇, 𝑝) = 𝑝.
Otherwise, writing 𝑇 = 𝑇<𝑤 ∪𝑇𝑤

resultant(𝑇, 𝑝) = { 𝑝 if deg(𝑝, 𝑤) = 0
resultant(𝑇<𝑤, resultant(𝑇𝑤, 𝑝, 𝑤)) otherwise

Theorem (L. Yang, J. Zhang 1991)
𝑝 is regular modulo sat(𝑇 ) iff resultant(𝑇, 𝑝) ≠ 0.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 15 / 44



Triangular decomposition of an algebraic variety

Kalkbrener triangular decomposition
Let 𝐹 ⊂ k(︀x⌋︀. A family of regular chains 𝑇1, . . . , 𝑇𝑒 of k(︀x⌋︀ is called a
Kalkbrener triangular decomposition of 𝑉 (𝐹 ) if

𝑉 (𝐹 ) = ∪𝑒
𝑖=1 𝑉 (sat(𝑇𝑖)).

Wu-Lazard triangular decomposition
Let 𝐹 ⊂ k(︀x⌋︀. A family of regular chains 𝑇1, . . . , 𝑇𝑒 of k(︀x⌋︀ is called a
Wu-Lazard triangular decomposition of 𝑉 (𝐹 ) if

𝑉 (𝐹 ) = ∪𝑒
𝑖=1 𝑊 (𝑇𝑖).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 16 / 44



Triangular decomposition of an algebraic variety

Kalkbrener triangular decomposition
Let 𝐹 ⊂ k(︀x⌋︀. A family of regular chains 𝑇1, . . . , 𝑇𝑒 of k(︀x⌋︀ is called a
Kalkbrener triangular decomposition of 𝑉 (𝐹 ) if

𝑉 (𝐹 ) = ∪𝑒
𝑖=1 𝑉 (sat(𝑇𝑖)).

Wu-Lazard triangular decomposition
Let 𝐹 ⊂ k(︀x⌋︀. A family of regular chains 𝑇1, . . . , 𝑇𝑒 of k(︀x⌋︀ is called a
Wu-Lazard triangular decomposition of 𝑉 (𝐹 ) if

𝑉 (𝐹 ) = ∪𝑒
𝑖=1 𝑊 (𝑇𝑖).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 16 / 44



Triangularize applied to sofa and cylinder (1/2)

𝑥2 + 𝑦3 + 𝑧5 = 𝑥4 + 𝑧2 − 1 = 0

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 17 / 44



Triangularize applied to sofa and cylinder (2/2)

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 18 / 44



Relations with resultants and subresultants (1/3)

In a nutshell, solving bivariate polynomial systems can be done via

1 resultant computations,
2 factorization of univariate polynomials, and
3 univariate polynomial GCDs.

Example (von zur Gathen & Gerhard, Chapter 6)
Let 𝑃 = (𝑦2 + 6) (𝑥 − 1) − 𝑦 (𝑥2 + 1) and 𝑄 = (𝑥2 + 6) (𝑦 − 1) − 𝑥 (𝑦2 + 1)

∎ res(P, Q, y) = 2 (x2 − x + 4) (x − 2)2 (x − 3)2.
∎ gcd(P, Q, x − 2 = 0) = (y − 2)(y − 3).
∎ gcd(P, Q, x − 3 = 0) = (y − 2)(y − 3).
∎ gcd(P, Q, x2 − x + 4 = 0) = (2 x − 1)y − 7 − x.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 19 / 44



Relations with resultants and subresultants (1/3)

In a nutshell, solving bivariate polynomial systems can be done via
1 resultant computations,

2 factorization of univariate polynomials, and
3 univariate polynomial GCDs.

Example (von zur Gathen & Gerhard, Chapter 6)
Let 𝑃 = (𝑦2 + 6) (𝑥 − 1) − 𝑦 (𝑥2 + 1) and 𝑄 = (𝑥2 + 6) (𝑦 − 1) − 𝑥 (𝑦2 + 1)

∎ res(P, Q, y) = 2 (x2 − x + 4) (x − 2)2 (x − 3)2.
∎ gcd(P, Q, x − 2 = 0) = (y − 2)(y − 3).
∎ gcd(P, Q, x − 3 = 0) = (y − 2)(y − 3).
∎ gcd(P, Q, x2 − x + 4 = 0) = (2 x − 1)y − 7 − x.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 19 / 44



Relations with resultants and subresultants (1/3)

In a nutshell, solving bivariate polynomial systems can be done via
1 resultant computations,
2 factorization of univariate polynomials, and

3 univariate polynomial GCDs.

Example (von zur Gathen & Gerhard, Chapter 6)
Let 𝑃 = (𝑦2 + 6) (𝑥 − 1) − 𝑦 (𝑥2 + 1) and 𝑄 = (𝑥2 + 6) (𝑦 − 1) − 𝑥 (𝑦2 + 1)

∎ res(P, Q, y) = 2 (x2 − x + 4) (x − 2)2 (x − 3)2.
∎ gcd(P, Q, x − 2 = 0) = (y − 2)(y − 3).
∎ gcd(P, Q, x − 3 = 0) = (y − 2)(y − 3).
∎ gcd(P, Q, x2 − x + 4 = 0) = (2 x − 1)y − 7 − x.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 19 / 44



Relations with resultants and subresultants (1/3)

In a nutshell, solving bivariate polynomial systems can be done via
1 resultant computations,
2 factorization of univariate polynomials, and
3 univariate polynomial GCDs.

Example (von zur Gathen & Gerhard, Chapter 6)
Let 𝑃 = (𝑦2 + 6) (𝑥 − 1) − 𝑦 (𝑥2 + 1) and 𝑄 = (𝑥2 + 6) (𝑦 − 1) − 𝑥 (𝑦2 + 1)

∎ res(P, Q, y) = 2 (x2 − x + 4) (x − 2)2 (x − 3)2.
∎ gcd(P, Q, x − 2 = 0) = (y − 2)(y − 3).
∎ gcd(P, Q, x − 3 = 0) = (y − 2)(y − 3).
∎ gcd(P, Q, x2 − x + 4 = 0) = (2 x − 1)y − 7 − x.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 19 / 44



Relations with resultants and subresultants (1/3)

In a nutshell, solving bivariate polynomial systems can be done via
1 resultant computations,
2 factorization of univariate polynomials, and
3 univariate polynomial GCDs.

Example (von zur Gathen & Gerhard, Chapter 6)
Let 𝑃 = (𝑦2 + 6) (𝑥 − 1) − 𝑦 (𝑥2 + 1) and 𝑄 = (𝑥2 + 6) (𝑦 − 1) − 𝑥 (𝑦2 + 1)

∎ res(P, Q, y) = 2 (x2 − x + 4) (x − 2)2 (x − 3)2.
∎ gcd(P, Q, x − 2 = 0) = (y − 2)(y − 3).
∎ gcd(P, Q, x − 3 = 0) = (y − 2)(y − 3).
∎ gcd(P, Q, x2 − x + 4 = 0) = (2 x − 1)y − 7 − x.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 19 / 44



Relations with resultants and subresultants (1/3)

In a nutshell, solving bivariate polynomial systems can be done via
1 resultant computations,
2 factorization of univariate polynomials, and
3 univariate polynomial GCDs.

Example (von zur Gathen & Gerhard, Chapter 6)
Let 𝑃 = (𝑦2 + 6) (𝑥 − 1) − 𝑦 (𝑥2 + 1) and 𝑄 = (𝑥2 + 6) (𝑦 − 1) − 𝑥 (𝑦2 + 1)
∎ res(P, Q, y) = 2 (x2 − x + 4) (x − 2)2 (x − 3)2.

∎ gcd(P, Q, x − 2 = 0) = (y − 2)(y − 3).
∎ gcd(P, Q, x − 3 = 0) = (y − 2)(y − 3).
∎ gcd(P, Q, x2 − x + 4 = 0) = (2 x − 1)y − 7 − x.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 19 / 44



Relations with resultants and subresultants (1/3)

In a nutshell, solving bivariate polynomial systems can be done via
1 resultant computations,
2 factorization of univariate polynomials, and
3 univariate polynomial GCDs.

Example (von zur Gathen & Gerhard, Chapter 6)
Let 𝑃 = (𝑦2 + 6) (𝑥 − 1) − 𝑦 (𝑥2 + 1) and 𝑄 = (𝑥2 + 6) (𝑦 − 1) − 𝑥 (𝑦2 + 1)
∎ res(P, Q, y) = 2 (x2 − x + 4) (x − 2)2 (x − 3)2.
∎ gcd(P, Q, x − 2 = 0) = (y − 2)(y − 3).

∎ gcd(P, Q, x − 3 = 0) = (y − 2)(y − 3).
∎ gcd(P, Q, x2 − x + 4 = 0) = (2 x − 1)y − 7 − x.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 19 / 44



Relations with resultants and subresultants (1/3)

In a nutshell, solving bivariate polynomial systems can be done via
1 resultant computations,
2 factorization of univariate polynomials, and
3 univariate polynomial GCDs.

Example (von zur Gathen & Gerhard, Chapter 6)
Let 𝑃 = (𝑦2 + 6) (𝑥 − 1) − 𝑦 (𝑥2 + 1) and 𝑄 = (𝑥2 + 6) (𝑦 − 1) − 𝑥 (𝑦2 + 1)
∎ res(P, Q, y) = 2 (x2 − x + 4) (x − 2)2 (x − 3)2.
∎ gcd(P, Q, x − 2 = 0) = (y − 2)(y − 3).
∎ gcd(P, Q, x − 3 = 0) = (y − 2)(y − 3).

∎ gcd(P, Q, x2 − x + 4 = 0) = (2 x − 1)y − 7 − x.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 19 / 44



Relations with resultants and subresultants (1/3)

In a nutshell, solving bivariate polynomial systems can be done via
1 resultant computations,
2 factorization of univariate polynomials, and
3 univariate polynomial GCDs.

Example (von zur Gathen & Gerhard, Chapter 6)
Let 𝑃 = (𝑦2 + 6) (𝑥 − 1) − 𝑦 (𝑥2 + 1) and 𝑄 = (𝑥2 + 6) (𝑦 − 1) − 𝑥 (𝑦2 + 1)
∎ res(P, Q, y) = 2 (x2 − x + 4) (x − 2)2 (x − 3)2.
∎ gcd(P, Q, x − 2 = 0) = (y − 2)(y − 3).
∎ gcd(P, Q, x − 3 = 0) = (y − 2)(y − 3).
∎ gcd(P, Q, x2 − x + 4 = 0) = (2 x − 1)y − 7 − x.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 19 / 44



Relations with resultants and subresultants (2/3)
In fact, factorizing the resultant is not necessary. Using regularity test and
the specialization property of subresultants is sufficient.

Consider the following polynomials 𝑓, 𝑔 ∈ Q(︀𝑦 < 𝑥⌋︀:

𝑓 = 𝑥7 − 36𝑥 − 22𝑦 + 1,
𝑔 = 𝑥6 + 47𝑥3 − 60𝑥𝑦2 − 6𝑥𝑦 − 83𝑦2 − 10𝑦 + 50.

The complete list of subresultants of (𝑓, 𝑔) w.r.t. 𝑥 is:

𝑆6 = 𝑔,
𝑆5 = 56𝑥4 + 60𝑥2𝑦2 + 6𝑥2𝑦 + 83𝑥𝑦2 + 10𝑥𝑦 + 17𝑥 + 81𝑦 + 1,
𝑆4 = 46𝑥4 + 64𝑥2𝑦2 + 27𝑥2𝑦 + 13𝑥𝑦2 + 45𝑥𝑦 + 25𝑥 + 4𝑦 + 56,
𝑆3 = 74𝑥2𝑦4 + 7𝑥3𝑦2 + 56𝑥2𝑦3 + 44𝑥𝑦4 +⋯ + 98𝑦2 + 86𝑦 + 53,
𝑆2 = 25𝑥2𝑦8 + 10𝑥2𝑦7 + 26𝑥𝑦8 + 62𝑥2𝑦6 +⋯ + 96𝑥 + 72𝑦 + 43,
𝑆1 = 81𝑥𝑦12 + 28𝑥𝑦11 + 76𝑦12 + 24𝑥𝑦10 + 5𝑥𝑦9 +⋯ + 4𝑥 + 73𝑦 + 77,
𝑆0 = 97𝑦15 + 82𝑦14 + 82𝑦13 +⋯ + 23𝑦5 + 89𝑦4 + 31𝑦3 + 𝑦2 + 54𝑦 + 69.

The solutions of 𝑓 = 𝑔 = 0 can be calculated using 𝑆0, 𝑆1 only.
Go to RegularChains.pdf Sections 2.2 and 2.3.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 20 / 44

http://www.regularchains.org/Documentation/RegularChains.pdf


Relations with resultants and subresultants (2/3)
In fact, factorizing the resultant is not necessary. Using regularity test and
the specialization property of subresultants is sufficient.
Consider the following polynomials 𝑓, 𝑔 ∈ Q(︀𝑦 < 𝑥⌋︀:

𝑓 = 𝑥7 − 36𝑥 − 22𝑦 + 1,
𝑔 = 𝑥6 + 47𝑥3 − 60𝑥𝑦2 − 6𝑥𝑦 − 83𝑦2 − 10𝑦 + 50.

The complete list of subresultants of (𝑓, 𝑔) w.r.t. 𝑥 is:

𝑆6 = 𝑔,
𝑆5 = 56𝑥4 + 60𝑥2𝑦2 + 6𝑥2𝑦 + 83𝑥𝑦2 + 10𝑥𝑦 + 17𝑥 + 81𝑦 + 1,
𝑆4 = 46𝑥4 + 64𝑥2𝑦2 + 27𝑥2𝑦 + 13𝑥𝑦2 + 45𝑥𝑦 + 25𝑥 + 4𝑦 + 56,
𝑆3 = 74𝑥2𝑦4 + 7𝑥3𝑦2 + 56𝑥2𝑦3 + 44𝑥𝑦4 +⋯ + 98𝑦2 + 86𝑦 + 53,
𝑆2 = 25𝑥2𝑦8 + 10𝑥2𝑦7 + 26𝑥𝑦8 + 62𝑥2𝑦6 +⋯ + 96𝑥 + 72𝑦 + 43,
𝑆1 = 81𝑥𝑦12 + 28𝑥𝑦11 + 76𝑦12 + 24𝑥𝑦10 + 5𝑥𝑦9 +⋯ + 4𝑥 + 73𝑦 + 77,
𝑆0 = 97𝑦15 + 82𝑦14 + 82𝑦13 +⋯ + 23𝑦5 + 89𝑦4 + 31𝑦3 + 𝑦2 + 54𝑦 + 69.

