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Tentative Plan

∎ Part 1: Triangular decompositions in polynomial system solving

∎ Part 2: Modular methods in polynomial system solving

∎ Part 3: A modular method for triangular decompositions

Part 3 is based on
∎ our JSC 2012 paper with Changbo Chen ,and
∎ our recent CASC 2023 paper with Alexander Brandt,

Juan-Pablo Gonzàlez-Trochez and Haoze Yuan.
A proof-of-concept implementation was done with the RegularChains
library and an efficient implementation is under development in the BPAS
library. See our CASC 2023 paper.
These slides are available here.
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What can the RegularChains library do for you?
• Solving over C: that is, solving any system of multivariate

polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0) and inequations ℎ ≠ 0:

ë computing all its solutions symbolically, or only the generic ones
ë providing tools to extract information (dimension, degree, etc.)

about those solutions and,
ë performing (set or geometric) operations on solutions sets.

• Solving over R: that is, solving any system of multivariate
polynomial equations (say, 𝑓1 = ⋯ = 𝑓𝑚 = 0, inequations ℎ ≠ 0 and
inequalities 𝑔1 > 0, . . . , 𝑔𝑝 > 0

ë doing the same as above, and
ë finding sample solutions, and
ë performing cylindrical algebraic decomposition (CAD) and

quantifier elimination (QE).

• Solving parametrically over C and over R: that is:

ë finding conditions on the parameters for the solutions to have a
prescribed property (e.g. a unique real solution), or

ë computing all or part of the solutions as functions of the parameters.
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The design of the RegularChains library
• Hierarchy of the user-interface

ë At the top-level, 29 commands for most common tasks, e.g.
PolynomialRing, Triangularize, RealTriangularize, Display,

ë 6 sub-packages for more specialized tasks: AlgebraicGeometryTools,
ChainTools, ConstructibleSetTools, FastArithmeticTools,
ParametricSystemTools, SemiAlgebraicSetTools.

• Enforced but friendly use of types:

ë Every RegularChains object has a type, e.g. polynomial_ring,
regular_chain, constructible_set, semi_algebraic_set,

ë which ensures that the object of that type has properties,
ë while the end-user does not need to explicitly manipulate this type.

• Criteria for selecting the algorithms supporting the solvers:

ë provide a comprehensive and coherent set of tools for manipulating
polynomial systems,

ë implement solvers with both general algorithms (which may not be
the most efficient ones) and faster algorithms (which may only
work under some assumptions).
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The BPAS library

A high-performance polynomial algebra library
∎ Core of library written in C, wrapped in C++ interface for usability

and object-oriented programming
Optimized algorithms and data structures, data locality, and parallelism
∎ Sparse multivariate polynomials [1], dense univariate and bivariate [7]
∎ Triangular decomposition of polynomial systems [2, 3]

User-friendly, object-oriented interface based on template
meta-programming [6]
∎ A natural encoding of the algebraic hierarchy
∎ “Dynamic” creation of algebraic types through composition
∎ Compile-time type safety between algebraic types

Generic support for parallel programming and parallel patterns (this talk)

http://www.bpaslib.org/
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Outline

1. Triangular decompositions in polynomial system solving

2. Modular methods in polynomial system solving

3. A Modular methods for incremental triangular decompositions

4. Conclusions
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Milestones (1/3)

∎ Let k be a field and K its algebraic closure. Consider 𝑛 variables
𝑥1 < ⋯ < 𝑥𝑛.

∎ A subset 𝑉 ⊂ K𝑛 is a (affine) variety over k if there exists
𝐹 ⊂ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ such that 𝑉 = 𝑉 (𝐹 ) where

𝑉 (𝐹 ) ∶= {𝑧 ∈ K𝑛 ⋃︀ 𝑓(𝑧) = 0 (∀ 𝑓 ∈ 𝐹 )}.
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Milestones (2/3)

∎ Theorem (J.F. Ritt, 1932) Let 𝑉 ⊂ K𝑛 be an irreducible non-empty
variety and let 𝐹 ⊂ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ s.t. 𝑉 = 𝑉 (𝐹 ). Then, one can
compute a (reduced) triangular set 𝑇 ⊂ ∐︀𝐹 ̃︀ s.t.

