
On the Factor Refinement Principle and its Implementation on Multicore

Architectures

(Spine title: Factor Refinement Principle on Multicore Architectures)

(Thesis format: Monograph)

by

Md. Mohsin Ali

Graduate Program

in

Computer Science

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

c© M. M. Ali 2011

THE UNIVERSITY OF WESTERN ONTARIO

THE SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF EXAMINATION

Supervisor: Examination committee:

Dr. Marc Moreno Maza Dr. Éric Schost

Dr. Sheng Yu

Dr. Lex E. Renner

The thesis by

Md. Mohsin Ali

entitled:

On the Factor Refinement Principle and its Implementation on Multicore

Architectures

is accepted in partial fulfillment of the

requirements for the degree of

Master of Science

Date Chair of the Thesis Examination Board

ii

Abstract

The factor refinement principle turns a partial factorization of integers (or polynomi-

als) into a more complete factorization represented by basis elements and exponents,

with basis elements that are pairwise coprime.

There are lots of applications of this refinement technique such as simplifying

systems of polynomial inequations and, more generally, speeding up certain algebraic

algorithms by eliminating redundant expressions that may occur during intermediate

computations.

Successive GCD computations and divisions are used to accomplish this task until

all the basis elements are pairwise coprime. Moreover, square-free factorization (which

is the first step of many factorization algorithms) is used to remove the repeated

patterns from each input element. Differentiation, division and GCD calculation op-

erations are required to complete this pre-processing step. Both factor refinement

and square-free factorization often rely on plain (quadratic) algorithms for multipli-

cation but can be substantially improved with asymptotically fast multiplication on

sufficiently large input.

In this work, we review the working principles and complexity estimates of the

factor refinement, in case of plain arithmetic, as well as asymptotically fast arithmetic.

Following this review process, we design, analyze and implement parallel adaptations

of these factor refinement algorithms. We consider several algorithm optimization

techniques such as data locality analysis, balancing subproblems, etc. to fully exploit

modern multicore architectures. The Cilk++ implementation of our parallel algorithm

based on the augment refinement principle of Bach, Driscoll and Shallit achieves linear

speedup for input data of sufficiently large size.

Keywords. Factor refinement, Coprime factorization, Square-free factorization,

GCD-free basis, Parallelism, Muticore architectures.

iii

Acknowledgments

Firstly, I would like to thank my thesis supervisor Dr. Marc Moreno Maza in the

Department of Computer Science at The University of Western Ontario. His helping

hands toward the completion of this research work were always extended for me. He

consistently helped me on the way of this thesis and guided me in the right direction

whenever he thought I needed it. I am grateful to him for his excellent support to

me in all the steps of successful completion of this research.

Secondly, I would like to thank Dr. Yuzhen Xie in the Department of Computer

Science at The University of Western Ontario for helping me successfully completing

this research work.

Thirdly, all my sincere thanks and appreciation go to all the members from our

Ontario Research Centre for Computer Algebra (ORCCA) lab, Computer Science De-

partment for their invaluable teaching support as well as all kinds of other assistance,

and all the members of my thesis examination committee.

Finally, I would like to thank all of my friends around me for their consistent en-

couragement and would like to show my heartiest gratefulness to my family members

for their continued support.

iv

Contents

Certificate of Examination ii

Abstract iii

Acknowledgments iv

Table of Contents v

List of Algorithms vii

List of Figures viii

List of Tables x

1 Introduction 1

2 Background 3

2.1 Systems of polynomial equations and inequations 3

2.2 Square-free factorization . 5

2.3 Fast polynomial evaluation and interpolation 7

2.3.1 Fast polynomial evaluation . 7

2.3.2 Fast polynomial interpolation 10

2.4 The fork-join parallelism model . 11

2.4.1 The work law . 12

2.4.2 The span law . 13

2.4.3 Parallelism . 13

2.4.4 Performance bounds . 13

2.4.5 Work, span and parallelism of classical algorithms 14

2.5 Cache complexity . 14

2.6 Multicore architecture . 17

v

2.7 Systolic arrays . 18

2.8 Graphics processing units (GPUs) 19

2.9 Random access machine (RAM) model 20

3 Serial Algorithms for Factor Refinement and GCD-free Basis Com-

putation 21

3.1 Factor refinement and GCD-free basis 21

3.2 Quadratic algorithms for factor refinement 22

3.3 Fast algorithms for GCD-free basis 25

4 Parallel Algorithms for Factor Refinement and GCD-free Basis Com-

putation 29

4.1 Parallelization based on the naive refinement principle 30

4.2 Parallelization based on the augment refinement principle 40

5 Implementation Issues 51

6 Experimental Results 55

6.1 Integers of type int inputs . 56

6.2 Polynomial type inputs . 56

6.3 Integers of type my big int inputs (work in progress) 58

7 Parallel GCD-free Basis Algorithm Based on Subproduct Tree Tech-

niques 62

7.1 Algorithms and parallelism estimates 62

7.2 Asymptotic analysis of memory consumption 66

7.3 Challenges toward an implementation 67

8 Conclusion 68

Curriculum Vitae 72

vi

List of Algorithms

1 Square-free Factorization . 7

2 SubproductTree . 8

3 TopDownTraverse(f,Mk,h) . 9

4 MultipointEvaluation . 10

5 LinearCombination(Mk,v, n) . 10

6 FastInterpolation . 11

7 Refine . 23

8 PairRefine . 24

9 AugmentRefinement . 24

10 multiGcd(f, A) . 26

11 pairsOfGcd(A,B) . 26

12 gcdFreeBasisSpecialCase(A,B) . 27

13 gcdFreeBasis(A) . 27

14 GcdOfAllPairsInner(A,B,G) . 31

15 GcdOfAllPairs(A,B) . 31

16 MergeRefinement(A,E,B, F) . 33

17 ParallelFactorRefinement(A) . 34

18 PolyRefine(a, e, b, f) . 41

19 MergeRefinePolySeq(a, e, B, F) . 42

20 MergeRefineTwoSeq(A,E,B, F) . 43

21 MergeRefinementDNC(A,E,B, F) . 44

22 ParallelFactorRefinementDNC(A) 44

23 parallelPairsOfGcd(A,B) . 64

24 parallelGcdFreeBasisSpecialCase(A,B) 65

25 parallelGcdFreeBasis(A) . 66

vii

List of Figures

2.1 Subproduct tree for the multipoint evaluation algorithm. 8

2.2 A directed acyclic graph (dag) representing the execution of a multi-

threaded program. Each vertex represents an instruction while each

edge represents a dependency between instructions. 12

2.3 The ideal-cache model. 15

2.4 Scanning an array of n = N elements, with L = B words per cache line. 16

5.1 Demonstration of unpacking and packing. 51

5.2 Balancing polynomials for data traffic during divide-and-conquer. . . 53

5.3 Balancing polynomials for GCD calculation and division during divide-

and-conquer. 53

6.1 Scalability analysis of the augment refinement based parallel factor

refinement algorithm for 200, 000 int type inputs by Cilkview. . . . 56

6.2 Running time comparisons of the augment refinement based parallel

factor refinement algorithm for int type inputs. 57

6.3 Scalability analysis of the naive refinement based parallel factor refine-

ment algorithm for 4, 000 dense square-free univariate polynomials by

Cilkview. 58

6.4 Running time comparisons of the naive refinement based parallel factor

refinement algorithm for dense square-free univariate polynomials. . 59

6.5 Scalability analysis of the augment refinement based parallel factor re-

finement algorithm for 4, 000 dense square-free univariate polynomials

by Cilkview. 59

6.6 Running time comparisons of the augment refinement based parallel

factor refinement algorithm for dense square-free univariate polynomi-

als. 60

viii

6.7 Scalability analysis of the augment refinement based parallel factor re-

finement algorithm for 4, 120 sparse square-free univariate polynomials

by Cilkview when the input is already a GCD-free basis. 60

6.8 Running time comparisons of the augment refinement based parallel

factor refinement algorithm for sparse square-free univariate polyno-

mials when the input is already a GCD-free basis. 61

ix

List of Tables

2.1 Work, span and parallelism of classical algorithms. 14

x

Chapter 1

Introduction

System of non-linear equations and inequations have much practical importance in

many fields such as theoretical physics, chemistry, and robotics. Solving this type

of systems means describing the common solutions of the polynomial equations and

inequations defining the corresponding system. Since the number of solutions of

such systems grows exponentially with the number of unknowns, this process is hard

in both contexts of numerical methods and computer algebra methods. The latter

scenario, to which this work subscribes, is even more challenging due to the infamous

phenomenon of expression swell.

The implementation of non-linear polynomial system solvers is a very active re-

search area. It has been stimulated during the past ten years by two main progresses.

Firstly, methods for solving such systems have been improved by the use of so-called

modular techniques and asymptotically fast polynomial arithmetic. Secondly, the de-

mocratization of supercomputing, thanks to hardware acceleration technologies (mul-

ticores, general purpose graphics processing units) creates the opportunity to tackle

harder problems.

One central issue in the implementation of polynomial system solvers is the elim-

ination of redundant expressions that frequently occur during intermediate compu-

tations, with both numerical methods and computer algebra methods. Factor re-

finement, also known as coprime factorization, is a popular technique for removing

repeated factors among several polynomials, while square-free factorization is used to

remove repeated factors within a given polynomial. Coprime factorization has many

applications in number theory and polynomial algebra, see the papers [8, 9] and the

web site http://cr.yp.to/coprimes.html by Bernstein.

Algorithms for coprime factorization have generally been designed with algebraic

complexity as the complexity measure to optimize. However, with the evolution of

1

computer architecture, parallelism and data locality are becoming major measures

of performance, in addition to the traditional ones, namely serial running time and

allocated space. This imposes to revisit many fundamental algorithms in computer

science, such as those for coprime factorization.

In this thesis, we revisit the factor refinement algorithms of Bach, Driscoll and

Shallit [6] based on quadratic arithmetic. We show that their augment refinement

principle leads to a highly efficient algorithm in terms of parallelism and data locality.

Our approach takes advantage of the paper “Parallel Computation of the Minimal

Elements of a Poset” [19] by Leiserson, Li, Moreno Maza and Xie. Our theoretical

results are confirmed by an experimentation, which is based on a multicore imple-

mentation in the Cilk++ concurrency platform [10, 14, 20, 22, 26]. For problems on

integers, we use the GMP library [1] while for problems on polynomials, we use the

“Basic Polynomial Algebra Subroutines (BPAS)” library [30].

We also revisit the GCD-free basis algorithm of Dahan, Moreno Maza, Schost and

Xie [15]. Their algorithm, which is serial, is nearly optimal in terms of algebraic com-

plexity. However, our theoretical study combined with experimental results from the

literature [13, 29] suggest that this algorithm is not appropriate for a parallelization

targeting multicore architecture.