The solutions of 𝑓 = 𝑔 = 0 can be calculated using 𝑆0, 𝑆1 only.
Go to RegularChains.pdf Sections 2.2 and 2.3.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 20 / 44

http://www.regularchains.org/Documentation/RegularChains.pdf


Relations with resultants and subresultants (2/3)
In fact, factorizing the resultant is not necessary. Using regularity test and
the specialization property of subresultants is sufficient.
Consider the following polynomials 𝑓, 𝑔 ∈ Q(︀𝑦 < 𝑥⌋︀:

𝑓 = 𝑥7 − 36𝑥 − 22𝑦 + 1,
𝑔 = 𝑥6 + 47𝑥3 − 60𝑥𝑦2 − 6𝑥𝑦 − 83𝑦2 − 10𝑦 + 50.

The complete list of subresultants of (𝑓, 𝑔) w.r.t. 𝑥 is:

𝑆6 = 𝑔,
𝑆5 = 56𝑥4 + 60𝑥2𝑦2 + 6𝑥2𝑦 + 83𝑥𝑦2 + 10𝑥𝑦 + 17𝑥 + 81𝑦 + 1,
𝑆4 = 46𝑥4 + 64𝑥2𝑦2 + 27𝑥2𝑦 + 13𝑥𝑦2 + 45𝑥𝑦 + 25𝑥 + 4𝑦 + 56,
𝑆3 = 74𝑥2𝑦4 + 7𝑥3𝑦2 + 56𝑥2𝑦3 + 44𝑥𝑦4 +⋯ + 98𝑦2 + 86𝑦 + 53,
𝑆2 = 25𝑥2𝑦8 + 10𝑥2𝑦7 + 26𝑥𝑦8 + 62𝑥2𝑦6 +⋯ + 96𝑥 + 72𝑦 + 43,
𝑆1 = 81𝑥𝑦12 + 28𝑥𝑦11 + 76𝑦12 + 24𝑥𝑦10 + 5𝑥𝑦9 +⋯ + 4𝑥 + 73𝑦 + 77,
𝑆0 = 97𝑦15 + 82𝑦14 + 82𝑦13 +⋯ + 23𝑦5 + 89𝑦4 + 31𝑦3 + 𝑦2 + 54𝑦 + 69.

The solutions of 𝑓 = 𝑔 = 0 can be calculated using 𝑆0, 𝑆1 only.
Go to RegularChains.pdf Sections 2.2 and 2.3.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 20 / 44

http://www.regularchains.org/Documentation/RegularChains.pdf


Relations with resultants and subresultants (2/3)
In fact, factorizing the resultant is not necessary. Using regularity test and
the specialization property of subresultants is sufficient.
Consider the following polynomials 𝑓, 𝑔 ∈ Q(︀𝑦 < 𝑥⌋︀:

𝑓 = 𝑥7 − 36𝑥 − 22𝑦 + 1,
𝑔 = 𝑥6 + 47𝑥3 − 60𝑥𝑦2 − 6𝑥𝑦 − 83𝑦2 − 10𝑦 + 50.

The complete list of subresultants of (𝑓, 𝑔) w.r.t. 𝑥 is:

𝑆6 = 𝑔,
𝑆5 = 56𝑥4 + 60𝑥2𝑦2 + 6𝑥2𝑦 + 83𝑥𝑦2 + 10𝑥𝑦 + 17𝑥 + 81𝑦 + 1,
𝑆4 = 46𝑥4 + 64𝑥2𝑦2 + 27𝑥2𝑦 + 13𝑥𝑦2 + 45𝑥𝑦 + 25𝑥 + 4𝑦 + 56,
𝑆3 = 74𝑥2𝑦4 + 7𝑥3𝑦2 + 56𝑥2𝑦3 + 44𝑥𝑦4 +⋯ + 98𝑦2 + 86𝑦 + 53,
𝑆2 = 25𝑥2𝑦8 + 10𝑥2𝑦7 + 26𝑥𝑦8 + 62𝑥2𝑦6 +⋯ + 96𝑥 + 72𝑦 + 43,
𝑆1 = 81𝑥𝑦12 + 28𝑥𝑦11 + 76𝑦12 + 24𝑥𝑦10 + 5𝑥𝑦9 +⋯ + 4𝑥 + 73𝑦 + 77,
𝑆0 = 97𝑦15 + 82𝑦14 + 82𝑦13 +⋯ + 23𝑦5 + 89𝑦4 + 31𝑦3 + 𝑦2 + 54𝑦 + 69.

The solutions of 𝑓 = 𝑔 = 0 can be calculated using 𝑆0, 𝑆1 only.
Go to RegularChains.pdf Sections 2.2 and 2.3.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 20 / 44

http://www.regularchains.org/Documentation/RegularChains.pdf


Relations with resultants and subresultants (3/3)

Extending the previous ideas to solving 𝑚 polynomial equations
in 𝑛 variables can be done using
∎ a cascade of Sylvester resultants (this talk), or
∎ a combination of Dixon/Macaulay resultants and Sylvester resultants

(work in progress).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 21 / 44



Relations with Gröbner bases

Normalized regular chains

∎ The regular chain 𝑇 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ is said normalized if for every
𝑡, 𝑡′ ∈ 𝑇 we have deg(init(𝑡), mvar(𝑡′)) = 0.

∎ Let 𝑌 ∶= {mvar(𝑡) ⋃︀ 𝑡 ∈ 𝑇} and 𝑈 ∶= 𝑋 ∖ 𝑌 . If 𝑇 is normalized, then 𝑇
is a Gröbner basis of dimension 0 of the ideal it generates in k(𝑈)(︀𝑌 ⌋︀.

From lexicographical Gröbner bases to regular chains

∎ Let 𝐺 be a lexicographical Gröbner basis of a zero-dimensional ideal
ℐ ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀. Then, Lextriangular(𝐺) computes regular chains
(optionally normalized) 𝑇1, . . . , 𝑇𝑒 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ so that
𝑉 (𝐺) = ∪𝑒

𝑖=1𝑉 (𝑇𝑖). (Daniel Lazard, 1992).
∎ This is done at a cost which is at most that inverting at most #𝐺

polynomials modulo one of the ideals ∐︀𝑇1̃︀, . . . , ∐︀𝑇𝑒̃︀.
∎ This is practically very effective.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 22 / 44



Relations with Gröbner bases

Normalized regular chains

∎ The regular chain 𝑇 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ is said normalized if for every
𝑡, 𝑡′ ∈ 𝑇 we have deg(init(𝑡), mvar(𝑡′)) = 0.

∎ Let 𝑌 ∶= {mvar(𝑡) ⋃︀ 𝑡 ∈ 𝑇} and 𝑈 ∶= 𝑋 ∖ 𝑌 . If 𝑇 is normalized, then 𝑇
is a Gröbner basis of dimension 0 of the ideal it generates in k(𝑈)(︀𝑌 ⌋︀.

From lexicographical Gröbner bases to regular chains

∎ Let 𝐺 be a lexicographical Gröbner basis of a zero-dimensional ideal
ℐ ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀. Then, Lextriangular(𝐺) computes regular chains
(optionally normalized) 𝑇1, . . . , 𝑇𝑒 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ so that
𝑉 (𝐺) = ∪𝑒

𝑖=1𝑉 (𝑇𝑖). (Daniel Lazard, 1992).
∎ This is done at a cost which is at most that inverting at most #𝐺

polynomials modulo one of the ideals ∐︀𝑇1̃︀, . . . , ∐︀𝑇𝑒̃︀.
∎ This is practically very effective.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 22 / 44



Relations with Gröbner bases

Normalized regular chains

∎ The regular chain 𝑇 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ is said normalized if for every
𝑡, 𝑡′ ∈ 𝑇 we have deg(init(𝑡), mvar(𝑡′)) = 0.

∎ Let 𝑌 ∶= {mvar(𝑡) ⋃︀ 𝑡 ∈ 𝑇} and 𝑈 ∶= 𝑋 ∖ 𝑌 . If 𝑇 is normalized, then 𝑇
is a Gröbner basis of dimension 0 of the ideal it generates in k(𝑈)(︀𝑌 ⌋︀.

From lexicographical Gröbner bases to regular chains

∎ Let 𝐺 be a lexicographical Gröbner basis of a zero-dimensional ideal
ℐ ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀. Then, Lextriangular(𝐺) computes regular chains
(optionally normalized) 𝑇1, . . . , 𝑇𝑒 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ so that
𝑉 (𝐺) = ∪𝑒

𝑖=1𝑉 (𝑇𝑖). (Daniel Lazard, 1992).
∎ This is done at a cost which is at most that inverting at most #𝐺

polynomials modulo one of the ideals ∐︀𝑇1̃︀, . . . , ∐︀𝑇𝑒̃︀.
∎ This is practically very effective.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 22 / 44



Relations with Gröbner bases

Normalized regular chains

∎ The regular chain 𝑇 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ is said normalized if for every
𝑡, 𝑡′ ∈ 𝑇 we have deg(init(𝑡), mvar(𝑡′)) = 0.

∎ Let 𝑌 ∶= {mvar(𝑡) ⋃︀ 𝑡 ∈ 𝑇} and 𝑈 ∶= 𝑋 ∖ 𝑌 . If 𝑇 is normalized, then 𝑇
is a Gröbner basis of dimension 0 of the ideal it generates in k(𝑈)(︀𝑌 ⌋︀.

From lexicographical Gröbner bases to regular chains

∎ Let 𝐺 be a lexicographical Gröbner basis of a zero-dimensional ideal
ℐ ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀. Then, Lextriangular(𝐺) computes regular chains
(optionally normalized) 𝑇1, . . . , 𝑇𝑒 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ so that
𝑉 (𝐺) = ∪𝑒

𝑖=1𝑉 (𝑇𝑖). (Daniel Lazard, 1992).

∎ This is done at a cost which is at most that inverting at most #𝐺
polynomials modulo one of the ideals ∐︀𝑇1̃︀, . . . , ∐︀𝑇𝑒̃︀.

∎ This is practically very effective.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 22 / 44



Relations with Gröbner bases

Normalized regular chains

∎ The regular chain 𝑇 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ is said normalized if for every
𝑡, 𝑡′ ∈ 𝑇 we have deg(init(𝑡), mvar(𝑡′)) = 0.

∎ Let 𝑌 ∶= {mvar(𝑡) ⋃︀ 𝑡 ∈ 𝑇} and 𝑈 ∶= 𝑋 ∖ 𝑌 . If 𝑇 is normalized, then 𝑇
is a Gröbner basis of dimension 0 of the ideal it generates in k(𝑈)(︀𝑌 ⌋︀.

From lexicographical Gröbner bases to regular chains

∎ Let 𝐺 be a lexicographical Gröbner basis of a zero-dimensional ideal
ℐ ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀. Then, Lextriangular(𝐺) computes regular chains
(optionally normalized) 𝑇1, . . . , 𝑇𝑒 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ so that
𝑉 (𝐺) = ∪𝑒

𝑖=1𝑉 (𝑇𝑖). (Daniel Lazard, 1992).
∎ This is done at a cost which is at most that inverting at most #𝐺

polynomials modulo one of the ideals ∐︀𝑇1̃︀, . . . , ∐︀𝑇𝑒̃︀.

∎ This is practically very effective.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 22 / 44



Relations with Gröbner bases

Normalized regular chains

∎ The regular chain 𝑇 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ is said normalized if for every
𝑡, 𝑡′ ∈ 𝑇 we have deg(init(𝑡), mvar(𝑡′)) = 0.

∎ Let 𝑌 ∶= {mvar(𝑡) ⋃︀ 𝑡 ∈ 𝑇} and 𝑈 ∶= 𝑋 ∖ 𝑌 . If 𝑇 is normalized, then 𝑇
is a Gröbner basis of dimension 0 of the ideal it generates in k(𝑈)(︀𝑌 ⌋︀.

From lexicographical Gröbner bases to regular chains

∎ Let 𝐺 be a lexicographical Gröbner basis of a zero-dimensional ideal
ℐ ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀. Then, Lextriangular(𝐺) computes regular chains
(optionally normalized) 𝑇1, . . . , 𝑇𝑒 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ so that
𝑉 (𝐺) = ∪𝑒

𝑖=1𝑉 (𝑇𝑖). (Daniel Lazard, 1992).
∎ This is done at a cost which is at most that inverting at most #𝐺

polynomials modulo one of the ideals ∐︀𝑇1̃︀, . . . , ∐︀𝑇𝑒̃︀.
∎ This is practically very effective.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 22 / 44



Triangular decompositions: the incremental approach

∎ Let 𝑓 ∈ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ and 𝑇 ⊆ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ be a regular chain.

∎ The intersection 𝑉 (𝑓) ∩𝑊 (𝑇 ) is approximated by the function call
Intersect(𝑓, 𝑇 ) , which returns regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ k(︀𝑋⌋︀ s.t.:

𝑉 (𝑓) ∩𝑊 (𝑇 ) ⊆ 𝑊 (𝑇1) ∪⋯ ∪𝑊 (𝑇𝑒) ⊆ 𝑉 (𝑓) ∩𝑊 (𝑇 ),

where 𝑊 (𝑇 ) denotes the Zariski closure of 𝑊 (𝑇 ).
∎ Given 𝑓1, . . . , 𝑓𝑚 ∈ k(︀𝑥1, . . . , 𝑥𝑛⌋︀, one can solve 𝑓1 = ⋯ = 𝑓𝑚 = 0 using

repeated calls to Intersect.
∎ Indeed, if 𝑉 (𝑓1, . . . , 𝑓𝑚−1) = ∪𝑒

𝑖=1𝑊 (𝑇𝑖), then we have

𝑉 (𝑓1, . . . , 𝑓𝑚) = ∪𝑒
𝑖=1 Intersect(𝑓𝑚, 𝑇𝑖).

(Daniel Lazard 1991), (M. 2000), (Changbo Chen & M. 2011-2012).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 23 / 44



Triangular decompositions: the incremental approach

∎ Let 𝑓 ∈ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ and 𝑇 ⊆ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ be a regular chain.
∎ The intersection 𝑉 (𝑓) ∩𝑊 (𝑇 ) is approximated by the function call

Intersect(𝑓, 𝑇 ) , which returns regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ k(︀𝑋⌋︀ s.t.:

𝑉 (𝑓) ∩𝑊 (𝑇 ) ⊆ 𝑊 (𝑇1) ∪⋯ ∪𝑊 (𝑇𝑒) ⊆ 𝑉 (𝑓) ∩𝑊 (𝑇 ),

where 𝑊 (𝑇 ) denotes the Zariski closure of 𝑊 (𝑇 ).

∎ Given 𝑓1, . . . , 𝑓𝑚 ∈ k(︀𝑥1, . . . , 𝑥𝑛⌋︀, one can solve 𝑓1 = ⋯ = 𝑓𝑚 = 0 using
repeated calls to Intersect.

