# Modular algorithms for computing triangular decompositions of polynomial systems 

Marc Moreno Maza

Ontario Research Center for Computer Algebra<br>Departments of Computer Science and Mathematics<br>University of Western Ontario, Canada

RTCA 2023, Institut Henri Poincaré, France, October 16

## Acknowledgements

■ Many thanks to the RTCA organizers for this event and for bringing all of us in this historical site.

- This talk is based on research projects in which many of my former and current graduate students have played an essential role. By alphabetic order: Alexander Brandt (Dalhousie University), Changbo Chen (CIGIT Chinese Academy of Sciences), Juan-Pablo Gonzàlez-Trochez (University of Western Ontario), François Lemaire (Université de Lille), Robert Moir (Earth64), Wei Pan (NVIDIA), Yuzhen Xie (Scotiabank), Haoze Yuan (University of Western Ontario).
- This talk is also based on collaborations with Maplesoft and the following colleagues: François Boulier (Université de Lille), Xavier Dahan (Tohoku University), Éric Schost (University of Waterloo), Wenyuan Wu (CIGIT Chinese Academy of Sciences).


## Tentative Plan

■ Part 1: Triangular decompositions in polynomial system solving
■ Part 2: Modular methods in polynomial system solving

- Part 3: A modular method for triangular decompositions


## Tentative Plan

■ Part 1: Triangular decompositions in polynomial system solving

- Part 2: Modular methods in polynomial system solving
- Part 3: A modular method for triangular decompositions

Part 3 is based on
■ our JSC 2012 paper with Changbo Chen ,and
■ our recent CASC 2023 paper with Alexander Brandt, Juan-Pablo Gonzàlez-Trochez and Haoze Yuan.

## Tentative Plan

- Part 1: Triangular decompositions in polynomial system solving

■ Part 2: Modular methods in polynomial system solving

- Part 3: A modular method for triangular decompositions

Part 3 is based on
■ our JSC 2012 paper with Changbo Chen ,and
■ our recent CASC 2023 paper with Alexander Brandt, Juan-Pablo Gonzàlez-Trochez and Haoze Yuan.
A proof-of-concept implementation was done with the RegularChains library and an efficient implementation is under development in the BPAS library. See our CASC 2023 paper.

## Tentative Plan

- Part 1: Triangular decompositions in polynomial system solving

■ Part 2: Modular methods in polynomial system solving

- Part 3: A modular method for triangular decompositions

Part 3 is based on
■ our JSC 2012 paper with Changbo Chen ,and

- our recent CASC 2023 paper with Alexander Brandt, Juan-Pablo Gonzàlez-Trochez and Haoze Yuan.
A proof-of-concept implementation was done with the RegularChains library and an efficient implementation is under development in the BPAS library. See our CASC 2023 paper.
These slides are available here.


## What can the RegularChains library do for you?

- Solving over $\mathbb{C}$ : that is, solving any system of multivariate polynomial equations (say, $f_{1}=\cdots=f_{m}=0$ ) and inequations $h \neq 0$ :


## What can the RegularChains library do for you?

- Solving over $\mathbb{C}$ : that is, solving any system of multivariate polynomial equations (say, $f_{1}=\cdots=f_{m}=0$ ) and inequations $h \neq 0$ : $\hookrightarrow$ computing all its solutions symbolically, or only the generic ones


## What can the RegularChains library do for you?

- Solving over $\mathbb{C}$ : that is, solving any system of multivariate polynomial equations (say, $f_{1}=\cdots=f_{m}=0$ ) and inequations $h \neq 0$ :
$\hookrightarrow$ computing all its solutions symbolically, or only the generic ones
$\hookrightarrow$ providing tools to extract information (dimension, degree, etc.) about those solutions and,


## What can the RegularChains library do for you?

- Solving over $\mathbb{C}$ : that is, solving any system of multivariate polynomial equations (say, $f_{1}=\cdots=f_{m}=0$ ) and inequations $h \neq 0$ :
$\hookrightarrow$ computing all its solutions symbolically, or only the generic ones
$\hookrightarrow$ providing tools to extract information (dimension, degree, etc.) about those solutions and,
$\hookrightarrow$ performing (set or geometric) operations on solutions sets.


## What can the RegularChains library do for you?

- Solving over $\mathbb{C}$ : that is, solving any system of multivariate polynomial equations (say, $f_{1}=\cdots=f_{m}=0$ ) and inequations $h \neq 0$ :
$\hookrightarrow$ computing all its solutions symbolically, or only the generic ones
$\hookrightarrow$ providing tools to extract information (dimension, degree, etc.) about those solutions and,
$\hookrightarrow$ performing (set or geometric) operations on solutions sets.
- Solving over $\mathbb{R}$ : that is, solving any system of multivariate polynomial equations (say, $f_{1}=\cdots=f_{m}=0$, inequations $h \neq 0$ and inequalities $g_{1}>0, \ldots, g_{p}>0$


## What can the RegularChains library do for you?

- Solving over $\mathbb{C}$ : that is, solving any system of multivariate polynomial equations (say, $f_{1}=\cdots=f_{m}=0$ ) and inequations $h \neq 0$ :
$\hookrightarrow$ computing all its solutions symbolically, or only the generic ones
$\hookrightarrow$ providing tools to extract information (dimension, degree, etc.) about those solutions and,
$\hookrightarrow$ performing (set or geometric) operations on solutions sets.
- Solving over $\mathbb{R}$ : that is, solving any system of multivariate polynomial equations (say, $f_{1}=\cdots=f_{m}=0$, inequations $h \neq 0$ and inequalities $g_{1}>0, \ldots, g_{p}>0$
$\hookrightarrow$ doing the same as above, and


## What can the RegularChains library do for you?

- Solving over $\mathbb{C}$ : that is, solving any system of multivariate polynomial equations (say, $f_{1}=\cdots=f_{m}=0$ ) and inequations $h \neq 0$ :
$\hookrightarrow$ computing all its solutions symbolically, or only the generic ones
$\hookrightarrow$ providing tools to extract information (dimension, degree, etc.) about those solutions and,
$\hookrightarrow$ performing (set or geometric) operations on solutions sets.
- Solving over $\mathbb{R}$ : that is, solving any system of multivariate polynomial equations (say, $f_{1}=\cdots=f_{m}=0$, inequations $h \neq 0$ and inequalities $g_{1}>0, \ldots, g_{p}>0$
$\hookrightarrow$ doing the same as above, and
$\hookrightarrow$ finding sample solutions, and


## What can the RegularChains library do for you?

- Solving over $\mathbb{C}$ : that is, solving any system of multivariate polynomial equations (say, $f_{1}=\cdots=f_{m}=0$ ) and inequations $h \neq 0$ :
$\hookrightarrow$ computing all its solutions symbolically, or only the generic ones
$\hookrightarrow$ providing tools to extract information (dimension, degree, etc.) about those solutions and,
$\hookrightarrow$ performing (set or geometric) operations on solutions sets.
- Solving over $\mathbb{R}$ : that is, solving any system of multivariate polynomial equations (say, $f_{1}=\cdots=f_{m}=0$, inequations $h \neq 0$ and inequalities $g_{1}>0, \ldots, g_{p}>0$
$\hookrightarrow$ doing the same as above, and
$\hookrightarrow$ finding sample solutions, and
$\hookrightarrow$ performing cylindrical algebraic decomposition (CAD) and quantifier elimination (QE).


## What can the RegularChains library do for you?

- Solving over $\mathbb{C}$ : that is, solving any system of multivariate polynomial equations (say, $f_{1}=\cdots=f_{m}=0$ ) and inequations $h \neq 0$ :
$\hookrightarrow$ computing all its solutions symbolically, or only the generic ones
$\hookrightarrow$ providing tools to extract information (dimension, degree, etc.) about those solutions and,
$\hookrightarrow$ performing (set or geometric) operations on solutions sets.
- Solving over $\mathbb{R}$ : that is, solving any system of multivariate polynomial equations (say, $f_{1}=\cdots=f_{m}=0$, inequations $h \neq 0$ and inequalities $g_{1}>0, \ldots, g_{p}>0$
$\hookrightarrow$ doing the same as above, and
$\hookrightarrow$ finding sample solutions, and
$\hookrightarrow$ performing cylindrical algebraic decomposition (CAD) and quantifier elimination (QE).
- Solving parametrically over $\mathbb{C}$ and over $\mathbb{R}$ : that is:


## What can the RegularChains library do for you?

- Solving over $\mathbb{C}$ : that is, solving any system of multivariate polynomial equations (say, $f_{1}=\cdots=f_{m}=0$ ) and inequations $h \neq 0$ :
$\hookrightarrow$ computing all its solutions symbolically, or only the generic ones
$\hookrightarrow$ providing tools to extract information (dimension, degree, etc.) about those solutions and,
$\hookrightarrow$ performing (set or geometric) operations on solutions sets.
- Solving over $\mathbb{R}$ : that is, solving any system of multivariate polynomial equations (say, $f_{1}=\cdots=f_{m}=0$, inequations $h \neq 0$ and inequalities $g_{1}>0, \ldots, g_{p}>0$
$\hookrightarrow$ doing the same as above, and
$\hookrightarrow$ finding sample solutions, and
$\hookrightarrow$ performing cylindrical algebraic decomposition (CAD) and quantifier elimination (QE).
- Solving parametrically over $\mathbb{C}$ and over $\mathbb{R}$ : that is:
$\hookrightarrow$ finding conditions on the parameters for the solutions to have a prescribed property (e.g. a unique real solution), or


## What can the RegularChains library do for you?

- Solving over $\mathbb{C}$ : that is, solving any system of multivariate polynomial equations (say, $f_{1}=\cdots=f_{m}=0$ ) and inequations $h \neq 0$ :
$\hookrightarrow$ computing all its solutions symbolically, or only the generic ones
$\hookrightarrow$ providing tools to extract information (dimension, degree, etc.) about those solutions and,
$\hookrightarrow$ performing (set or geometric) operations on solutions sets.
- Solving over $\mathbb{R}$ : that is, solving any system of multivariate polynomial equations (say, $f_{1}=\cdots=f_{m}=0$, inequations $h \neq 0$ and inequalities $g_{1}>0, \ldots, g_{p}>0$
$\hookrightarrow$ doing the same as above, and
$\hookrightarrow$ finding sample solutions, and
$\hookrightarrow$ performing cylindrical algebraic decomposition (CAD) and quantifier elimination (QE).
- Solving parametrically over $\mathbb{C}$ and over $\mathbb{R}$ : that is:
$\hookrightarrow$ finding conditions on the parameters for the solutions to have a prescribed property (e.g. a unique real solution), or
$\hookrightarrow$ computing all or part of the solutions as functions of the parameters.

The design of the RegularChains library

- Hierarchy of the user-interface


## The design of the RegularChains library

- Hierarchy of the user-interface
$\hookrightarrow$ At the top-level, 29 commands for most common tasks, e.g. PolynomialRing, Triangularize, RealTriangularize, Display,


## The design of the RegularChains library

- Hierarchy of the user-interface
$\hookrightarrow$ At the top-level, 29 commands for most common tasks, e.g. PolynomialRing, Triangularize, RealTriangularize, Display,
$\hookrightarrow 6$ sub-packages for more specialized tasks: AlgebraicGeometryTools, ChainTools, ConstructibleSetTools, FastArithmeticTools, ParametricSystemTools, SemiAlgebraicSetTools.


## The design of the RegularChains library

- Hierarchy of the user-interface
$\hookrightarrow$ At the top-level, 29 commands for most common tasks, e.g. PolynomialRing, Triangularize, RealTriangularize, Display,
$\hookrightarrow 6$ sub-packages for more specialized tasks: AlgebraicGeometryTools, ChainTools, ConstructibleSetTools, FastArithmeticTools, ParametricSystemTools, SemiAlgebraicSetTools.
- Enforced but friendly use of types:


## The design of the RegularChains library

- Hierarchy of the user-interface
$\hookrightarrow$ At the top-level, 29 commands for most common tasks, e.g. PolynomialRing, Triangularize, RealTriangularize, Display,
$\hookrightarrow 6$ sub-packages for more specialized tasks: AlgebraicGeometryTools, ChainTools, ConstructibleSetTools, FastArithmeticTools, ParametricSystemTools, SemiAlgebraicSetTools.
- Enforced but friendly use of types:
$\hookrightarrow$ Every RegularChains object has a type, e.g. polynomial_ring, regular_chain, constructible_set, semi_algebraic_set,


## The design of the RegularChains library

- Hierarchy of the user-interface
$\hookrightarrow$ At the top-level, 29 commands for most common tasks, e.g. PolynomialRing, Triangularize, RealTriangularize, Display,
$\hookrightarrow 6$ sub-packages for more specialized tasks: AlgebraicGeometryTools, ChainTools, ConstructibleSetTools, FastArithmeticTools, ParametricSystemTools, SemiAlgebraicSetTools.
- Enforced but friendly use of types:
$\hookrightarrow$ Every RegularChains object has a type, e.g. polynomial_ring, regular_chain, constructible_set, semi_algebraic_set,
$\hookrightarrow$ which ensures that the object of that type has properties,


## The design of the RegularChains library

- Hierarchy of the user-interface
$\hookrightarrow$ At the top-level, 29 commands for most common tasks, e.g. PolynomialRing, Triangularize, RealTriangularize, Display,
$\hookrightarrow 6$ sub-packages for more specialized tasks: AlgebraicGeometryTools, ChainTools, ConstructibleSetTools, FastArithmeticTools, ParametricSystemTools, SemiAlgebraicSetTools.
- Enforced but friendly use of types:
$\hookrightarrow$ Every RegularChains object has a type, e.g. polynomial_ring, regular_chain, constructible_set, semi_algebraic_set,
$\hookrightarrow$ which ensures that the object of that type has properties,
$\hookrightarrow$ while the end-user does not need to explicitly manipulate this type.