(∀ 𝑔 ∈ ∐︀𝐹 ̃︀) prem(𝑔, 𝑇 ) = 0.

Combined with algebraic factorization one can (in theory) compute
irreducible decompositions.

∎ Theorem (W.T. Wu, 1987) Let 𝑉 ⊂ K𝑛 be a variety and let
𝐹 ⊂ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ s.t. 𝑉 = 𝑉 (𝐹 ). Then, one can compute a
(reduced) triangular set 𝑇 ⊂ ∐︀𝐹 ̃︀ s.t.

(∀ 𝑔 ∈ 𝐹 ) prem(𝑔, 𝑇 ) = 0.

This leads to a factorization-free algorithm for decomposing varieties
(but not into irreducible components).
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Milestones (3/3)

∎ Example. Applying the charset procedure to
𝐹 = {𝑥2

2 − 𝑥1, 𝑥1𝑥2
3 − 2𝑥2𝑥3 + 1, (𝑥2𝑥3 − 1)𝑥2

4 + 𝑥2
2} produces 𝑇 = 𝐹 .

However 𝑉 (𝐹 ) = ∅. Indeed

𝑥1𝑥2
3 − 2𝑥2𝑥3 + 1 ≡ (𝑥2𝑥3 − 1)2 mod 𝑥2

2 − 𝑥1.

Thus, the initial (𝑥2𝑥3 − 1) is a zero-divisor modulo
∐︀𝑥2

2 − 𝑥1, 𝑥1𝑥2
3 − 2𝑥2𝑥3 + 1̃︀.

∎ The notion of a regular chain (Lu Yang, Jingzhong Zhang 1991),
(Michael Kalkbrener 1991), (Daniel Lazard 1991) solves this difficulty

∎ Moreover, for any input 𝐹 ⊆ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ one can compute regular
chains 𝑇1, . . . , 𝑇𝑒 such that a point 𝑧 ∈ K𝑛 is a zero of 𝐹 if and only if
𝑧 is a zero of one of the 𝑇1, . . . , 𝑇𝑒 (in some technical sense).
(Dong Ming Wang 2000), (Marc Moreno Maza 2000).
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A recursive view on polynomials

Let k be a field, 𝑋 = 𝑥1 < ⋯ < 𝑥𝑛 be variables and 𝑓, 𝑔 ∈ k(︀𝑋⌋︀ with 𝑔 ⇑∈ k.
mvar(𝑔): the greatest variable in 𝑔 is the leader or main variable of 𝑔,
init(𝑔): the leading coefficient of 𝑔 w.r.t. mvar(𝑔) is the initial of 𝑔,

mdeg(𝑔): the degree of 𝑔 w.r.t. mvar(𝑔),
rank(𝑔) = 𝑣𝑑 where 𝑣 = mvar(𝑔) and 𝑑 = mdeg(𝑔),

pdivide(𝑓, 𝑔) = (𝑞, 𝑟) with 𝑞, 𝑟 ∈ k(︀𝑋⌋︀, deg(𝑟, 𝑣𝑔) < 𝑑𝑔 and ℎ𝑒
𝑔𝑓 = 𝑞𝑔 + 𝑟

where ℎ𝑔 = init(𝑔), 𝑒 = max(deg(𝑓, 𝑣) − 𝑑𝑔 + 1, 0),
𝑣𝑔 = mvar(𝑔) and 𝑑𝑔 = mdeg(𝑔),

Example
Assume 𝑛 ≥ 3. If 𝑝 = 𝑥1𝑥2

3 − 2𝑥2𝑥3 + 1, then we have mvar(𝑝) = 𝑥3,
mdeg(𝑝) = 2, init(𝑝) = 𝑥1 and rank(𝑝) = 𝑥2

3.