∎ Indeed, if 𝑉 (𝑓1, . . . , 𝑓𝑚−1) = ∪𝑒
𝑖=1𝑊 (𝑇𝑖), then we have

𝑉 (𝑓1, . . . , 𝑓𝑚) = ∪𝑒
𝑖=1 Intersect(𝑓𝑚, 𝑇𝑖).

(Daniel Lazard 1991), (M. 2000), (Changbo Chen & M. 2011-2012).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 23 / 44



Triangular decompositions: the incremental approach

∎ Let 𝑓 ∈ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ and 𝑇 ⊆ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ be a regular chain.
∎ The intersection 𝑉 (𝑓) ∩𝑊 (𝑇 ) is approximated by the function call

Intersect(𝑓, 𝑇 ) , which returns regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ k(︀𝑋⌋︀ s.t.:

𝑉 (𝑓) ∩𝑊 (𝑇 ) ⊆ 𝑊 (𝑇1) ∪⋯ ∪𝑊 (𝑇𝑒) ⊆ 𝑉 (𝑓) ∩𝑊 (𝑇 ),

where 𝑊 (𝑇 ) denotes the Zariski closure of 𝑊 (𝑇 ).
∎ Given 𝑓1, . . . , 𝑓𝑚 ∈ k(︀𝑥1, . . . , 𝑥𝑛⌋︀, one can solve 𝑓1 = ⋯ = 𝑓𝑚 = 0 using

repeated calls to Intersect.

∎ Indeed, if 𝑉 (𝑓1, . . . , 𝑓𝑚−1) = ∪𝑒
𝑖=1𝑊 (𝑇𝑖), then we have

𝑉 (𝑓1, . . . , 𝑓𝑚) = ∪𝑒
𝑖=1 Intersect(𝑓𝑚, 𝑇𝑖).

(Daniel Lazard 1991), (M. 2000), (Changbo Chen & M. 2011-2012).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 23 / 44



Triangular decompositions: the incremental approach

∎ Let 𝑓 ∈ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ and 𝑇 ⊆ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ be a regular chain.
∎ The intersection 𝑉 (𝑓) ∩𝑊 (𝑇 ) is approximated by the function call

Intersect(𝑓, 𝑇 ) , which returns regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ k(︀𝑋⌋︀ s.t.:

𝑉 (𝑓) ∩𝑊 (𝑇 ) ⊆ 𝑊 (𝑇1) ∪⋯ ∪𝑊 (𝑇𝑒) ⊆ 𝑉 (𝑓) ∩𝑊 (𝑇 ),

where 𝑊 (𝑇 ) denotes the Zariski closure of 𝑊 (𝑇 ).
∎ Given 𝑓1, . . . , 𝑓𝑚 ∈ k(︀𝑥1, . . . , 𝑥𝑛⌋︀, one can solve 𝑓1 = ⋯ = 𝑓𝑚 = 0 using

repeated calls to Intersect.
∎ Indeed, if 𝑉 (𝑓1, . . . , 𝑓𝑚−1) = ∪𝑒

𝑖=1𝑊 (𝑇𝑖), then we have

𝑉 (𝑓1, . . . , 𝑓𝑚) = ∪𝑒
𝑖=1 Intersect(𝑓𝑚, 𝑇𝑖).

(Daniel Lazard 1991), (M. 2000), (Changbo Chen & M. 2011-2012).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 23 / 44



Outline

1. Triangular decompositions in polynomial system solving

2. Modular methods in polynomial system solving

3. A Modular methods for incremental triangular decompositions

4. Conclusions

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 24 / 44



Computing by homomotphic images: principles,

Examples

∎ The computation of the determinant of an integer matrix using the
Chinese Remaindering Theorem.

∎ Since resultants are determinants, similar strategies apply.
∎ A more advanced example is the computation of the GCD of univariate

integer polynomials, again using CRT.
∎ See the book by von zur Gathen & Gerhard.

Advantages and issues

∎ Modular methods (1) may control expression swell, (2) allow sharper
implementation (fine control memory), (3) open the door to
FFT-based arithmetic, and (4) provide opportunities for concurrency.

∎ Modular methods are (1) generally harder to implement than direct
methods, and (2) usually require change of representations which may
come with significant costs in terms of memory consumption.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 25 / 44



Computing by homomotphic images: principles,

Examples

∎ The computation of the determinant of an integer matrix using the
Chinese Remaindering Theorem.

∎ Since resultants are determinants, similar strategies apply.

∎ A more advanced example is the computation of the GCD of univariate
integer polynomials, again using CRT.

∎ See the book by von zur Gathen & Gerhard.

Advantages and issues

∎ Modular methods (1) may control expression swell, (2) allow sharper
implementation (fine control memory), (3) open the door to
FFT-based arithmetic, and (4) provide opportunities for concurrency.

∎ Modular methods are (1) generally harder to implement than direct
methods, and (2) usually require change of representations which may
come with significant costs in terms of memory consumption.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 25 / 44



Computing by homomotphic images: principles,

Examples

∎ The computation of the determinant of an integer matrix using the
Chinese Remaindering Theorem.

∎ Since resultants are determinants, similar strategies apply.
∎ A more advanced example is the computation of the GCD of univariate

integer polynomials, again using CRT.

∎ See the book by von zur Gathen & Gerhard.

Advantages and issues

∎ Modular methods (1) may control expression swell, (2) allow sharper
implementation (fine control memory), (3) open the door to
FFT-based arithmetic, and (4) provide opportunities for concurrency.

∎ Modular methods are (1) generally harder to implement than direct
methods, and (2) usually require change of representations which may
come with significant costs in terms of memory consumption.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 25 / 44



Computing by homomotphic images: principles,

Examples

∎ The computation of the determinant of an integer matrix using the
Chinese Remaindering Theorem.

∎ Since resultants are determinants, similar strategies apply.
∎ A more advanced example is the computation of the GCD of univariate

integer polynomials, again using CRT.
∎ See the book by von zur Gathen & Gerhard.

Advantages and issues

∎ Modular methods (1) may control expression swell, (2) allow sharper
implementation (fine control memory), (3) open the door to
FFT-based arithmetic, and (4) provide opportunities for concurrency.

∎ Modular methods are (1) generally harder to implement than direct
methods, and (2) usually require change of representations which may
come with significant costs in terms of memory consumption.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 25 / 44



Computing by homomotphic images: principles,

Examples

∎ The computation of the determinant of an integer matrix using the
Chinese Remaindering Theorem.

∎ Since resultants are determinants, similar strategies apply.
∎ A more advanced example is the computation of the GCD of univariate

integer polynomials, again using CRT.
∎ See the book by von zur Gathen & Gerhard.

Advantages and issues

∎ Modular methods (1) may control expression swell, (2) allow sharper
implementation (fine control memory), (3) open the door to
FFT-based arithmetic, and (4) provide opportunities for concurrency.

∎ Modular methods are (1) generally harder to implement than direct
methods, and (2) usually require change of representations which may
come with significant costs in terms of memory consumption.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 25 / 44



Computing by homomotphic images: principles,

Examples

∎ The computation of the determinant of an integer matrix using the
Chinese Remaindering Theorem.

∎ Since resultants are determinants, similar strategies apply.
∎ A more advanced example is the computation of the GCD of univariate

integer polynomials, again using CRT.
∎ See the book by von zur Gathen & Gerhard.

Advantages and issues

∎ Modular methods (1) may control expression swell, (2) allow sharper
implementation (fine control memory), (3) open the door to
FFT-based arithmetic, and (4) provide opportunities for concurrency.

∎ Modular methods are (1) generally harder to implement than direct
methods, and (2) usually require change of representations which may
come with significant costs in terms of memory consumption.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 25 / 44



Expression swell may sometimes be handled in other ways
● Consider the system 𝐹 (Barry Trager).

−𝑥5 + 𝑦5 − 3𝑦 − 1 = 5𝑦4 − 3 = −20𝑥 + 𝑦 − 𝑧 = 0

We solve it for 𝑧 < 𝑦 < 𝑥.
● 𝑉 (𝐹 ) is equiprojectable and its Lazard triangular set is

∎
11474127946569256007468861967138822599454632253404776870051199476222619269004890144761853439484671057123097693465191381050813704562732917125293370932479130541598163953960078201654747916507320573574680356823040𝑥−
1771260505008202862102854051702189834144507041921400912212854357946960933195335641858396501896935850288388698973423657024874890168951887006119520716403898588447265625000000000000𝑧19+
6993494167255643877060419555161219397297718310661681373013610473433161675295215097739765468198629739368658992144459186504824936653303907728642932110182220458984375000000000000000𝑧18+
46980330573720043696285723094038459435169014560960809457932826698816864853909365786661752359672134274602580990491031583381442373098978089863389116690573928381886816436810143422403125𝑧17−
362457794998087226523064237197118238681455387434685379217170814307753153223785029557758914206492139656047158750881706208736371102082285270209948560334845112137055928302241429687500000𝑧16+
1825588409831441292570286016853843732976447711290921201282663597873225040956392206905741146687704996955957543164892852708765201681735455663532400560561990184217739346093750000000000000𝑧15+
15138417846066725118358222658899878896246722526651227781338839693046020627409354976198946514427454581361714047528896855158315263311055631123529796231583257599303710937500000000000000000𝑧14−
44394335873903477558622382037619903399605543513019193984850811034401539767435244582975861827087564468519794770271434211676417079225209120663140736918184704321681411620260946061817664157500𝑧13−
239889463831973885970439654459159240773157947028995584430781544269432684180568707791767576191787113033986469119189293532827387996841920408461551066623181822838810854143891280165251250000000𝑧12+
2738339662798997128827712967353520807578712156161195412624338459316853569080754130154719452119622862823530609072130944805722667158059695598771740436061650119196713974446586975000000000000000𝑧11−
15237133948658997778693395344596342126523231688102858941028295140149607477956051848066457333497202284356641427141996353739796250479018624174619989841534614074349477755996093750000000000000000𝑧10+
48563913474106327770615609511108962756349408870293446119857242983280899281287041276597414703953142847110970543541965415369819771789164016371916892583484885932065222266474244223656870580763404750𝑧9+
182770901475269211462030828375934181004032581754339209581456763239413822566355167569080400536438012882499416890307268474234594753941991910223913471336544588355841793697886482347774623132375000000𝑧8+
309191296130950729973668595368021125635249693248658751381279239017170403224531631090451630403456902301090463541541208661015512101696917723097258264871336817986092045758275049045390250000000000000𝑧7−
6838688396641645490945090868618366582490420637673970853279869471018348887091817749546675847593376908651767451450243404728169565283801174082247345442363224813502338696761842209062500000000000000000𝑧6−
74815682380070752593065205631091355818115420146560706379886171073303776505335730603765529125626467971633284964641482528987570423158923499017031906462266550721041958679333491247172414080955401845651420𝑧5−
154608045527569292338754337973797843824713701855230758768236174292780150592090630056630234512064066763987236066826571445077192641952424283276680662979283353386614928379571789390957015570270631450000000𝑧4−
124695385819578642285275287975402015668994502200477065094640515598601115130175167063705343665239193213631330215705606292594773399242228508627801381881595789007869020418417852791444860110175000000000000𝑧3−
66152659857188245320424888024222967738184293737891699176976594293187674688484864881423871033576765065422479234984449961643090211269389726039235842212801812250522818211946896210922615625000000000000000𝑧2+
573598714920124956474610718803150703376812978417179178775576117319500000077857129232958889104193427114987500929833686714791341712743162700766075396541379832681132358445310329142895528887477470724804102079717𝑧+
239787108649287987286424755607482454864690786827841184696976286133386057573817722098997859322480446751288360706756986017238407677469601203785469989972240351121714956603188344506951151541954650850823956500000

∎
573706397328462800373443098356941129972731612670238843502559973811130963450244507238092671974233552856154884673259569052540685228136645856264668546623956527079908197698003910082737395825366028678734017841152𝑦−
1771260505008202862102854051702189834144507041921400912212854357946960933195335641858396501896935850288388698973423657024874890168951887006119520716403898588447265625000000000000𝑧19+
6993494167255643877060419555161219397297718310661681373013610473433161675295215097739765468198629739368658992144459186504824936653303907728642932110182220458984375000000000000000𝑧18+
46980330573720043696285723094038459435169014560960809457932826698816864853909365786661752359672134274602580990491031583381442373098978089863389116690573928381886816436810143422403125𝑧17−
362457794998087226523064237197118238681455387434685379217170814307753153223785029557758914206492139656047158750881706208736371102082285270209948560334845112137055928302241429687500000𝑧16+
1825588409831441292570286016853843732976447711290921201282663597873225040956392206905741146687704996955957543164892852708765201681735455663532400560561990184217739346093750000000000000𝑧15+
15138417846066725118358222658899878896246722526651227781338839693046020627409354976198946514427454581361714047528896855158315263311055631123529796231583257599303710937500000000000000000𝑧14−
44394335873903477558622382037619903399605543513019193984850811034401539767435244582975861827087564468519794770271434211676417079225209120663140736918184704321681411620260946061817664157500𝑧13−
239889463831973885970439654459159240773157947028995584430781544269432684180568707791767576191787113033986469119189293532827387996841920408461551066623181822838810854143891280165251250000000𝑧12+
2738339662798997128827712967353520807578712156161195412624338459316853569080754130154719452119622862823530609072130944805722667158059695598771740436061650119196713974446586975000000000000000𝑧11−
15237133948658997778693395344596342126523231688102858941028295140149607477956051848066457333497202284356641427141996353739796250479018624174619989841534614074349477755996093750000000000000000𝑧10+
48563913474106327770615609511108962756349408870293446119857242983280899281287041276597414703953142847110970543541965415369819771789164016371916892583484885932065222266474244223656870580763404750𝑧9+
182770901475269211462030828375934181004032581754339209581456763239413822566355167569080400536438012882499416890307268474234594753941991910223913471336544588355841793697886482347774623132375000000𝑧8+
309191296130950729973668595368021125635249693248658751381279239017170403224531631090451630403456902301090463541541208661015512101696917723097258264871336817986092045758275049045390250000000000000𝑧7−
6838688396641645490945090868618366582490420637673970853279869471018348887091817749546675847593376908651767451450243404728169565283801174082247345442363224813502338696761842209062500000000000000000𝑧6−
74815682380070752593065205631091355818115420146560706379886171073303776505335730603765529125626467971633284964641482528987570423158923499017031906462266550721041958679333491247172414080955401845651420𝑧5−
154608045527569292338754337973797843824713701855230758768236174292780150592090630056630234512064066763987236066826571445077192641952424283276680662979283353386614928379571789390957015570270631450000000𝑧4−
124695385819578642285275287975402015668994502200477065094640515598601115130175167063705343665239193213631330215705606292594773399242228508627801381881595789007869020418417852791444860110175000000000000𝑧3−
66152659857188245320424888024222967738184293737891699176976594293187674688484864881423871033576765065422479234984449961643090211269389726039235842212801812250522818211946896210922615625000000000000000𝑧2−
107682408337843898832379553790426595918634253059664726983856491630963372387378005133782870040125741167383743425882337749343515393483155498593150082576694398775839252693580939841866937888557953929915761435𝑧+
239787108649287987286424755607482454864690786827841184696976286133386057573817722098997859322480446751288360706756986017238407677469601203785469989972240351121714956603188344506951151541954650850823956500000