This thesis is organized as follows. Chapter 2 introduces background materials

of this research work. Chapter 3 then presents existing serial algorithms for factor

refinement and GCD-free basis with their working principles as well as complexity

estimates. It is out of the scope of this thesis to give an exhaustive description of

the vast amount of previous work; we only provide details for algorithms that we

will use. Chapter 4 describes details of parallel factor refinement and GCD-free basis

algorithms with estimates of work, span, parallelism and cache complexity. Some

implementation issues of parallel algorithms are presented in Chapter 5. Chapter 6

contains our experimental results, performance analysis and benchmarking of the

parallel algorithms. Application of subproduct tree techniques for the parallel com-

putation of GCD-free basis is presented in Chapter 7 with some analysis as well as

a discussion on the challenges toward an implementation. Finally, conclusion of this

thesis and future work appear in Chapter 8.

2

Chapter 2

Background

This section gathers background materials which are used throughout this thesis.

Section 2.1 is a brief introduction to polynomial system solving, which motivates the

work reported in this thesis. Section 2.2 is a review of the notion of square-free fac-

torization, which is one of the two “simplification techniques” for polynomial systems

that are discussed in this thesis. The other one is coprime factorization, to which the

rest of this document is dedicated and which is introduced in Chapter 3. Section 2.3

is a review of asymptotically fast algorithms for univariate polynomial evaluation and

interpolation. It follows closely the presentation in Chapter 10 of [33]. Sections 2.4

and 2.5 describe our two models of computations: the fork-join parallelism model

and the idealized cache model, which were proposed in the papers [21, 22]. Here,

we follow closely, the lecture notes of the UWO course CS9624-4435 available at

http://www.csd.uwo.ca/∼moreno/CS9624-4435-1011.html.

2.1 Systems of polynomial equations and inequa-

tions

A system of polynomial equations and inequations is defined as

f1(x) = 0
...

fm(x) = 0

h1(x) 6= 0
...

hs(x) 6= 0

(2.1)

3

where x = (x1, x2, . . . , xn) refers to n variables, and f1, . . . , fm, h1, . . . , hs are multi-

variate polynomials in x with coefficients in a field K. Let L be a field extending K.

For instance K and L could be the fields of real and complex numbers, respectively.

A solution over L of System (2.1) is a tuple z = (z1, z2, . . . , zn) with coordinates in L

such that we have

f1(z) = f2(z) = · · · = fm(z) = 0 and h1(z) 6= 0 and · · · and hs(z) 6= 0. (2.2)

A first difference between the case of linear equations and that of polynomial

equations is the fact that a non-linear system may have a number of solutions which

is both finite and greater than one. Actually, this is often the case in practice, in

particular for square systems, that is, for systems with as many equations as variables.

When finite, this number of solutions, counted with multiplicities, can be as large as

dn, when d is the common total degree of f1, f2, . . . , fm. This fact leads to another

difference: “describing” the solutions of System (2.1) is a process that requires a

number of arithmetic operations in L which is (at least) exponential in n, the number

of variables.

There are two different ways of computing the solutions of System (2.1). The first

one relies on so-called numerical methods which compute numerical approximations

of the possible real or complex solutions. These methods have the advantage of being

quite fast in practice while flexible in accuracy by using iterative methods. However,

due to rounding errors, numerical methods are principally uncertain, often unstable

in an unpredictable way; sometimes they do not find all solutions and have difficulties

with overdetermined systems. Some of these approaches are presented in [16, 17, 28].

The alternative way is to represent the solutions symbolically. More precisely, the

solution set is decomposed into so-called components such that each component is rep-

resented by a polynomial system of a special kind, called a regular chain [5, 25, 27],

which possesses a triangular shape and remarkable properties. For this reason, such

a decomposition is called a triangular decomposition of the input system. Methods

computing triangular decompositions are principally exact. However, they are prac-

tically more costly than numerical methods. As a result, they are applicable only to

relatively “small” input systems. Nevertheless, they are applicable to any polynomial

system of any dimension and for zero-dimensional systems they can precisely pro-

vide the number of complex solutions (counted with multiplicities) and specify which

solutions have real coordinates.

The practical efficiency as well as the theoretical time complexity of triangular

4

decompositions depend on various techniques for removing superfluous expressions

(components, polynomial factors, . . .) during the computations. For instance, if

a, b, c are three polynomials which satisfy the following system of inequations

a b 6= 0, b c 6= 0, c a 6= 0,

one may want to replace it simply by

a 6= 0, b 6= 0, c 6= 0,

since they are both equivalent and the second one is simpler. As a result, algorithms

which do this type of simplification are very important. There are two well-developed

techniques for simplifying systems of equations and inequations: one is square-free

factorization [7, 35] and another one is coprime factorization [6, 15]. The former one

is described in next section and the latter one is in next chapter.

2.2 Square-free factorization

Square-free factorization is a first step in many factorization algorithms. It factors

non-square-free polynomials in terms of square-free factors that are relatively prime.

It can separate factors of different multiplicities, but not factors with the same multi-

plicity. Formal definitions of square-free factorization are summarized hereafter. For

a more complete presentation, please refer to Chapter 14 in [33].

Definition 1. Let D be a UFD (unique factorization domain) and P ∈ D[x] be a

non-constant univariate polynomial. The polynomial P is said square-free if for every

non-constant polynomial Q ∈ D[x], the polynomial Q2 does not divide P .

If D is a field and P ∈ D[x] is square-free, it is easy to show that there exists

pairwise different monic irreducible polynomials P1, P2, . . . , Pk such that their product

equals P/lc(P), where lc(P) denotes the leading coefficient of P . We observe that

P1, P2, . . . , Pk are necessarily pairwise coprime, that is, for all Pi, Pj , with 1 ≤ i <

j ≤ k, there exists Ai, Aj ∈ D[x] such that AiPi +AjPj = 1 holds. Since D is a field,

using the (extended) Euclidean Algorithm, this latter property is equivalent to the

fact that for all Pi, Pj , with 1 ≤ i < j ≤ k, the polynomials Pi, Pj have no common

factors other than elements of D.

5

Definition 2. Let K be a field and P be a non-constant univariate polynomial

P ∈ K[x]. A square-free factorization of P consists of pairwise coprime polyno-

mials P1, P2, . . . , Pk such that we have P = P1 ·P 2
2 . . . P

k
k and each Pi is either 1 or a

square-free non-constant polynomial.

It is easy to see that a square-free factorization of P is obtained from the irreducible

factors F1, . . . , Fe of P by taking for Pi the product of the Fj’s such that F i
j divides P

but F i+1
j does not divide P . We illustrate the above definitions with a few examples.

Example 1. Let P = (x+1) ∈ K[x]. From Definition 1, the polynomial P is square-

free, because there is no non-constant polynomial Q ∈ K[x] such that Q2 divides P .

On the other hand, assume P = x2+4x+4 ∈ K[x]. From Definition 1, the polynomial

Q is not square-free, because, for Q = (x+ 2) ∈ K[x], the polynomial Q2 divide P .

Example 2. Let P = x15 + 55x14 + 1400x13 + 21868x12 + 234290x11 +

1822678x10+10629552x9+47283632x8+161614309x7+424015067x6+845928448x5+

1258456700x4+1348952000x3+981360000x2+432000000x+86400000 ∈ R[x], where

R is the field of real numbers. Then, a square-free factorization of P is given by

P = (x+ 1)(x+ 2)2(x+ 3)3(x+ 4)4(x+ 5)5,

where we have P1 = (x+1), P2 = (x+2), P3 = (x+3), P4 = (x+4), and P5 = (x+5).

There are several well-known algorithms for computing square-free factorization of

a univariate polynomial over a field (and more generally for multivariate polynomials

over a field). For instance, Yun proposed an algorithm for computing square-free

factorization of univariate polynomials over a field of characteristic zero in 1976 [35].

Yun’s algorithm is a basic building block for other polynomial factorization algorithms

and it is described in Algorithm 1. An asymptotic upper bound of the algebraic

complexity of this algorithm is stated in the following proposition.

Proposition 1. The cost (number of bit operations) of Algorithm 1 is O(k4(n2d +

nd2)), where d = degree(Pi) (thus assuming that all Pi have the same degree), n is the

maximum bit size of a coefficient in P1, P2, . . . , Pk and algorithm used for computing

GCDs is a quadratic time algorithm (say the Euclidean Algorithm). On the other

hand, if M(d) is a multiplication time (that is, a running time estimate in terms of

field operations for multiplying two polynomials in K[x] of degree less than d) then the

cost becomes O(k2M(d) log(d)) operations in K, where M(d) ∈ O(d log(d) log log(d))

operations in K for FFT-based multiplication.

6

Algorithm 1: Square-free Factorization

Input: A polynomial P ∈ K[x], where K is a field of characteristic zero.
Output: A square-free factorization of P , that is, pairwise coprime square-free

polynomials P1, P2, . . . , Pk such that P = P1 · P 2
2 . . . P

k
k holds in K[x].

G← gcd(P, d
dx
P) ; /* G = P2P

2
3 . . . P

k−1
k */1:

C1 ← P/G ; /* C1 = P1P2 . . . Pk */2:

D1 ← (d
dx
P)/G− d

dx
C1 ;3:

/* D1 = P1
d
dx
(P2) . . . Pk + 2P1P2

d
dx
(P3) . . . Pk + . . .+ (k − 1)P1P2 . . .

d
dx
(Pk) */

for i = 1, step 1, until Ci = 1 do4:

Pi ← gcd(Ci, Di) ; /* Ci = PiPi+1 . . . Pk */5:

Ci+1 ← Ci/Pi ;6:

/* Di = Pi(
d
dx
(Pi+1) . . . Pk+2Pi+1

d
dx
(Pi+2) . . . Pk+ . . .+(k−i)Pi+1 . . .

d
dx
(Pk)

*/

Di+1 ← Di/Pi − d
dx
Ci+1;7:

return (P1, P2, . . . , Pk) ;8:

2.3 Fast polynomial evaluation and interpolation

This section presents asymptotically fast algorithms for univariate polynomial evalu-

ation and interpolation. These are based on the concept of a subproduct tree. For a

more complete presentation, please refer to Chapter 10 in [33].

2.3.1 Fast polynomial evaluation

Multipoint evaluation of a polynomial (univariate) primarily means evaluating that

polynomial at multiple points and can formally be stated as follows. Given a univari-

ate polynomial P =
∑n−1

j=0 pjx
j ∈ K[x], with coefficients in the field K, and evaluation

points u0, . . . , un−1 ∈ K compute P (ui) =
∑n−1

j=0 pju
j
i , for i = 0, . . . , n− 1.