Go to RegularChains.pdf Section 2.1.
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Regular chain

Definition
The set 𝑇 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ is triangular set if it consists of non-constant
polynomials with pair-wise different main variables.
Define ℎ𝑇 ∶=∏𝑡∈𝑇 init(𝑡), where init(𝑡) = lc(𝑡, mvar(𝑡)).
The quasi-component and saturated ideal of 𝑇 are:

𝑊 (𝑇 ) ∶= 𝑉 (𝑇 ) ∖ 𝑉 (ℎ𝑇 ) and sat(𝑇 ) = ∐︀𝑇 ̃︀ ∶ ℎ∞𝑇 .

Note that for all triangular set 𝑇 we have:
∎ 𝑊 (𝑇 ) = 𝑉 (sat(𝑇 )).
∎ if sat(𝑇 ) ≠ ∐︀1̃︀ then sat(𝑇 ) is strongly equi-dimensional.

Definition (M. Kalkbrner, 1991 - L. Yang, J. Zhang 1991)
𝑇 is a regular chain if 𝑇 = ∅ or 𝑇 ∶= 𝑇 ′ ∪ {𝑡} with mvar(𝑡) maximum s.t.
∎ 𝑇 ′ is a regular chain,
∎ init(𝑡) is regular modulo sat(𝑇 ′).
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Regular chain: alternative definition
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Regular chain: alternative definition
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Regular chain: algorithmic properties

Theorem (P. Aubry, D. Lazard, M., 1997)
𝑇 is a regular chain iff {𝑝 ⋃︀ prem(𝑝, 𝑇 ) = 0} = sat(𝑇 ).

Definition
Let 𝑇 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ be a triangular set and 𝑝 ∈ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀. If 𝑇 is
empty then, the iterated resultant of 𝑝 w.r.t. 𝑇 is resultant(𝑇, 𝑝) = 𝑝.
Otherwise, writing 𝑇 = 𝑇<𝑤 ∪𝑇𝑤

resultant(𝑇, 𝑝) = { 𝑝 if deg(𝑝, 𝑤) = 0
resultant(𝑇<𝑤, resultant(𝑇𝑤, 𝑝, 𝑤)) otherwise

Theorem (L. Yang, J. Zhang 1991)
𝑝 is regular modulo sat(𝑇 ) iff resultant(𝑇, 𝑝) ≠ 0.
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Triangular decomposition of an algebraic variety

Kalkbrener triangular decomposition
Let 𝐹 ⊂ k(︀x⌋︀. A family of regular chains 𝑇1, . . . , 𝑇𝑒 of k(︀x⌋︀ is called a
Kalkbrener triangular decomposition of 𝑉 (𝐹 ) if

𝑉 (𝐹 ) = ∪𝑒
𝑖=1 𝑉 (sat(𝑇𝑖)).

Wu-Lazard triangular decomposition
Let 𝐹 ⊂ k(︀x⌋︀. A family of regular chains 𝑇1, . . . , 𝑇𝑒 of k(︀x⌋︀ is called a
Wu-Lazard triangular decomposition of 𝑉 (𝐹 ) if

𝑉 (𝐹 ) = ∪𝑒
𝑖=1 𝑊 (𝑇𝑖).
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Triangularize applied to sofa and cylinder (1/2)

𝑥2 + 𝑦3 + 𝑧5 = 𝑥4 + 𝑧2 − 1 = 0
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Triangularize applied to sofa and cylinder (2/2)
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Relations with resultants and subresultants (1/3)

In a nutshell, solving bivariate polynomial systems can be done via

1 resultant computations,
2 factorization of univariate polynomials, and
3 univariate polynomial GCDs.

Example (von zur Gathen & Gerhard, Chapter 6)
Let 𝑃 = (𝑦2 + 6) (𝑥 − 1) − 𝑦 (𝑥2 + 1) and 𝑄 = (𝑥2 + 6) (𝑦 − 1) − 𝑥 (𝑦2 + 1)

∎ res(P, Q, y) = 2 (x2 − x + 4) (x − 2)2 (x − 3)2.
∎ gcd(P, Q, x − 2 = 0) = (y − 2)(y − 3).
∎ gcd(P, Q, x − 3 = 0) = (y − 2)(y − 3).
∎ gcd(P, Q, x2 − x + 4 = 0) = (2 x − 1)y − 7 − x.
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2 factorization of univariate polynomials, and
3 univariate polynomial GCDs.