∎ 3125𝑧20 − 9375𝑧16 − 40000000000𝑧15 − 2015999988750𝑧12 − 1560000000000𝑧11 + 192000000000000000𝑧10 −
12165125356800006750𝑧8 − 14745602232000000000𝑧7 − 6528000000000000000𝑧6 −
409600000000000000000000𝑧5 − 16986908639233347839997975𝑧4 − 14155767152640302400000000𝑧3 −
5898238732800000000000000𝑧2 − 1228800000000000000000000𝑧 − 6195303619231982878732441600243

● Applying the transformation of Dahan and Schost leads to 1787 characters.
∎ (20𝑧19 + (−48𝑧15)+ (−192000000𝑧14)+ (−(38707199784⇑5)𝑧11)+ (−5491200000𝑧10)+ 614400000000000𝑧9 +
(−(778568022835200432⇑25)𝑧7) + (−33030148999680000𝑧6) + (−12533760000000000𝑧5) +
(−655360000000000000000𝑧4) + (−(2717905382277335654399676⇑125)𝑧3) +
(−13589536466534690304000𝑧2) + (−3774872788992000000000𝑧) − 393216000000000000000)𝑥 +
3200000𝑧15 + 161280000𝑧12 + 124800000𝑧11 + (−30720000000000𝑧10) + 1946419628544000𝑧8 +
2359296178560000𝑧7 + 1044480000000000𝑧6 + 98304000000000000000𝑧5 + 4076859878277227827200𝑧4 +
3397384824422424192000𝑧3 + 1415577397248000000000𝑧2 + 294912000000000000000𝑧 +
1982496995079656780596195328

∎ (20𝑧19 + (−48𝑧15)+ (−192000000𝑧14)+ (−(38707199784⇑5)𝑧11)+ (−5491200000𝑧10)+ 614400000000000𝑧9 +
(−(778568022835200432⇑25)𝑧7) + (−33030148999680000𝑧6) + (−12533760000000000𝑧5) +
(−655360000000000000000𝑧4) + (−(2717905382277335654399676⇑125)𝑧3) +
(−13589536466534690304000𝑧2) + (−3774872788992000000000𝑧) − 393216000000000000000)𝑦 + (−12𝑧16) +
(−(9676799856⇑5)𝑧12) + (−1996800000𝑧11) + (−(194642219980800648⇑25)𝑧8) + (−14155781713920000𝑧7) +
(−8355840000000000𝑧6) + (−(679471833416273049598704⇑125)𝑧4) + (−9059676821914761216000𝑧3) +
(−5662307155968000000000𝑧2) + (−1572864000000000000000𝑧) + (−2038432221757477324800972⇑625)

∎ 𝑧20 + (−3𝑧16) + (−12800000𝑧15) + (−(3225599982⇑5)𝑧12) + (−499200000𝑧11) + 61440000000000𝑧10 +
(−(97321002854400054⇑25)𝑧8) + (−4718592714240000𝑧7) + (−2088960000000000𝑧6) +
(−131072000000000000000𝑧5)+ (−(679476345569333913599919⇑125)𝑧4)+ (−4529845488844896768000𝑧3)+
(−1887436394496000000000𝑧2) + (−393216000000000000000𝑧) +
(−6195303619231982878732441600243⇑3125)

● One can do better! Here’s the regular chain produced by the
Triangularize algorithm of the RegularChains library, counting 963
characters.

∎ 20𝑥 − 1𝑦 + 𝑧
∎
((4375𝑧12 + 52800011625𝑧8 + 32000000000𝑧7 + 110591902080002925𝑧4 + 61439980800000000𝑧3 + 12800000000000000𝑧2 + 56623117271041036800027)𝑦−
1875𝑧13 − 9600010125𝑧9 + 2000000000𝑧8 − 7372714752004545𝑧5 + 30720002400000000𝑧4 +
12800000000000000𝑧3 − 22118403456000135𝑧 + 23592963686400144000000

∎ 3125𝑧20 − 9375𝑧16 − 40000000000𝑧15 − 2015999988750𝑧12 − 1560000000000𝑧11 + 192000000000000000𝑧10 −
12165125356800006750𝑧8 − 14745602232000000000𝑧7 − 6528000000000000000𝑧6 −
409600000000000000000000𝑧5 − 16986908639233347839997975𝑧4 − 14155767152640302400000000𝑧3 −
5898238732800000000000000𝑧2 − 1228800000000000000000000𝑧 − 6195303619231982878732441600243

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 26 / 44



Trace algorithms

∎ Consider an algorithm Solver(𝐹 ) taking 𝐹 ⊆ Z(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀
computing a finite sequence 𝒢 of finite sets 𝐺1, 𝐺2, . . . ,⊆ ∐︀𝐹 ̃︀ until
𝐺𝑖 = 𝐺output satisifies a property, e.g. Gröbner basis of ∐︀𝐹 ̃︀ or
Wu-characteristic set of 𝐹 .

∎ Endow all such finite sequences 𝒢 with a rank function so that, for
every well-chosen prime number 𝑝, the sequence computed by
Solver(𝐹 mod 𝑝) has maximum rank iff
Solver(𝐹 mod 𝑝) = 𝐺output mod 𝑝.

∎ For polynomial GCD computations (with 𝑛 = 1) one can simply use
the degree as rank function.

∎ For Gröbner bases, one can use the Hilbert function (Carlo Traverso,
ISSAC 1988), (Jean-Charles Faugère, PASCO 1994), (Elizabeth
Arnold, JSC 2003)

∎ For characteristic sets, one can use the notion of rank as defined by
Ritt and Wu (M. ACA 2003).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 27 / 44



Trace algorithms

∎ Consider an algorithm Solver(𝐹 ) taking 𝐹 ⊆ Z(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀
computing a finite sequence 𝒢 of finite sets 𝐺1, 𝐺2, . . . ,⊆ ∐︀𝐹 ̃︀ until
𝐺𝑖 = 𝐺output satisifies a property, e.g. Gröbner basis of ∐︀𝐹 ̃︀ or
Wu-characteristic set of 𝐹 .

∎ Endow all such finite sequences 𝒢 with a rank function so that, for
every well-chosen prime number 𝑝, the sequence computed by
Solver(𝐹 mod 𝑝) has maximum rank iff
Solver(𝐹 mod 𝑝) = 𝐺output mod 𝑝.

∎ For polynomial GCD computations (with 𝑛 = 1) one can simply use
the degree as rank function.

∎ For Gröbner bases, one can use the Hilbert function (Carlo Traverso,
ISSAC 1988), (Jean-Charles Faugère, PASCO 1994), (Elizabeth
Arnold, JSC 2003)

∎ For characteristic sets, one can use the notion of rank as defined by
Ritt and Wu (M. ACA 2003).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 27 / 44



Trace algorithms

∎ Consider an algorithm Solver(𝐹 ) taking 𝐹 ⊆ Z(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀
computing a finite sequence 𝒢 of finite sets 𝐺1, 𝐺2, . . . ,⊆ ∐︀𝐹 ̃︀ until
𝐺𝑖 = 𝐺output satisifies a property, e.g. Gröbner basis of ∐︀𝐹 ̃︀ or
Wu-characteristic set of 𝐹 .

∎ Endow all such finite sequences 𝒢 with a rank function so that, for
every well-chosen prime number 𝑝, the sequence computed by
Solver(𝐹 mod 𝑝) has maximum rank iff
Solver(𝐹 mod 𝑝) = 𝐺output mod 𝑝.

∎ For polynomial GCD computations (with 𝑛 = 1) one can simply use
the degree as rank function.

∎ For Gröbner bases, one can use the Hilbert function (Carlo Traverso,
ISSAC 1988), (Jean-Charles Faugère, PASCO 1994), (Elizabeth
Arnold, JSC 2003)

∎ For characteristic sets, one can use the notion of rank as defined by
Ritt and Wu (M. ACA 2003).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 27 / 44



Trace algorithms

∎ Consider an algorithm Solver(𝐹 ) taking 𝐹 ⊆ Z(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀
computing a finite sequence 𝒢 of finite sets 𝐺1, 𝐺2, . . . ,⊆ ∐︀𝐹 ̃︀ until
𝐺𝑖 = 𝐺output satisifies a property, e.g. Gröbner basis of ∐︀𝐹 ̃︀ or
Wu-characteristic set of 𝐹 .

∎ Endow all such finite sequences 𝒢 with a rank function so that, for
every well-chosen prime number 𝑝, the sequence computed by
Solver(𝐹 mod 𝑝) has maximum rank iff
Solver(𝐹 mod 𝑝) = 𝐺output mod 𝑝.

∎ For polynomial GCD computations (with 𝑛 = 1) one can simply use
the degree as rank function.

∎ For Gröbner bases, one can use the Hilbert function (Carlo Traverso,
ISSAC 1988), (Jean-Charles Faugère, PASCO 1994), (Elizabeth
Arnold, JSC 2003)

∎ For characteristic sets, one can use the notion of rank as defined by
Ritt and Wu (M. ACA 2003).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 27 / 44



Trace algorithms

∎ Consider an algorithm Solver(𝐹 ) taking 𝐹 ⊆ Z(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀
computing a finite sequence 𝒢 of finite sets 𝐺1, 𝐺2, . . . ,⊆ ∐︀𝐹 ̃︀ until
𝐺𝑖 = 𝐺output satisifies a property, e.g. Gröbner basis of ∐︀𝐹 ̃︀ or
Wu-characteristic set of 𝐹 .

∎ Endow all such finite sequences 𝒢 with a rank function so that, for
every well-chosen prime number 𝑝, the sequence computed by
Solver(𝐹 mod 𝑝) has maximum rank iff
Solver(𝐹 mod 𝑝) = 𝐺output mod 𝑝.

∎ For polynomial GCD computations (with 𝑛 = 1) one can simply use
the degree as rank function.

∎ For Gröbner bases, one can use the Hilbert function (Carlo Traverso,
ISSAC 1988), (Jean-Charles Faugère, PASCO 1994), (Elizabeth
Arnold, JSC 2003)

∎ For characteristic sets, one can use the notion of rank as defined by
Ritt and Wu (M. ACA 2003).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 27 / 44



The case of decomposition algorithms

∎ Consider an algorithm Solver(𝐹 ) taking 𝐹 ⊆ Q(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀
(assumed to be zero-dimensional for simplicity) computing a
triangular decomposition into regular chain 𝑇1, . . . , 𝑇𝑒.

∎ The algorithm EquiprojectableDecompositon(𝑇1, . . . , 𝑇𝑒) returns
a canonical triangular decomposition of 𝑉 (𝐹 ) based on “geometrical”
considerations.

∎ Moreover, if the prime 𝑝 is large enough, then the decompositions
EquiprojectableDecompositon(Solver(F mod 𝑝)) and
EquiprojectableDecompositon(Solver(𝐹 )) mod 𝑝 match.

∎ Using Hensel lifting techniques (Schost 2002) this leads to an
effective modular method for Solver(𝐹 ) (Dahan, M., Schost, Wu &
Xie ISSAC 2005).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 28 / 44



The case of decomposition algorithms

∎ Consider an algorithm Solver(𝐹 ) taking 𝐹 ⊆ Q(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀
(assumed to be zero-dimensional for simplicity) computing a
triangular decomposition into regular chain 𝑇1, . . . , 𝑇𝑒.

∎ The algorithm EquiprojectableDecompositon(𝑇1, . . . , 𝑇𝑒) returns
a canonical triangular decomposition of 𝑉 (𝐹 ) based on “geometrical”
considerations.

∎ Moreover, if the prime 𝑝 is large enough, then the decompositions
EquiprojectableDecompositon(Solver(F mod 𝑝)) and
EquiprojectableDecompositon(Solver(𝐹 )) mod 𝑝 match.

∎ Using Hensel lifting techniques (Schost 2002) this leads to an
effective modular method for Solver(𝐹 ) (Dahan, M., Schost, Wu &
Xie ISSAC 2005).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 28 / 44



The case of decomposition algorithms

∎ Consider an algorithm Solver(𝐹 ) taking 𝐹 ⊆ Q(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀
(assumed to be zero-dimensional for simplicity) computing a
triangular decomposition into regular chain 𝑇1, . . . , 𝑇𝑒.

∎ The algorithm EquiprojectableDecompositon(𝑇1, . . . , 𝑇𝑒) returns
a canonical triangular decomposition of 𝑉 (𝐹 ) based on “geometrical”
considerations.

∎ Moreover, if the prime 𝑝 is large enough, then the decompositions
EquiprojectableDecompositon(Solver(F mod 𝑝)) and
EquiprojectableDecompositon(Solver(𝐹 )) mod 𝑝 match.

∎ Using Hensel lifting techniques (Schost 2002) this leads to an
effective modular method for Solver(𝐹 ) (Dahan, M., Schost, Wu &
Xie ISSAC 2005).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 28 / 44



The case of decomposition algorithms

∎ Consider an algorithm Solver(𝐹 ) taking 𝐹 ⊆ Q(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀
(assumed to be zero-dimensional for simplicity) computing a
triangular decomposition into regular chain 𝑇1, . . . , 𝑇𝑒.

∎ The algorithm EquiprojectableDecompositon(𝑇1, . . . , 𝑇𝑒) returns
a canonical triangular decomposition of 𝑉 (𝐹 ) based on “geometrical”
considerations.

∎ Moreover, if the prime 𝑝 is large enough, then the decompositions
EquiprojectableDecompositon(Solver(F mod 𝑝)) and
EquiprojectableDecompositon(Solver(𝐹 )) mod 𝑝 match.

∎ Using Hensel lifting techniques (Schost 2002) this leads to an
effective modular method for Solver(𝐹 ) (Dahan, M., Schost, Wu &
Xie ISSAC 2005).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 28 / 44



Issues with iterated subresultant chains (1/2)

∎ Testing regularity of 𝑝 ∈ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ w.r.t. regular chain
𝑇 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ is equivalent to checking whether resultant(𝑇, 𝑝)
is zero or not.

∎ Moreover, elimninating variables with pseudo-division (or variants)
leads to computing cascade of (pseudo-)remainder sequences and
thus (multiples of) iterated resultants.