It is useful to introduce the following objects. Define mi = x − ui ∈ K[x], and

m =
∏

0≤i<n(x− ui). We consider the evaluation map

χ :
K[x]/〈m〉 −→ K

n

f 7−→ (f(u0), . . . , f(un−1))

We observe that K[x]/〈m〉 and K
n are vector spaces of dimension n over K. More-

over, χ is a K-linear map, which is a bijection as soon as the evaluation points

u0, . . . , un−1 are pairwise distinct.

Problem 1. (Multipoint Evaluation) Given n = 2k for some k ∈ N, f ∈ K[x] of

degree less than n, and point set u0, . . . , un−1 ∈ K, compute

7

u0, . . . , un−1

u0, . . . , un/2−1
un/2, . . . , un−1

u0, u1 u2, u3 un−2, un−1

u0 u1 u2 u3
un−2 un−1

Mk,0

Mk−1,0 Mk−1,1

M1,0 M1,1 M1,n/2−1

M0,0 M0,1 M0,2 M0,3
M0,n−2 M0,n−1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

i = k

i = k − 1

i = 1

i = 0

Figure 2.1: Subproduct tree for the multipoint evaluation algorithm.

χ(f) = (f(u0), . . . , f(un−1)).

This takes O(n2) operations in K using Horner’s rule n times, but this can be

done at a much cheaper cost by means of the subproduct tree method described

below.

The idea of the multipoint evaluation using subproduct tree method is to split the

point set u0, . . . , un−1 into two halves of equal cardinality and to proceed recursively

with each of the two halves. This leads to a binary tree of depth log2(n) having the

points u0, . . . , un−1 as leaves. Figure 2.1 illustrates this evaluation scheme.

Algorithm 2: SubproductTree

Input: m0 ← (x− u0), . . . ,mn−1 ← (x− un−1) ∈ K[x] with
u0, . . . , ur−1 ∈ K and n = 2k for k ∈ N.

Output: Mi,j =
∏

0≤l<2i mj·2i+l for 0 ≤ i ≤ k and 0 ≤ j < 2k−i.

for j = 0 to n− 1 do1:

M0,j ← mj;2:

for i = 1 to k do3:

for j = 0 to 2k−i − 1 do4:

Mi,j ←Mi−1,2j ·Mi−1,2j+1;5:

8

Let mi = x− ui as above, and define

Mi,j = mj·2i ·mj·2i+1 . . .mj·2i+(2i−1) =
∏

0≤l<2i mj·2i+l

for 0 ≤ i ≤ k = log2(n) and 0 ≤ j < 2k−i. So each Mi,j can be represented as a

subproduct tree of 2i products and the recursive definitions of this is as follows.

M0,j = mj and Mi+1,j = Mi,2j ·Mi,2j+1.

Here, Mi,j means the elements at the j-th node from the left at level i in the

subproduct tree shown in Figure 2.1. The algorithm which generates this tree is

shown in Algorithm 2.

Proposition 2. Algorithm 2 takes O(M(n) log2(n)) operations in K, where M is a

multiplication time.

The computation of these subproducts (Mi,j) is used as the precomputation

stage of the multipoint evaluation algorithm that evaluates the polynomial at points

u0, . . . , un−1 by traversing the tree in a top-down manner and Algorithm 3 is used to

accomplish this.

Algorithm 3: TopDownTraverse(f,Mk,h)

Input: Polynomial f ∈ K[x] with degree smaller than n = 2k for some k ∈ N,
pairwise different values u0, . . . , un−1 ∈ K, and Mi,j =

∏

0≤l<2i mj·2i+l

for 0 ≤ i ≤ k and 0 ≤ j < 2k−i from Algorithm 2.
Output: f(u0), . . . , f(un−1) ∈ K.
Comment The algorithm is called with TopDownTraverse(f,Mk,0).
if n = 1 then // the degree of f is less than n1:

return f ;2:

r0 ← f mod Mk−1,2h;3:

r1 ← f mod Mk−1,2h+1;4:

TopDownTraverse(r0,Mk−1,2h) ; /* Compute r0(u0), . . . , r0(un/2−1) */5:

TopDownTraverse(r1,Mk−1,2+1) ; /* Compute r1(un/2), . . . , r1(un−1) */6:

return r0(u0), . . . , r0(un/2−1), r1(un/2), . . . , r1(un−1) ;7:

Proposition 3. The number of operations required in K for Algorithm 3 is

O(M(n) log2(n)).

Finally, Algorithm 4 combines Algorithm 2 and 3 for multipoint evaluation to

evaluate the polynomial at points u0, . . . , un−1.

Proposition 4. Algorithm 4 takes O(M(n) log2(n)) operations in K.

9

Algorithm 4: MultipointEvaluation

Input: Polynomial f ∈ K[x] with degree smaller than n = 2k for some k ∈ N,
pairwise different values u0, . . . , un−1 ∈ K.

Output: f(u0), . . . , f(un−1) ∈ K.
Call Algorithm 2 with input (x− u0), (x− u1), . . . , (x− un−1) to compute the1:

subproducts Mi,j ;
Call Algorithm 3 with input f , the points ui, and the subproducts Mi,j ;2:

return the result of Algorithm 3;3:

Algorithm 5: LinearCombination(Mk,v, n)

Input: u0, . . . , un−1, c0, . . . , cn−1 ∈ K, where n = 2k for some k ∈ N, and the
polynomial Mi,j =

∏

0≤l<2i mj·2i+l for 0 ≤ i ≤ k and 0 ≤ j < 2k−i from
Algorithm 2.

Output:
∑

0≤i<n ci
m

x−ui
∈ K[x] where m = (x− u0) . . . (x− un−1).

Comment The algorithm is called with LinearCombination(Mk,0, n).
if n = 1 then // n is the total number of points1:

return c0;2:

r0 ← LinearCombination(Mk−1,2v, n/2) ; /* Recursive call to compute3:

r0 =
∑

0≤i<n/2 ci
Mk−1,0

x−ui
*/

r1 ← LinearCombination(Mk−1,2v+1, n/2) ; /* Recursive call to compute4:

r1 =
∑

n/2≤i<n ci
Mk−1,1

x−ui
*/

return Mk−1,1r0 +Mk−1,0r1;5:

2.3.2 Fast polynomial interpolation

In broad terms, polynomial interpolation usually means reconstructing a polynomial

from its values at a given set of points. This process can be formally stated as follows.

Let u0, . . . , un−1 be pairwise distinct points (i.e. values) in the field K and let

v0, . . . , vn−1 be another sequence of values in K. Then, there exists a unique polyno-

mial f ∈ F[x] of degree less than n such that f takes the values vi at the point ui for

all i. Moreover, this polynomial is given by

f =
∑

0≤i<n

visi
m

x− ui

where

m = (x− u0) · · · (x− un−1) and si =
∏

j 6=i

1

ui − uj

.

This si can be computed using the derivative of m (denoted by m′) by performing

10

one multipoint evaluation ofm′ at n points for the givenm from the following equation

discussed in [34].

m′(ui) =
m

x−ui
|x=ui

= 1
si

Algorithm 5 and 6 state the whole procedure for computing f from the two se-

quences u0, . . . , un−1 and v0, . . . , vn−1.

Algorithm 6: FastInterpolation

Input: u0, . . . , un−1 ∈ K such that ui − uj is a unit for i 6= j, and
v0, . . . , vn−1 ∈ K, where n = 2k for some k ∈ N.

Output: The unique polynomial f ∈ K[x] of degree less than n such that
f(ui) = vi for 0 ≤ i < n.

Call Algorithm 2 with input m0 = x− u0, . . . ,mn−1 = x− un−1 to compute the1:

polynomial Mi,j =
∏

0≤l<2i mj·2i+l for 0 ≤ i ≤ k and 0 ≤ j < 2k−i ;

m←Mk,0 ;2:

Call Algorithm 3 with input f = m′, u0, . . . , un−1, and Mi,j to evaluate m′ at3:

u0, . . . , un−1;
for i = 0 to n− 1 do4:

si ← 1
m′(ui)

;5:

Call Algorithm 5 with input u0, . . . , un−1, v0s0, . . . , vn−1sn−1, and the Mi,j ;6:

return the result of Algorithm 5;7:

Proposition 5. Algorithm 5 correctly computes the result with O(M(n) log2(n)) op-

erations in K and Algorithm 6 (which relies on Algorithm 5) runs correctly within

O(M(n) log2(n)) operations in K, where M(n) is the number of multiplication oper-

ations required for the polynomial of degree n =
∑

0≤i<r degree(mi).

2.4 The fork-join parallelism model

The Cilk++ concurrency platform [10, 14, 20, 22, 26] provides a simple theoretical

model called the fork-join parallelism model or dag (direct acyclic graph) model of

multithreading for parallel computation. This model represents the execution of a

multithreaded program as a set of nonblocking threads denoted by the vertices of a

dag, where the dag edges indicate dependencies between instructions. See Figure 2.2.

In the Cilk++ terminology, a thread is a maximal sequence of instructions that

ends with a spawn, sync, or return statement. These statements are used to denote

respectively:

11

Figure 2.2: A directed acyclic graph (dag) representing the execution of a multi-
threaded program. Each vertex represents an instruction while each edge represents
a dependency between instructions.

• an execution flow forking,

• a synchronization point, at which currently running threads must join before

the execution flow proceeds further,

• the return point of a function.

A correct execution of a Cilk++ program must meet all the dependencies in the

dag, that is, a thread cannot be executed until all the depending treads have com-

pleted. The order in which these dependent threads will be executed on the processors

is determined by the scheduler.

Cilk++s scheduler executes any Cilk++ computation in a nearly optimal time, see

[22] for details. From a theoretical viewpoint, there are two natural measures that

allow us to define parallelism precisely, as well as to provide important bounds on

performance and speedup which are discussed in the following subsections.

2.4.1 The work law

The first important measure is the work which is defined as the total amount of time

required to execute all the instructions of a given program. For instance, if each

instruction requires a unit amount of time to execute, then the work for the example

dag shown in Figure 2.2 is 18.

Let TP be the fastest possible execution time of the application on P processors.

12

Therefore, we denote the work by T1 as it corresponds to the execution time on 1

processor. Moreover, we have the following relation

Tp ≥ T1/P, (2.3)

which is refered as the work law. In our simple theoretical model, the justification of

this relation is easy: each processor executes at most 1 instruction per unit time and

therefore P processors can execute at most P instructions per unit time. Therefore,

the speedup on P processors is at most P since we have

T1/TP ≤ P. (2.4)

2.4.2 The span law

The second important measure is based on the program’s critical-path length denoted

by T∞. This is actually the execution time of the application on an infinite number

of processors or, equivalently, the time needed to execute threads along the longest

path of dependency. As a result, we have the following relation, called the span law:

TP ≥ T∞. (2.5)

2.4.3 Parallelism

In the fork-join parallelism model, parallelism is defined as the ratio of work to span,

or T1/T∞. Thus, it can be considered as the average amount of work along each point

of the critical path. Specifically, the speedup for any number of processors cannot be

greater than T1/T∞. Indeed, Equations 2.4 and 2.5 imply that speedup satisfies

T1/TP ≤ T1/T∞ ≤ P.