## The design of the RegularChains library

- Hierarchy of the user-interface
$\hookrightarrow$ At the top-level, 29 commands for most common tasks, e.g.
PolynomialRing, Triangularize, RealTriangularize, Display,
$\hookrightarrow 6$ sub-packages for more specialized tasks: AlgebraicGeometryTools, ChainTools, ConstructibleSetTools, FastArithmeticTools, ParametricSystemTools, SemiAlgebraicSetTools.
- Enforced but friendly use of types:
$\hookrightarrow$ Every RegularChains object has a type, e.g. polynomial_ring, regular_chain, constructible_set, semi_algebraic_set,
$\hookrightarrow$ which ensures that the object of that type has properties,
$\hookrightarrow$ while the end-user does not need to explicitly manipulate this type.
- Criteria for selecting the algorithms supporting the solvers:


## The design of the RegularChains library

- Hierarchy of the user-interface
$\hookrightarrow$ At the top-level, 29 commands for most common tasks, e.g.
PolynomialRing, Triangularize, RealTriangularize, Display,
$\hookrightarrow 6$ sub-packages for more specialized tasks: AlgebraicGeometryTools, ChainTools, ConstructibleSetTools, FastArithmeticTools, ParametricSystemTools, SemiAlgebraicSetTools.
- Enforced but friendly use of types:
$\hookrightarrow$ Every RegularChains object has a type, e.g. polynomial_ring, regular_chain, constructible_set, semi_algebraic_set,
$\hookrightarrow$ which ensures that the object of that type has properties,
$\hookrightarrow$ while the end-user does not need to explicitly manipulate this type.
- Criteria for selecting the algorithms supporting the solvers:
$\hookrightarrow$ provide a comprehensive and coherent set of tools for manipulating polynomial systems,


## The design of the RegularChains library

- Hierarchy of the user-interface
$\hookrightarrow$ At the top-level, 29 commands for most common tasks, e.g.
PolynomialRing, Triangularize, RealTriangularize, Display,
$\hookrightarrow 6$ sub-packages for more specialized tasks: AlgebraicGeometryTools, ChainTools, ConstructibleSetTools, FastArithmeticTools, ParametricSystemTools, SemiAlgebraicSetTools.
- Enforced but friendly use of types:
$\hookrightarrow$ Every RegularChains object has a type, e.g. polynomial_ring, regular_chain, constructible_set, semi_algebraic_set,
$\hookrightarrow$ which ensures that the object of that type has properties,
$\hookrightarrow$ while the end-user does not need to explicitly manipulate this type.
- Criteria for selecting the algorithms supporting the solvers:
$\hookrightarrow$ provide a comprehensive and coherent set of tools for manipulating polynomial systems,
$\hookrightarrow$ implement solvers with both general algorithms (which may not be the most efficient ones) and faster algorithms (which may only work under some assumptions).


## The BPAS library



Basic Polynomial Algebra Subprograms
http://www.bpaslib.org/

## Outline

1. Triangular decompositions in polynomial system solving
2. Modular methods in polynomial system solving
3. A Modular methods for incremental triangular decompositions
4. Conclusions

## Milestones (1/3)

■ Let $\mathbf{k}$ be a field and $\mathbf{K}$ its algebraic closure. Consider $n$ variables $x_{1}<\cdots<x_{n}$.

## Milestones (1/3)

■ Let $\mathbf{k}$ be a field and $\mathbf{K}$ its algebraic closure. Consider $n$ variables $x_{1}<\cdots<x_{n}$.
■ A subset $V \subset \mathbf{K}^{n}$ is a (affine) variety over $\mathbf{k}$ if there exists $F \subset \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ such that $V=V(F)$ where

$$
V(F):=\left\{z \in \mathbf{K}^{n} \mid f(z)=0 \quad(\forall f \in F)\right\} .
$$

The variety $V$ is irreducible if for all varieties $V_{1}, V_{2} \subset \mathbf{K}^{n}$

$$
V=V_{1} \cup V_{2} \Rightarrow V=V_{1} \text { or } V=V_{2}
$$

## Milestones (1/3)

■ Let $\mathbf{k}$ be a field and $\mathbf{K}$ its algebraic closure. Consider $n$ variables $x_{1}<\cdots<x_{n}$.
■ A subset $V \subset \mathbf{K}^{n}$ is a (affine) variety over $\mathbf{k}$ if there exists $F \subset \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ such that $V=V(F)$ where

$$
V(F):=\left\{z \in \mathbf{K}^{n} \mid f(z)=0 \quad(\forall f \in F)\right\} .
$$

The variety $V$ is irreducible if for all varieties $V_{1}, V_{2} \subset \mathbf{K}^{n}$

$$
V=V_{1} \cup V_{2} \Rightarrow V=V_{1} \text { or } V=V_{2} .
$$

■ Theorem (E. Lasker, 1905) For each variety $V \subset \mathbf{K}^{n}$ there exist finitely many irreducible varieties $V_{1}, \ldots, V_{e} \subset \mathbf{K}^{n}$ such that

$$
V=V_{1} \cup \cdots \cup V_{e} .
$$

Moreover, if $V_{i} \nsubseteq V_{j}$ for $1 \leq i<j \leq e$ then $\left\{V_{1}, \ldots, V_{e}\right\}$ is unique. This is the irreducible decomposition of $V$.

## Milestones (2/3)

■ Theorem (J.F. Ritt, 1932) Let $V \subset \mathbf{K}^{n}$ be an irreducible non-empty variety and let $F \subset \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ s.t. $V=V(F)$. Then, one can compute a (reduced) triangular set $T \subset\langle F\rangle$ s.t.

$$
(\forall g \in\langle F\rangle) \operatorname{prem}(g, T)=0
$$

Combined with algebraic factorization one can (in theory) compute irreducible decompositions.

## Milestones (2/3)

■ Theorem (J.F. Ritt, 1932) Let $V \subset \mathbf{K}^{n}$ be an irreducible non-empty variety and let $F \subset \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ s.t. $V=V(F)$. Then, one can compute a (reduced) triangular set $T \subset\langle F\rangle$ s.t.

$$
(\forall g \in\langle F\rangle) \quad \operatorname{prem}(g, T)=0 .
$$

Combined with algebraic factorization one can (in theory) compute irreducible decompositions.

■ Theorem (W.T. Wu, 1987) Let $V \subset \mathbf{K}^{n}$ be a variety and let $F \subset \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ s.t. $V=V(F)$. Then, one can compute a (reduced) triangular set $T \subset\langle F\rangle$ s.t.

$$
(\forall g \in F) \quad \operatorname{prem}(g, T)=0
$$

This leads to a factorization-free algorithm for decomposing varieties (but not into irreducible components).

## Milestones (3/3)

■ Example. Applying the charset procedure to
$F=\left\{x_{2}^{2}-x_{1}, x_{1} x_{3}^{2}-2 x_{2} x_{3}+1,\left(x_{2} x_{3}-1\right) x_{4}^{2}+x_{2}^{2}\right\}$ produces $T=F$. However $V(F)=\varnothing$. Indeed

$$
x_{1} x_{3}^{2}-2 x_{2} x_{3}+1 \equiv\left(x_{2} x_{3}-1\right)^{2} \bmod x_{2}^{2}-x_{1} .
$$

Thus, the initial $\left(x_{2} x_{3}-1\right)$ is a zero-divisor modulo $\left\langle x_{2}^{2}-x_{1}, x_{1} x_{3}^{2}-2 x_{2} x_{3}+1\right\rangle$.

## Milestones (3/3)

■ Example. Applying the charset procedure to
$F=\left\{x_{2}^{2}-x_{1}, x_{1} x_{3}^{2}-2 x_{2} x_{3}+1,\left(x_{2} x_{3}-1\right) x_{4}^{2}+x_{2}^{2}\right\}$ produces $T=F$. However $V(F)=\varnothing$. Indeed

$$
x_{1} x_{3}^{2}-2 x_{2} x_{3}+1 \equiv\left(x_{2} x_{3}-1\right)^{2} \bmod x_{2}^{2}-x_{1} .
$$

Thus, the initial $\left(x_{2} x_{3}-1\right)$ is a zero-divisor modulo $\left\langle x_{2}^{2}-x_{1}, x_{1} x_{3}^{2}-2 x_{2} x_{3}+1\right\rangle$.

- The notion of a regular chain (Lu Yang, Jingzhong Zhang 1991), (Michael Kalkbrener 1991), (Daniel Lazard 1991) solves this difficulty


## Milestones (3/3)

- Example. Applying the charset procedure to $F=\left\{x_{2}^{2}-x_{1}, x_{1} x_{3}^{2}-2 x_{2} x_{3}+1,\left(x_{2} x_{3}-1\right) x_{4}^{2}+x_{2}^{2}\right\}$ produces $T=F$. However $V(F)=\varnothing$. Indeed

$$
x_{1} x_{3}^{2}-2 x_{2} x_{3}+1 \equiv\left(x_{2} x_{3}-1\right)^{2} \bmod x_{2}^{2}-x_{1} .
$$

Thus, the initial $\left(x_{2} x_{3}-1\right)$ is a zero-divisor modulo $\left\langle x_{2}^{2}-x_{1}, x_{1} x_{3}^{2}-2 x_{2} x_{3}+1\right\rangle$.

- The notion of a regular chain (Lu Yang, Jingzhong Zhang 1991), (Michael Kalkbrener 1991), (Daniel Lazard 1991) solves this difficulty
■ Moreover, for any input $F \subseteq \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ one can compute regular chains $T_{1}, \ldots, T_{e}$ such that a point $z \in \mathbf{K}^{n}$ is a zero of $F$ if and only if $z$ is a zero of one of the $T_{1}, \ldots, T_{e}$ (in some technical sense).
(Dong Ming Wang 2000), (Marc Moreno Maza 2000).


## A recursive view on polynomials

Let $\mathbf{k}$ be a field, $X=x_{1}<\cdots<x_{n}$ be variables and $f, g \in \mathbf{k}[X]$ with $g \notin \mathbf{k}$.
mvar $(g)$ : the greatest variable in $g$ is the leader or main variable of $g$, init $(g)$ : the leading coefficient of $g$ w.r.t. $\operatorname{mvar}(g)$ is the initial of $g$, $\operatorname{mdeg}(g)$ : the degree of $g$ w.r.t. $\operatorname{mvar}(g)$,
$\operatorname{rank}(g)=v^{d}$ where $v=\operatorname{mvar}(g)$ and $d=\operatorname{mdeg}(g)$,
pdivide $(f, g)=(q, r)$ with $q, r \in \mathbf{k}[X], \operatorname{deg}\left(r, v_{g}\right)<d_{g}$ and $h_{g}^{e} f=q g+r$ where $h_{g}=\operatorname{init}(g), e=\max \left(\operatorname{deg}(f, v)-d_{g}+1,0\right)$, $v_{g}=\operatorname{mvar}(g)$ and $d_{g}=\operatorname{mdeg}(g)$,

## Example

Assume $n \geq 3$. If $p=x_{1} x_{3}^{2}-2 x_{2} x_{3}+1$, then we have $\operatorname{mvar}(p)=x_{3}$, $\operatorname{mdeg}(p)=2, \operatorname{init}(p)=x_{1}$ and $\operatorname{rank}(p)=x_{3}^{2}$.

Go to RegularChains.pdf Section 2.1.

## Regular chain

## Definition

The set $T \subset \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$ is triangular set if it consists of non-constant polynomials with pair-wise different main variables.
Define $h_{T}:=\prod_{t \in T} \operatorname{init}(t)$, where $\operatorname{init}(t)=\operatorname{lc}(t, \operatorname{mvar}(t))$.
The quasi-component and saturated ideal of $T$ are:

$$
W(T):=V(T) \backslash V\left(h_{T}\right) \text { and } \operatorname{sat}(T)=\langle T\rangle: h_{T}^{\infty} .
$$

## Regular chain

## Definition

The set $T \subset \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$ is triangular set if it consists of non-constant polynomials with pair-wise different main variables.
Define $h_{T}:=\prod_{t \in T} \operatorname{init}(t)$, where $\operatorname{init}(t)=\operatorname{lc}(t, \operatorname{mvar}(t))$.
The quasi-component and saturated ideal of $T$ are:

$$
W(T):=V(T) \backslash V\left(h_{T}\right) \text { and } \operatorname{sat}(T)=\langle T\rangle: h_{T}^{\infty} .
$$

Note that for all triangular set $T$ we have:
■ $\overline{W(T)}=V(\operatorname{sat}(T))$.

- if $\operatorname{sat}(T) \neq\langle 1\rangle$ then $\operatorname{sat}(T)$ is strongly equi-dimensional.


## Regular chain

## Definition

The set $T \subset \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$ is triangular set if it consists of non-constant polynomials with pair-wise different main variables.
Define $h_{T}:=\prod_{t \in T} \operatorname{init}(t)$, where init $(t)=\operatorname{lc}(t, \operatorname{mvar}(t))$.
The quasi-component and saturated ideal of $T$ are:

$$
W(T):=V(T) \backslash V\left(h_{T}\right) \text { and } \operatorname{sat}(T)=\langle T\rangle: h_{T}^{\infty} .
$$

Note that for all triangular set $T$ we have:
■ $\overline{W(T)}=V(\operatorname{sat}(T))$.

- if $\operatorname{sat}(T) \neq\langle 1\rangle$ then $\operatorname{sat}(T)$ is strongly equi-dimensional.


## Definition (M. Kalkbrner, 1991 - L. Yang, J. Zhang 1991)

$T$ is a regular chain if $T=\varnothing$ or $T:=T^{\prime} \cup\{t\}$ with $\operatorname{mvar}(t)$ maximum s.t.

- $T^{\prime}$ is a regular chain,
- $\operatorname{init}(t)$ is regular modulo $\operatorname{sat}\left(T^{\prime}\right)$.


## Regular chain: alternative definition



## Regular chain: alternative definition

## Regular chain: algorithmic properties

Theorem (P. Aubry, D. Lazard, M., 1997)
$T$ is a regular chain iff $\{p \mid \operatorname{prem}(p, T)=0\}=\operatorname{sat}(T)$.

## Regular chain: algorithmic properties

Theorem (P. Aubry, D. Lazard, M., 1997)
$T$ is a regular chain iff $\{p \mid \operatorname{prem}(p, T)=0\}=\operatorname{sat}(T)$.