Example (von zur Gathen & Gerhard, Chapter 6)
Let 𝑃 = (𝑦2 + 6) (𝑥 − 1) − 𝑦 (𝑥2 + 1) and 𝑄 = (𝑥2 + 6) (𝑦 − 1) − 𝑥 (𝑦2 + 1)

∎ res(P, Q, y) = 2 (x2 − x + 4) (x − 2)2 (x − 3)2.
∎ gcd(P, Q, x − 2 = 0) = (y − 2)(y − 3).
∎ gcd(P, Q, x − 3 = 0) = (y − 2)(y − 3).
∎ gcd(P, Q, x2 − x + 4 = 0) = (2 x − 1)y − 7 − x.
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Relations with resultants and subresultants (2/3)
In fact, factorizing the resultant is not necessary. Using regularity test and
the specialization property of subresultants is sufficient.

Consider the following polynomials 𝑓, 𝑔 ∈ Q(︀𝑦 < 𝑥⌋︀:

𝑓 = 𝑥7 − 36𝑥 − 22𝑦 + 1,
𝑔 = 𝑥6 + 47𝑥3 − 60𝑥𝑦2 − 6𝑥𝑦 − 83𝑦2 − 10𝑦 + 50.

The complete list of subresultants of (𝑓, 𝑔) w.r.t. 𝑥 is:

𝑆6 = 𝑔,
𝑆5 = 56𝑥4 + 60𝑥2𝑦2 + 6𝑥2𝑦 + 83𝑥𝑦2 + 10𝑥𝑦 + 17𝑥 + 81𝑦 + 1,
𝑆4 = 46𝑥4 + 64𝑥2𝑦2 + 27𝑥2𝑦 + 13𝑥𝑦2 + 45𝑥𝑦 + 25𝑥 + 4𝑦 + 56,
𝑆3 = 74𝑥2𝑦4 + 7𝑥3𝑦2 + 56𝑥2𝑦3 + 44𝑥𝑦4 +⋯ + 98𝑦2 + 86𝑦 + 53,
𝑆2 = 25𝑥2𝑦8 + 10𝑥2𝑦7 + 26𝑥𝑦8 + 62𝑥2𝑦6 +⋯ + 96𝑥 + 72𝑦 + 43,
𝑆1 = 81𝑥𝑦12 + 28𝑥𝑦11 + 76𝑦12 + 24𝑥𝑦10 + 5𝑥𝑦9 +⋯ + 4𝑥 + 73𝑦 + 77,
𝑆0 = 97𝑦15 + 82𝑦14 + 82𝑦13 +⋯ + 23𝑦5 + 89𝑦4 + 31𝑦3 + 𝑦2 + 54𝑦 + 69.

The solutions of 𝑓 = 𝑔 = 0 can be calculated using 𝑆0, 𝑆1 only.
Go to RegularChains.pdf Sections 2.2 and 2.3.
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Relations with resultants and subresultants (3/3)

Extending the previous ideas to solving 𝑚 polynomial equations
in 𝑛 variables can be done using
∎ a cascade of Sylvester resultants (this talk), or
∎ a combination of Dixon/Macaulay resultants and Sylvester resultants

(work in progress).
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Relations with Gröbner bases

Normalized regular chains

∎ The regular chain 𝑇 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ is said normalized if for every
𝑡, 𝑡′ ∈ 𝑇 we have deg(init(𝑡), mvar(𝑡′)) = 0.

∎ Let 𝑌 ∶= {mvar(𝑡) ⋃︀ 𝑡 ∈ 𝑇} and 𝑈 ∶= 𝑋 ∖ 𝑌 . If 𝑇 is normalized, then 𝑇
is a Gröbner basis of dimension 0 of the ideal it generates in k(𝑈)(︀𝑌 ⌋︀.