As an example, the parallelism of the dag shown i n Figure 2.2 is 18/9 = 2. This means

that there is little chance for improving the parallelism on more than 2 processors,

since additional processors will often starve for work and remain idle.

2.4.4 Performance bounds

For an application running on a parallel machine with P processors with work T1 and

span T∞, the Cilk++ work-stealing scheduler achieves an expected running time as

13

follows:

TP = T1/P +O(T∞), (2.6)

under the following three hypotheses:

• each strand executes in unit time,

• for almost all parallel steps there are at least p strands to run,

• each processor is either working or stealing.

See [22] for details.

If the parallelism T1/T∞ is so large that it sufficiently exceeds P , that is T1/T∞ ≫
P , or equivalently T1/P ≫ T∞, then from Equation (2.6) we have TP ≈ T1/P . From

this, we easily observe that the work-stealing scheduler achieves a nearly perfect linear

speedup of T1/TP ≈ P .

2.4.5 Work, span and parallelism of classical algorithms

The work, span and parallelism of some of the classical algorithms in the fork-join

parallelism model is shown in Table 2.1.

Algorithm Work Span Parallelism

Merge sort Θ(n log2(n)) Θ(log2(n)
3) Θ(n

log2(n)
2)

Matrix multiplication Θ(n3) Θ(log2(n)) Θ(n3

log2(n)
)

Strassen Θ(nlog2(7)) Θ(log2(n)
2) Θ(nlog2(7)

log2(n)
2)

LU-decomposition Θ(n3) Θ(n log2(n)) Θ(n2

log2(n)
)

Tableau construction Θ(n2) Ω(nlog2(3)) Θ(n0.415)

FFT Θ(n log2(n)) Θ(log2(n)
2) Θ(n

log2(n)
)

Table 2.1: Work, span and parallelism of classical algorithms.

2.5 Cache complexity

The cache complexity of an algorithm aims at measuring the (negative) impact of

memory traffic between the cache and the main memory of a processor executing that

algorithm. Cache complexity is based on the ideal-cache model shown in Figure 2.3.

This idea was first introduced by Matteo Frigo, Charles E. Leiserson, Harald Prokop,

14

fathena,cel,prokop,sridharg@supertech.lcs.mit.edu

= () �
(+ =)

(+ (=)(+)) ()
� �

(+(+ +)= + =
p

)

(;)

Q
cache
misses

organized by
optimal replacement

strategy

Main
Memory

Cache

Z=L Cache lines

Lines
of length L

CPU

W
work

>

= () ;

()

(;)

Figure 2.3: The ideal-cache model.

and Sridhar Ramachandran in 1999 [21]. In this model, there is a computer with a

two-level memory hierarchy consisting of an ideal (data) cache of Z words and an

arbitrarily large main memory. The cache is partitioned into Z/L cache lines where

L is the length of each cache line representing the amount of consecutive words that

are always moved in a group between the cache and the main memory. In order to

achieve spatial locality, cache designers usually use L > 1 which eventually mitigates

the overhead of moving the cache line from the main memory to the cache. As a

result, it is generally assumed that the cache is tall and practically that we have

Z = Ω(L2).

In the sequel of this thesis, the above relation is referred as the tall cache assumption.

In the ideal-cache model, the processor can only refer to words that reside in the

cache. If the referenced line of a word is found in cache, then that word is delivered

to the processor for further processing. This situation is literally called a cache hit.

Otherwise, a cache miss occurs and the line is first fetched into anywhere in the

cache before transferring it to the processor; this mapping from memory to cache is

called full associativity. If the cache is full, a cache line must be evicted. The ideal

cache uses the optimal off-line cache replacement policy to perfectly exploit temporal

locality. In this policy, the cache line whose next access is furthest in the future is

replaced [4].

Cache complexity analyzes algorithms in terms of two types of measurements.

15

BB

Figure 2.4: Scanning an array of n = N elements, with L = B words per cache line.

The first one is the work complexity, W (n), where n is the input data size of the

algorithm. This complexity estimate is actually the conventional running time in

a RAM model [32]. The second measurement is its cache complexity, Q(n;Z,L),

representing the number of cache misses the algorithm incurs as a function of:

• the input data size n,

• the cache size Z, and

• the cache line length L of the ideal cache.

When Z and L are clear from the context, the cache complexity can be denoted

simply by Q(n).

An algorithm whose cache parameters can be tuned, either at compile-time or

at runtime, to optimize its cache complexity, is called cache aware; while other al-

gorithms whose performance does not depend on cache parameters are called cache

oblivious. The performance of cache-aware algorithm is often satisfactory. However,

there are many approaches which can be applied to design optimal cache oblivious

algorithms to run on any machine without fine tuning their parameters.

Although cache oblivious algorithms do not depend on cache parameters, their

analysis naturally depends on the alignment of data block in memory. For instance,

due to a specific type of alignment issue based on the size of block and data elements

(See Proposition 6 and its proof), the cache-oblivious bound is an additive 1 away

from the external-memory bound [24]. However, such type of error is reasonable as

our main goal is to match bounds within multiplicative constant factors.

Proposition 6. Scanning n elements stored in a contiguous segment of memory with

cache line size L costs at most ⌈n/L⌉+ 1 cache misses.

Proof ⊲ The main ingredient of the proof is based on the alignment of data elements

in memory. We make the following observations.

• Let (q, r) be the quotient and remainder in the integer division of n by L. Let

u (resp. w) be the total number of words in a fully (not fully) used cache line.

Thus, we have n = u+ w.

16

• If w = 0 then (q, r) = (⌊n/L⌋, 0) and the scanning costs exactly q; thus the

conclusion is clear since ⌈n/L⌉ = ⌊n/L⌋ in this case.

• If 0 < w < L then (q, r) = (⌊n/L⌋, w) and the scanning costs exactly q+ 2; the

conclusion is clear since ⌈n/L⌉ = ⌊n/L⌋+ 1 in this case.

• If L ≤ w < 2L then (q, r) = (⌊n/L⌋, w − L) and the scanning costs exactly

q + 1; the conclusion is clear again.

⊳

2.6 Multicore architecture

A multicore architecture consists of a multicore processor, which is a single com-

puting component with two or more independent processors called ”cores”. These

cores are the basic units that perform read and execute program instructions. These

instructions are ordinary CPU instructions like add, move data, and branch. But,

importantly, the multiple cores can execute multiple instructions at the same time,

which enhance the overall speed of the program execution in the way of parallel com-

puting. A manycore processor is also a multicore processor in which the number of

cores is large enough that traditional multiprocessor techniques are no longer efficient.

Manufacturers typically integrate the cores onto a single integrated circuit die, known

as a chip multiprocessor or CMP, or onto multiple dies in a single chip package.

The cores in a multicore architecture can be connected tightly or loosely. For in-

stance, cores may or may not share caches, and they may implement inter-core com-

munication techniques such as message passing or shared memory. Common network

topologies are used to interconnect cores, including bus, ring, two-dimensional mesh

and crossbar. Homogeneous multicore systems include only identical cores, whereas,

heterogeneous multicore systems have cores which are not identical in practice. Cores

on multicore systems may implement architecture features such as instruction level

parallelism (ILP), vector processing, SIMD or multithreading, similar to those of

single-processor systems.

The advantages of multicore architecture include the fact that cache coherency

circuitry operates at a much higher clock-rate than in distributed systems where the

signals have to travel off-chip. That is, signals between different CPUs (cores) travel

shorter distances, and therefore those signals degrade less. As a result, these higher-

quality signals with high frequency allow more data to be transferred within a short

time period. Moreover, a multicore processor usually uses less power than multiple

coupled single-core processors, this is because of the reduced power required to drive

17

off-chip signals. Furthermore, the cores share some circuitry, like the L2 cache and

the interface to the front side bus (FSB). Also, multicore design produces a product

with lower risk of design error than devising a new wider core-design.

Although there are lots of advantages of multicores, writing multithreaded pro-

grams for this architecture remains quite challenging. Maximizing the utilization of

the computing resources in this architecture requires adjustments both to the operat-

ing system (OS) support and to existing application software. Also, the performance

of multicore processors to execute applications depends on the use of multiple threads

within applications. Finally, raw processing power is not the only constraint on sys-

tem performance. Several processing cores sharing the same system bus and as a

result memory bandwidth limits the real-world performance advantage. If a single

core is about to consume whole memory-bandwidth, then for the dual-core, it im-

proves only 30% to 70% of its performance. If memory bandwidth is not a problem,

upto 90% improvement is possible. Moreover, if communication between the CPUs is

the negligible factor, then it would be possible for an application to execute faster on

two CPUs than on one dual-core, which would count as much as 100% improvement.

2.7 Systolic arrays

Systolic arrays are matrix-like regular rows of basic data processing units called cells.

Each of these cells relies on arriving data from different directions in the array at

regular intervals and being combined [12]. The data streams, which are entering and

leaving the ports of the array, are generated by auto-sequencing memory units called

ASMs. In embedded systems, it is also possible that these data streams be input

from and/or output to external components.

Matrix multiplication might be a good example of the design of systolic algorithm,

where one matrix is fed in a row at a time from the top of the array and is passed

down the array. The other matrix is fed in a column at a time from the left hand

side of the array and passes from left to right. In order to be seen each processor as

a whole row and a whole column, dummy values are often passed in when they are

not like so. Finally, the multiplication result is stored in the array and can now be

output a row or a column at a time, flowing down or across the array.

Lots of applications of systolic arrays include faster input processing, scalability,

high throughput etc. The cells are organized in such a way that it can simultaneously

process the input, that is, its processing is faster than the conventional computing

architecture. Also, this architecture can easily be extended to many more processors

18

according to the requirements of the application. Moreover, systolic arrays offer a

way to take certain exponential algorithms and use hardware to make them linear.

The disadvantages of systolic arrays include its complicated design and implemen-

tation of hardware and software, highly cost of hardware compared to uniprocessor

system, highly specialized for particular applications, difficult to build the system etc.

In the perspective of this thesis, systolic arrays are important since they provide

the best known work-efficient parallel algorithm for computing GCDs of univariate

polynomials [11]. By work-effcient, we mean that the work is the same complexity

class as the Euclidean Algorithm. This systolic algorithm for GCDs will be assumed

in the results of Chapter 7.