## Definition

Let $T \subset \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$ be a triangular set and $p \in \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$. If $T$ is empty then, the iterated resultant of $p$ w.r.t. $T$ is resultant $(T, p)=p$. Otherwise, writing $T=T_{<w} \cup T_{w}$
$\operatorname{resultant}(T, p)= \begin{cases}p & \text { if } \operatorname{deg}(p, w)=0 \\ \operatorname{resultant}\left(T_{<w}, \operatorname{resultant}\left(T_{w}, p, w\right)\right) & \text { otherwise }\end{cases}$

## Regular chain: algorithmic properties

Theorem (P. Aubry, D. Lazard, M., 1997)
$T$ is a regular chain iff $\{p \mid \operatorname{prem}(p, T)=0\}=\operatorname{sat}(T)$.

## Definition

Let $T \subset \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$ be a triangular set and $p \in \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$. If $T$ is empty then, the iterated resultant of $p$ w.r.t. $T$ is resultant $(T, p)=p$. Otherwise, writing $T=T_{<w} \cup T_{w}$
$\operatorname{resultant}(T, p)= \begin{cases}p & \text { if } \operatorname{deg}(p, w)=0 \\ \operatorname{resultant}\left(T_{<w}, \operatorname{resultant}\left(T_{w}, p, w\right)\right) & \text { otherwise }\end{cases}$

Theorem (L. Yang, J. Zhang 1991)
$p$ is regular modulo sat $(T)$ iff resultant $(T, p) \neq 0$.

## Triangular decomposition of an algebraic variety

Kalkbrener triangular decomposition
Let $F \subset \mathbf{k}[\mathbf{x}]$. A family of regular chains $T_{1}, \ldots, T_{e}$ of $\mathbf{k}[\mathbf{x}]$ is called a Kalkbrener triangular decomposition of $V(F)$ if

$$
V(F)=\cup_{i=1}^{e} V\left(\operatorname{sat}\left(T_{i}\right)\right) .
$$

## Triangular decomposition of an algebraic variety

## Kalkbrener triangular decomposition

Let $F \subset \mathbf{k}[\mathbf{x}]$. A family of regular chains $T_{1}, \ldots, T_{e}$ of $\mathbf{k}[\mathbf{x}]$ is called a Kalkbrener triangular decomposition of $V(F)$ if

$$
V(F)=\cup_{i=1}^{e} V\left(\operatorname{sat}\left(T_{i}\right)\right) .
$$

Wu-Lazard triangular decomposition
Let $F \subset \mathbf{k}[\mathbf{x}]$. A family of regular chains $T_{1}, \ldots, T_{e}$ of $\mathbf{k}[\mathbf{x}]$ is called a Wu-Lazard triangular decomposition of $V(F)$ if

$$
V(F)=\cup_{i=1}^{e} W\left(T_{i}\right) .
$$

## Triangularize applied to sofa and cylinder (1/2)

$$
x^{2}+y^{3}+z^{5}=x^{4}+z^{2}-1=0
$$



## Triangularize applied to sofa and cylinder (2/2)

Eile Edit View Insert Format Table Drawing plot Spreadsheet Iools Window Help
, $\mid>\mathrm{R}:=$ PolynomialRing $([z, y, x]): F:=[x \wedge 2+y \wedge 3+z \wedge 5, x \wedge 4+z \wedge 2-1]: d e c:=$ Triangularize(F, R): map(Display, dec, R);

$$
\left\{\begin{array}{c}
\left(-2 x^{4}+x^{8}+1\right) z+x^{2}+y^{3}=0 \\
y^{6}+2 x^{2} y^{3}+10 x^{12}-10 x^{8}+x^{20}-5 x^{16}+6 x^{4}-1=0 \\
-2 x^{4}+x^{8}+1 \neq 0
\end{array}\right.
$$

dec := Triangularize(F, R, output=1azard): map(Display, dec, R);

$$
\begin{gathered}
\left(-2 x^{4}+x^{8}+1\right) z+x^{2}+y^{3}=0 \\
y^{6}+2 x^{2} y^{3}+10 x^{12}-10 x^{8}+x^{20}-5 x^{16}+6 x^{4}-1=0 \\
-2 x^{4}+x^{8}+1 \neq 0
\end{gathered}
$$

$$
\left\{\begin{array}{c}
z=0 \\
y-1=0 \\
x^{2}+1=0
\end{array} \quad,\left\{\begin{array}{c}
z=0 \\
y^{2}-y+1=0 \\
x+1=0
\end{array} \quad,\left\{\begin{array}{c}
z=0 \\
y^{2}-y+1=0 \\
x-1=0
\end{array} \quad,\left\{\begin{array}{c}
z=0 \\
y+1=0 \\
x+1=0
\end{array}\right.\right.\right.\right.
$$

$$
\left\{\begin{array}{c}
z=0 \\
y+1=0 \\
x-1=0
\end{array}\right.
$$

## Relations with resultants and subresultants (1/3)

In a nutshell, solving bivariate polynomial systems can be done via

## Relations with resultants and subresultants $(1 / 3)$

In a nutshell, solving bivariate polynomial systems can be done via
1 resultant computations,

## Relations with resultants and subresultants $(1 / 3)$

In a nutshell, solving bivariate polynomial systems can be done via
1 resultant computations,
2 factorization of univariate polynomials, and

## Relations with resultants and subresultants $(1 / 3)$

In a nutshell, solving bivariate polynomial systems can be done via
1 resultant computations,
2 factorization of univariate polynomials, and
3 univariate polynomial GCDs.

## Relations with resultants and subresultants $(1 / 3)$

In a nutshell, solving bivariate polynomial systems can be done via
1 resultant computations,
2 factorization of univariate polynomials, and
3 univariate polynomial GCDs.
Example (von zur Gathen \& Gerhard, Chapter 6)
Let $P=\left(y^{2}+6\right)(x-1)-y\left(x^{2}+1\right)$ and $Q=\left(x^{2}+6\right)(y-1)-x\left(y^{2}+1\right)$

## Relations with resultants and subresultants $(1 / 3)$

In a nutshell, solving bivariate polynomial systems can be done via
1 resultant computations,
2 factorization of univariate polynomials, and
3 univariate polynomial GCDs.
Example (von zur Gathen \& Gerhard, Chapter 6)
Let $P=\left(y^{2}+6\right)(x-1)-y\left(x^{2}+1\right)$ and $Q=\left(x^{2}+6\right)(y-1)-x\left(y^{2}+1\right)$
$\square \operatorname{res}(\mathrm{P}, \mathrm{Q}, \mathrm{y})=2\left(\mathrm{x}^{2}-\mathrm{x}+4\right)(\mathrm{x}-2)^{2}(\mathrm{x}-3)^{2}$.

## Relations with resultants and subresultants $(1 / 3)$

In a nutshell, solving bivariate polynomial systems can be done via
1 resultant computations,
2 factorization of univariate polynomials, and
3 univariate polynomial GCDs.
Example (von zur Gathen \& Gerhard, Chapter 6)
Let $P=\left(y^{2}+6\right)(x-1)-y\left(x^{2}+1\right)$ and $Q=\left(x^{2}+6\right)(y-1)-x\left(y^{2}+1\right)$
$\square \operatorname{res}(\mathrm{P}, \mathrm{Q}, \mathrm{y})=2\left(\mathrm{x}^{2}-\mathrm{x}+4\right)(\mathrm{x}-2)^{2}(\mathrm{x}-3)^{2}$.

- $\operatorname{gcd}(\mathrm{P}, \mathrm{Q}, \mathrm{x}-2=0)=(\mathrm{y}-2)(\mathrm{y}-3)$.


## Relations with resultants and subresultants $(1 / 3)$

In a nutshell, solving bivariate polynomial systems can be done via
1 resultant computations,
2 factorization of univariate polynomials, and
3 univariate polynomial GCDs.
Example (von zur Gathen \& Gerhard, Chapter 6)
Let $P=\left(y^{2}+6\right)(x-1)-y\left(x^{2}+1\right)$ and $Q=\left(x^{2}+6\right)(y-1)-x\left(y^{2}+1\right)$
$\square \operatorname{res}(\mathrm{P}, \mathrm{Q}, \mathrm{y})=2\left(\mathrm{x}^{2}-\mathrm{x}+4\right)(\mathrm{x}-2)^{2}(\mathrm{x}-3)^{2}$.

- $\operatorname{gcd}(\mathrm{P}, \mathrm{Q}, \mathrm{x}-2=0)=(\mathrm{y}-2)(\mathrm{y}-3)$.
- $\operatorname{gcd}(P, Q, x-3=0)=(y-2)(y-3)$.


## Relations with resultants and subresultants $(1 / 3)$

In a nutshell, solving bivariate polynomial systems can be done via
1 resultant computations,
2 factorization of univariate polynomials, and
3 univariate polynomial GCDs.
Example (von zur Gathen \& Gerhard, Chapter 6)
Let $P=\left(y^{2}+6\right)(x-1)-y\left(x^{2}+1\right)$ and $Q=\left(x^{2}+6\right)(y-1)-x\left(y^{2}+1\right)$
$\square \operatorname{res}(\mathrm{P}, \mathrm{Q}, \mathrm{y})=2\left(\mathrm{x}^{2}-\mathrm{x}+4\right)(\mathrm{x}-2)^{2}(\mathrm{x}-3)^{2}$.

- $\operatorname{gcd}(\mathrm{P}, \mathrm{Q}, \mathrm{x}-2=0)=(\mathrm{y}-2)(\mathrm{y}-3)$.
- $\operatorname{gcd}(P, Q, x-3=0)=(y-2)(y-3)$.
- $\operatorname{gcd}\left(\mathrm{P}, \mathrm{Q}, \mathrm{x}^{2}-\mathrm{x}+4=0\right)=(2 \mathrm{x}-1) \mathrm{y}-7-\mathrm{x}$.


## Relations with resultants and subresultants (2/3)

In fact, factorizing the resultant is not necessary. Using regularity test and the specialization property of subresultants is sufficient.

## Relations with resultants and subresultants (2/3)

In fact, factorizing the resultant is not necessary. Using regularity test and the specialization property of subresultants is sufficient.
Consider the following polynomials $f, g \in \mathbb{Q}[y<x]$ :

$$
\begin{aligned}
& f=x^{7}-36 x-22 y+1 \\
& g=x^{6}+47 x^{3}-60 x y^{2}-6 x y-83 y^{2}-10 y+50
\end{aligned}
$$

## Relations with resultants and subresultants $(2 / 3)$

In fact, factorizing the resultant is not necessary. Using regularity test and the specialization property of subresultants is sufficient.
Consider the following polynomials $f, g \in \mathbb{Q}[y<x]$ :

$$
\begin{aligned}
& f=x^{7}-36 x-22 y+1 \\
& g=x^{6}+47 x^{3}-60 x y^{2}-6 x y-83 y^{2}-10 y+50
\end{aligned}
$$

The complete list of subresultants of $(f, g)$ w.r.t. $x$ is:

$$
\begin{aligned}
S_{6} & =g \\
S_{5} & =56 x^{4}+60 x^{2} y^{2}+6 x^{2} y+83 x y^{2}+10 x y+17 x+81 y+1 \\
S_{4} & =46 x^{4}+64 x^{2} y^{2}+27 x^{2} y+13 x y^{2}+45 x y+25 x+4 y+56 \\
S_{3} & =74 x^{2} y^{4}+7 x^{3} y^{2}+56 x^{2} y^{3}+44 x y^{4}+\cdots+98 y^{2}+86 y+53 \\
S_{2} & =25 x^{2} y^{8}+10 x^{2} y^{7}+26 x y^{8}+62 x^{2} y^{6}+\cdots+96 x+72 y+43, \\
S_{1} & =81 x y^{12}+28 x y^{11}+76 y^{12}+24 x y^{10}+5 x y^{9}+\cdots+4 x+73 y+77, \\
S_{0} & =97 y^{15}+82 y^{14}+82 y^{13}+\cdots+23 y^{5}+89 y^{4}+31 y^{3}+y^{2}+54 y+69 .
\end{aligned}
$$

## Relations with resultants and subresultants $(2 / 3)$

In fact, factorizing the resultant is not necessary. Using regularity test and the specialization property of subresultants is sufficient.
Consider the following polynomials $f, g \in \mathbb{Q}[y<x]$ :

$$
\begin{aligned}
& f=x^{7}-36 x-22 y+1 \\
& g=x^{6}+47 x^{3}-60 x y^{2}-6 x y-83 y^{2}-10 y+50 .
\end{aligned}
$$

The complete list of subresultants of $(f, g)$ w.r.t. $x$ is:

$$
\begin{aligned}
& S_{6}=g \\
& S_{5}=56 x^{4}+60 x^{2} y^{2}+6 x^{2} y+83 x y^{2}+10 x y+17 x+81 y+1 \\
& S_{4}=46 x^{4}+64 x^{2} y^{2}+27 x^{2} y+13 x y^{2}+45 x y+25 x+4 y+56 \\
& S_{3}=74 x^{2} y^{4}+7 x^{3} y^{2}+56 x^{2} y^{3}+44 x y^{4}+\cdots+98 y^{2}+86 y+53, \\
& S_{2}=25 x^{2} y^{8}+10 x^{2} y^{7}+26 x y^{8}+62 x^{2} y^{6}+\cdots+96 x+72 y+43, \\
& S_{1}=81 x y^{12}+28 x y^{11}+76 y^{12}+24 x y^{10}+5 x y^{9}+\cdots+4 x+73 y+77, \\
& S_{0}=97 y^{15}+82 y^{14}+82 y^{13}+\cdots+23 y^{5}+89 y^{4}+31 y^{3}+y^{2}+54 y+69 .
\end{aligned}
$$

The solutions of $f=g=0$ can be calculated using $S_{0}, S_{1}$ only.
Go to RegularChains.pdf Sections 2.2 and 2.3.

## Relations with resultants and subresultants (3/3)

Extending the previous ideas to solving $m$ polynomial equations
in $n$ variables can be done using

- a cascade of Sylvester resultants (this talk), or
- a combination of Dixon/Macaulay resultants and Sylvester resultants (work in progress).