From lexicographical Gröbner bases to regular chains

∎ Let 𝐺 be a lexicographical Gröbner basis of a zero-dimensional ideal
ℐ ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀. Then, Lextriangular(𝐺) computes regular chains
(optionally normalized) 𝑇1, . . . , 𝑇𝑒 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ so that
𝑉 (𝐺) = ∪𝑒

𝑖=1𝑉 (𝑇𝑖). (Daniel Lazard, 1992).
∎ This is done at a cost which is at most that inverting at most #𝐺

polynomials modulo one of the ideals ∐︀𝑇1̃︀, . . . , ∐︀𝑇𝑒̃︀.
∎ This is practically very effective.
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Triangular decompositions: the incremental approach

∎ Let 𝑓 ∈ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ and 𝑇 ⊆ k(︀𝑥1, . . . , 𝑥𝑛⌋︀ be a regular chain.

∎ The intersection 𝑉 (𝑓) ∩𝑊 (𝑇 ) is approximated by the function call
Intersect(𝑓, 𝑇 ) , which returns regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ k(︀𝑋⌋︀ s.t.:

𝑉 (𝑓) ∩𝑊 (𝑇 ) ⊆ 𝑊 (𝑇1) ∪⋯ ∪𝑊 (𝑇𝑒) ⊆ 𝑉 (𝑓) ∩𝑊 (𝑇 ),

where 𝑊 (𝑇 ) denotes the Zariski closure of 𝑊 (𝑇 ).
∎ Given 𝑓1, . . . , 𝑓𝑚 ∈ k(︀𝑥1, . . . , 𝑥𝑛⌋︀, one can solve 𝑓1 = ⋯ = 𝑓𝑚 = 0 using

repeated calls to Intersect.
∎ Indeed, if 𝑉 (𝑓1, . . . , 𝑓𝑚−1) = ∪𝑒

𝑖=1𝑊 (𝑇𝑖), then we have

𝑉 (𝑓1, . . . , 𝑓𝑚) = ∪𝑒
𝑖=1 Intersect(𝑓𝑚, 𝑇𝑖).

(Daniel Lazard 1991), (M. 2000), (Changbo Chen & M. 2011-2012).
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Computing by homomotphic images: principles,

Examples

∎ The computation of the determinant of an integer matrix using the
Chinese Remaindering Theorem.

∎ Since resultants are determinants, similar strategies apply.
∎ A more advanced example is the computation of the GCD of univariate

integer polynomials, again using CRT.
∎ See the book by von zur Gathen & Gerhard.

Advantages and issues

∎ Modular methods (1) may control expression swell, (2) allow sharper
implementation (fine control memory), (3) open the door to
FFT-based arithmetic, and (4) provide opportunities for concurrency.

∎ Modular methods are (1) generally harder to implement than direct
methods, and (2) usually require change of representations which may
come with significant costs in terms of memory consumption.
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Expression swell may sometimes be handled in other ways
● Consider the system 𝐹 (Barry Trager).

−𝑥5 + 𝑦5 − 3𝑦 − 1 = 5𝑦4 − 3 = −20𝑥 + 𝑦 − 𝑧 = 0

We solve it for 𝑧 < 𝑦 < 𝑥.
● 𝑉 (𝐹 ) is equiprojectable and its Lazard triangular set is

∎
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Trace algorithms

∎ Consider an algorithm Solver(𝐹 ) taking 𝐹 ⊆ Z(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀
computing a finite sequence 𝒢 of finite sets 𝐺1, 𝐺2, . . . ,⊆ ∐︀𝐹 ̃︀ until
𝐺𝑖 = 𝐺output satisifies a property, e.g. Gröbner basis of ∐︀𝐹 ̃︀ or
Wu-characteristic set of 𝐹 .

∎ Endow all such finite sequences 𝒢 with a rank function so that, for
every well-chosen prime number 𝑝, the sequence computed by
Solver(𝐹 mod 𝑝) has maximum rank iff
Solver(𝐹 mod 𝑝) = 𝐺output mod 𝑝.

∎ For polynomial GCD computations (with 𝑛 = 1) one can simply use
the degree as rank function.

∎ For Gröbner bases, one can use the Hilbert function (Carlo Traverso,
ISSAC 1988), (Jean-Charles Faugère, PASCO 1994), (Elizabeth
Arnold, JSC 2003)

∎ For characteristic sets, one can use the notion of rank as defined by
Ritt and Wu (M. ACA 2003).
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The case of decomposition algorithms

∎ Consider an algorithm Solver(𝐹 ) taking 𝐹 ⊆ Q(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀
(assumed to be zero-dimensional for simplicity) computing a
triangular decomposition into regular chain 𝑇1, . . . , 𝑇𝑒.