∎ Those iterated resultants usually contain large extraneous factors.
∎ In (C. Chen & M. JSC 2012) we give examples of 3 zero-dimensional

systems with 43 = 64 solutions where the extraneous factors have
degree in the 1000’s.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 29 / 44



Issues with iterated subresultant chains (1/2)

∎ Testing regularity of 𝑝 ∈ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ w.r.t. regular chain
𝑇 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ is equivalent to checking whether resultant(𝑇, 𝑝)
is zero or not.

∎ Moreover, elimninating variables with pseudo-division (or variants)
leads to computing cascade of (pseudo-)remainder sequences and
thus (multiples of) iterated resultants.

∎ Those iterated resultants usually contain large extraneous factors.
∎ In (C. Chen & M. JSC 2012) we give examples of 3 zero-dimensional

systems with 43 = 64 solutions where the extraneous factors have
degree in the 1000’s.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 29 / 44



Issues with iterated subresultant chains (1/2)

∎ Testing regularity of 𝑝 ∈ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ w.r.t. regular chain
𝑇 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ is equivalent to checking whether resultant(𝑇, 𝑝)
is zero or not.

∎ Moreover, elimninating variables with pseudo-division (or variants)
leads to computing cascade of (pseudo-)remainder sequences and
thus (multiples of) iterated resultants.

∎ Those iterated resultants usually contain large extraneous factors.

∎ In (C. Chen & M. JSC 2012) we give examples of 3 zero-dimensional
systems with 43 = 64 solutions where the extraneous factors have
degree in the 1000’s.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 29 / 44



Issues with iterated subresultant chains (1/2)

∎ Testing regularity of 𝑝 ∈ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ w.r.t. regular chain
𝑇 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ is equivalent to checking whether resultant(𝑇, 𝑝)
is zero or not.

∎ Moreover, elimninating variables with pseudo-division (or variants)
leads to computing cascade of (pseudo-)remainder sequences and
thus (multiples of) iterated resultants.

∎ Those iterated resultants usually contain large extraneous factors.
∎ In (C. Chen & M. JSC 2012) we give examples of 3 zero-dimensional

systems with 43 = 64 solutions where the extraneous factors have
degree in the 1000’s.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 29 / 44



Issues with iterated subresultant chains (2/2)

∎ Let 𝐶 = {𝑡1, 𝑡2, . . . , 𝑡𝑛} be a zero-dimensional regular chain and 𝑓 be
a polynomial all in k(︀𝑋⌋︀.

∎ For 𝑖 = 1, . . . , 𝑛, we denote by ℎ𝑖, the initial of 𝑡𝑖,
∎ For 𝑖 = 1, . . . , 𝑛 − 1, we define 𝑓𝑖 = res({𝑡𝑖+1, . . . , 𝑡𝑛}, 𝑓) and

𝑒𝑖 = deg(𝑓𝑖, 𝑥𝑖), with 𝑒𝑛 = deg(𝑓, 𝑋𝑛).
∎ Then, the iterated resultant res(𝐶, 𝑓) is given by:

ℎ𝑒1
1
⎛
⎝ ∏

𝛽1∈𝑉𝑀 (𝑡1)
ℎ2(𝛽1)

⎞
⎠

𝑒2

⋯
⎛
⎝ ∏

𝛽𝑛−1∈𝑉𝑀 (𝑡1,...,𝑡𝑛−1)
ℎ𝑛(𝛽𝑛−1)

⎞
⎠

𝑒𝑛

𝑅(𝐶, 𝑓),

where

𝑅(𝐶, 𝑓) =
⎛
⎝ ∏

𝛼∈𝑉𝑀 (𝐶)
𝑓(𝛼)

⎞
⎠

,

and 𝑉𝑀(𝐶) is the set of the zeros of 𝐶 counted with multiplicity.
∎ Thus, if ℎ1 = ⋯ = ℎ𝑛 = 1, then we simply have:

res(𝐶, 𝑓) = 𝑅(𝐶, 𝑓).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 30 / 44



Issues with iterated subresultant chains (2/2)

∎ Let 𝐶 = {𝑡1, 𝑡2, . . . , 𝑡𝑛} be a zero-dimensional regular chain and 𝑓 be
a polynomial all in k(︀𝑋⌋︀.

∎ For 𝑖 = 1, . . . , 𝑛, we denote by ℎ𝑖, the initial of 𝑡𝑖,

∎ For 𝑖 = 1, . . . , 𝑛 − 1, we define 𝑓𝑖 = res({𝑡𝑖+1, . . . , 𝑡𝑛}, 𝑓) and
𝑒𝑖 = deg(𝑓𝑖, 𝑥𝑖), with 𝑒𝑛 = deg(𝑓, 𝑋𝑛).

∎ Then, the iterated resultant res(𝐶, 𝑓) is given by:

ℎ𝑒1
1
⎛
⎝ ∏

𝛽1∈𝑉𝑀 (𝑡1)
ℎ2(𝛽1)

⎞
⎠

𝑒2

⋯
⎛
⎝ ∏

𝛽𝑛−1∈𝑉𝑀 (𝑡1,...,𝑡𝑛−1)
ℎ𝑛(𝛽𝑛−1)

⎞
⎠

𝑒𝑛

𝑅(𝐶, 𝑓),

where

𝑅(𝐶, 𝑓) =
⎛
⎝ ∏

𝛼∈𝑉𝑀 (𝐶)
𝑓(𝛼)

⎞
⎠

,

and 𝑉𝑀(𝐶) is the set of the zeros of 𝐶 counted with multiplicity.
∎ Thus, if ℎ1 = ⋯ = ℎ𝑛 = 1, then we simply have:

res(𝐶, 𝑓) = 𝑅(𝐶, 𝑓).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 30 / 44



Issues with iterated subresultant chains (2/2)

∎ Let 𝐶 = {𝑡1, 𝑡2, . . . , 𝑡𝑛} be a zero-dimensional regular chain and 𝑓 be
a polynomial all in k(︀𝑋⌋︀.

∎ For 𝑖 = 1, . . . , 𝑛, we denote by ℎ𝑖, the initial of 𝑡𝑖,
∎ For 𝑖 = 1, . . . , 𝑛 − 1, we define 𝑓𝑖 = res({𝑡𝑖+1, . . . , 𝑡𝑛}, 𝑓) and

𝑒𝑖 = deg(𝑓𝑖, 𝑥𝑖), with 𝑒𝑛 = deg(𝑓, 𝑋𝑛).

∎ Then, the iterated resultant res(𝐶, 𝑓) is given by:

ℎ𝑒1
1
⎛
⎝ ∏

𝛽1∈𝑉𝑀 (𝑡1)
ℎ2(𝛽1)

⎞
⎠

𝑒2

⋯
⎛
⎝ ∏

𝛽𝑛−1∈𝑉𝑀 (𝑡1,...,𝑡𝑛−1)
ℎ𝑛(𝛽𝑛−1)

⎞
⎠

𝑒𝑛

𝑅(𝐶, 𝑓),

where

𝑅(𝐶, 𝑓) =
⎛
⎝ ∏

𝛼∈𝑉𝑀 (𝐶)
𝑓(𝛼)

⎞
⎠

,

and 𝑉𝑀(𝐶) is the set of the zeros of 𝐶 counted with multiplicity.
∎ Thus, if ℎ1 = ⋯ = ℎ𝑛 = 1, then we simply have:

res(𝐶, 𝑓) = 𝑅(𝐶, 𝑓).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 30 / 44



Issues with iterated subresultant chains (2/2)

∎ Let 𝐶 = {𝑡1, 𝑡2, . . . , 𝑡𝑛} be a zero-dimensional regular chain and 𝑓 be
a polynomial all in k(︀𝑋⌋︀.

∎ For 𝑖 = 1, . . . , 𝑛, we denote by ℎ𝑖, the initial of 𝑡𝑖,
∎ For 𝑖 = 1, . . . , 𝑛 − 1, we define 𝑓𝑖 = res({𝑡𝑖+1, . . . , 𝑡𝑛}, 𝑓) and

𝑒𝑖 = deg(𝑓𝑖, 𝑥𝑖), with 𝑒𝑛 = deg(𝑓, 𝑋𝑛).
∎ Then, the iterated resultant res(𝐶, 𝑓) is given by:

ℎ𝑒1
1
⎛
⎝ ∏

𝛽1∈𝑉𝑀 (𝑡1)
ℎ2(𝛽1)

⎞
⎠

𝑒2

⋯
⎛
⎝ ∏

𝛽𝑛−1∈𝑉𝑀 (𝑡1,...,𝑡𝑛−1)
ℎ𝑛(𝛽𝑛−1)

⎞
⎠

𝑒𝑛

𝑅(𝐶, 𝑓),

where

𝑅(𝐶, 𝑓) =
⎛
⎝ ∏

𝛼∈𝑉𝑀 (𝐶)
𝑓(𝛼)

⎞
⎠

,

and 𝑉𝑀(𝐶) is the set of the zeros of 𝐶 counted with multiplicity.

∎ Thus, if ℎ1 = ⋯ = ℎ𝑛 = 1, then we simply have:
res(𝐶, 𝑓) = 𝑅(𝐶, 𝑓).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 30 / 44



Issues with iterated subresultant chains (2/2)

∎ Let 𝐶 = {𝑡1, 𝑡2, . . . , 𝑡𝑛} be a zero-dimensional regular chain and 𝑓 be
a polynomial all in k(︀𝑋⌋︀.

∎ For 𝑖 = 1, . . . , 𝑛, we denote by ℎ𝑖, the initial of 𝑡𝑖,
∎ For 𝑖 = 1, . . . , 𝑛 − 1, we define 𝑓𝑖 = res({𝑡𝑖+1, . . . , 𝑡𝑛}, 𝑓) and

𝑒𝑖 = deg(𝑓𝑖, 𝑥𝑖), with 𝑒𝑛 = deg(𝑓, 𝑋𝑛).
∎ Then, the iterated resultant res(𝐶, 𝑓) is given by:

ℎ𝑒1
1
⎛
⎝ ∏

𝛽1∈𝑉𝑀 (𝑡1)
ℎ2(𝛽1)

⎞
⎠

𝑒2

⋯
⎛
⎝ ∏

𝛽𝑛−1∈𝑉𝑀 (𝑡1,...,𝑡𝑛−1)
ℎ𝑛(𝛽𝑛−1)

⎞
⎠

𝑒𝑛

𝑅(𝐶, 𝑓),

where

𝑅(𝐶, 𝑓) =
⎛
⎝ ∏

𝛼∈𝑉𝑀 (𝐶)
𝑓(𝛼)

⎞
⎠

,

and 𝑉𝑀(𝐶) is the set of the zeros of 𝐶 counted with multiplicity.
∎ Thus, if ℎ1 = ⋯ = ℎ𝑛 = 1, then we simply have:

res(𝐶, 𝑓) = 𝑅(𝐶, 𝑓).
Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 30 / 44



Outline

1. Triangular decompositions in polynomial system solving

2. Modular methods in polynomial system solving

3. A Modular methods for incremental triangular decompositions

4. Conclusions

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 31 / 44



Recall the incremental approach and define our goals

∎ Let 𝑓 ∈ Q(︀𝑋1, . . . , 𝑋𝑛⌋︀ and 𝑇 ⊆ Q(︀𝑋1, . . . , 𝑋𝑛⌋︀ be a regular chain.

∎ The intersection 𝑉 (𝑓) ∩𝑊 (𝑇 ) is approximated by the function call
Intersect(𝑓, 𝑇 ) , which returns regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ k(︀𝑋⌋︀ s.t.:

𝑉 (𝑓) ∩𝑊 (𝑇 ) ⊆ 𝑊 (𝑇1) ∪⋯ ∪𝑊 (𝑇𝑒) ⊆ 𝑉 (𝑓) ∩𝑊 (𝑇 ).
∎ Our goals

1 compute modulo a well-chosen prime as in (Dahan et al., ISSAC 2005)
2 reduce to the case where 𝑇 is zero-dimensional and normalized, by

variable specialization
3 recover the specialized variables, then the rational coefficients.

∎ We want to avoid the recourse to Gröbner bases so as to support:
1 algorithms in differential algebra, and
2 positive-dimensional systems for which methods based on regular

chains may have smaller output.
∎ This is similar in spirit to (Grégoire Lecerf, J. Complex 2001)
∎ However, we avoid random changes of coordinates and support

decompositions in the sense of Lazard.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 32 / 44



Recall the incremental approach and define our goals

∎ Let 𝑓 ∈ Q(︀𝑋1, . . . , 𝑋𝑛⌋︀ and 𝑇 ⊆ Q(︀𝑋1, . . . , 𝑋𝑛⌋︀ be a regular chain.
∎ The intersection 𝑉 (𝑓) ∩𝑊 (𝑇 ) is approximated by the function call

Intersect(𝑓, 𝑇 ) , which returns regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ k(︀𝑋⌋︀ s.t.:

𝑉 (𝑓) ∩𝑊 (𝑇 ) ⊆ 𝑊 (𝑇1) ∪⋯ ∪𝑊 (𝑇𝑒) ⊆ 𝑉 (𝑓) ∩𝑊 (𝑇 ).

∎ Our goals
1 compute modulo a well-chosen prime as in (Dahan et al., ISSAC 2005)
2 reduce to the case where 𝑇 is zero-dimensional and normalized, by

variable specialization
3 recover the specialized variables, then the rational coefficients.

∎ We want to avoid the recourse to Gröbner bases so as to support:
1 algorithms in differential algebra, and
2 positive-dimensional systems for which methods based on regular

chains may have smaller output.
∎ This is similar in spirit to (Grégoire Lecerf, J. Complex 2001)
∎ However, we avoid random changes of coordinates and support

decompositions in the sense of Lazard.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 32 / 44



Recall the incremental approach and define our goals

∎ Let 𝑓 ∈ Q(︀𝑋1, . . . , 𝑋𝑛⌋︀ and 𝑇 ⊆ Q(︀𝑋1, . . . , 𝑋𝑛⌋︀ be a regular chain.
∎ The intersection 𝑉 (𝑓) ∩𝑊 (𝑇 ) is approximated by the function call

Intersect(𝑓, 𝑇 ) , which returns regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ k(︀𝑋⌋︀ s.t.:

𝑉 (𝑓) ∩𝑊 (𝑇 ) ⊆ 𝑊 (𝑇1) ∪⋯ ∪𝑊 (𝑇𝑒) ⊆ 𝑉 (𝑓) ∩𝑊 (𝑇 ).
∎ Our goals

1 compute modulo a well-chosen prime as in (Dahan et al., ISSAC 2005)
2 reduce to the case where 𝑇 is zero-dimensional and normalized, by

variable specialization
3 recover the specialized variables, then the rational coefficients.