## Relations with Gröbner bases

Normalized regular chains

- The regular chain $T \subset \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$ is said normalized if for every $t, t^{\prime} \in T$ we have $\operatorname{deg}\left(\operatorname{init}(t), \operatorname{mvar}\left(t^{\prime}\right)\right)=0$.


## Relations with Gröbner bases

Normalized regular chains

- The regular chain $T \subset \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$ is said normalized if for every $t, t^{\prime} \in T$ we have $\operatorname{deg}\left(\operatorname{init}(t), \operatorname{mvar}\left(t^{\prime}\right)\right)=0$.
■ Let $Y:=\{\operatorname{mvar}(t) \mid t \in T\}$ and $U:=X \backslash Y$. If $T$ is normalized, then $T$ is a Gröbner basis of dimension 0 of the ideal it generates in $\mathbf{k}(U)[Y]$.


## Relations with Gröbner bases

Normalized regular chains

- The regular chain $T \subset \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$ is said normalized if for every $t, t^{\prime} \in T$ we have $\operatorname{deg}\left(\operatorname{init}(t), \operatorname{mvar}\left(t^{\prime}\right)\right)=0$.
■ Let $Y:=\{\operatorname{mvar}(t) \mid t \in T\}$ and $U:=X \backslash Y$. If $T$ is normalized, then $T$ is a Gröbner basis of dimension 0 of the ideal it generates in $\mathbf{k}(U)[Y]$.

From lexicographical Gröbner bases to regular chains

## Relations with Gröbner bases

Normalized regular chains

- The regular chain $T \subset \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$ is said normalized if for every $t, t^{\prime} \in T$ we have $\operatorname{deg}\left(\operatorname{init}(t), \operatorname{mvar}\left(t^{\prime}\right)\right)=0$.
■ Let $Y:=\{\operatorname{mvar}(t) \mid t \in T\}$ and $U:=X \backslash Y$. If $T$ is normalized, then $T$ is a Gröbner basis of dimension 0 of the ideal it generates in $\mathbf{k}(U)[Y]$.

From lexicographical Gröbner bases to regular chains

- Let $G$ be a lexicographical Gröbner basis of a zero-dimensional ideal $\mathcal{I} \subset \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$. Then, Lextriangular $(G)$ computes regular chains (optionally normalized) $T_{1}, \ldots, T_{e} \subset \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$ so that $V(G)=\cup_{i=1}^{e} V\left(T_{i}\right)$. (Daniel Lazard, 1992).


## Relations with Gröbner bases

Normalized regular chains

- The regular chain $T \subset \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$ is said normalized if for every $t, t^{\prime} \in T$ we have $\operatorname{deg}\left(\operatorname{init}(t), \operatorname{mvar}\left(t^{\prime}\right)\right)=0$.
■ Let $Y:=\{\operatorname{mvar}(t) \mid t \in T\}$ and $U:=X \backslash Y$. If $T$ is normalized, then $T$ is a Gröbner basis of dimension 0 of the ideal it generates in $\mathbf{k}(U)[Y]$.

From lexicographical Gröbner bases to regular chains
■ Let $G$ be a lexicographical Gröbner basis of a zero-dimensional ideal $\mathcal{I} \subset \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$. Then, Lextriangular $(G)$ computes regular chains (optionally normalized) $T_{1}, \ldots, T_{e} \subset \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$ so that $V(G)=\cup_{i=1}^{e} V\left(T_{i}\right)$. (Daniel Lazard, 1992).

- This is done at a cost which is at most that inverting at most $\# G$ polynomials modulo one of the ideals $\left\langle T_{1}\right\rangle, \ldots,\left\langle T_{e}\right\rangle$.


## Relations with Gröbner bases

Normalized regular chains

- The regular chain $T \subset \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$ is said normalized if for every $t, t^{\prime} \in T$ we have $\operatorname{deg}\left(\operatorname{init}(t), \operatorname{mvar}\left(t^{\prime}\right)\right)=0$.
■ Let $Y:=\{\operatorname{mvar}(t) \mid t \in T\}$ and $U:=X \backslash Y$. If $T$ is normalized, then $T$ is a Gröbner basis of dimension 0 of the ideal it generates in $\mathbf{k}(U)[Y]$.

From lexicographical Gröbner bases to regular chains

- Let $G$ be a lexicographical Gröbner basis of a zero-dimensional ideal $\mathcal{I} \subset \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$. Then, Lextriangular $(G)$ computes regular chains (optionally normalized) $T_{1}, \ldots, T_{e} \subset \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$ so that $V(G)=\cup_{i=1}^{e} V\left(T_{i}\right)$. (Daniel Lazard, 1992).
- This is done at a cost which is at most that inverting at most $\# G$ polynomials modulo one of the ideals $\left\langle T_{1}\right\rangle, \ldots,\left\langle T_{e}\right\rangle$.
- This is practically very effective.


## Triangular decompositions: the incremental approach

- Let $f \in \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ and $T \subseteq \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ be a regular chain.


## Triangular decompositions: the incremental approach

■ Let $f \in \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ and $T \subseteq \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ be a regular chain.

- The intersection $V(f) \cap W(T)$ is approximated by the function call Intersect $(f, T)$, which returns regular chains $T_{1}, \ldots, T_{e} \subseteq \mathbf{k}[X]$ s.t.:

$$
V(f) \cap W(T) \subseteq W\left(T_{1}\right) \cup \cdots \cup W\left(T_{e}\right) \subseteq V(f) \cap \overline{W(T)},
$$

where $\overline{W(T)}$ denotes the Zariski closure of $W(T)$.

## Triangular decompositions: the incremental approach

■ Let $f \in \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ and $T \subseteq \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ be a regular chain.
■ The intersection $V(f) \cap W(T)$ is approximated by the function call Intersect $(f, T)$, which returns regular chains $T_{1}, \ldots, T_{e} \subseteq \mathbf{k}[X]$ s.t.:

$$
V(f) \cap W(T) \subseteq W\left(T_{1}\right) \cup \cdots \cup W\left(T_{e}\right) \subseteq V(f) \cap \overline{W(T)},
$$

where $\overline{W(T)}$ denotes the Zariski closure of $W(T)$.
■ Given $f_{1}, \ldots, f_{m} \in \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$, one can solve $f_{1}=\cdots=f_{m}=0$ using repeated calls to Intersect.

## Triangular decompositions: the incremental approach

■ Let $f \in \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ and $T \subseteq \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ be a regular chain.
■ The intersection $V(f) \cap W(T)$ is approximated by the function call Intersect $(f, T)$, which returns regular chains $T_{1}, \ldots, T_{e} \subseteq \mathbf{k}[X]$ s.t.:

$$
V(f) \cap W(T) \subseteq W\left(T_{1}\right) \cup \cdots \cup W\left(T_{e}\right) \subseteq V(f) \cap \overline{W(T)},
$$

where $\overline{W(T)}$ denotes the Zariski closure of $W(T)$.
■ Given $f_{1}, \ldots, f_{m} \in \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$, one can solve $f_{1}=\cdots=f_{m}=0$ using repeated calls to Intersect.
■ Indeed, if $V\left(f_{1}, \ldots, f_{m-1}\right)=\cup_{i=1}^{e} W\left(T_{i}\right)$, then we have

$$
V\left(f_{1}, \ldots, f_{m}\right)=\cup_{i=1}^{e} \operatorname{lntersect}\left(f_{m}, T_{i}\right)
$$

(Daniel Lazard 1991), (M. 2000), (Changbo Chen \& M. 2011-2012).

## Outline

1. Triangular decompositions in polynomial system solving
2. Modular methods in polynomial system solving
3. A Modular methods for incremental triangular decompositions
4. Conclusions

## Computing by homomotphic images: principles,

## Examples

- The computation of the determinant of an integer matrix using the Chinese Remaindering Theorem.


## Computing by homomotphic images: principles,

## Examples

- The computation of the determinant of an integer matrix using the Chinese Remaindering Theorem.
- Since resultants are determinants, similar strategies apply.


## Computing by homomotphic images: principles,

## Examples

- The computation of the determinant of an integer matrix using the Chinese Remaindering Theorem.
- Since resultants are determinants, similar strategies apply.
- A more advanced example is the computation of the GCD of univariate integer polynomials, again using CRT.


## Computing by homomotphic images: principles,

## Examples

- The computation of the determinant of an integer matrix using the Chinese Remaindering Theorem.
- Since resultants are determinants, similar strategies apply.
- A more advanced example is the computation of the GCD of univariate integer polynomials, again using CRT.
- See the book by von zur Gathen \& Gerhard.


## Computing by homomotphic images: principles,

## Examples

- The computation of the determinant of an integer matrix using the Chinese Remaindering Theorem.
- Since resultants are determinants, similar strategies apply.
- A more advanced example is the computation of the GCD of univariate integer polynomials, again using CRT.
- See the book by von zur Gathen \& Gerhard.


## Advantages and issues

- Modular methods (1) may control expression swell, (2) allow sharper implementation (fine control memory), (3) open the door to FFT-based arithmetic, and (4) provide opportunities for concurrency.


## Computing by homomotphic images: principles,

## Examples

- The computation of the determinant of an integer matrix using the Chinese Remaindering Theorem.
- Since resultants are determinants, similar strategies apply.
- A more advanced example is the computation of the GCD of univariate integer polynomials, again using CRT.
- See the book by von zur Gathen \& Gerhard.


## Advantages and issues

- Modular methods (1) may control expression swell, (2) allow sharper implementation (fine control memory), (3) open the door to FFT-based arithmetic, and (4) provide opportunities for concurrency.
- Modular methods are (1) generally harder to implement than direct methods, and (2) usually require change of representations which may come with significant costs in terms of memory consumption.


## Expression swell may sometimes be handled in other ways

- Consider the system $F$ (Barry Trager)

$$
-x^{5}+y^{5}-3 y-1=5 y^{4}-3=-20 x+y-z=0
$$

We solve it for $z<y<x$.

- $V(F)$ is equiprojectable and its Lazard triangular set is


















Applying the transformation of Dahan and Schost leads to 1787 characters.

$\left(-6553600000000 n c o c o 0010 \Sigma^{4}\right)+\left(-(2717905382277335654399676 / 125) z^{1}\right)+$



 $\left(-665860000000000000000=^{4}\right)+\left(-(271750538227733655439676 / 125)=^{-1}\right)+$





- One can do better! Here's the regular chain produced by the

Triangularize algorithm of the RegularChains library, counting 963
haracters.
$20 z-1 y+z$
$\left(4375 x^{12}+52800011625 z^{4}+32000000000 z^{7}+110591902080002925 z^{4}+61439950800000000 z^{3}+12800000 n 00000000 z^{2}+5662317271041138800027\right), y$




## Trace algorithms

■ Consider an algorithm Solver $(F)$ taking $F \subseteq \mathbb{Z}\left[x_{n}>\cdots>x_{1}\right]$ computing a finite sequence $\mathcal{G}$ of finite sets $G_{1}, G_{2}, \ldots, \subseteq\langle F\rangle$ until $G_{i}=G_{\text {output }}$ satisifies a property, e.g. Gröbner basis of $\langle F\rangle$ or Wu-characteristic set of $F$.

## Trace algorithms

■ Consider an algorithm Solver $(F)$ taking $F \subseteq \mathbb{Z}\left[x_{n}>\cdots>x_{1}\right]$
computing a finite sequence $\mathcal{G}$ of finite sets $G_{1}, G_{2}, \ldots, \subseteq\langle F\rangle$ until $G_{i}=G_{\text {output }}$ satisifies a property, e.g. Gröbner basis of $\langle F\rangle$ or Wu-characteristic set of $F$.

- Endow all such finite sequences $\mathcal{G}$ with a rank function so that, for every well-chosen prime number $p$, the sequence computed by Solver $(F \bmod p)$ has maximum rank iff Solver $(F \bmod p)=G_{\text {output }} \bmod p$.


## Trace algorithms

■ Consider an algorithm Solver $(F)$ taking $F \subseteq \mathbb{Z}\left[x_{n}>\cdots>x_{1}\right]$
computing a finite sequence $\mathcal{G}$ of finite sets $G_{1}, G_{2}, \ldots, \subseteq\langle F\rangle$ until $G_{i}=G_{\text {output }}$ satisifies a property, e.g. Gröbner basis of $\langle F\rangle$ or Wu-characteristic set of $F$.
■ Endow all such finite sequences $\mathcal{G}$ with a rank function so that, for every well-chosen prime number $p$, the sequence computed by Solver $(F \bmod p)$ has maximum rank iff Solver $(F \bmod p)=G_{\text {output }} \bmod p$.

- For polynomial GCD computations (with $n=1$ ) one can simply use the degree as rank function.


## Trace algorithms

■ Consider an algorithm Solver $(F)$ taking $F \subseteq \mathbb{Z}\left[x_{n}>\cdots>x_{1}\right]$ computing a finite sequence $\mathcal{G}$ of finite sets $G_{1}, G_{2}, \ldots, \subseteq\langle F\rangle$ until $G_{i}=G_{\text {output }}$ satisifies a property, e.g. Gröbner basis of $\langle F\rangle$ or Wu-characteristic set of $F$.
■ Endow all such finite sequences $\mathcal{G}$ with a rank function so that, for every well-chosen prime number $p$, the sequence computed by Solver $(F \bmod p)$ has maximum rank iff Solver $(F \bmod p)=G_{\text {output }} \bmod p$.

- For polynomial GCD computations (with $n=1$ ) one can simply use the degree as rank function.
■ For Gröbner bases, one can use the Hilbert function (Carlo Traverso, ISSAC 1988), (Jean-Charles Faugère, PASCO 1994), (Elizabeth Arnold, JSC 2003)


## Trace algorithms

■ Consider an algorithm Solver $(F)$ taking $F \subseteq \mathbb{Z}\left[x_{n}>\cdots>x_{1}\right]$ computing a finite sequence $\mathcal{G}$ of finite sets $G_{1}, G_{2}, \ldots, \subseteq\langle F\rangle$ until $G_{i}=G_{\text {output }}$ satisifies a property, e.g. Gröbner basis of $\langle F\rangle$ or Wu-characteristic set of $F$.
■ Endow all such finite sequences $\mathcal{G}$ with a rank function so that, for every well-chosen prime number $p$, the sequence computed by Solver $(F \bmod p)$ has maximum rank iff Solver $(F \bmod p)=G_{\text {output }} \bmod p$.
■ For polynomial GCD computations (with $n=1$ ) one can simply use the degree as rank function.