2.8 Graphics processing units (GPUs)

A graphics processing unit (GPU) is a specially designed hardware that accelerates

the building of images in a frame buffer targeted for output to a display. This is done

in such a special way that it can rapidly manipulate and alter memory in the system.

Some of the characteristics of GPUs are as follows:

• GPUs can perform large amounts of floating point computation efficiently since

they have lower control overhead.

• They use dedicated functional units for specialized tasks to increase computa-

tional speeds.

• GPUs suffer less for memory bandwidth limitations and therefore aims for max-

imum bandwidth usage.

• Uses some strategy like multiple threads to cope with latency, scheduling of

DRAM cycles to minimize idle data-bus time, etc.

• Threads in multithreaded programs are managed by hardware on GPUs rather

than software.

• Effective cache design provides higher cache rate.

The applications of GPUs include embedded systems, mobile phones, personal

computers, workstations, game consoles, etc. However, in order to achieve the maxi-

mum efficiency for these applications, the GPUs are programmed in a very different

way than the conventional programming on CPU. Although programming a GPU

is not so hard, but it needs detailed knowledge of the architecture of the GPU to

exploit the full advantages of the computational power of the GPU. Moreover, it is

very necessary to know the data passing techniques through the GPU to devise an

efficient algorithm targeted for GPU.

19

2.9 Random access machine (RAM) model

The RAM is a simple model of computation which is used to measure the run time

of an algorithm by counting up the number of steps it takes on a given problem

instance. Unlike Turing machine, which could not access the memory immediately

without accessing all intermediate cells, it can access the arbitrary memory in a

single step process. The memory considered, in this model, is unbounded and has the

capability to store arbitrarily large integers in each of its memory cells. This model

can be programmed in some specified but arbitrary programming language. Some of

the properties of this model are as follows:

• Each “simple operation” like addition, subtraction, multiplication, assign,

branching, calling, etc. takes exactly 1 time step.

• Loops and procedures are considered to be the composition of many single-step

operations.

• Each memory access takes exactly one time step, and we have as much memory

as we need. The RAM model takes no notice of whether an item is in cache or

on the disk, which simplifies the analysis.

A common problem of this model is that it is too simple, that is, these assumptions

make the conclusions and analysis too hard to believe in practice. For instance,

multiplying two numbers does not have the same cost as adding two numbers, which

clearly violates the first assumption of the model. Memory access times also differ

greatly depending on whether data are available in cache or on memory or on the disk,

which violates the third assumption. However, in spite of having such restrictions,

this model does not provide misleading results for the real world problems, since this

only assumes a simple abstract model of computation. Furthermore, robustness of

the RAM model enables us to analyze algorithms in a machine-independent way.

20

Chapter 3

Serial Algorithms for Factor

Refinement and GCD-free Basis

Computation

This chapter brings the background materials which are at the core of this thesis. In

Section 3.1, we review the notion of coprime factorization and related concepts, such

as factor refinement and GCD-free basis. Serial algorithms computing coprime factor-

izations are recalled in Sections 3.2 and 3.3. The parallelization of those algorithms

will be discussed in the remaining chapters.

3.1 Factor refinement and GCD-free basis

Suppose we have obtained a partial (that is, non-necessarily irreducible) factorization

of a univariate polynomial P (x) of degree n with coefficients in a finite field K, say

P (x) = P1(x)P2(x) . . . Pj(x). A refinement of this factorization is a more “complete”

factorization

P (x) =
∏

1≤i≤k

Qi(x)
ei

with ei ≥ 1 and where the Qi(x) 6= 1 are pairwise relatively prime, k ≥ 2 and each

Pi, for 1 ≤ i ≤ j, writes as a product of some of the Qi’s, for 1 ≤ i ≤ k.

In order to unify the presentation for both polynomials and integers, the formal

definition below considers a Unique Factorization Domain (UFD) as underlying ring.

Definition 3. Let D be a unique factorization domain (UFD, for short). Let m1,

21

m2, . . . , mr be elements of D and let m be their product. Let also n1, n2, . . . , ns

be elements of D. We say n1, n2, . . . , ns a GCD-free basis whenever gcd(ni, nj) = 1

for all 1 ≤ i < j ≤ s. Let e1, e2, . . . , es be positive integers. We say that the pairs

(n1, e1), (n2, e2), . . . , (ns, es) form a refinement of m1,m2, . . . ,mr if the following three

conditions hold:

(i) n1, n2, . . . , ns is a GCD-free basis,

(ii) for every 1 ≤ i ≤ r there exists non-negative integers f1, . . . , fs such that we

have
∏

1≤j≤s n
fj
j = mi,

(iii)
∏

1≤i≤s n
ei
i = m holds.

When this holds, we shall also say that n1, n2, . . . , ns is a GCD-free ba-

sis of m1,m2, . . . ,mr. Finally, whenever (i) and (iii) hold, we also say that

(n1, e1), (n2, e2), . . . , (ns, es) is a coprime factorization of m and we will often write

n1
e1 , n2

e2 , . . . , ns
es instead of (n1, e1), (n2, e2), . . . , (ns, es).

Let us make this definition clear using an example with the ring Z of the integer

numbers.

Example 3. Suppose m1 = 2,m2 = 6,m3 = 7,m4 = 10,m5 = 15,m6 = 21,m7 =

22,m8 = 26, and then m = 151351200. Suppose also n1 = 11, n2 = 13, n3 = 3, n4 =

7, n5 = 5, n6 = 2 and e1 = 1, e2 = 1, e3 = 3, e4 = 2, e5 = 2, e6 = 5. Then from

Definition 3 we get that

(i) (11, 1), (13, 1), (3, 3), (7, 2), (5, 2), (2, 5) is a refinement of 2, 6, 7, 10, 15, 21, 22,

26,

(ii) 11, 13, 3, 7, 5, 2 is a GCD-free basis of 2, 6, 7, 10, 15, 21, 22, 26,

(ii) (11, 1), (13, 1), (3, 3), (7, 2), (5, 2), (2, 5) is a coprime factorization of 151351200.

3.2 Quadratic algorithms for factor refinement

The history of factor refinement is long. Research on this topic goes back (at least) to

1974 with Collins who proposed a factor refinement algorithm for polynomials [18].

This result is also noted by von zur Gathen in 1986 [33] for univariate polynomials.

An algorithm for multivariate polynomials was proposed by Paul Wang in 1980 [31].

22

For the case of the integers, a factor refinement algorithm is proposed in [6], based

on the following natural elementary procedure. Given a partial factorization of an

integer m, say m = m1m2, we compute d = gcd(m1,m2) and write

m = (m1/d)(d
2)(m2/d).

Then this process is continued until all the factors are relatively prime. This method

is also used for the general case of more than two inputs, say m = m1m2 . . .mk.

Following [6], let us denote by size(n) the number of bits in the binary represen-

tation of n. Then, we have:

size(n) =

{

1 if n = 0

1 + ⌊log2 |n|⌋ if n > 0.

Algorithm 7: Refine

Input: Positive integers m1,m2, . . . ,mr ≥ 2; let m be the product of
m1,m2, . . . ,mr.

Output: List of pairs of positive integers L = [(n1, e1), (n2, e2), . . . , (ns, es)]
such that (n1, e1), (n2, e2), . . . , (ns, es) is a refinement of
m1,m2, . . . ,mr.

comment The algorithm maintains a list L of pairs of positive integers (ni, ei)
such that m =

∏

1≤i≤k n
ei
i , where k ≥ 2 and ei ≥ 1.

initialize ni ← mi, ei ← 1, a list L← [(ni, ei) | 1 ≤ i ≤ r].1:

while there remains i < j with gcd(ni, nj) 6= 1 do2:

d← gcd(ni, nj);3:

remove pairs (ni, ei), (nj , ej) from L;4:

add the pairs (ni/d, ei), (d, ei + ej), (nj/d, ej) to L, except for those pairs5:

containing 1 as their first entry;

output List L = [(n1, e1), . . . , (ns, es)].6:

The authors used the “plain complexity” model where multiplication of m by n is

done in O(size(m)size(n)) bit operations, the integer remainder r = m−qn, 0 ≤ r <

n is computed within O(size(m/n)size(n)) bit operations and the GCD computation

of d = gcd(m,n) is performed within O(size(m/d)size(n)) bit operations, when m ≥
n holds. It is emphasized in [6] that one theorem provided in the paper shows that

the output of the algorithm does not depend on the order in which the pairs are

examined.

Proposition 7. Algorithm 7 uses O(size(m)3) bit operations.

23

Algorithm 8: PairRefine

Input: Positive integers m1,m2 ≥ 2.
Output: List L = [(ni, ei) | ni 6= 1] such that (n1, e1), (n2, e2), . . . , (ns, es) is a

refinement of m1,m2.
initialize n1 ← m1, n2 ← m2, e1 ← e2 ← 1, a list L← [(n1, e1), (n2, e2)].1:

while there remains i with both ni, ni+1 6= 1 do2:

d← gcd(ni, ni+1);3:

replace the pairs (ni, ei) and (ni+1, ei+1) with (ni/d, ei) and (ni+1/d, ei+1);4:

insert the pair (d, ei + ei+1) as the new (i+ 1)-th pair;5:

output List of pairs L = [(ni, ei) | ni 6= 1].6:

Algorithm 9: AugmentRefinement

Input: A positive integer mj+1 ≥ 2 and a list of pairs of positive
integers Lj = [(n1, e1), . . . , (ns, es)] such that n1, n2, . . . , ns is a
GCD-free basis, where ni ≥ 2 and ei ≥ 1.

Output: A refinement of mj+1, n
e1
1 , ne2

2 , . . . , nes
s .

initialize (m, e)← (mj+1, 1), Lj+1 ← empty list.1:

while Lj not empty and m 6= 1 do2:

(n, f)← First(Lj);3:

if n 6= 1 then4:

L′ ← PairRefine((m, e), (n, f));5:

Lj+1 ← Concat(Lj+1, Rest(L
′));6:

(m, e)← First(L′);7:

Lj ← Rest(Lj);8:

Lj+1 ← Concat(Lj+1, Rest(Lj), (m, e));9:

output List of pairs (ni, ei) ∈ Lj+1 with ni ≥ 2 and ei ≥ 1.10:

In addition, analyzing the data locality of this algorithm (Algorithm 7) leads to the

following observation. At lines 4 and 5, the two pairs (ni, ei) and (nj , ej) are replace

by (ni/d, ei), (d, ei+ ej), (nj/d, ej) which will be re-scanned in a later iteration of the

while-loop. In the worst case, the list pairs L of is scanned O(n) times leading to

O(n2/L) cache misses, using an ideal cache with L words per cache line.