∎ We want to avoid the recourse to Gröbner bases so as to support:
1 algorithms in differential algebra, and
2 positive-dimensional systems for which methods based on regular

chains may have smaller output.
∎ This is similar in spirit to (Grégoire Lecerf, J. Complex 2001)
∎ However, we avoid random changes of coordinates and support

decompositions in the sense of Lazard.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 32 / 44



Recall the incremental approach and define our goals

∎ Let 𝑓 ∈ Q(︀𝑋1, . . . , 𝑋𝑛⌋︀ and 𝑇 ⊆ Q(︀𝑋1, . . . , 𝑋𝑛⌋︀ be a regular chain.
∎ The intersection 𝑉 (𝑓) ∩𝑊 (𝑇 ) is approximated by the function call

Intersect(𝑓, 𝑇 ) , which returns regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ k(︀𝑋⌋︀ s.t.:

𝑉 (𝑓) ∩𝑊 (𝑇 ) ⊆ 𝑊 (𝑇1) ∪⋯ ∪𝑊 (𝑇𝑒) ⊆ 𝑉 (𝑓) ∩𝑊 (𝑇 ).
∎ Our goals

1 compute modulo a well-chosen prime as in (Dahan et al., ISSAC 2005)
2 reduce to the case where 𝑇 is zero-dimensional and normalized, by

variable specialization
3 recover the specialized variables, then the rational coefficients.

∎ We want to avoid the recourse to Gröbner bases so as to support:
1 algorithms in differential algebra, and
2 positive-dimensional systems for which methods based on regular

chains may have smaller output.

∎ This is similar in spirit to (Grégoire Lecerf, J. Complex 2001)
∎ However, we avoid random changes of coordinates and support

decompositions in the sense of Lazard.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 32 / 44



Recall the incremental approach and define our goals

∎ Let 𝑓 ∈ Q(︀𝑋1, . . . , 𝑋𝑛⌋︀ and 𝑇 ⊆ Q(︀𝑋1, . . . , 𝑋𝑛⌋︀ be a regular chain.
∎ The intersection 𝑉 (𝑓) ∩𝑊 (𝑇 ) is approximated by the function call

Intersect(𝑓, 𝑇 ) , which returns regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ k(︀𝑋⌋︀ s.t.:

𝑉 (𝑓) ∩𝑊 (𝑇 ) ⊆ 𝑊 (𝑇1) ∪⋯ ∪𝑊 (𝑇𝑒) ⊆ 𝑉 (𝑓) ∩𝑊 (𝑇 ).
∎ Our goals

1 compute modulo a well-chosen prime as in (Dahan et al., ISSAC 2005)
2 reduce to the case where 𝑇 is zero-dimensional and normalized, by

variable specialization
3 recover the specialized variables, then the rational coefficients.

∎ We want to avoid the recourse to Gröbner bases so as to support:
1 algorithms in differential algebra, and
2 positive-dimensional systems for which methods based on regular

chains may have smaller output.
∎ This is similar in spirit to (Grégoire Lecerf, J. Complex 2001)

∎ However, we avoid random changes of coordinates and support
decompositions in the sense of Lazard.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 32 / 44



Recall the incremental approach and define our goals

∎ Let 𝑓 ∈ Q(︀𝑋1, . . . , 𝑋𝑛⌋︀ and 𝑇 ⊆ Q(︀𝑋1, . . . , 𝑋𝑛⌋︀ be a regular chain.
∎ The intersection 𝑉 (𝑓) ∩𝑊 (𝑇 ) is approximated by the function call

Intersect(𝑓, 𝑇 ) , which returns regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ k(︀𝑋⌋︀ s.t.:

𝑉 (𝑓) ∩𝑊 (𝑇 ) ⊆ 𝑊 (𝑇1) ∪⋯ ∪𝑊 (𝑇𝑒) ⊆ 𝑉 (𝑓) ∩𝑊 (𝑇 ).
∎ Our goals

1 compute modulo a well-chosen prime as in (Dahan et al., ISSAC 2005)
2 reduce to the case where 𝑇 is zero-dimensional and normalized, by

variable specialization
3 recover the specialized variables, then the rational coefficients.

∎ We want to avoid the recourse to Gröbner bases so as to support:
1 algorithms in differential algebra, and
2 positive-dimensional systems for which methods based on regular

chains may have smaller output.
∎ This is similar in spirit to (Grégoire Lecerf, J. Complex 2001)
∎ However, we avoid random changes of coordinates and support

decompositions in the sense of Lazard.
Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 32 / 44



Notations

∎ Let 𝑓, 𝑡2, . . . , 𝑡𝑛 ∈ k(︀𝑋1 < ⋯ < 𝑋𝑛⌋︀ be non-constant.

∎ Assume 𝑇 ∶= {𝑡2, . . . , 𝑡𝑛} is a regular chain with mvar(𝑡𝑖) = 𝑋𝑖.

∎ Assume mvar(𝑓) = 𝑋𝑛.
∎ For convenience, we define 𝑟𝑛 ∶= 𝑓 .
∎ Let 𝑆(𝑡𝑛, 𝑟𝑛, 𝑋𝑛) be the subresultant chain of 𝑡𝑛 and 𝑟𝑛 regarded as

polynomials in (k(︀𝑋1, . . . , 𝑋𝑛−1⌋︀)(︀𝑋𝑛⌋︀.
∎ Let 𝑟𝑛−1 and 𝑔𝑛 be the subresultants of index 0 and 1 from

𝑆(𝑡𝑛, 𝑟𝑛, 𝑋𝑛).
∎ For 2 ≤ 𝑖 ≤ 𝑛 − 1, let 𝑆(𝑡𝑖, 𝑟𝑖, 𝑋𝑖) the subresultant chain of 𝑡𝑖 and 𝑟𝑖

regarded as polynomials in (k(︀𝑋1, . . . , 𝑋𝑖−1⌋︀)(︀𝑋𝑖⌋︀.
∎ Let 𝑟𝑖−1 and 𝑔𝑖 be the subresultants of index 0 and 1 from

𝑆(𝑡𝑖, 𝑟𝑖, 𝑋𝑖).
∎ We denote by 𝑠 the squarefree part of 𝑠 ∶= 𝑟1.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 33 / 44



Notations

∎ Let 𝑓, 𝑡2, . . . , 𝑡𝑛 ∈ k(︀𝑋1 < ⋯ < 𝑋𝑛⌋︀ be non-constant.
∎ Assume 𝑇 ∶= {𝑡2, . . . , 𝑡𝑛} is a regular chain with mvar(𝑡𝑖) = 𝑋𝑖.

∎ Assume mvar(𝑓) = 𝑋𝑛.
∎ For convenience, we define 𝑟𝑛 ∶= 𝑓 .
∎ Let 𝑆(𝑡𝑛, 𝑟𝑛, 𝑋𝑛) be the subresultant chain of 𝑡𝑛 and 𝑟𝑛 regarded as

polynomials in (k(︀𝑋1, . . . , 𝑋𝑛−1⌋︀)(︀𝑋𝑛⌋︀.
∎ Let 𝑟𝑛−1 and 𝑔𝑛 be the subresultants of index 0 and 1 from

𝑆(𝑡𝑛, 𝑟𝑛, 𝑋𝑛).
∎ For 2 ≤ 𝑖 ≤ 𝑛 − 1, let 𝑆(𝑡𝑖, 𝑟𝑖, 𝑋𝑖) the subresultant chain of 𝑡𝑖 and 𝑟𝑖

regarded as polynomials in (k(︀𝑋1, . . . , 𝑋𝑖−1⌋︀)(︀𝑋𝑖⌋︀.
∎ Let 𝑟𝑖−1 and 𝑔𝑖 be the subresultants of index 0 and 1 from

𝑆(𝑡𝑖, 𝑟𝑖, 𝑋𝑖).
∎ We denote by 𝑠 the squarefree part of 𝑠 ∶= 𝑟1.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 33 / 44



Notations

∎ Let 𝑓, 𝑡2, . . . , 𝑡𝑛 ∈ k(︀𝑋1 < ⋯ < 𝑋𝑛⌋︀ be non-constant.
∎ Assume 𝑇 ∶= {𝑡2, . . . , 𝑡𝑛} is a regular chain with mvar(𝑡𝑖) = 𝑋𝑖.

∎ Assume mvar(𝑓) = 𝑋𝑛.

∎ For convenience, we define 𝑟𝑛 ∶= 𝑓 .
∎ Let 𝑆(𝑡𝑛, 𝑟𝑛, 𝑋𝑛) be the subresultant chain of 𝑡𝑛 and 𝑟𝑛 regarded as

polynomials in (k(︀𝑋1, . . . , 𝑋𝑛−1⌋︀)(︀𝑋𝑛⌋︀.
∎ Let 𝑟𝑛−1 and 𝑔𝑛 be the subresultants of index 0 and 1 from

𝑆(𝑡𝑛, 𝑟𝑛, 𝑋𝑛).
∎ For 2 ≤ 𝑖 ≤ 𝑛 − 1, let 𝑆(𝑡𝑖, 𝑟𝑖, 𝑋𝑖) the subresultant chain of 𝑡𝑖 and 𝑟𝑖

regarded as polynomials in (k(︀𝑋1, . . . , 𝑋𝑖−1⌋︀)(︀𝑋𝑖⌋︀.
∎ Let 𝑟𝑖−1 and 𝑔𝑖 be the subresultants of index 0 and 1 from

𝑆(𝑡𝑖, 𝑟𝑖, 𝑋𝑖).
∎ We denote by 𝑠 the squarefree part of 𝑠 ∶= 𝑟1.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 33 / 44



Notations

∎ Let 𝑓, 𝑡2, . . . , 𝑡𝑛 ∈ k(︀𝑋1 < ⋯ < 𝑋𝑛⌋︀ be non-constant.
∎ Assume 𝑇 ∶= {𝑡2, . . . , 𝑡𝑛} is a regular chain with mvar(𝑡𝑖) = 𝑋𝑖.

∎ Assume mvar(𝑓) = 𝑋𝑛.
∎ For convenience, we define 𝑟𝑛 ∶= 𝑓 .

∎ Let 𝑆(𝑡𝑛, 𝑟𝑛, 𝑋𝑛) be the subresultant chain of 𝑡𝑛 and 𝑟𝑛 regarded as
polynomials in (k(︀𝑋1, . . . , 𝑋𝑛−1⌋︀)(︀𝑋𝑛⌋︀.

∎ Let 𝑟𝑛−1 and 𝑔𝑛 be the subresultants of index 0 and 1 from
𝑆(𝑡𝑛, 𝑟𝑛, 𝑋𝑛).

∎ For 2 ≤ 𝑖 ≤ 𝑛 − 1, let 𝑆(𝑡𝑖, 𝑟𝑖, 𝑋𝑖) the subresultant chain of 𝑡𝑖 and 𝑟𝑖

regarded as polynomials in (k(︀𝑋1, . . . , 𝑋𝑖−1⌋︀)(︀𝑋𝑖⌋︀.
∎ Let 𝑟𝑖−1 and 𝑔𝑖 be the subresultants of index 0 and 1 from

𝑆(𝑡𝑖, 𝑟𝑖, 𝑋𝑖).
∎ We denote by 𝑠 the squarefree part of 𝑠 ∶= 𝑟1.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 33 / 44



Notations

∎ Let 𝑓, 𝑡2, . . . , 𝑡𝑛 ∈ k(︀𝑋1 < ⋯ < 𝑋𝑛⌋︀ be non-constant.
∎ Assume 𝑇 ∶= {𝑡2, . . . , 𝑡𝑛} is a regular chain with mvar(𝑡𝑖) = 𝑋𝑖.

∎ Assume mvar(𝑓) = 𝑋𝑛.
∎ For convenience, we define 𝑟𝑛 ∶= 𝑓 .
∎ Let 𝑆(𝑡𝑛, 𝑟𝑛, 𝑋𝑛) be the subresultant chain of 𝑡𝑛 and 𝑟𝑛 regarded as

polynomials in (k(︀𝑋1, . . . , 𝑋𝑛−1⌋︀)(︀𝑋𝑛⌋︀.

∎ Let 𝑟𝑛−1 and 𝑔𝑛 be the subresultants of index 0 and 1 from
𝑆(𝑡𝑛, 𝑟𝑛, 𝑋𝑛).

∎ For 2 ≤ 𝑖 ≤ 𝑛 − 1, let 𝑆(𝑡𝑖, 𝑟𝑖, 𝑋𝑖) the subresultant chain of 𝑡𝑖 and 𝑟𝑖

regarded as polynomials in (k(︀𝑋1, . . . , 𝑋𝑖−1⌋︀)(︀𝑋𝑖⌋︀.
∎ Let 𝑟𝑖−1 and 𝑔𝑖 be the subresultants of index 0 and 1 from

𝑆(𝑡𝑖, 𝑟𝑖, 𝑋𝑖).
∎ We denote by 𝑠 the squarefree part of 𝑠 ∶= 𝑟1.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 33 / 44



Notations

∎ Let 𝑓, 𝑡2, . . . , 𝑡𝑛 ∈ k(︀𝑋1 < ⋯ < 𝑋𝑛⌋︀ be non-constant.
∎ Assume 𝑇 ∶= {𝑡2, . . . , 𝑡𝑛} is a regular chain with mvar(𝑡𝑖) = 𝑋𝑖.

∎ Assume mvar(𝑓) = 𝑋𝑛.
∎ For convenience, we define 𝑟𝑛 ∶= 𝑓 .
∎ Let 𝑆(𝑡𝑛, 𝑟𝑛, 𝑋𝑛) be the subresultant chain of 𝑡𝑛 and 𝑟𝑛 regarded as

polynomials in (k(︀𝑋1, . . . , 𝑋𝑛−1⌋︀)(︀𝑋𝑛⌋︀.
∎ Let 𝑟𝑛−1 and 𝑔𝑛 be the subresultants of index 0 and 1 from

𝑆(𝑡𝑛, 𝑟𝑛, 𝑋𝑛).

∎ For 2 ≤ 𝑖 ≤ 𝑛 − 1, let 𝑆(𝑡𝑖, 𝑟𝑖, 𝑋𝑖) the subresultant chain of 𝑡𝑖 and 𝑟𝑖

regarded as polynomials in (k(︀𝑋1, . . . , 𝑋𝑖−1⌋︀)(︀𝑋𝑖⌋︀.
∎ Let 𝑟𝑖−1 and 𝑔𝑖 be the subresultants of index 0 and 1 from

𝑆(𝑡𝑖, 𝑟𝑖, 𝑋𝑖).
∎ We denote by 𝑠 the squarefree part of 𝑠 ∶= 𝑟1.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 33 / 44



Notations

∎ Let 𝑓, 𝑡2, . . . , 𝑡𝑛 ∈ k(︀𝑋1 < ⋯ < 𝑋𝑛⌋︀ be non-constant.
∎ Assume 𝑇 ∶= {𝑡2, . . . , 𝑡𝑛} is a regular chain with mvar(𝑡𝑖) = 𝑋𝑖.