- For Gröbner bases, one can use the Hilbert function (Carlo Traverso, ISSAC 1988), (Jean-Charles Faugère, PASCO 1994), (Elizabeth Arnold, JSC 2003)
- For characteristic sets, one can use the notion of rank as defined by Ritt and Wu (M. ACA 2003).


## The case of decomposition algorithms

- Consider an algorithm $\operatorname{Solver}(F)$ taking $F \subseteq \mathbb{Q}\left[x_{n}>\cdots>x_{1}\right]$ (assumed to be zero-dimensional for simplicity) computing a triangular decomposition into regular chain $T_{1}, \ldots, T_{e}$.


## The case of decomposition algorithms

- Consider an algorithm $\operatorname{Solver}(F)$ taking $F \subseteq \mathbb{Q}\left[x_{n}>\cdots>x_{1}\right]$ (assumed to be zero-dimensional for simplicity) computing a triangular decomposition into regular chain $T_{1}, \ldots, T_{e}$.
- The algorithm EquiprojectableDecompositon $\left(T_{1}, \ldots, T_{e}\right)$ returns a canonical triangular decomposition of $V(F)$ based on "geometrical" considerations.


## The case of decomposition algorithms

- Consider an algorithm $\operatorname{Solver}(F)$ taking $F \subseteq \mathbb{Q}\left[x_{n}>\cdots>x_{1}\right]$ (assumed to be zero-dimensional for simplicity) computing a triangular decomposition into regular chain $T_{1}, \ldots, T_{e}$.
- The algorithm EquiprojectableDecompositon $\left(T_{1}, \ldots, T_{e}\right)$ returns a canonical triangular decomposition of $V(F)$ based on "geometrical" considerations.
■ Moreover, if the prime $p$ is large enough, then the decompositions EquiprojectableDecompositon(Solver( $\mathrm{F} \bmod p$ )) and EquiprojectableDecompositon(Solver $(F)) \bmod p$ match.


## The case of decomposition algorithms

- Consider an algorithm $\operatorname{Solver}(F)$ taking $F \subseteq \mathbb{Q}\left[x_{n}>\cdots>x_{1}\right]$ (assumed to be zero-dimensional for simplicity) computing a triangular decomposition into regular chain $T_{1}, \ldots, T_{e}$.
- The algorithm EquiprojectableDecompositon $\left(T_{1}, \ldots, T_{e}\right)$ returns a canonical triangular decomposition of $V(F)$ based on "geometrical" considerations.
■ Moreover, if the prime $p$ is large enough, then the decompositions EquiprojectableDecompositon(Solver( $\mathrm{F} \bmod p$ )) and EquiprojectableDecompositon(Solver $(F)) \bmod p$ match.
- Using Hensel lifting techniques (Schost 2002) this leads to an effective modular method for Solver $(F)$ (Dahan, M., Schost, Wu \& Xie ISSAC 2005).


## Issues with iterated subresultant chains $(1 / 2)$

- Testing regularity of $p \in \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$ w.r.t. regular chain $T \subset \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$ is equivalent to checking whether $\operatorname{resultant}(T, p)$ is zero or not.


## Issues with iterated subresultant chains $(1 / 2)$

- Testing regularity of $p \in \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$ w.r.t. regular chain $T \subset \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$ is equivalent to checking whether $\operatorname{resultant}(T, p)$ is zero or not.
- Moreover, elimninating variables with pseudo-division (or variants) leads to computing cascade of (pseudo-)remainder sequences and thus (multiples of) iterated resultants.


## Issues with iterated subresultant chains $(1 / 2)$

- Testing regularity of $p \in \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$ w.r.t. regular chain $T \subset \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$ is equivalent to checking whether resultant $(T, p)$ is zero or not.
■ Moreover, elimninating variables with pseudo-division (or variants) leads to computing cascade of (pseudo-)remainder sequences and thus (multiples of) iterated resultants.
■ Those iterated resultants usually contain large extraneous factors.


## Issues with iterated subresultant chains $(1 / 2)$

- Testing regularity of $p \in \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$ w.r.t. regular chain $T \subset \mathbf{k}\left[x_{n}>\cdots>x_{1}\right]$ is equivalent to checking whether resultant $(T, p)$ is zero or not.
■ Moreover, elimninating variables with pseudo-division (or variants) leads to computing cascade of (pseudo-)remainder sequences and thus (multiples of) iterated resultants.
■ Those iterated resultants usually contain large extraneous factors.
■ In (C. Chen \& M. JSC 2012) we give examples of 3 zero-dimensional systems with $4^{3}=64$ solutions where the extraneous factors have degree in the 1000 's.


## Issues with iterated subresultant chains $(2 / 2)$

■ Let $C=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ be a zero-dimensional regular chain and $f$ be a polynomial all in $\mathbf{k}[X]$.

## Issues with iterated subresultant chains $(2 / 2)$

■ Let $C=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ be a zero-dimensional regular chain and $f$ be a polynomial all in $\mathrm{k}[X]$.
■ For $i=1, \ldots, n$, we denote by $h_{i}$, the initial of $t_{i}$,

## Issues with iterated subresultant chains $(2 / 2)$

■ Let $C=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ be a zero-dimensional regular chain and $f$ be a polynomial all in $\mathbf{k}[X]$.
■ For $i=1, \ldots, n$, we denote by $h_{i}$, the initial of $t_{i}$,
■ For $i=1, \ldots, n-1$, we define $f_{i}=\operatorname{res}\left(\left\{t_{i+1}, \ldots, t_{n}\right\}, f\right)$ and $e_{i}=\operatorname{deg}\left(f_{i}, x_{i}\right)$, with $e_{n}=\operatorname{deg}\left(f, X_{n}\right)$.

## Issues with iterated subresultant chains $(2 / 2)$

■ Let $C=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ be a zero-dimensional regular chain and $f$ be a polynomial all in $\mathrm{k}[X]$.
■ For $i=1, \ldots, n$, we denote by $h_{i}$, the initial of $t_{i}$,

- For $i=1, \ldots, n-1$, we define $f_{i}=\operatorname{res}\left(\left\{t_{i+1}, \ldots, t_{n}\right\}, f\right)$ and $e_{i}=\operatorname{deg}\left(f_{i}, x_{i}\right)$, with $e_{n}=\operatorname{deg}\left(f, X_{n}\right)$.
- Then, the iterated resultant $\operatorname{res}(C, f)$ is given by:
$h_{1}^{e_{1}}\left(\prod_{\beta_{1} \in V_{M}\left(t_{1}\right)} h_{2}\left(\beta_{1}\right)\right)^{e_{2}} \cdots\left(\prod_{\beta_{n-1} \in V_{M}\left(t_{1}, \ldots, t_{n-1}\right)} h_{n}\left(\beta_{n-1}\right)\right)^{e_{n}} R(C, f)$,
where

$$
R(C, f)=\left(\prod_{\alpha \in V_{M}(C)} f(\alpha)\right)
$$

and $V_{M}(C)$ is the set of the zeros of $C$ counted with multiplicity.

## Issues with iterated subresultant chains $(2 / 2)$

■ Let $C=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ be a zero-dimensional regular chain and $f$ be a polynomial all in $\mathrm{k}[X]$.
■ For $i=1, \ldots, n$, we denote by $h_{i}$, the initial of $t_{i}$,

- For $i=1, \ldots, n-1$, we define $f_{i}=\operatorname{res}\left(\left\{t_{i+1}, \ldots, t_{n}\right\}, f\right)$ and $e_{i}=\operatorname{deg}\left(f_{i}, x_{i}\right)$, with $e_{n}=\operatorname{deg}\left(f, X_{n}\right)$.
- Then, the iterated resultant $\operatorname{res}(C, f)$ is given by:
$h_{1}^{e_{1}}\left(\prod_{\beta_{1} \in V_{M}\left(t_{1}\right)} h_{2}\left(\beta_{1}\right)\right)^{e_{2}} \cdots\left(\prod_{\beta_{n-1} \in V_{M}\left(t_{1}, \ldots, t_{n-1}\right)} h_{n}\left(\beta_{n-1}\right)\right)^{e_{n}} R(C, f)$,
where

$$
R(C, f)=\left(\prod_{\alpha \in V_{M}(C)} f(\alpha)\right)
$$

and $V_{M}(C)$ is the set of the zeros of $C$ counted with multiplicity.

- Thus, if $h_{1}=\cdots=h_{n}=1$, then we simply have:

$$
\operatorname{res}(C, f)=R(C, f)
$$

## Outline

1. Triangular decompositions in polynomial system solving
2. Modular methods in polynomial system solving
3. A Modular methods for incremental triangular decompositions
4. Conclusions

Recall the incremental approach and define our goals
■ Let $f \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ and $T \subseteq \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ be a regular chain.

## Recall the incremental approach and define our goals

■ Let $f \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ and $T \subseteq \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ be a regular chain.

- The intersection $V(f) \cap W(T)$ is approximated by the function call $\operatorname{Intersect}(f, T)$, which returns regular chains $T_{1}, \ldots, T_{e} \subseteq \mathbf{k}[X]$ s.t.:

$$
V(f) \cap W(T) \subseteq W\left(T_{1}\right) \cup \cdots \cup W\left(T_{e}\right) \subseteq V(f) \cap \overline{W(T)} .
$$

## Recall the incremental approach and define our goals

■ Let $f \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ and $T \subseteq \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ be a regular chain.

- The intersection $V(f) \cap W(T)$ is approximated by the function call $\operatorname{Intersect}(f, T)$, which returns regular chains $T_{1}, \ldots, T_{e} \subseteq \mathbf{k}[X]$ s.t.:

$$
V(f) \cap W(T) \subseteq W\left(T_{1}\right) \cup \cdots \cup W\left(T_{e}\right) \subseteq V(f) \cap \overline{W(T)} .
$$

- Our goals

1 compute modulo a well-chosen prime as in (Dahan et al., ISSAC 2005)
2 reduce to the case where $T$ is zero-dimensional and normalized, by variable specialization
3 recover the specialized variables, then the rational coefficients.

## Recall the incremental approach and define our goals

■ Let $f \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ and $T \subseteq \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ be a regular chain.

- The intersection $V(f) \cap W(T)$ is approximated by the function call $\operatorname{Intersect}(f, T)$, which returns regular chains $T_{1}, \ldots, T_{e} \subseteq \mathbf{k}[X]$ s.t.:

$$
V(f) \cap W(T) \subseteq W\left(T_{1}\right) \cup \cdots \cup W\left(T_{e}\right) \subseteq V(f) \cap \overline{W(T)} .
$$

- Our goals

1 compute modulo a well-chosen prime as in (Dahan et al., ISSAC 2005)
2 reduce to the case where $T$ is zero-dimensional and normalized, by variable specialization
3 recover the specialized variables, then the rational coefficients.

- We want to avoid the recourse to Gröbner bases so as to support:

1 algorithms in differential algebra, and
2 positive-dimensional systems for which methods based on regular chains may have smaller output.

## Recall the incremental approach and define our goals

- Let $f \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ and $T \subseteq \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ be a regular chain.
- The intersection $V(f) \cap W(T)$ is approximated by the function call $\operatorname{Intersect}(f, T)$, which returns regular chains $T_{1}, \ldots, T_{e} \subseteq \mathbf{k}[X]$ s.t.:

$$
V(f) \cap W(T) \subseteq W\left(T_{1}\right) \cup \cdots \cup W\left(T_{e}\right) \subseteq V(f) \cap \overline{W(T)} .
$$

- Our goals

1 compute modulo a well-chosen prime as in (Dahan et al., ISSAC 2005)
2 reduce to the case where $T$ is zero-dimensional and normalized, by variable specialization
3 recover the specialized variables, then the rational coefficients.

- We want to avoid the recourse to Gröbner bases so as to support:

1 algorithms in differential algebra, and
2 positive-dimensional systems for which methods based on regular chains may have smaller output.
■ This is similar in spirit to (Grégoire Lecerf, J. Complex 2001)

## Recall the incremental approach and define our goals

■ Let $f \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ and $T \subseteq \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ be a regular chain.

- The intersection $V(f) \cap W(T)$ is approximated by the function call $\operatorname{Intersect}(f, T)$, which returns regular chains $T_{1}, \ldots, T_{e} \subseteq \mathbf{k}[X]$ s.t.:

$$
V(f) \cap W(T) \subseteq W\left(T_{1}\right) \cup \cdots \cup W\left(T_{e}\right) \subseteq V(f) \cap \overline{W(T)} .
$$

- Our goals

1 compute modulo a well-chosen prime as in (Dahan et al., ISSAC 2005)
2 reduce to the case where $T$ is zero-dimensional and normalized, by variable specialization
3 recover the specialized variables, then the rational coefficients.

- We want to avoid the recourse to Gröbner bases so as to support:

1 algorithms in differential algebra, and
2 positive-dimensional systems for which methods based on regular chains may have smaller output.
■ This is similar in spirit to (Grégoire Lecerf, J. Complex 2001)
■ However, we avoid random changes of coordinates and support decompositions in the sense of Lazard.

## Notations

■ Let $f, t_{2}, \ldots, t_{n} \in \mathbf{k}\left[X_{1}<\cdots<X_{n}\right]$ be non-constant.

## Notations

- Let $f, t_{2}, \ldots, t_{n} \in \mathbf{k}\left[X_{1}<\cdots<X_{n}\right]$ be non-constant.

■ Assume $T:=\left\{t_{2}, \ldots, t_{n}\right\}$ is a regular chain with $\operatorname{mvar}\left(t_{i}\right)=X_{i}$.