∎ The algorithm EquiprojectableDecompositon(𝑇1, . . . , 𝑇𝑒) returns
a canonical triangular decomposition of 𝑉 (𝐹 ) based on “geometrical”
considerations.

∎ Moreover, if the prime 𝑝 is large enough, then the decompositions
EquiprojectableDecompositon(Solver(F mod 𝑝)) and
EquiprojectableDecompositon(Solver(𝐹 )) mod 𝑝 match.

∎ Using Hensel lifting techniques (Schost 2002) this leads to an
effective modular method for Solver(𝐹 ) (Dahan, M., Schost, Wu &
Xie ISSAC 2005).
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Issues with iterated subresultant chains (1/2)

∎ Testing regularity of 𝑝 ∈ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ w.r.t. regular chain
𝑇 ⊂ k(︀𝑥𝑛 > ⋯ > 𝑥1⌋︀ is equivalent to checking whether resultant(𝑇, 𝑝)
is zero or not.

∎ Moreover, elimninating variables with pseudo-division (or variants)
leads to computing cascade of (pseudo-)remainder sequences and
thus (multiples of) iterated resultants.

∎ Those iterated resultants usually contain large extraneous factors.
∎ In (C. Chen & M. JSC 2012) we give examples of 3 zero-dimensional

systems with 43 = 64 solutions where the extraneous factors have
degree in the 1000’s.
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Issues with iterated subresultant chains (2/2)

∎ Let 𝐶 = {𝑡1, 𝑡2, . . . , 𝑡𝑛} be a zero-dimensional regular chain and 𝑓 be
a polynomial all in k(︀𝑋⌋︀.

∎ For 𝑖 = 1, . . . , 𝑛, we denote by ℎ𝑖, the initial of 𝑡𝑖,
∎ For 𝑖 = 1, . . . , 𝑛 − 1, we define 𝑓𝑖 = res({𝑡𝑖+1, . . . , 𝑡𝑛}, 𝑓) and

𝑒𝑖 = deg(𝑓𝑖, 𝑥𝑖), with 𝑒𝑛 = deg(𝑓, 𝑋𝑛).
∎ Then, the iterated resultant res(𝐶, 𝑓) is given by:

ℎ𝑒1
1
⎛
⎝ ∏

𝛽1∈𝑉𝑀 (𝑡1)
ℎ2(𝛽1)

⎞
⎠

𝑒2

⋯
⎛
⎝ ∏

𝛽𝑛−1∈𝑉𝑀 (𝑡1,...,𝑡𝑛−1)
ℎ𝑛(𝛽𝑛−1)

⎞
⎠

𝑒𝑛

𝑅(𝐶, 𝑓),

where

𝑅(𝐶, 𝑓) =
⎛
⎝ ∏

𝛼∈𝑉𝑀 (𝐶)
𝑓(𝛼)

⎞
⎠

,

and 𝑉𝑀(𝐶) is the set of the zeros of 𝐶 counted with multiplicity.
∎ Thus, if ℎ1 = ⋯ = ℎ𝑛 = 1, then we simply have:

res(𝐶, 𝑓) = 𝑅(𝐶, 𝑓).
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Issues with iterated subresultant chains (2/2)
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∎ Then, the iterated resultant res(𝐶, 𝑓) is given by:

ℎ𝑒1
1
⎛
⎝ ∏

𝛽1∈𝑉𝑀 (𝑡1)
ℎ2(𝛽1)

⎞
⎠

𝑒2

⋯
⎛
⎝ ∏

𝛽𝑛−1∈𝑉𝑀 (𝑡1,...,𝑡𝑛−1)
ℎ𝑛(𝛽𝑛−1)

⎞
⎠

𝑒𝑛

𝑅(𝐶, 𝑓),

where

𝑅(𝐶, 𝑓) =
⎛
⎝ ∏

𝛼∈𝑉𝑀 (𝐶)
𝑓(𝛼)

⎞
⎠

,
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Recall the incremental approach and define our goals

∎ Let 𝑓 ∈ Q(︀𝑋1, . . . , 𝑋𝑛⌋︀ and 𝑇 ⊆ Q(︀𝑋1, . . . , 𝑋𝑛⌋︀ be a regular chain.