∎ Assume mvar(𝑓) = 𝑋𝑛.
∎ For convenience, we define 𝑟𝑛 ∶= 𝑓 .
∎ Let 𝑆(𝑡𝑛, 𝑟𝑛, 𝑋𝑛) be the subresultant chain of 𝑡𝑛 and 𝑟𝑛 regarded as

polynomials in (k(︀𝑋1, . . . , 𝑋𝑛−1⌋︀)(︀𝑋𝑛⌋︀.
∎ Let 𝑟𝑛−1 and 𝑔𝑛 be the subresultants of index 0 and 1 from

𝑆(𝑡𝑛, 𝑟𝑛, 𝑋𝑛).
∎ For 2 ≤ 𝑖 ≤ 𝑛 − 1, let 𝑆(𝑡𝑖, 𝑟𝑖, 𝑋𝑖) the subresultant chain of 𝑡𝑖 and 𝑟𝑖

regarded as polynomials in (k(︀𝑋1, . . . , 𝑋𝑖−1⌋︀)(︀𝑋𝑖⌋︀.

∎ Let 𝑟𝑖−1 and 𝑔𝑖 be the subresultants of index 0 and 1 from
𝑆(𝑡𝑖, 𝑟𝑖, 𝑋𝑖).

∎ We denote by 𝑠 the squarefree part of 𝑠 ∶= 𝑟1.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 33 / 44



Notations

∎ Let 𝑓, 𝑡2, . . . , 𝑡𝑛 ∈ k(︀𝑋1 < ⋯ < 𝑋𝑛⌋︀ be non-constant.
∎ Assume 𝑇 ∶= {𝑡2, . . . , 𝑡𝑛} is a regular chain with mvar(𝑡𝑖) = 𝑋𝑖.

∎ Assume mvar(𝑓) = 𝑋𝑛.
∎ For convenience, we define 𝑟𝑛 ∶= 𝑓 .
∎ Let 𝑆(𝑡𝑛, 𝑟𝑛, 𝑋𝑛) be the subresultant chain of 𝑡𝑛 and 𝑟𝑛 regarded as

polynomials in (k(︀𝑋1, . . . , 𝑋𝑛−1⌋︀)(︀𝑋𝑛⌋︀.
∎ Let 𝑟𝑛−1 and 𝑔𝑛 be the subresultants of index 0 and 1 from

𝑆(𝑡𝑛, 𝑟𝑛, 𝑋𝑛).
∎ For 2 ≤ 𝑖 ≤ 𝑛 − 1, let 𝑆(𝑡𝑖, 𝑟𝑖, 𝑋𝑖) the subresultant chain of 𝑡𝑖 and 𝑟𝑖

regarded as polynomials in (k(︀𝑋1, . . . , 𝑋𝑖−1⌋︀)(︀𝑋𝑖⌋︀.
∎ Let 𝑟𝑖−1 and 𝑔𝑖 be the subresultants of index 0 and 1 from

𝑆(𝑡𝑖, 𝑟𝑖, 𝑋𝑖).

∎ We denote by 𝑠 the squarefree part of 𝑠 ∶= 𝑟1.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 33 / 44



Notations

∎ Let 𝑓, 𝑡2, . . . , 𝑡𝑛 ∈ k(︀𝑋1 < ⋯ < 𝑋𝑛⌋︀ be non-constant.
∎ Assume 𝑇 ∶= {𝑡2, . . . , 𝑡𝑛} is a regular chain with mvar(𝑡𝑖) = 𝑋𝑖.

∎ Assume mvar(𝑓) = 𝑋𝑛.
∎ For convenience, we define 𝑟𝑛 ∶= 𝑓 .
∎ Let 𝑆(𝑡𝑛, 𝑟𝑛, 𝑋𝑛) be the subresultant chain of 𝑡𝑛 and 𝑟𝑛 regarded as

polynomials in (k(︀𝑋1, . . . , 𝑋𝑛−1⌋︀)(︀𝑋𝑛⌋︀.
∎ Let 𝑟𝑛−1 and 𝑔𝑛 be the subresultants of index 0 and 1 from

𝑆(𝑡𝑛, 𝑟𝑛, 𝑋𝑛).
∎ For 2 ≤ 𝑖 ≤ 𝑛 − 1, let 𝑆(𝑡𝑖, 𝑟𝑖, 𝑋𝑖) the subresultant chain of 𝑡𝑖 and 𝑟𝑖

regarded as polynomials in (k(︀𝑋1, . . . , 𝑋𝑖−1⌋︀)(︀𝑋𝑖⌋︀.
∎ Let 𝑟𝑖−1 and 𝑔𝑖 be the subresultants of index 0 and 1 from

𝑆(𝑡𝑖, 𝑟𝑖, 𝑋𝑖).
∎ We denote by 𝑠 the squarefree part of 𝑠 ∶= 𝑟1.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 33 / 44



Base result

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

Theorem
With our four Hypotheses, we have:

𝑉 (𝑓, 𝑡2, . . . , 𝑡𝑛) = 𝑉 (𝑠, 𝑔2, . . . , 𝑔𝑛).

∎ Under Hypotheses 1, 2, 3 and 4, the regular chain 𝐶 can be computed
by a cascade of subresultant chain computations.

∎ 𝐶 can be computed in a modular fashion (as we see shortly) improving
performance w.r.t. the direct and non-modular approach.

∎ This modular method can be enhanced so that the 4 Hypotheses are
no longer necessary (as we will see later).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 34 / 44



Base result

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

Theorem
With our four Hypotheses, we have:

𝑉 (𝑓, 𝑡2, . . . , 𝑡𝑛) = 𝑉 (𝑠, 𝑔2, . . . , 𝑔𝑛).

∎ Under Hypotheses 1, 2, 3 and 4, the regular chain 𝐶 can be computed
by a cascade of subresultant chain computations.

∎ 𝐶 can be computed in a modular fashion (as we see shortly) improving
performance w.r.t. the direct and non-modular approach.

∎ This modular method can be enhanced so that the 4 Hypotheses are
no longer necessary (as we will see later).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 34 / 44



Base result

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

Theorem
With our four Hypotheses, we have:

𝑉 (𝑓, 𝑡2, . . . , 𝑡𝑛) = 𝑉 (𝑠, 𝑔2, . . . , 𝑔𝑛).

∎ Under Hypotheses 1, 2, 3 and 4, the regular chain 𝐶 can be computed
by a cascade of subresultant chain computations.

∎ 𝐶 can be computed in a modular fashion (as we see shortly) improving
performance w.r.t. the direct and non-modular approach.

∎ This modular method can be enhanced so that the 4 Hypotheses are
no longer necessary (as we will see later).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 34 / 44



Base result

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

Theorem
With our four Hypotheses, we have:

𝑉 (𝑓, 𝑡2, . . . , 𝑡𝑛) = 𝑉 (𝑠, 𝑔2, . . . , 𝑔𝑛).

∎ Under Hypotheses 1, 2, 3 and 4, the regular chain 𝐶 can be computed
by a cascade of subresultant chain computations.

∎ 𝐶 can be computed in a modular fashion (as we see shortly) improving
performance w.r.t. the direct and non-modular approach.

∎ This modular method can be enhanced so that the 4 Hypotheses are
no longer necessary (as we will see later).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 34 / 44



Base result

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

Theorem
With our four Hypotheses, we have:

𝑉 (𝑓, 𝑡2, . . . , 𝑡𝑛) = 𝑉 (𝑠, 𝑔2, . . . , 𝑔𝑛).

∎ Under Hypotheses 1, 2, 3 and 4, the regular chain 𝐶 can be computed
by a cascade of subresultant chain computations.

∎ 𝐶 can be computed in a modular fashion (as we see shortly) improving
performance w.r.t. the direct and non-modular approach.

∎ This modular method can be enhanced so that the 4 Hypotheses are
no longer necessary (as we will see later).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 34 / 44



Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 35 / 44



Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 35 / 44



Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 35 / 44



Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 36 / 44



Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 36 / 44



Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 36 / 44



The modular algorithm in F𝑝 under our hypotheses

1 Evaluate 𝑓 and 𝑇 at sufficiently many (use the Bézout bound or the
mixed volume) values 𝑎 of 𝑋1 so that 𝑇 specializes well at 𝑋1 = 𝑎 to
a zero-dimensional regular chain 𝑇𝑎

2 For each good specialization 𝑋1 = 𝑎

1 Replace 𝑇𝑎 by a normalized (= monic) regular chain 𝑁𝑎

2 Compute the images of the polynomials 𝑟𝑖−1 and 𝑔𝑖 at 𝑋1 = 𝑎

3 Recover 𝑋1 (by interpolation and rational function reconstruction)
and deduce 𝑠, 𝑔2, . . . , 𝑔𝑛

Technical details:

∎ specializations 𝑋1 = 𝑎, 𝑋1 = 𝑏, . . . must produce faithful images of
resultants 𝑟𝑖, that is, resultants of maximum degree. good ≠ faithful.

∎ the implementation uses a priori bounds for
1 the number of non-faithful specializations, and
2 the degree of 𝑠; see the details in our CASC 2023 paper.

∎ we stop combining those images of the 𝑟𝑖’s when the recombination
of the images stabilizes (Monagan’s probabilistic idea, ISSAC 2005).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 37 / 44



The modular algorithm in F𝑝 under our hypotheses

1 Evaluate 𝑓 and 𝑇 at sufficiently many (use the Bézout bound or the
mixed volume) values 𝑎 of 𝑋1 so that 𝑇 specializes well at 𝑋1 = 𝑎 to
a zero-dimensional regular chain 𝑇𝑎

2 For each good specialization 𝑋1 = 𝑎

1 Replace 𝑇𝑎 by a normalized (= monic) regular chain 𝑁𝑎

2 Compute the images of the polynomials 𝑟𝑖−1 and 𝑔𝑖 at 𝑋1 = 𝑎

3 Recover 𝑋1 (by interpolation and rational function reconstruction)
and deduce 𝑠, 𝑔2, . . . , 𝑔𝑛

Technical details:

∎ specializations 𝑋1 = 𝑎, 𝑋1 = 𝑏, . . . must produce faithful images of
resultants 𝑟𝑖, that is, resultants of maximum degree. good ≠ faithful.

∎ the implementation uses a priori bounds for
1 the number of non-faithful specializations, and
2 the degree of 𝑠; see the details in our CASC 2023 paper.

∎ we stop combining those images of the 𝑟𝑖’s when the recombination
of the images stabilizes (Monagan’s probabilistic idea, ISSAC 2005).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 37 / 44



The modular algorithm in F𝑝 under our hypotheses

1 Evaluate 𝑓 and 𝑇 at sufficiently many (use the Bézout bound or the
mixed volume) values 𝑎 of 𝑋1 so that 𝑇 specializes well at 𝑋1 = 𝑎 to
a zero-dimensional regular chain 𝑇𝑎

2 For each good specialization 𝑋1 = 𝑎

1 Replace 𝑇𝑎 by a normalized (= monic) regular chain 𝑁𝑎

2 Compute the images of the polynomials 𝑟𝑖−1 and 𝑔𝑖 at 𝑋1 = 𝑎

3 Recover 𝑋1 (by interpolation and rational function reconstruction)
and deduce 𝑠, 𝑔2, . . . , 𝑔𝑛

Technical details:

∎ specializations 𝑋1 = 𝑎, 𝑋1 = 𝑏, . . . must produce faithful images of
resultants 𝑟𝑖, that is, resultants of maximum degree. good ≠ faithful.

∎ the implementation uses a priori bounds for
1 the number of non-faithful specializations, and
2 the degree of 𝑠; see the details in our CASC 2023 paper.

∎ we stop combining those images of the 𝑟𝑖’s when the recombination
of the images stabilizes (Monagan’s probabilistic idea, ISSAC 2005).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 37 / 44



The modular algorithm in F𝑝 under our hypotheses

1 Evaluate 𝑓 and 𝑇 at sufficiently many (use the Bézout bound or the
mixed volume) values 𝑎 of 𝑋1 so that 𝑇 specializes well at 𝑋1 = 𝑎 to
a zero-dimensional regular chain 𝑇𝑎

2 For each good specialization 𝑋1 = 𝑎

1 Replace 𝑇𝑎 by a normalized (= monic) regular chain 𝑁𝑎

2 Compute the images of the polynomials 𝑟𝑖−1 and 𝑔𝑖 at 𝑋1 = 𝑎

3 Recover 𝑋1 (by interpolation and rational function reconstruction)
and deduce 𝑠, 𝑔2, . . . , 𝑔𝑛

Technical details:

∎ specializations 𝑋1 = 𝑎, 𝑋1 = 𝑏, . . . must produce faithful images of
resultants 𝑟𝑖, that is, resultants of maximum degree. good ≠ faithful.

∎ the implementation uses a priori bounds for
1 the number of non-faithful specializations, and
2 the degree of 𝑠; see the details in our CASC 2023 paper.

∎ we stop combining those images of the 𝑟𝑖’s when the recombination
of the images stabilizes (Monagan’s probabilistic idea, ISSAC 2005).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 37 / 44



The modular algorithm in F𝑝 under our hypotheses

1 Evaluate 𝑓 and 𝑇 at sufficiently many (use the Bézout bound or the
mixed volume) values 𝑎 of 𝑋1 so that 𝑇 specializes well at 𝑋1 = 𝑎 to
a zero-dimensional regular chain 𝑇𝑎

2 For each good specialization 𝑋1 = 𝑎

1 Replace 𝑇𝑎 by a normalized (= monic) regular chain 𝑁𝑎

2 Compute the images of the polynomials 𝑟𝑖−1 and 𝑔𝑖 at 𝑋1 = 𝑎

3 Recover 𝑋1 (by interpolation and rational function reconstruction)
and deduce 𝑠, 𝑔2, . . . , 𝑔𝑛

Technical details:

∎ specializations 𝑋1 = 𝑎, 𝑋1 = 𝑏, . . . must produce faithful images of
resultants 𝑟𝑖, that is, resultants of maximum degree. good ≠ faithful.

∎ the implementation uses a priori bounds for
1 the number of non-faithful specializations, and
2 the degree of 𝑠; see the details in our CASC 2023 paper.

∎ we stop combining those images of the 𝑟𝑖’s when the recombination
of the images stabilizes (Monagan’s probabilistic idea, ISSAC 2005).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 37 / 44



The modular algorithm in F𝑝 under our hypotheses

1 Evaluate 𝑓 and 𝑇 at sufficiently many (use the Bézout bound or the
mixed volume) values 𝑎 of 𝑋1 so that 𝑇 specializes well at 𝑋1 = 𝑎 to
a zero-dimensional regular chain 𝑇𝑎

2 For each good specialization 𝑋1 = 𝑎

1 Replace 𝑇𝑎 by a normalized (= monic) regular chain 𝑁𝑎

2 Compute the images of the polynomials 𝑟𝑖−1 and 𝑔𝑖 at 𝑋1 = 𝑎

3 Recover 𝑋1 (by interpolation and rational function reconstruction)
and deduce 𝑠, 𝑔2, . . . , 𝑔𝑛

Technical details:
∎ specializations 𝑋1 = 𝑎, 𝑋1 = 𝑏, . . . must produce faithful images of

resultants 𝑟𝑖, that is, resultants of maximum degree. good ≠ faithful.