## Notations

- Let $f, t_{2}, \ldots, t_{n} \in \mathbf{k}\left[X_{1}<\cdots<X_{n}\right]$ be non-constant.
- Assume $T:=\left\{t_{2}, \ldots, t_{n}\right\}$ is a regular chain with $\operatorname{mvar}\left(t_{i}\right)=X_{i}$.
- Assume $\operatorname{mvar}(f)=X_{n}$.


## Notations

- Let $f, t_{2}, \ldots, t_{n} \in \mathbf{k}\left[X_{1}<\cdots<X_{n}\right]$ be non-constant.

■ Assume $T:=\left\{t_{2}, \ldots, t_{n}\right\}$ is a regular chain with $\operatorname{mvar}\left(t_{i}\right)=X_{i}$.

- Assume $\operatorname{mvar}(f)=X_{n}$.
- For convenience, we define $r_{n}:=f$.


## Notations

■ Let $f, t_{2}, \ldots, t_{n} \in \mathbf{k}\left[X_{1}<\cdots<X_{n}\right]$ be non-constant.
■ Assume $T:=\left\{t_{2}, \ldots, t_{n}\right\}$ is a regular chain with $\operatorname{mvar}\left(t_{i}\right)=X_{i}$.

- Assume $\operatorname{mvar}(f)=X_{n}$.
- For convenience, we define $r_{n}:=f$.

■ Let $S\left(t_{n}, r_{n}, X_{n}\right)$ be the subresultant chain of $t_{n}$ and $r_{n}$ regarded as polynomials in $\left(\mathbf{k}\left[X_{1}, \ldots, X_{n-1}\right]\right)\left[X_{n}\right]$.

## Notations

- Let $f, t_{2}, \ldots, t_{n} \in \mathbf{k}\left[X_{1}<\cdots<X_{n}\right]$ be non-constant.

■ Assume $T:=\left\{t_{2}, \ldots, t_{n}\right\}$ is a regular chain with $\operatorname{mvar}\left(t_{i}\right)=X_{i}$.

- Assume $\operatorname{mvar}(f)=X_{n}$.
- For convenience, we define $r_{n}:=f$.
$\square$ Let $S\left(t_{n}, r_{n}, X_{n}\right)$ be the subresultant chain of $t_{n}$ and $r_{n}$ regarded as polynomials in $\left(\mathbf{k}\left[X_{1}, \ldots, X_{n-1}\right]\right)\left[X_{n}\right]$.
- Let $r_{n-1}$ and $g_{n}$ be the subresultants of index 0 and 1 from $S\left(t_{n}, r_{n}, X_{n}\right)$.


## Notations

- Let $f, t_{2}, \ldots, t_{n} \in \mathbf{k}\left[X_{1}<\cdots<X_{n}\right]$ be non-constant.

■ Assume $T:=\left\{t_{2}, \ldots, t_{n}\right\}$ is a regular chain with $\operatorname{mvar}\left(t_{i}\right)=X_{i}$.

- Assume $\operatorname{mvar}(f)=X_{n}$.
- For convenience, we define $r_{n}:=f$.
$\square$ Let $S\left(t_{n}, r_{n}, X_{n}\right)$ be the subresultant chain of $t_{n}$ and $r_{n}$ regarded as polynomials in $\left(\mathbf{k}\left[X_{1}, \ldots, X_{n-1}\right]\right)\left[X_{n}\right]$.
- Let $r_{n-1}$ and $g_{n}$ be the subresultants of index 0 and 1 from $S\left(t_{n}, r_{n}, X_{n}\right)$.
■ For $2 \leq i \leq n-1$, let $S\left(t_{i}, r_{i}, X_{i}\right)$ the subresultant chain of $t_{i}$ and $r_{i}$ regarded as polynomials in $\left(\mathbf{k}\left[X_{1}, \ldots, X_{i-1}\right]\right)\left[X_{i}\right]$.


## Notations

- Let $f, t_{2}, \ldots, t_{n} \in \mathbf{k}\left[X_{1}<\cdots<X_{n}\right]$ be non-constant.

■ Assume $T:=\left\{t_{2}, \ldots, t_{n}\right\}$ is a regular chain with $\operatorname{mvar}\left(t_{i}\right)=X_{i}$.

- Assume $\operatorname{mvar}(f)=X_{n}$.
- For convenience, we define $r_{n}:=f$.
- Let $S\left(t_{n}, r_{n}, X_{n}\right)$ be the subresultant chain of $t_{n}$ and $r_{n}$ regarded as polynomials in $\left(\mathbf{k}\left[X_{1}, \ldots, X_{n-1}\right]\right)\left[X_{n}\right]$.
- Let $r_{n-1}$ and $g_{n}$ be the subresultants of index 0 and 1 from $S\left(t_{n}, r_{n}, X_{n}\right)$.
■ For $2 \leq i \leq n-1$, let $S\left(t_{i}, r_{i}, X_{i}\right)$ the subresultant chain of $t_{i}$ and $r_{i}$ regarded as polynomials in $\left(\mathbf{k}\left[X_{1}, \ldots, X_{i-1}\right]\right)\left[X_{i}\right]$.
- Let $r_{i-1}$ and $g_{i}$ be the subresultants of index 0 and 1 from $S\left(t_{i}, r_{i}, X_{i}\right)$.


## Notations

- Let $f, t_{2}, \ldots, t_{n} \in \mathbf{k}\left[X_{1}<\cdots<X_{n}\right]$ be non-constant.

■ Assume $T:=\left\{t_{2}, \ldots, t_{n}\right\}$ is a regular chain with $\operatorname{mvar}\left(t_{i}\right)=X_{i}$.

- Assume $\operatorname{mvar}(f)=X_{n}$.
- For convenience, we define $r_{n}:=f$.
$\square$ Let $S\left(t_{n}, r_{n}, X_{n}\right)$ be the subresultant chain of $t_{n}$ and $r_{n}$ regarded as polynomials in $\left(\mathbf{k}\left[X_{1}, \ldots, X_{n-1}\right]\right)\left[X_{n}\right]$.
- Let $r_{n-1}$ and $g_{n}$ be the subresultants of index 0 and 1 from $S\left(t_{n}, r_{n}, X_{n}\right)$.
- For $2 \leq i \leq n-1$, let $S\left(t_{i}, r_{i}, X_{i}\right)$ the subresultant chain of $t_{i}$ and $r_{i}$ regarded as polynomials in $\left(\mathbf{k}\left[X_{1}, \ldots, X_{i-1}\right]\right)\left[X_{i}\right]$.
- Let $r_{i-1}$ and $g_{i}$ be the subresultants of index 0 and 1 from $S\left(t_{i}, r_{i}, X_{i}\right)$.
- We denote by $\bar{s}$ the squarefree part of $s:=r_{1}$.


## Base result

H1 for $1 \leq i \leq n-1$, we have $r_{i} \notin \mathbf{k}$ and $\operatorname{mvar}\left(r_{i}\right)=X_{i}$,
H2 For $2 \leq i \leq n$, we have $g_{i} \notin \mathbf{k}$ and $\operatorname{mvar}\left(g_{i}\right)=X_{i}$,
H3 The polynomial set $C:=\left\{\bar{s}, g_{2}, \ldots g_{n}\right\}$ is a regular chain,
H4 For every $2 \leq i \leq n, \operatorname{lc}\left(t_{i}, X_{i}\right)$ is invertible modulo $\left\langle\bar{s}, g_{2}, \ldots, g_{i-1}\right\rangle$.

## Base result

H1 for $1 \leq i \leq n-1$, we have $r_{i} \notin \mathbf{k}$ and $\operatorname{mvar}\left(r_{i}\right)=X_{i}$,
H2 For $2 \leq i \leq n$, we have $g_{i} \notin \mathbf{k}$ and $\operatorname{mvar}\left(g_{i}\right)=X_{i}$,
H3 The polynomial set $C:=\left\{\bar{s}, g_{2}, \ldots g_{n}\right\}$ is a regular chain,
H4 For every $2 \leq i \leq n, \operatorname{lc}\left(t_{i}, X_{i}\right)$ is invertible modulo $\left\langle\bar{s}, g_{2}, \ldots, g_{i-1}\right\rangle$.

## Theorem

With our four Hypotheses, we have:

$$
V\left(f, t_{2}, \ldots, t_{n}\right)=V\left(\bar{s}, g_{2}, \ldots, g_{n}\right)
$$

## Base result

H1 for $1 \leq i \leq n-1$, we have $r_{i} \notin \mathbf{k}$ and $\operatorname{mvar}\left(r_{i}\right)=X_{i}$,
H2 For $2 \leq i \leq n$, we have $g_{i} \notin \mathbf{k}$ and $\operatorname{mvar}\left(g_{i}\right)=X_{i}$,
H3 The polynomial set $C:=\left\{\bar{s}, g_{2}, \ldots g_{n}\right\}$ is a regular chain,
H4 For every $2 \leq i \leq n, \operatorname{lc}\left(t_{i}, X_{i}\right)$ is invertible modulo $\left\langle\bar{s}, g_{2}, \ldots, g_{i-1}\right\rangle$.

## Theorem

With our four Hypotheses, we have:

$$
V\left(f, t_{2}, \ldots, t_{n}\right)=V\left(\bar{s}, g_{2}, \ldots, g_{n}\right)
$$

■ Under Hypotheses 1, 2, 3 and 4, the regular chain $C$ can be computed by a cascade of subresultant chain computations.

## Base result

H1 for $1 \leq i \leq n-1$, we have $r_{i} \notin \mathbf{k}$ and $\operatorname{mvar}\left(r_{i}\right)=X_{i}$,
H2 For $2 \leq i \leq n$, we have $g_{i} \notin \mathbf{k}$ and $\operatorname{mvar}\left(g_{i}\right)=X_{i}$,
H3 The polynomial set $C:=\left\{\bar{s}, g_{2}, \ldots g_{n}\right\}$ is a regular chain,
H4 For every $2 \leq i \leq n, \operatorname{lc}\left(t_{i}, X_{i}\right)$ is invertible modulo $\left\langle\bar{s}, g_{2}, \ldots, g_{i-1}\right\rangle$.

## Theorem

With our four Hypotheses, we have:

$$
V\left(f, t_{2}, \ldots, t_{n}\right)=V\left(\bar{s}, g_{2}, \ldots, g_{n}\right)
$$

■ Under Hypotheses 1, 2, 3 and 4, the regular chain $C$ can be computed by a cascade of subresultant chain computations.

- $C$ can be computed in a modular fashion (as we see shortly) improving performance w.r.t. the direct and non-modular approach.


## Base result

H1 for $1 \leq i \leq n-1$, we have $r_{i} \notin \mathbf{k}$ and $\operatorname{mvar}\left(r_{i}\right)=X_{i}$,
H2 For $2 \leq i \leq n$, we have $g_{i} \notin \mathbf{k}$ and $\operatorname{mvar}\left(g_{i}\right)=X_{i}$,
H3 The polynomial set $C:=\left\{\bar{s}, g_{2}, \ldots g_{n}\right\}$ is a regular chain,
H4 For every $2 \leq i \leq n, \operatorname{lc}\left(t_{i}, X_{i}\right)$ is invertible modulo $\left\langle\bar{s}, g_{2}, \ldots, g_{i-1}\right\rangle$.

## Theorem

With our four Hypotheses, we have:

$$
V\left(f, t_{2}, \ldots, t_{n}\right)=V\left(\bar{s}, g_{2}, \ldots, g_{n}\right)
$$

■ Under Hypotheses 1, 2, 3 and 4, the regular chain $C$ can be computed by a cascade of subresultant chain computations.

- $C$ can be computed in a modular fashion (as we see shortly) improving performance w.r.t. the direct and non-modular approach.
- This modular method can be enhanced so that the 4 Hypotheses are no longer necessary (as we will see later).

$$
\begin{array}{ll}
R:=\text { PolynomialRing }([x 3, x 2, x 1]): & \\
f:=(x 2+x 1) \cdot x 3^{2}+x 3+1 ; & f:=(x 2+x 1) x 3^{2}+x 3+1 \\
t 3:=x 1 \cdot x 3^{2}+x 2 \cdot x 3+1 ; & t 3:=x 1 \times 3^{2}+x 2 \times 3+1 \\
t 2:=(x 1+1) \cdot x 2^{2}+x 2+2 ; & t 2:=(x 1+1) x 2^{2}+x 2+2
\end{array}
$$

$R:=\operatorname{PolynomialRing}([x 3, x 2, x 1]):$
$f:=(x 2+x 1) \cdot x 3^{2}+x 3+1 ;$

$$
\begin{equation*}
f:=(x 2+x 1) x 3^{2}+x 3+1 \tag{1}
\end{equation*}
$$

$t 3:=x 1 \cdot x 3^{2}+x 2 \cdot x 3+1 ;$

$$
\begin{equation*}
t 3:=x 1 \times 3^{2}+x 2 \times 3+1 \tag{2}
\end{equation*}
$$

$t 2:=(x 1+1) \cdot x 2^{2}+x 2+2 ;$

$$
\begin{equation*}
t 2:=(x 1+1) x 2^{2}+x 2+2 \tag{3}
\end{equation*}
$$

src1 := SubresultantChain $(f, t 3, x 3, R)$ : $g 3:=$ SubresultantOfIndex $(1, \operatorname{src} 1, R) ; r:=$ SubresultantOfIndex $(0, \operatorname{src} 1, R)$;

$$
\begin{gather*}
g 3:=x 1 \times 2 \times 3+x 2^{2} \times 3-x 1 \times 3+x 2 \\
r:=x 1 \times 2^{2}+x 2^{3}-2 \times 1 \times 2+x 1 \tag{4}
\end{gather*}
$$

$R:=\operatorname{PolynomialRing}([x 3, x 2, x 1]):$
$f:=(x 2+x 1) \cdot x 3^{2}+x 3+1 ;$

$$
\begin{equation*}
f:=(x 2+x 1) x 3^{2}+x 3+1 \tag{1}
\end{equation*}
$$

$t 3:=x 1 \cdot x 3^{2}+x 2 \cdot x 3+1 ;$

$$
\begin{equation*}
t 3:=x 1 \times 3^{2}+x 2 \times 3+1 \tag{2}
\end{equation*}
$$