∎ The intersection 𝑉 (𝑓) ∩𝑊 (𝑇 ) is approximated by the function call
Intersect(𝑓, 𝑇 ) , which returns regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ k(︀𝑋⌋︀ s.t.:

𝑉 (𝑓) ∩𝑊 (𝑇 ) ⊆ 𝑊 (𝑇1) ∪⋯ ∪𝑊 (𝑇𝑒) ⊆ 𝑉 (𝑓) ∩𝑊 (𝑇 ).
∎ Our goals

1 compute modulo a well-chosen prime as in (Dahan et al., ISSAC 2005)
2 reduce to the case where 𝑇 is zero-dimensional and normalized, by

variable specialization
3 recover the specialized variables, then the rational coefficients.

∎ We want to avoid the recourse to Gröbner bases so as to support:
1 algorithms in differential algebra, and
2 positive-dimensional systems for which methods based on regular

chains may have smaller output.
∎ This is similar in spirit to (Grégoire Lecerf, J. Complex 2001)
∎ However, we avoid random changes of coordinates and support

decompositions in the sense of Lazard.
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Notations

∎ Let 𝑓, 𝑡2, . . . , 𝑡𝑛 ∈ k(︀𝑋1 < ⋯ < 𝑋𝑛⌋︀ be non-constant.

∎ Assume 𝑇 ∶= {𝑡2, . . . , 𝑡𝑛} is a regular chain with mvar(𝑡𝑖) = 𝑋𝑖.

∎ Assume mvar(𝑓) = 𝑋𝑛.
∎ For convenience, we define 𝑟𝑛 ∶= 𝑓 .
∎ Let 𝑆(𝑡𝑛, 𝑟𝑛, 𝑋𝑛) be the subresultant chain of 𝑡𝑛 and 𝑟𝑛 regarded as

polynomials in (k(︀𝑋1, . . . , 𝑋𝑛−1⌋︀)(︀𝑋𝑛⌋︀.
∎ Let 𝑟𝑛−1 and 𝑔𝑛 be the subresultants of index 0 and 1 from

𝑆(𝑡𝑛, 𝑟𝑛, 𝑋𝑛).
∎ For 2 ≤ 𝑖 ≤ 𝑛 − 1, let 𝑆(𝑡𝑖, 𝑟𝑖, 𝑋𝑖) the subresultant chain of 𝑡𝑖 and 𝑟𝑖

regarded as polynomials in (k(︀𝑋1, . . . , 𝑋𝑖−1⌋︀)(︀𝑋𝑖⌋︀.
∎ Let 𝑟𝑖−1 and 𝑔𝑖 be the subresultants of index 0 and 1 from

𝑆(𝑡𝑖, 𝑟𝑖, 𝑋𝑖).
∎ We denote by 𝑠 the squarefree part of 𝑠 ∶= 𝑟1.
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Base result

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

Theorem
With our four Hypotheses, we have:

𝑉 (𝑓, 𝑡2, . . . , 𝑡𝑛) = 𝑉 (𝑠, 𝑔2, . . . , 𝑔𝑛).

∎ Under Hypotheses 1, 2, 3 and 4, the regular chain 𝐶 can be computed
by a cascade of subresultant chain computations.

∎ 𝐶 can be computed in a modular fashion (as we see shortly) improving
performance w.r.t. the direct and non-modular approach.