The running time complexity can be improved by keeping tracks of the pairs in

an ordered list such that only pairs that are adjacent in the list can have a nontrivial

GCD. This modified algorithm is presented in [6]. It relies on two procedures:

• Algorithm 8 which takes two positive integers m1,m2 ≥ 2 as input and produces

a refinement of m1,m2 as output, and

• Algorithm 9 which “inserts” a new pair in a coprime factorization.

24

More precisely, Algorithm 9 takes a coprime factorization (n1, e1), . . . , (ns, es) and a

positive integer mj+1 ≥ 2; it returns a refinement of mj+1, n
e1
1 , ne2

2 , . . . , nes
s .

Proposition 8. Algorithm 8 uses O(size(l)2) bit operations if size(l) = size(m1) +

size(m2).

Proposition 9. Algorithm 9 runs within O(size(m)2) bit operations if m is the prod-

uct of mj+1, n
e1
1 , ne2

2 , . . . , nes
s .

On the other hand, similarly to Algorithm 7, we observe that Algorithm 8 proceeds

by repeating a “scan-and-replace” pattern, which does not favor data locality. This

procedure is invoked by Algorithm 9 and it is easy to see that the whole process

may incur O(n2/L) cache misses. Algorithm 22 proposed in Chapter 4 will improve

this situation. Indeed, while preserving the same algebraic complexity, this latter

algorithm incurs only O(n2/ZL) cache misses, for an idealized cache of size Z, with

cache lines of size L.

We conclude this section by stating running time estimates of Algorithm 8 and 9

applied to univariate polynomials over a field, instead of integer numbers, which is

also presented in [6].

Proposition 10. Let m1 and m2 be monic polynomials in K[x], of degree d1 and d2,

with d1, d2 > 0. Let d = d1 + d2. Then Algorithm 8 uses O(d2) operations in K.

Theorem 1. Let m1,m2, . . .mr be monic polynomials in K[x], each of them with posi-

tive degree. A refinement of m,m2, . . . ,mr may be calculated by repeated augmentation

using O((
∑

degmi)
2) operations in K.

3.3 Fast algorithms for GCD-free basis

There are practical cases where coprime factorization routines are applied to an input

sequence of square-free polynomials (or integers) a1, a2, . . . , as. Under this square-free-

ness assumption, a quasi-linear time coprime factorization algorithm of univariate

polynomial over a field (and more generally over a directed product of fields given by

a zero-dimensional regular chain) is proposed in [15] and discussed in this section in

the field case.

Let M(d) be a multiplication time, that is, an upper bound for the number of

field operations performed to multiply two univariate polynomials of degree less than

d. See Chapter 8 in [33] for a formal presentation of this notion. Define logp(x) =

2 log2(maximum{2, x}). These notations are applicable throughout this thesis.

25

The first algorithm (Algorithm 10) computes the sequence of all gcd(p, ai) for a

polynomial p and a sequence of polynomials A = a1, a2, . . . , ae as input.

Algorithm 10: multiGcd(f, A)

Input: A polynomial f ∈ K[x] and a sequence of square-free polynomials
A = a1, a2, . . . , ae in K[x].

Output: The sequence of all gcd(f, ai) for 1 ≤ i ≤ e.
d←

∑e
i=1 degree(ai);1:

if (degree(f) ≥ d) then2:

f ← f mod (a1a2 . . . ae);3:

(q1, q2, . . . , qe)← (f mod a1, f mod a2, . . . , f mod ae);4:

return gcd(q1, a1), gcd(q2, a2), . . . , gcd(qe, ae);5:

Algorithm 11: pairsOfGcd(A,B)

Input: Sequence of polynomials A = a1, a2, . . . , ae and B = b1, b2, . . . , bs in
K[x] such that the elements of A (resp. B) are pairwise coprime.

Output: gcd(a1, b1), . . . , gcd(a1, bs), . . . , gcd(ae, b1), . . . , gcd(ae, bs).
Build a subproduct tree called Sub(a1, a2, . . . , ae) with Algorithm 2 where the1:

root is labelled by the product of a1a2 . . . ae and let f = RootOf(Sub);
Label the root of Sub by multiGcd(f,B) ;2:

for every node N ∈ Sub, going top-down do3:

if N is not a leaf and has label g then4:

f1 ← leftChild(N);5:

f2 ← rightChild(N);6:

Label f1 by multiGcd(f1, g);7:

Label f2 by multiGcd(f2, g);8:

Print the leaf labels in a in-fix traversal of the tree;9:

Proposition 11. Algorithm 10 amounts to O(M(degree(f)) +M(d)logp(d)) opera-

tions in K, where d is the sum of the degrees of the polynomials in A.

The second algorithm (Algorithm 11) takes two sequences of polynomials A =

a1, a2, . . . , ae and B = b1, b2, . . . , bs as input, and computes all pairs gcd(a,bj), for

1 ≤ i ≤ e and 1 ≤ j ≤ s. This algorithm assumes that the polynomials in A (resp.

B) are pairwise coprime.

Proposition 12. Algorithm 11 runs within O(M(d)logp(d)2) operations in K, where

d is the sum of the degrees of the polynomials in A and B.

26

Algorithm 12: gcdFreeBasisSpecialCase(A,B)

Input: Sequence of polynomials A = a1, a2, . . . , ae and B = b1, b2, . . . , bs where,
in each sequence, all polynomials are square-free and pairwise coprime.

Output: A sequence of polynomials forming a GCD-free basis of A,B.
(gi,j)1≤i≤e,1≤j≤s ← pairsOfGcd(A,B);1:

for j = 1 to s do2:

Lj ← removeConstants(g1,j, g2,j , . . . , ge,j) ;3:

// remove constant polynomials

βj ←
∏

l∈Lj
l;4:

γj ← bj quotient βj ;5:

for i = 1 to e do6:

Li ← removeConstants(gi,1, gi,2, . . . , gi,s) ;7:

// remove constant polynomials

αi ←
∏

l∈Li
l;8:

δi ← ai quotient αi;9:

return removeConstants(g1,1, . . . , gi,j , . . . , ge,s, γ1, γ2, . . . , γs, δ1, δ2, . . . , δe) ;10:

// remove constant polynomials

The third algorithm (Algorithm 12) takes two sequences of square-free polyno-

mials A = a1, a2, . . . , ae and B = b1, b2, . . . , bs as input and computes a GCD-free

basis of A and B. This algorithm assumes that the polynomials in A (resp. B) are

pairwise coprime. In Algorithm 12, the subroutine removeConstants takes a sequence

of polynomials f1, . . . , fm of K[x] and returns the sequence of the non-constant fi’s

in the same order as in f1, . . . , fm.

Proposition 13. Algorithm 12 runs within O(M(d)logp(d)2) operations in K, where

d is the sum of the degrees of the polynomials in A and B..

Algorithm 13: gcdFreeBasis(A)

Input: Sequence of square free polynomials A = a1, a2, . . . , ae.
Output: A GCD-free basis of A.
Build a subproduct tree called Sub′(A) like Algorithm 2 where the root is1:

labelled by the sequence of polynomials A;
for every node N ∈ Sub′, and from bottom-up do2:

if N is not a leaf then3:

f1 ← leftChild(N);4:

f2 ← rightChild(N);5:

Label N by gcdFreeBasisSpecialCase(f1, f2);6:

return the label of RootOf(Sub′);7:

27

The fourth algorithm (Algorithm 13) which is also the top-level algorithm, takes

a sequence of non-constant square-free polynomials A = a1, a2, . . . , ae as input and

produces a GCD-free basis of A as output.

Proposition 14. The total number of field operations of Algorithm 13 is

O(M(d)logp(d)3), where d is the sum of the degrees of the polynomials in A.

28

Chapter 4

Parallel Algorithms for Factor

Refinement and GCD-free Basis

Computation

Our research work is concerned with the simplification of systems of polynomial

equations and inequations. As mentioned before, the goal of these simplifications

is to remove repeated patterns such as common factors among inequations. When

implemented efficiently, these techniques may greatly improve the performances of

polynomial system solvers.

Algorithms for achieving this goal have been presented in the previous section and

as they appear in the literature. However, this presentation and the related papers

do not consider these algorithms under the angles of data locality and parallelism.

Our proposed project is to fill this gap.

To this end, we take advantage of the work reported in [19] in the context of

high-performance computing applied to problems on graphs and hypergraphs, such

as transversal hypergraph computation. Another important part of our work would

be to determine thresholds between plain and fast algorithms and also between serial

and parallel execution. It is well-known that plain and serial base cases are essential

to achieve best performances. This is why we shall put effort in optimizing both types

of algorithms.

In this chapter, we focus on the problem of computing coprime factorization with a

view to improve algorithms recalled in Section 3.2 and based on plain (or quadratic)

arithmetic. Our aim is twofold. First, we wish to obtain an efficient algorithm in

terms of data locality and parallelism. Secondly, we wish to measure the impact of

the augment refinement principle in this context. Indeed, remember from Chapter 3

29

that we have looked at two factor refinement algorithms based on plain arithmetic.

The first one is Algorithm 7 whose running time is cubic in the sum of the sizes of the

input integers (or polynomials). The second one is Algorithm 9, which is based on

the augment refinement principle and whose running time is quadratic in the same

measure. For clarity in the sequel of this section, we shall refer to Algorithm 7 as the

naive refinement algorithm.

We shall see in Section 4.2 that Algorithm 9 leads to an efficient algorithmic

solution in terms of data locality and parallelism. Section 4.1 shows that we are

much less successful with a similar work based on Algorithm 7. The experimental

results of Chapter 6 will confirm the complexity analysis of the present chapter.

One should stress the fact that, if the above conclusion seems a natural outcome,

one should be careful with hasty conclusions regarding the parallelization of algo-

rithms that are asymptotically fast in terms of algebraic complexity. Indeed, as we

shall argue in Chapter 7, GCD-free basis computation algorithms that are based on

asymptotically fast arithmetic cannot lead to successful implementation on multicore

architectures for the input sizes that are of practical interest today. Therefore, it was

not obvious a priori that Algorithm 9 could lead to a better parallel solution than

Algorithm 7. This is why we have chosen to report on both parallelization efforts in

this chapter.

4.1 Parallelization based on the naive refinement

principle

Our proposed parallelization of Algorithm 7 is presented as Algorithm 17 which uses

Algorithms 14, 15, and 16 as its subroutines. Algorithm 17 follows a standard divide

and conquer approach: until a base case is reached, the input data set is divided into

two parts to which the algorithm is applied recursively, producing coprime factoriza-

tions which are then merged. As we shall see, the poor efficiency of Algorithm 17

comes from its merging step which fails to use the augment refinement principle.