$t 2:=(x 1+1) \cdot x 2^{2}+x 2+2 ;$

$$
\begin{equation*}
t 2:=(x 1+1) x 2^{2}+x 2+2 \tag{3}
\end{equation*}
$$

src1 := SubresultantChain $(f, t 3, x 3, R)$ : $g 3:=$ SubresultantOfIndex $(1, \operatorname{src} 1, R) ; r:=$ SubresultantOfIndex $(0, \operatorname{src} 1, R)$;

$$
\begin{gather*}
g 3:=x 1 \times 2 \times 3+x 2^{2} \times 3-x 1 \times 3+x 2 \\
r:=x 1 \times 2^{2}+x 2^{3}-2 \times 1 \times 2+x 1 \tag{4}
\end{gather*}
$$

src2 := SubresultantChain( $r, t 2, x 2, R$ ) :
$g 2:=$ SubresultantOfIndex $(1, \operatorname{src} 2, R) ; s:=$ SubresultantOfIndex $(0, \operatorname{src} 2, R)$;

$$
\begin{align*}
g 2:= & -2 \times 1^{3} \times 2+x 1^{3}-5 \times 1^{2} \times 2-5 \times 1 \times 2-x 1-x 2+2 \\
& s:=x 1^{5}+9 \times 1^{4}+24 \times 1^{3}+38 \times 1^{2}+13 \times 1+8 \tag{5}
\end{align*}
$$

```
sol := Chain([s],Empty(R),R):IsRegular(Initial(g2,R), sol,R);
                                    true
sol2 := Chain([g2], sol, R) : IsRegular(Initial(g3, R), sol2,R);
    true(7)
IsRegular(Initial(t3,R), sol2, R);
true
sol \(:=\operatorname{Chain}([s], \operatorname{Empty}(R), R): \operatorname{IsRegular}(\operatorname{Initial}(g 2, R)\), sol, \(R)\); true
sol2 \(:=\) Chain([g2], sol, \(R):\) IsRegular(Initial \((g 3, R), \operatorname{sol} 2, R) ;\) true
IsRegular(Initial( \(t 3, R\) ), sol2, \(R\) );
true
sol3 \(:=\) Chain([g3], sol2, \(R): \operatorname{Display}(\operatorname{sol} 3, R)\);
\[
\begin{gather*}
\left(x 2^{2}+x 2 \times 1-x 1\right) \times 3+x 2=0 \\
\left(-2 \times 1^{3}-5 \times 1^{2}-5 \times 1-1\right) x 2+x 1^{3}-x 1+2=0 \\
x 1^{5}+9 \times 1^{4}+24 \times 1^{3}+38 \times 1^{2}+13 \times 1+8=0  \tag{9}\\
x 2^{2}+x 2 \times 1-x 1 \neq 0 \\
-2 \times 1^{3}-5 \times 1^{2}-5 \times 1-1 \neq 0
\end{gather*}
\]
sol \(:=\operatorname{Chain}([s], \operatorname{Empty}(R), R): \operatorname{IsRegular}(\operatorname{Initial}(g 2, R)\), sol, \(R)\); true
sol2 := Chain([g2], sol, R) : IsRegular(Initial(g3, R), sol2, R);
true
IsRegular(Initial(t3, R), sol2, R);
true
sol3 \(:=\) Chain([g3], sol2, \(R\) ) : Display (sol3, \(R\) );
\[
\begin{gather*}
\left(x 2^{2}+x 2 \times 1-x 1\right) \times 3+x 2=0 \\
\left(-2 \times 1^{3}-5 \times 1^{2}-5 \times 1-1\right) x 2+x 1^{3}-x 1+2=0 \\
x 1^{5}+9 \times 1^{4}+24 \times 1^{3}+38 \times 1^{2}+13 \times 1+8=0  \tag{9}\\
x 2^{2}+x 2 \times 1-x 1 \neq 0 \\
-2 \times 1^{3}-5 \times 1^{2}-5 \times 1-1 \neq 0
\end{gather*}
\]
dec3 \(:=\) Triangularize ([f, t3, t2], \(R\) ) : Display (dec3[1], \(R\) );
\[
\begin{gather*}
\left(x 2^{2}+x 2 \times 1-x 1\right) \times 3+x 2=0 \\
\left(2 \times 1^{3}+5 \times 1^{2}+5 \times 1+1\right) x 2-x 1^{3}+x 1-2=0 \\
x 1^{5}+9 \times 1^{4}+24 \times 1^{3}+38 \times 1^{2}+13 \times 1+8=0  \tag{10}\\
x 2^{2}+x 2 \times 1-x 1 \neq 0 \\
2 \times 1^{3}+5 \times 1^{2}+5 \times 1+1 \neq 0
\end{gather*}
\]

\section*{The modular algorithm in \(\mathbb{F}_{p}\) under our hypotheses}

1 Evaluate \(f\) and \(T\) at sufficiently many (use the Bézout bound or the mixed volume) values \(a\) of \(X_{1}\) so that \(T\) specializes well at \(X_{1}=a\) to a zero-dimensional regular chain \(T_{a}\)

\section*{The modular algorithm in \(\mathbb{F}_{p}\) under our hypotheses}

1 Evaluate \(f\) and \(T\) at sufficiently many (use the Bézout bound or the mixed volume) values \(a\) of \(X_{1}\) so that \(T\) specializes well at \(X_{1}=a\) to a zero-dimensional regular chain \(T_{a}\)
2 For each good specialization \(X_{1}=a\)

\section*{The modular algorithm in \(\mathbb{F}_{p}\) under our hypotheses}

1 Evaluate \(f\) and \(T\) at sufficiently many (use the Bézout bound or the mixed volume) values \(a\) of \(X_{1}\) so that \(T\) specializes well at \(X_{1}=a\) to a zero-dimensional regular chain \(T_{a}\)
2 For each good specialization \(X_{1}=a\)
1 Replace \(T_{a}\) by a normalized (= monic) regular chain \(N_{a}\)

\section*{The modular algorithm in \(\mathbb{F}_{p}\) under our hypotheses}

1 Evaluate \(f\) and \(T\) at sufficiently many (use the Bézout bound or the mixed volume) values \(a\) of \(X_{1}\) so that \(T\) specializes well at \(X_{1}=a\) to a zero-dimensional regular chain \(T_{a}\)
2 For each good specialization \(X_{1}=a\)
1 Replace \(T_{a}\) by a normalized (= monic) regular chain \(N_{a}\)
2 Compute the images of the polynomials \(r_{i-1}\) and \(g_{i}\) at \(X_{1}=a\)

\section*{The modular algorithm in \(\mathbb{F}_{p}\) under our hypotheses}

1 Evaluate \(f\) and \(T\) at sufficiently many (use the Bézout bound or the mixed volume) values \(a\) of \(X_{1}\) so that \(T\) specializes well at \(X_{1}=a\) to a zero-dimensional regular chain \(T_{a}\)
2 For each good specialization \(X_{1}=a\)
1 Replace \(T_{a}\) by a normalized (= monic) regular chain \(N_{a}\)
2 Compute the images of the polynomials \(r_{i-1}\) and \(g_{i}\) at \(X_{1}=a\)
3 Recover \(X_{1}\) (by interpolation and rational function reconstruction) and deduce \(\bar{s}, g_{2}, \ldots, g_{n}\)

\section*{The modular algorithm in \(\mathbb{F}_{p}\) under our hypotheses}

1 Evaluate \(f\) and \(T\) at sufficiently many (use the Bézout bound or the mixed volume) values \(a\) of \(X_{1}\) so that \(T\) specializes well at \(X_{1}=a\) to a zero-dimensional regular chain \(T_{a}\)
2 For each good specialization \(X_{1}=a\)
1 Replace \(T_{a}\) by a normalized (= monic) regular chain \(N_{a}\)
2 Compute the images of the polynomials \(r_{i-1}\) and \(g_{i}\) at \(X_{1}=a\)
3 Recover \(X_{1}\) (by interpolation and rational function reconstruction) and deduce \(\bar{s}, g_{2}, \ldots, g_{n}\)
Technical details:
■ specializations \(X_{1}=a, X_{1}=b, \ldots\) must produce faithful images of resultants \(r_{i}\), that is, resultants of maximum degree. good \(\neq\) faithful.

\section*{The modular algorithm in \(\mathbb{F}_{p}\) under our hypotheses}

1 Evaluate \(f\) and \(T\) at sufficiently many (use the Bézout bound or the mixed volume) values \(a\) of \(X_{1}\) so that \(T\) specializes well at \(X_{1}=a\) to a zero-dimensional regular chain \(T_{a}\)
2 For each good specialization \(X_{1}=a\)
1 Replace \(T_{a}\) by a normalized (=monic) regular chain \(N_{a}\)
2 Compute the images of the polynomials \(r_{i-1}\) and \(g_{i}\) at \(X_{1}=a\)
3 Recover \(X_{1}\) (by interpolation and rational function reconstruction) and deduce \(\bar{s}, g_{2}, \ldots, g_{n}\)
Technical details:
- specializations \(X_{1}=a, X_{1}=b, \ldots\) must produce faithful images of resultants \(r_{i}\), that is, resultants of maximum degree. good \(\neq\) faithful.
■ the implementation uses a priori bounds for
1 the number of non-faithful specializations, and
2 the degree of \(\bar{s}\); see the details in our CASC 2023 paper.

\section*{The modular algorithm in \(\mathbb{F}_{p}\) under our hypotheses}

1 Evaluate \(f\) and \(T\) at sufficiently many (use the Bézout bound or the mixed volume) values \(a\) of \(X_{1}\) so that \(T\) specializes well at \(X_{1}=a\) to a zero-dimensional regular chain \(T_{a}\)
2 For each good specialization \(X_{1}=a\)
1 Replace \(T_{a}\) by a normalized (=monic) regular chain \(N_{a}\)
2 Compute the images of the polynomials \(r_{i-1}\) and \(g_{i}\) at \(X_{1}=a\)
3 Recover \(X_{1}\) (by interpolation and rational function reconstruction) and deduce \(\bar{s}, g_{2}, \ldots, g_{n}\)
Technical details:
■ specializations \(X_{1}=a, X_{1}=b, \ldots\) must produce faithful images of resultants \(r_{i}\), that is, resultants of maximum degree. good \(\neq\) faithful.
- the implementation uses a priori bounds for

1 the number of non-faithful specializations, and
2 the degree of \(\bar{s}\); see the details in our CASC 2023 paper.
■ we stop combining those images of the \(r_{i}\) 's when the recombination of the images stabilizes (Monagan's probabilistic idea, ISSAC 2005).

H1 for \(1 \leq i \leq n-1\), we have \(r_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(r_{i}\right)=X_{i}\),
H2 For \(2 \leq i \leq n\), we have \(g_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(g_{i}\right)=X_{i}\),
H3 The polynomial set \(C:=\left\{\bar{s}, g_{2}, \ldots g_{n}\right\}\) is a regular chain,
H4 For every \(2 \leq i \leq n, \operatorname{lc}\left(t_{i}, X_{i}\right)\) is invertible modulo \(\left\langle\bar{s}, g_{2}, \ldots, g_{i-1}\right\rangle\).

H1 for \(1 \leq i \leq n-1\), we have \(r_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(r_{i}\right)=X_{i}\),
H2 For \(2 \leq i \leq n\), we have \(g_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(g_{i}\right)=X_{i}\),
H3 The polynomial set \(C:=\left\{\bar{s}, g_{2}, \ldots g_{n}\right\}\) is a regular chain,
H4 For every \(2 \leq i \leq n, \operatorname{lc}\left(t_{i}, X_{i}\right)\) is invertible modulo \(\left\langle\bar{s}, g_{2}, \ldots, g_{i-1}\right\rangle\).
- Relaxing the \(r_{i} \notin \mathbf{k}\) part of H 1 implies that the last computed resultant, say \(s\), could be constant:

\section*{The full modular algorithm: relaxing the hypotheses \((1 / 3)\)}

H1 for \(1 \leq i \leq n-1\), we have \(r_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(r_{i}\right)=X_{i}\),
H2 For \(2 \leq i \leq n\), we have \(g_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(g_{i}\right)=X_{i}\),
H3 The polynomial set \(C:=\left\{\bar{s}, g_{2}, \ldots g_{n}\right\}\) is a regular chain,
H4 For every \(2 \leq i \leq n, \operatorname{lc}\left(t_{i}, X_{i}\right)\) is invertible modulo \(\left\langle\bar{s}, g_{2}, \ldots, g_{i-1}\right\rangle\).
- Relaxing the \(r_{i} \notin \mathbf{k}\) part of H 1 implies that the last computed resultant, say \(s\), could be constant:

1 if \(s=0\), then its "parents" (say \(r_{j}\) and \(t_{j}\) ) have a non-trivial GCD over \(\mathbf{k}\) which must be added to the chain \(C\),

\section*{The full modular algorithm: relaxing the hypotheses \((1 / 3)\)}

H1 for \(1 \leq i \leq n-1\), we have \(r_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(r_{i}\right)=X_{i}\),
H2 For \(2 \leq i \leq n\), we have \(g_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(g_{i}\right)=X_{i}\),
H3 The polynomial set \(C:=\left\{\bar{s}, g_{2}, \ldots g_{n}\right\}\) is a regular chain,
H4 For every \(2 \leq i \leq n, \operatorname{lc}\left(t_{i}, X_{i}\right)\) is invertible modulo \(\left\langle\bar{s}, g_{2}, \ldots, g_{i-1}\right\rangle\).
- Relaxing the \(r_{i} \notin \mathbf{k}\) part of H 1 implies that the last computed resultant, say \(s\), could be constant:

1 if \(s=0\), then its "parents" (say \(r_{j}\) and \(t_{j}\) ) have a non-trivial GCD over \(\mathbf{k}\) which must be added to the chain \(C\),
2 if \(s \neq 0\), then \(\operatorname{Intersect}(f, T)=\varnothing\).

\section*{The full modular algorithm: relaxing the hypotheses \((1 / 3)\)}

H1 for \(1 \leq i \leq n-1\), we have \(r_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(r_{i}\right)=X_{i}\),
H2 For \(2 \leq i \leq n\), we have \(g_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(g_{i}\right)=X_{i}\),
H3 The polynomial set \(C:=\left\{\bar{s}, g_{2}, \ldots g_{n}\right\}\) is a regular chain,
H4 For every \(2 \leq i \leq n, \operatorname{lc}\left(t_{i}, X_{i}\right)\) is invertible modulo \(\left\langle\bar{s}, g_{2}, \ldots, g_{i-1}\right\rangle\).
- Relaxing the \(r_{i} \notin \mathbf{k}\) part of H 1 implies that the last computed resultant, say \(s\), could be constant:
1 if \(s=0\), then its "parents" (say \(r_{j}\) and \(t_{j}\) ) have a non-trivial GCD over \(\mathbf{k}\) which must be added to the chain \(C\),
2 if \(s \neq 0\), then \(\operatorname{Intersect}(f, T)=\varnothing\).