∎ the implementation uses a priori bounds for
1 the number of non-faithful specializations, and
2 the degree of 𝑠; see the details in our CASC 2023 paper.

∎ we stop combining those images of the 𝑟𝑖’s when the recombination
of the images stabilizes (Monagan’s probabilistic idea, ISSAC 2005).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 37 / 44



The modular algorithm in F𝑝 under our hypotheses

1 Evaluate 𝑓 and 𝑇 at sufficiently many (use the Bézout bound or the
mixed volume) values 𝑎 of 𝑋1 so that 𝑇 specializes well at 𝑋1 = 𝑎 to
a zero-dimensional regular chain 𝑇𝑎

2 For each good specialization 𝑋1 = 𝑎

1 Replace 𝑇𝑎 by a normalized (= monic) regular chain 𝑁𝑎

2 Compute the images of the polynomials 𝑟𝑖−1 and 𝑔𝑖 at 𝑋1 = 𝑎

3 Recover 𝑋1 (by interpolation and rational function reconstruction)
and deduce 𝑠, 𝑔2, . . . , 𝑔𝑛

Technical details:
∎ specializations 𝑋1 = 𝑎, 𝑋1 = 𝑏, . . . must produce faithful images of

resultants 𝑟𝑖, that is, resultants of maximum degree. good ≠ faithful.
∎ the implementation uses a priori bounds for

1 the number of non-faithful specializations, and
2 the degree of 𝑠; see the details in our CASC 2023 paper.

∎ we stop combining those images of the 𝑟𝑖’s when the recombination
of the images stabilizes (Monagan’s probabilistic idea, ISSAC 2005).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 37 / 44



The modular algorithm in F𝑝 under our hypotheses

1 Evaluate 𝑓 and 𝑇 at sufficiently many (use the Bézout bound or the
mixed volume) values 𝑎 of 𝑋1 so that 𝑇 specializes well at 𝑋1 = 𝑎 to
a zero-dimensional regular chain 𝑇𝑎

2 For each good specialization 𝑋1 = 𝑎

1 Replace 𝑇𝑎 by a normalized (= monic) regular chain 𝑁𝑎

2 Compute the images of the polynomials 𝑟𝑖−1 and 𝑔𝑖 at 𝑋1 = 𝑎

3 Recover 𝑋1 (by interpolation and rational function reconstruction)
and deduce 𝑠, 𝑔2, . . . , 𝑔𝑛

Technical details:
∎ specializations 𝑋1 = 𝑎, 𝑋1 = 𝑏, . . . must produce faithful images of

resultants 𝑟𝑖, that is, resultants of maximum degree. good ≠ faithful.
∎ the implementation uses a priori bounds for

1 the number of non-faithful specializations, and
2 the degree of 𝑠; see the details in our CASC 2023 paper.

∎ we stop combining those images of the 𝑟𝑖’s when the recombination
of the images stabilizes (Monagan’s probabilistic idea, ISSAC 2005).

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 37 / 44



The full modular algorithm: relaxing the hypotheses (1/3)

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

∎ Relaxing the 𝑟𝑖 ⇑∈ k part of H1 implies that the last computed
resultant, say 𝑠, could be constant:

1 if 𝑠 = 0, then its “parents” (say 𝑟𝑗 and 𝑡𝑗) have a non-trivial GCD over
k which must be added to the chain 𝐶,

2 if 𝑠 ≠ 0, then Intersect(𝑓, 𝑇 ) = ∅.

∎ Handling this modification only requires to possibly computing this
GCD, whose cost is negligible.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 38 / 44



The full modular algorithm: relaxing the hypotheses (1/3)

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

∎ Relaxing the 𝑟𝑖 ⇑∈ k part of H1 implies that the last computed
resultant, say 𝑠, could be constant:

1 if 𝑠 = 0, then its “parents” (say 𝑟𝑗 and 𝑡𝑗) have a non-trivial GCD over
k which must be added to the chain 𝐶,

2 if 𝑠 ≠ 0, then Intersect(𝑓, 𝑇 ) = ∅.
∎ Handling this modification only requires to possibly computing this

GCD, whose cost is negligible.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 38 / 44



The full modular algorithm: relaxing the hypotheses (1/3)

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

∎ Relaxing the 𝑟𝑖 ⇑∈ k part of H1 implies that the last computed
resultant, say 𝑠, could be constant:

1 if 𝑠 = 0, then its “parents” (say 𝑟𝑗 and 𝑡𝑗) have a non-trivial GCD over
k which must be added to the chain 𝐶,

2 if 𝑠 ≠ 0, then Intersect(𝑓, 𝑇 ) = ∅.
∎ Handling this modification only requires to possibly computing this

GCD, whose cost is negligible.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 38 / 44



The full modular algorithm: relaxing the hypotheses (1/3)

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

∎ Relaxing the 𝑟𝑖 ⇑∈ k part of H1 implies that the last computed
resultant, say 𝑠, could be constant:

1 if 𝑠 = 0, then its “parents” (say 𝑟𝑗 and 𝑡𝑗) have a non-trivial GCD over
k which must be added to the chain 𝐶,

2 if 𝑠 ≠ 0, then Intersect(𝑓, 𝑇 ) = ∅.

∎ Handling this modification only requires to possibly computing this
GCD, whose cost is negligible.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 38 / 44



The full modular algorithm: relaxing the hypotheses (1/3)

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

∎ Relaxing the 𝑟𝑖 ⇑∈ k part of H1 implies that the last computed
resultant, say 𝑠, could be constant:

1 if 𝑠 = 0, then its “parents” (say 𝑟𝑗 and 𝑡𝑗) have a non-trivial GCD over
k which must be added to the chain 𝐶,

2 if 𝑠 ≠ 0, then Intersect(𝑓, 𝑇 ) = ∅.
∎ Handling this modification only requires to possibly computing this

GCD, whose cost is negligible.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 38 / 44



The full modular algorithm: relaxing the hypotheses (2/3)

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

∎ Relaxing the mvar(𝑟𝑖) = 𝑋𝑖 part of H1 implies that the successive
resultants 𝑟𝑛, . . . may have a gap in their sequence of main variables

∎ we simply use the appropriate polynomials from 𝑇 = {𝑡𝑛, . . . , 𝑡2} to fill
those gaps.

∎ Handling this modification comes at no cost.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 39 / 44



The full modular algorithm: relaxing the hypotheses (2/3)

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

∎ Relaxing the mvar(𝑟𝑖) = 𝑋𝑖 part of H1 implies that the successive
resultants 𝑟𝑛, . . . may have a gap in their sequence of main variables

∎ we simply use the appropriate polynomials from 𝑇 = {𝑡𝑛, . . . , 𝑡2} to fill
those gaps.

∎ Handling this modification comes at no cost.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 39 / 44



The full modular algorithm: relaxing the hypotheses (2/3)

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

∎ Relaxing the mvar(𝑟𝑖) = 𝑋𝑖 part of H1 implies that the successive
resultants 𝑟𝑛, . . . may have a gap in their sequence of main variables

∎ we simply use the appropriate polynomials from 𝑇 = {𝑡𝑛, . . . , 𝑡2} to fill
those gaps.

∎ Handling this modification comes at no cost.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 39 / 44



The full modular algorithm: relaxing the hypotheses (2/3)

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

∎ Relaxing the mvar(𝑟𝑖) = 𝑋𝑖 part of H1 implies that the successive
resultants 𝑟𝑛, . . . may have a gap in their sequence of main variables

∎ we simply use the appropriate polynomials from 𝑇 = {𝑡𝑛, . . . , 𝑡2} to fill
those gaps.

∎ Handling this modification comes at no cost.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 39 / 44



The full modular algorithm: relaxing the hypotheses (3/3)

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

∎ When either H2, H3, or H4 fails

1 the “candidate” regular chain 𝐶 must split, and
2 some subresultants of index higher than 1 must be used.

∎ Costs for handling this:

1 computing resultants and GCDs modulo regular chains by evaluation
and interpolation, which is what this whole algorithm is about,

2 interpolating those subresultants of higher index

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 40 / 44



The full modular algorithm: relaxing the hypotheses (3/3)

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

∎ When either H2, H3, or H4 fails

1 the “candidate” regular chain 𝐶 must split, and
2 some subresultants of index higher than 1 must be used.

∎ Costs for handling this:

1 computing resultants and GCDs modulo regular chains by evaluation
and interpolation, which is what this whole algorithm is about,

2 interpolating those subresultants of higher index

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 40 / 44



The full modular algorithm: relaxing the hypotheses (3/3)

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

∎ When either H2, H3, or H4 fails
1 the “candidate” regular chain 𝐶 must split, and

2 some subresultants of index higher than 1 must be used.
∎ Costs for handling this:

1 computing resultants and GCDs modulo regular chains by evaluation
and interpolation, which is what this whole algorithm is about,

2 interpolating those subresultants of higher index

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 40 / 44



The full modular algorithm: relaxing the hypotheses (3/3)

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

∎ When either H2, H3, or H4 fails
1 the “candidate” regular chain 𝐶 must split, and
2 some subresultants of index higher than 1 must be used.

∎ Costs for handling this:

1 computing resultants and GCDs modulo regular chains by evaluation
and interpolation, which is what this whole algorithm is about,

2 interpolating those subresultants of higher index

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 40 / 44



The full modular algorithm: relaxing the hypotheses (3/3)

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

∎ When either H2, H3, or H4 fails
1 the “candidate” regular chain 𝐶 must split, and
2 some subresultants of index higher than 1 must be used.

∎ Costs for handling this:

1 computing resultants and GCDs modulo regular chains by evaluation
and interpolation, which is what this whole algorithm is about,

2 interpolating those subresultants of higher index

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 40 / 44



The full modular algorithm: relaxing the hypotheses (3/3)

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

∎ When either H2, H3, or H4 fails
1 the “candidate” regular chain 𝐶 must split, and
2 some subresultants of index higher than 1 must be used.

∎ Costs for handling this:
1 computing resultants and GCDs modulo regular chains by evaluation

and interpolation, which is what this whole algorithm is about,

2 interpolating those subresultants of higher index

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 40 / 44



The full modular algorithm: relaxing the hypotheses (3/3)

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

∎ When either H2, H3, or H4 fails
1 the “candidate” regular chain 𝐶 must split, and
2 some subresultants of index higher than 1 must be used.

∎ Costs for handling this:
1 computing resultants and GCDs modulo regular chains by evaluation

and interpolation, which is what this whole algorithm is about,

2 interpolating those subresultants of higher index

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 40 / 44



The full modular algorithm: relaxing the hypotheses (3/3)

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

∎ When either H2, H3, or H4 fails
1 the “candidate” regular chain 𝐶 must split, and
2 some subresultants of index higher than 1 must be used.

∎ Costs for handling this:
1 computing resultants and GCDs modulo regular chains by evaluation

and interpolation, which is what this whole algorithm is about,
2 interpolating those subresultants of higher index

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 40 / 44



Outline

1. Triangular decompositions in polynomial system solving

2. Modular methods in polynomial system solving

3. A Modular methods for incremental triangular decompositions

4. Conclusions

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 41 / 44



Conclusions

∎ We have discussed Intersect(𝑓, 𝑇 ) which computes 𝑉 (𝑓) ∩𝑊 (𝑇 )
and which is at the core of the incremental method for triangular
decompositions

∎ We have presented a modular method for Intersect(𝑓, 𝑇 ) focusing
on the case where 𝑇 is dimension one.

∎ This method allows us to get rid off of the large extraneous factors
occurring in iterated resultant computations

∎ For technical details (in particular degree bounds) see our CASC 2023.
∎ The experimentation reported there is based on an implementation

which does not support yet the relaxation of our hypotheses (thus
providing no benefits when those hypotheses do not hold).

∎ This modular method is designed to take advantage of FFT-based
algorithms (speculative methods for computing subresultant chains,
see our CASC 2022 paper).

∎ Parallel execution: multiple specialization can be done concurrently.
Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 42 / 44



Thank You!

http://www.bpaslib.org/

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 43 / 44

http://www.bpaslib.org/


References
[1] M. Asadi, A. Brandt, R. H. C. Moir, and M. Moreno Maza. “Algorithms and Data Structures for Sparse Polynomial

Arithmetic”. In: Mathematics 7.5 (2019), p. 441.

[2] M. Asadi, A. Brandt, R. H. C. Moir, M. Moreno Maza, and Y. Xie. “On the parallelization of triangular
decompositions”. In: International Symposium on Symbolic and Algebraic Computation (ISSAC ’20), Kalamata,
Greece, July 20-23, 2020. ACM, 2020, pp. 22–29.

[3] M. Asadi, A. Brandt, R. H. C. Moir, M. Moreno Maza, and Y. Xie. “Parallelization of Triangular Decompositions:
Techniques and Implementation”. In: J. Symb. Comput. (2021). (to appear).

[4] P. Aubry, D. Lazard, and M. Moreno Maza. “On the Theories of Triangular Sets”. In: J. Symb. Comput. 28.1-2
(1999), pp. 105–124.

[5] F. Boulier, F. Lemaire, and M. Moreno Maza. “Well known theorems on triangular systems and the D5 principle”. In:
Transgressive Computing 2006, Proc. 2006.

[6] A. Brandt, R. H. C. Moir, and M. Moreno Maza. “Employing C++ Templates in the Design of a Computer Algebra
Library”. In: Mathematical Software - ICMS 2020, Braunschweig, Germany, July 13-16, 2020. Vol. 12097. LNCS.
Springer, 2020, pp. 342–352.

[7] M. Moreno Maza and Y. Xie. “Balanced Dense Polynomial Multiplication on Multi-Cores”. In: Int. J. Found. Comput.
Sci. 22.5 (2011), pp. 1035–1055.

[8] J. F. Ritt. Differential Algebra. New York: Dover Publications, Inc., 1966.

[9] J. F. Ritt. Differential Equations from an Algebraic Standpoint. Vol. 14. New York: American Mathematical Society,
1932.

[10] W. T. Wu. “A Zero Structure Theorem for polynomial equations solving”. In: MM Research Preprints 1 (1987),
pp. 2–12.

Marc Moreno Maza Modular Algorithms for Triangular Decompositions RTCA 2023 44 / 44


	Acknowledgements
	Introduction
	Triangular decompositions in polynomial system solving
	Modular methods in polynomial system solving
	A Modular methods for incremental triangular decompositions
	Conclusions