In a sake of clarity, we have chosen to describe Algorithm 17 when specialized to

computing coprime factorizations of (arbitrary large) integer numbers. However, with

very little modifications, this algorithm applies to univariate polynomials as well.

Let us describe Algorithm 17 and its subroutines more precisely. Algorithm 14

takes two sequences of square-free positive integers called A = l1, l2, . . . , lk and B =

m1,m2, . . . ,mr as input and computes all possible pairs of GCDs of A and B as

30

output. These GCDs are then stored in a two-dimensional array called G = [Gi,j |
1 ≤ i ≤ k, 1 ≤ j ≤ r].

Algorithm 14: GcdOfAllPairsInner(A,B,G)

Input: 1-D arrays of positive integers A = l1, l2, . . . , lk, B = m1,m2, . . . ,mr

and a 2-D array G = [Gi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ r].
Output: All possible pairs of gcd(li,mj) for 1 ≤ i ≤ k, 1 ≤ j ≤ r with

gcd(li,mj) stored in Gi,j .
comment C is a global variable equal to a base-case threshold, say 16.
Assume C ≥ 2.

if k ≤ C and r ≤ C then1:

for (i, j) ∈ {1, . . . , k} × {1, . . . , r} do2:

Gi,j ← gcd(Ai, Bj) ;3:

else if k > C and r ≤ C then4:

Divide A into two halves A1 = l1, . . . , lk/2, A2 = lk/2+1, . . . , lk ;5:

spawn GcdOfAllPairsInner(A1, B,G);6:

spawn GcdOfAllPairsInner(A2, B,G);7:

else if k ≤ C and r > C then8:

Divide B into two halves B1 = m1, . . . ,mr/2, B2 = mr/2+1, . . . ,mr;9:

spawn GcdOfAllPairsInner(A,B1, G);10:

spawn GcdOfAllPairsInner(A,B2, G);11:

else12:

Divide A and B arrays into two halves A1 = l1, . . . , lk/2, A2 =13:

lk/2+1, . . . , lk;B1 = m1, . . . ,mr/2, B2 = mr/2+1, . . . ,mr;
spawn GcdOfAllPairsInner(A1, B1, G);14:

spawn GcdOfAllPairsInner(A2, B2, G);15:

spawn GcdOfAllPairsInner(A1, B2, G);16:

spawn GcdOfAllPairsInner(A2, B1, G);17:

Algorithm 15 is a wrapper allocating work space for holding the output of Algo-

rithm 14 before calling this latter algorithm.

Algorithm 15: GcdOfAllPairs(A,B)

Input: Array of positive integers A = l1, l2, . . . , lk and B = m1,m2, . . . ,mr.
Output: All possible pairs of gcd(li,mj) | 1 ≤ i ≤ k, 1 ≤ j ≤ r.

Allocate space for a 2-D array G = [Gi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ r] ;1:

GcdOfAllPairsInner(A,B,G) ; // Call Algorithm 142:

return array G ;3:

Algorithm 16 is used for merging two coprime factorizations. More precisely, let

A = l1, l2, . . . , lk, B = m1,m2, . . . ,mr be two sequences of pairwise coprime square-

31

free positive integers. Let also E = e1, e2, . . . , ek and F = f1, f2, . . . , fr be two

sequences of positive integers. We regard A,E (resp. B,F) as a factor refinement

(l1, e1), . . . , (lk, ek) (resp. (m1, f1), . . . , (mr, fr)) of some partial factorization. Then,

the output is a factor refinement of the concatenation A,E and B,F such that the

elements of the corresponding GCD-free bases are square-free. By concatenation of

A,E and B,F , we mean the following factorization:

(l1, e1), . . . , (lk, ek), (m1, f1), . . . , (mr, fr). (4.1)

Before we analyze its work and span, we make a few remarks on Algorithm 16:

Input: Observe that the assumption that l1, l2, . . . , lk and m1,m2, . . . ,mr are square-

free is essential to guarantee that the algorithm works properly. That is, the

algorithm produces a factor refinement. Moreover the elements of this GCD-free

basis of this factor refinement are square-free.

Line 3: A GCD-free basis of the elements occurring in A or B is computed by a call to

Algorithm 15 followed by the computations at lines 6 and 13. This GCD-free

basis consists of the non-one entries appearing in A′, B′ or G at Line 18.

Line 6: Observe that pi divides li. Indeed, the integer pi is the product of the

gcd(li,mj)’s which all divide li. Moreover, these gcd(li,mj)’s are pairwise co-

prime, because the m1,m2, . . . ,mr are pairwise coprime too.

Line 13: For a similar reason as above, the integer pj divides mj

Line 4: No data races occur in this parallel for loop. The fact that G and H are in

row-major layout is essential to reduce cache misses here. Moreover, in practice,

the grain size of the cilk for should be large enough (probably 64) such that

concurrent threads do not compete to acquire data (cache lines).

Line 10: Matrices G and H are transposed before the second parallel for loop in order

to improve data locality.

Line 17: Matrices G and H are transposed back to their original layout so as to perform

instructions correctly and with a good data locality.

Finally, the top level algorithm, that is, Algorithm 17, receives a sequence of

square-free positive integers A = m1,m2, . . . ,mk as input and generates a factor re-

finement of this sequence. More precisely, it generates two sequences of positive inte-

gers N = n1, n2, . . . , ns and E = e1, e2, . . . , es such that (n1, e1), (n2, e2), . . . , (ns, es) is

a refinement of m1,m2, · · · ,mk where n1, n2, . . . , ns are pairwise coprime and square-

free as well.

32

Algorithm 16: MergeRefinement(A,E,B, F)

Input: Arrays of positive integers A = l1, l2, . . . , lk, E = e1, e2, . . . , ek,
B = m1,m2, . . . ,mr and F = f1, f2, . . . , fr, where A,E (resp. B,F) is
regarded as a factor refinement (l1, e1), . . . , (lk, ek) (resp.
(m1, f1), . . . , (mr, fr)). We assume that the l1, l2, . . . , lk (resp.
m1,m2, . . . ,mr) are square-free and pairwise coprime.

Output: A factor refinement of the concatenation of A,E and B,F . If
C = c1, c2, . . . , cs is the GCD-free basis of this output factor
refinement, then c1, c2, . . . , cs are all square-free.

Allocate G a (k × r)-array, H a (k × r)-array, A′ an k-array and B′ an1:

r-array. Both G and H are stored in row-major layout;
parallel for (i, j) ∈ {1, . . . , k} × {1, . . . , r} do2:

Hi,j ← 0;

G← GcdOfAllPairs(A,B) ; /* Call Algorithm 15 to construct the GCD3:

table regardless of the exponents. */

parallel for i = 1 to k do // For each row4:

pi ←
∏

1≤j≤r Gi,j ;5:

A′
i ← li/pi ;6:

for j = 1 to r do7:

if Gi,j 6= 1 then8:

Hi,j ← Hi,j + ei;9:

Transpose G and H to improve data locality ;10:

parallel for j = 1 to r do // For each column11:

pj ←
∏

1≤i≤k Gj,i ;12:

B′
j ← mj/pj ;13:

for i = 1 to k do14:

if Gj,i 6= 1 then15:

Hj,i ← Hj,i + fj;16:

Transpose G and H back ;17:

Let s1, s2, s3 be the number of the entries in A′, B′, G that differ from 1;18:

Allocate two integer arrays C and D, both of size s1 + s2 + s3;19:

Write the non-one entries of A′, B′, G to C in the order they appear;20:

Write the corresponding exponents from E, F , H to D;21:

return C,D ;22:

33

Algorithm 17: ParallelFactorRefinement(A)

Input: Array of square-free positive integers A = m1,m2, . . . ,mk.
Output: Two arrays of positive integers N = n1, n2, . . . , ns, E = e1, e2, . . . , es

such that (n1, e1), (n2, e2), . . . , (ns, es) is a refinement of
m1,m2, · · · ,mk. Thus n1, n2, . . . , ns are pairwise coprime. Moreover,
n1, n2, . . . , ns are square-free.

if k = 1 then1:

return [A], [1] ;2:

else3:

Divide array A into two parts called A1 and A2;4:

f1 ← spawn ParallelFactorRefinement(A1) ;5:

f2 ← spawn ParallelFactorRefinement(A2) ;6:

sync;7:

return MergeRefinement(f1, f2);8:

Proposition 15 analyzes the parallelism of Algorithm 17 for the fork-join paral-

lelism model under one simplification hypothesis, which is stated below.

Hypothesis 1. Assume that each arithmetic operation (integer division and integer

GCD computation) has a unit cost.

Remark 1. The primary goal of Hypothesis 1 is to give a first complexity result on

the parallelism of Algorithm 17. For problems of practical interest, the input integers

are likely to be large, thus multi-precision integer arithmetic is required and Hypoth-

esis 1 does not hold. However, if M is the maximum size of an input integer, then

each subsequent arithmetic operation performed by Algorithm 17 and its subroutines

runs in O(M2) bit operations. Therefore, Hypothesis 1 can still be seen as a first

approximation of what really happens. As we shall see with Proposition 17, relaxing

Hypothesis 1 still leads to a quadratic work (up to log factors) for Algorithm 16. How-

ever, the work is now quadratic in the sum of the binary sizes of the input integers

rather than quadratic in the number of input integers.

Remark 2. In order to analyze Algorithm 17 and its subroutines, one needs to

choose a measure of the input data. Hypothesis 1 suggests the following choices.

For Algorithm 17 itself, when applied to an array of square-free positive integers

A = m1,m2, . . . ,mn, this is simply n, the length of A. For each of Algorithm 15

and Algorithm 16, with its notations, this is k + r.

Proposition 15. Under Hypothesis 1, for an array of square-free positive integers

34

A = m1,m2, . . . ,mn of size n, the work, span, and parallelism of Algorithm 17 are

respectively O(n2), O(n) and O(n).

Proof ⊲ Let us denote by W17(n), W16(n), W15(n) (resp. S17(n), S16(n), S15(n))

the work (resp. span) of Algorithms 17, 16 and 15 on input data of order n.

We start our analysis with Algorithm 17. Recall that it proceeds in a divide-and-

conquer manner, dividing the input data set into two parts, performing two recursive

calls and then merging their results with Algorithm 16. Thus we have:

W17(n) ≤ 2W17(n/2) +W16(n) and S17(n) ≤ S17(n/2) + S16(n). (4.2)

Algorithm 16 calls Algorithm 15 and performs two consecutive parallel for loops,

each of them with a critical path of O(n) (due to the inner for loops).

Thus we have:

W16(n) ≤ W15(n) +O(n2) and S16(n) ≤ S15(n) +O(n). (4.3)

Algorithm 15 is just a wrapper allocating work space and calling Algorithm 14.