■ Handling this modification only requires to possibly computing this GCD, whose cost is negligible.

H1 for \(1 \leq i \leq n-1\), we have \(r_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(r_{i}\right)=X_{i}\),
H2 For \(2 \leq i \leq n\), we have \(g_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(g_{i}\right)=X_{i}\),
H3 The polynomial set \(C:=\left\{\bar{s}, g_{2}, \ldots g_{n}\right\}\) is a regular chain,
H4 For every \(2 \leq i \leq n, \operatorname{lc}\left(t_{i}, X_{i}\right)\) is invertible modulo \(\left\langle\bar{s}, g_{2}, \ldots, g_{i-1}\right\rangle\).

H1 for \(1 \leq i \leq n-1\), we have \(r_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(r_{i}\right)=X_{i}\),
H2 For \(2 \leq i \leq n\), we have \(g_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(g_{i}\right)=X_{i}\),
H3 The polynomial set \(C:=\left\{\bar{s}, g_{2}, \ldots g_{n}\right\}\) is a regular chain,
H4 For every \(2 \leq i \leq n, \operatorname{lc}\left(t_{i}, X_{i}\right)\) is invertible modulo \(\left\langle\bar{s}, g_{2}, \ldots, g_{i-1}\right\rangle\).
- Relaxing the \(\operatorname{mvar}\left(r_{i}\right)=X_{i}\) part of H 1 implies that the successive resultants \(r_{n}, \ldots\) may have a gap in their sequence of main variables

\section*{The full modular algorithm: relaxing the hypotheses \((2 / 3)\)}

H1 for \(1 \leq i \leq n-1\), we have \(r_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(r_{i}\right)=X_{i}\),
H2 For \(2 \leq i \leq n\), we have \(g_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(g_{i}\right)=X_{i}\),
H3 The polynomial set \(C:=\left\{\bar{s}, g_{2}, \ldots g_{n}\right\}\) is a regular chain,
H4 For every \(2 \leq i \leq n, \operatorname{lc}\left(t_{i}, X_{i}\right)\) is invertible modulo \(\left\langle\bar{s}, g_{2}, \ldots, g_{i-1}\right\rangle\).
- Relaxing the \(\operatorname{mvar}\left(r_{i}\right)=X_{i}\) part of H 1 implies that the successive resultants \(r_{n}, \ldots\) may have a gap in their sequence of main variables
- we simply use the appropriate polynomials from \(T=\left\{t_{n}, \ldots, t_{2}\right\}\) to fill those gaps.

\section*{The full modular algorithm: relaxing the hypotheses \((2 / 3)\)}

H1 for \(1 \leq i \leq n-1\), we have \(r_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(r_{i}\right)=X_{i}\),
H2 For \(2 \leq i \leq n\), we have \(g_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(g_{i}\right)=X_{i}\),
H3 The polynomial set \(C:=\left\{\bar{s}, g_{2}, \ldots g_{n}\right\}\) is a regular chain,
H4 For every \(2 \leq i \leq n, \operatorname{lc}\left(t_{i}, X_{i}\right)\) is invertible modulo \(\left\langle\bar{s}, g_{2}, \ldots, g_{i-1}\right\rangle\).
- Relaxing the \(\operatorname{mvar}\left(r_{i}\right)=X_{i}\) part of H 1 implies that the successive resultants \(r_{n}, \ldots\) may have a gap in their sequence of main variables
■ we simply use the appropriate polynomials from \(T=\left\{t_{n}, \ldots, t_{2}\right\}\) to fill those gaps.
- Handling this modification comes at no cost.

H1 for \(1 \leq i \leq n-1\), we have \(r_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(r_{i}\right)=X_{i}\),
H2 For \(2 \leq i \leq n\), we have \(g_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(g_{i}\right)=X_{i}\),
H3 The polynomial set \(C:=\left\{\bar{s}, g_{2}, \ldots g_{n}\right\}\) is a regular chain,
H4 For every \(2 \leq i \leq n, \operatorname{lc}\left(t_{i}, X_{i}\right)\) is invertible modulo \(\left\langle\bar{s}, g_{2}, \ldots, g_{i-1}\right\rangle\).

H1 for \(1 \leq i \leq n-1\), we have \(r_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(r_{i}\right)=X_{i}\),
H2 For \(2 \leq i \leq n\), we have \(g_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(g_{i}\right)=X_{i}\),
H3 The polynomial set \(C:=\left\{\bar{s}, g_{2}, \ldots g_{n}\right\}\) is a regular chain,
H4 For every \(2 \leq i \leq n, \operatorname{lc}\left(t_{i}, X_{i}\right)\) is invertible modulo \(\left\langle\bar{s}, g_{2}, \ldots, g_{i-1}\right\rangle\).
■ When either \(\mathrm{H} 2, \mathrm{H} 3\), or H 4 fails

H1 for \(1 \leq i \leq n-1\), we have \(r_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(r_{i}\right)=X_{i}\),
H2 For \(2 \leq i \leq n\), we have \(g_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(g_{i}\right)=X_{i}\),
H3 The polynomial set \(C:=\left\{\bar{s}, g_{2}, \ldots g_{n}\right\}\) is a regular chain,
H4 For every \(2 \leq i \leq n, \operatorname{lc}\left(t_{i}, X_{i}\right)\) is invertible modulo \(\left\langle\bar{s}, g_{2}, \ldots, g_{i-1}\right\rangle\).
■ When either \(\mathrm{H} 2, \mathrm{H} 3\), or H4 fails
1 the "candidate" regular chain \(C\) must split, and

H1 for \(1 \leq i \leq n-1\), we have \(r_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(r_{i}\right)=X_{i}\),
H2 For \(2 \leq i \leq n\), we have \(g_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(g_{i}\right)=X_{i}\),
H3 The polynomial set \(C:=\left\{\bar{s}, g_{2}, \ldots g_{n}\right\}\) is a regular chain,
H4 For every \(2 \leq i \leq n, \operatorname{lc}\left(t_{i}, X_{i}\right)\) is invertible modulo \(\left\langle\bar{s}, g_{2}, \ldots, g_{i-1}\right\rangle\).
■ When either \(\mathrm{H} 2, \mathrm{H} 3\), or H 4 fails
1 the "candidate" regular chain \(C\) must split, and
2 some subresultants of index higher than 1 must be used.

H1 for \(1 \leq i \leq n-1\), we have \(r_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(r_{i}\right)=X_{i}\),
H2 For \(2 \leq i \leq n\), we have \(g_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(g_{i}\right)=X_{i}\),
H3 The polynomial set \(C:=\left\{\bar{s}, g_{2}, \ldots g_{n}\right\}\) is a regular chain,
H4 For every \(2 \leq i \leq n, \operatorname{lc}\left(t_{i}, X_{i}\right)\) is invertible modulo \(\left\langle\bar{s}, g_{2}, \ldots, g_{i-1}\right\rangle\).
■ When either \(\mathrm{H} 2, \mathrm{H} 3\), or H 4 fails
1 the "candidate" regular chain \(C\) must split, and
2 some subresultants of index higher than 1 must be used.
■ Costs for handling this:

\section*{The full modular algorithm: relaxing the hypotheses (3/3)}

H1 for \(1 \leq i \leq n-1\), we have \(r_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(r_{i}\right)=X_{i}\),
H2 For \(2 \leq i \leq n\), we have \(g_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(g_{i}\right)=X_{i}\),
H3 The polynomial set \(C:=\left\{\bar{s}, g_{2}, \ldots g_{n}\right\}\) is a regular chain,
H4 For every \(2 \leq i \leq n, \operatorname{lc}\left(t_{i}, X_{i}\right)\) is invertible modulo \(\left\langle\bar{s}, g_{2}, \ldots, g_{i-1}\right\rangle\).
■ When either \(\mathrm{H} 2, \mathrm{H} 3\), or H4 fails
1 the "candidate" regular chain \(C\) must split, and
2 some subresultants of index higher than 1 must be used.
■ Costs for handling this:
1 computing resultants and GCDs modulo regular chains by evaluation and interpolation, which is what this whole algorithm is about,

\section*{The full modular algorithm: relaxing the hypotheses (3/3)}

H1 for \(1 \leq i \leq n-1\), we have \(r_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(r_{i}\right)=X_{i}\),
H2 For \(2 \leq i \leq n\), we have \(g_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(g_{i}\right)=X_{i}\),
H3 The polynomial set \(C:=\left\{\bar{s}, g_{2}, \ldots g_{n}\right\}\) is a regular chain,
H4 For every \(2 \leq i \leq n, \operatorname{lc}\left(t_{i}, X_{i}\right)\) is invertible modulo \(\left\langle\bar{s}, g_{2}, \ldots, g_{i-1}\right\rangle\).
■ When either \(\mathrm{H} 2, \mathrm{H} 3\), or H4 fails
1 the "candidate" regular chain \(C\) must split, and
2 some subresultants of index higher than 1 must be used.
■ Costs for handling this:
1 computing resultants and GCDs modulo regular chains by evaluation and interpolation, which is what this whole algorithm is about,

\section*{The full modular algorithm: relaxing the hypotheses (3/3)}

H1 for \(1 \leq i \leq n-1\), we have \(r_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(r_{i}\right)=X_{i}\),
H2 For \(2 \leq i \leq n\), we have \(g_{i} \notin \mathbf{k}\) and \(\operatorname{mvar}\left(g_{i}\right)=X_{i}\),
H3 The polynomial set \(C:=\left\{\bar{s}, g_{2}, \ldots g_{n}\right\}\) is a regular chain,
H4 For every \(2 \leq i \leq n, \operatorname{lc}\left(t_{i}, X_{i}\right)\) is invertible modulo \(\left\langle\bar{s}, g_{2}, \ldots, g_{i-1}\right\rangle\).
■ When either \(\mathrm{H} 2, \mathrm{H} 3\), or H4 fails
1 the "candidate" regular chain \(C\) must split, and
2 some subresultants of index higher than 1 must be used.
■ Costs for handling this:
1 computing resultants and GCDs modulo regular chains by evaluation and interpolation, which is what this whole algorithm is about,
\(\boxed{2}\) interpolating those subresultants of higher index

\section*{Outline}
1. Triangular decompositions in polynomial system solving
2. Modular methods in polynomial system solving
3. A Modular methods for incremental triangular decompositions
4. Conclusions

\section*{Conclusions}
- We have discussed \(\operatorname{Intersect}(f, T)\) which computes \(V(f) \cap W(T)\) and which is at the core of the incremental method for triangular decompositions
- We have presented a modular method for \(\operatorname{Intersect}(f, T)\) focusing on the case where \(T\) is dimension one.
- This method allows us to get rid off of the large extraneous factors occurring in iterated resultant computations
- For technical details (in particular degree bounds) see our CASC 2023.
- The experimentation reported there is based on an implementation which does not support yet the relaxation of our hypotheses (thus providing no benefits when those hypotheses do not hold).
- This modular method is designed to take advantage of FFT-based algorithms (speculative methods for computing subresultant chains, see our CASC 2022 paper).
- Parallel execution: multiple specialization can be done concurrently.

\section*{Thank You!}

http://www.bpaslib.org/

\section*{References}
[1] M. Asadi, A. Brandt, R. H. C. Moir, and M. Moreno Maza. "Algorithms and Data Structures for Sparse Polynomial Arithmetic". In: Mathematics 7.5 (2019), p. 441.
[2] M. Asadi, A. Brandt, R. H. C. Moir, M. Moreno Maza, and Y. Xie. "On the parallelization of triangular decompositions". In: International Symposium on Symbolic and Algebraic Computation (ISSAC '20), Kalamata, Greece, July 20-23, 2020. ACM, 2020, pp. 22-29.
[3] M. Asadi, A. Brandt, R. H. C. Moir, M. Moreno Maza, and Y. Xie. "Parallelization of Triangular Decompositions: Techniques and Implementation". In: J. Symb. Comput. (2021). (to appear).
[4] P. Aubry, D. Lazard, and M. Moreno Maza. "On the Theories of Triangular Sets". In: J. Symb. Comput. 28.1-2 (1999), pp. 105-124.
[5] F. Boulier, F. Lemaire, and M. Moreno Maza. "Well known theorems on triangular systems and the D5 principle". In: Transgressive Computing 2006, Proc. 2006.
[6] A. Brandt, R. H. C. Moir, and M. Moreno Maza. "Employing C++ Templates in the Design of a Computer Algebra Library". In: Mathematical Software - ICMS 2020, Braunschweig, Germany, July 13-16, 2020. Vol. 12097. LNCS. Springer, 2020, pp. 342-352.
[7] M. Moreno Maza and Y. Xie. "Balanced Dense Polynomial Multiplication on Multi-Cores". In: Int. J. Found. Comput. Sci. 22.5 (2011), pp. 1035-1055.
[8] J. F. Ritt. Differential Algebra. New York: Dover Publications, Inc., 1966.
[9] J. F. Ritt. Differential Equations from an Algebraic Standpoint. Vol. 14. New York: American Mathematical Society, 1932.
[10] W. T. Wu. "A Zero Structure Theorem for polynomial equations solving". In: MM Research Preprints 1 (1987), pp. 2-12.```