∎ This modular method can be enhanced so that the 4 Hypotheses are
no longer necessary (as we will see later).
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The modular algorithm in F𝑝 under our hypotheses

1 Evaluate 𝑓 and 𝑇 at sufficiently many (use the Bézout bound or the
mixed volume) values 𝑎 of 𝑋1 so that 𝑇 specializes well at 𝑋1 = 𝑎 to
a zero-dimensional regular chain 𝑇𝑎

2 For each good specialization 𝑋1 = 𝑎

1 Replace 𝑇𝑎 by a normalized (= monic) regular chain 𝑁𝑎

2 Compute the images of the polynomials 𝑟𝑖−1 and 𝑔𝑖 at 𝑋1 = 𝑎

3 Recover 𝑋1 (by interpolation and rational function reconstruction)
and deduce 𝑠, 𝑔2, . . . , 𝑔𝑛

Technical details:

∎ specializations 𝑋1 = 𝑎, 𝑋1 = 𝑏, . . . must produce faithful images of
resultants 𝑟𝑖, that is, resultants of maximum degree. good ≠ faithful.

∎ the implementation uses a priori bounds for
1 the number of non-faithful specializations, and
2 the degree of 𝑠; see the details in our CASC 2023 paper.

∎ we stop combining those images of the 𝑟𝑖’s when the recombination
of the images stabilizes (Monagan’s probabilistic idea, ISSAC 2005).
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of the images stabilizes (Monagan’s probabilistic idea, ISSAC 2005).
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The full modular algorithm: relaxing the hypotheses (1/3)

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

∎ Relaxing the 𝑟𝑖 ⇑∈ k part of H1 implies that the last computed
resultant, say 𝑠, could be constant:

1 if 𝑠 = 0, then its “parents” (say 𝑟𝑗 and 𝑡𝑗) have a non-trivial GCD over
k which must be added to the chain 𝐶,

2 if 𝑠 ≠ 0, then Intersect(𝑓, 𝑇 ) = ∅.

∎ Handling this modification only requires to possibly computing this
GCD, whose cost is negligible.
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The full modular algorithm: relaxing the hypotheses (2/3)

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

∎ Relaxing the mvar(𝑟𝑖) = 𝑋𝑖 part of H1 implies that the successive
resultants 𝑟𝑛, . . . may have a gap in their sequence of main variables

∎ we simply use the appropriate polynomials from 𝑇 = {𝑡𝑛, . . . , 𝑡2} to fill
those gaps.

∎ Handling this modification comes at no cost.
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The full modular algorithm: relaxing the hypotheses (3/3)

H1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, we have 𝑟𝑖 ⇑∈ k and mvar(𝑟𝑖) = 𝑋𝑖,

H2 For 2 ≤ 𝑖 ≤ 𝑛, we have 𝑔𝑖 ⇑∈ k and mvar(𝑔𝑖) = 𝑋𝑖,

H3 The polynomial set 𝐶 ∶= {𝑠, 𝑔2, . . . 𝑔𝑛} is a regular chain,
H4 For every 2 ≤ 𝑖 ≤ 𝑛, lc(𝑡𝑖, 𝑋𝑖) is invertible modulo ∐︀𝑠, 𝑔2, . . . , 𝑔𝑖−1̃︀.

∎ When either H2, H3, or H4 fails

1 the “candidate” regular chain 𝐶 must split, and
2 some subresultants of index higher than 1 must be used.

∎ Costs for handling this:

1 computing resultants and GCDs modulo regular chains by evaluation
and interpolation, which is what this whole algorithm is about,

2 interpolating those subresultants of higher index
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Conclusions

∎ We have discussed Intersect(𝑓, 𝑇 ) which computes 𝑉 (𝑓) ∩𝑊 (𝑇 )
and which is at the core of the incremental method for triangular
decompositions

∎ We have presented a modular method for Intersect(𝑓, 𝑇 ) focusing
on the case where 𝑇 is dimension one.

∎ This method allows us to get rid off of the large extraneous factors
occurring in iterated resultant computations

∎ For technical details (in particular degree bounds) see our CASC 2023.
∎ The experimentation reported there is based on an implementation

which does not support yet the relaxation of our hypotheses (thus
providing no benefits when those hypotheses do not hold).

∎ This modular method is designed to take advantage of FFT-based
algorithms (speculative methods for computing subresultant chains,
see our CASC 2022 paper).

∎ Parallel execution: multiple specialization can be done concurrently.
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Thank You!

http://www.bpaslib.org/
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