This latter algorithm proceeds in a divide-and-conquer manner. For simplicity we

assume that C = 2 holds. This does not affect the correctness of the algorithm.

Moreover, keeping C arbitrary does not bring much insight on the algorithm since

for cases of practical interest n is much larger than C. For simplicity we also assume

that n is a power of 2, since we focus on the asymptotic behavior of the work and

the span. With these simplification assumptions, the work and span of Algorithm 15

satisfy the following equations:

W15(n) ≤ 4W15(n/2) +O(1) and S15(n) ≤ S15(n/2) +O(1). (4.4)

From Equation 4.4, we have:

W15(n) = O(n2) and S15(n) = O(log2(n)).

From Equation 4.3, we obtain

W16(n) = O(n2) and S16(n) = O(n).

Finally, from Equation 4.2, we deduce

W17(n) = O(n2) and S17(n) = O(n).

35

This completes the proof of the proposition. ⊳

We turn now our attention to cache complexity, considering the serial elisions

of Algorithm 17 and its subroutines. This means that, from now on,

• we replace by the empty string both keywords spawn and sync in these algo-

rithms, and

• we replace the keyword parallel for by for.

In other words, we analyze the cache complexity of the serial versions of our algo-

rithms.

The results of the paper [23] by Matteo Frigo and Volker Strumpen justifies this

approach that reduces the cache complexity analysis of multithreaded algorithms to

the cache complexity analysis of their serial counterparts. Successful examples for

algorithms like matrix multiplication, 1-D stencil, Gaussian elimination and back

substitution are presented in [23]. We leave for future

• to show that this reduction is also valid for Algorithm 22 and its subroutines,

• to adjust the complexity result of Proposition 16 with the multithreaded cor-

rection terms yielded by a multithreaded execution.

One should observe that, for the examples of [23], the multithreaded correction terms

are always of lower order when compared to the terms coming from the serial analysis.

For instance, a multithreaded cache oblivious matrix multiplication incursO(n3/
√
Z+

(Pn)1/3n2) cache misses when executed by the Cilk scheduler on a machine with P

processors, each with a cache of size Z. In this case, the serial term is n3/
√
Z and

the multithreaded correction term is (Pn)1/3n2.

Analyzing the cache complexity of serial (or multithreaded) algorithms requires

specifying how data is layed out in memory. This leads to the following hypothesis.

Hypothesis 2. Assume that there exists a positive integer w such that each integer

coefficient of each input array A or B in Algorithms 17, 16 and 15 is stored in w

consecutive machine words. We also assume that each input array A or B is packed,

that is, its successive coefficients occupy consecutive memory slots.

Remark 3. The first part of Hypothesis 2 can be seen as a natural consequence of

Hypothesis 1. The second part is a standard code optimization technique that can

always be enforced whether Hypothesis 1 holds or not. Of course, this brings extra

work and implementing this strategy efficiently is crucial. We shall return to this

issue in Chapter 5. One can also refer to [19] for an implementation discussion on

data packing.

36

Our cache complexity analysis focuses on Algorithm 14. Here’s the reason. Mem-

ory accesses are performed in Algorithms 16 and 14 only, so only these two algorithms

are relevant to cache complexity analysis. Moreover, as we shall see, Algorithm 14

is an efficiency bottleneck for Algorithm 16, in terms of cache complexity. Based on

this, there is no point in putting effort in analyzing Algorithm 16: the result will be

at least as bad as the one of Algorithm 14.

Proposition 16. Under Hypotheses 1 and 2, consider an ideal cache of Z words,

with L words per cache-line. Then, for C small enough, for any input of size n, the

number of cache misses of Algorithm 14 is Q(n) ∈ O(n2/L + n2/Z + n2/Z2). Using

the tall cache assumption, this becomes Q(n) ∈ O(n2/L).

Proof ⊲ To keep the calculations simple, we assume that w divides L exactly and

that the input arrays A and B are aligned. This assumption has no incidence on the

complexity class of Q(n).

We use the idealized cache model described in Section 2.5. The key observation

is that, when n is small enough, the whole Algorithm 14 can be executed without

cache misses other than cold misses, that is, without cache misses other than those

necessary to bring once (and only once) the cache lines storing the input and output

data into cache. This implies that there exists a positive constant α such that Q(n)

satisfies the following relation:

Q(n) ≤

n2/L+ n for n < αZ

4Q(n/2) + Θ(1) otherwise,

provided C < αZ. Let us justify the above recurrence relation. The case n ≥ αZ is

correct simply because of the recursive structure of the algorithm. The case where

n < αZ holds (for n < C) corresponds to the situation where only cold cache misses

occur. In this case, bringing the cache lines with the input arrays A and B is done

within Θ(n/L + 1) cache misses. However, bringing the cache lines for storing the

computed n2 values Gi,j amounts to Θ(n2/L+n) cache misses. The above recurrence

37

leads to the following inequality for all n ≥ 2:

Q(n) ≤ 4Q(n/2) + Θ(1)

≤ 4[4Q(n/4) + Θ(1)] + Θ(1)

...

≤ 4kQ(n/2k) +
k−1
∑

j=0

4jΘ(1)

where k = ⌈log2(n/αZ)⌉. Since n/2k ≤ αZ, we deduce:

Q(n) ≤ (n/αZ)2[(αZ)2/L+ αZ] + Θ((n/αZ)2)

= Θ(n2/L+ n2/Z + n2/Z2).

This completes the proof. ⊳

Remark 4. Proposition 16 is a negative result for the following reason. First of

all, we should observe that this asymptotic upper bound can be reached. Indeed, it is

easy to construct an example for that. Secondly, in practice, the value of L is in the

order of 8 to 16 while that of Z is in the order of 215 to 217, which justifies the tall

cache assumption. Therefore, the ratio between the work and the number of cache

misses is L, that is, quite small. Now recall that the penalty for one cache miss in a

multicore processor is typically in the order of 100 CPU cycles while a machine word

operation may cost less than one CPU cycle, thanks to instruction level parallelism

(ILP). Therefore a multithreaded program implementing Algorithm 14 on a multicore

architecture may spend much more time in waiting for data transfer than in actual

computations. This is clearly not satisfactory.

We return now the analysis of the work of Algorithm 16. We shall no longer

assume that each division or GCD computation has a unique cost. We shall now take

into account the size of the operands for estimating the cost of a division or GCD

computation. For simplicity, we do this analysis when Algorithm 16 is applied to

univariate polynomials over a field, instead of integers, as stated below.

Hypothesis 3. We assume that the input arrays A and B of Algorithm 16 contains

k and r univariate polynomials over a field K. We denote by |p| the degree of a non-

zero univariate polynomial p over K. We assume that, for p1, p2 ∈ K[x] computing

the quotient (in the Euclidean division) of p1 by p2 or computing a GCD of p1, p2 can

be done within O(|p1||p2|) operations in K.

38

Proposition 17. Let n denote the sum of the degrees of the polynomials in A and

B. Then, under Hypothesis 3, Algorithm 16 works within O(n2) operations in K, up

to log factors.

Proof ⊲ At Line 3, computing the GCD of li and mj can be done within O(|li||mj|)
operations in K, for each 1 ≤ i ≤ k and each 1 ≤ j ≤ r. Thus the total cost of Line

3 is

O
(

∑i=k

i=1
|li|

∑j=r

j=1
|mj|

)

(4.5)

operations in K. Observe that, for a fixed i ∈ {1, . . . , k}, the sum of the degrees of

G1,1 . . . , G1,r is at most the degree of li. Indeed, the input polynomials in A (resp. B)

are square-free and pairwise coprime. Therefore, using subproduct tree techniques,

all the products at Line 5 can be computed within

O
(

∑j=k

i=1
|li|2

)

. (4.6)

operations in K, up to log factors. For a reference, see Chapter 10 in [34]. Next,

all divisions at Line 6 can be computed within

O
(

∑i=k

i=1
|li|2

)

. (4.7)

bit operations. Similarly, the total cost of Lines 12 and 13 is

O
(

∑j=r

j=1
|mj|2

)

. (4.8)

Therefore, up to log factors, the total cost of Algorithm 16 is

O
(

∑i=k

i=1
|li|

∑j=r

j=1
|mj|

)

+O
(

∑j=k

i=1
|li|2

)

+O
(

∑j=r

j=1
|mj|2

)

. (4.9)

Letting u =
∑ |li| and v =

∑ |mi|, this can be bounded over by O(uv + u2 + v2), up

to log factors, and the conclusion follows. ⊳

Remark 5. Proposition 17 shows that relaxing Hypothesis 1 still leads to a quadratic

work (up to log factors) for Algorithm 16. However, the work is now quadratic in the

sum of the sizes of the input data items (integers or polynomials) rather than quadratic

in the number of the data items. Therefore, the inefficiency of Algorithm 16 comes

primarily for its high cache complexity and not so much from an excess of work.

Turning to implementation considerations, the situation becomes worse. Indeed, in

practice, subproduct tree techniques, which are behind the complexity result of Propo-

39

sition 17, have several drawbacks. First, they increase memory consumption by a log

factor. Secondly, they provide benefits in terms of algebraic complexity only for very

large input sizes. Thirdly, they are hard to parallelize on multicore architectures. We

shall return to all these implementation considerations in Chapter 7.

4.2 Parallelization based on the augment refine-

ment principle

Algorithm 22 presented in this section is an efficient algorithmic solution in terms

of data locality and parallelism for coprime factorization of integers or univariate

polynomials. With respect to Algorithm 17, presented in the previous section, the

main gain is in terms of cache complexity. To be more specific, consider an ideal cache

of Z words, with L words per cache-line. Using the tall cache assumption, for an input

data of size of n, Algorithm 22 incurs O(n2/ZL) cache misses while Algorithm 17

suffers from O(n2/L) cache misses. This substantial gain is obtained thanks to a

cache friendly and memory efficient procedure (Algorithm 21) for merging two coprime

factorizations. Before analyzing Algorithm 22, we describe its specifications and those

of its subroutines, namely Algorithms 18, 19, 20, and 21.

Algorithm 18 receives two square-free polynomials a, b ∈ K[x] and two positive

integers e, f . Its output is a factor refinement of ae, bf .

The input of Algorithm 19 is a square-free polynomial a ∈ K[x], a posi-

tive integer e, a sequence of square-free pairwise coprime univariate polynomials

B = (b1, b2, . . . , bn) of K[x] and a sequence of positive integers F = (f1, f2, . . . , fn).

The output is a factor refinement of ae, b1
f1 , . . . , bn

fn .

Algorithm 20 takes two sequences of square-free pairwise coprime polynomials

A = (a1, . . . , an) and B = (b1, b2, . . . , br) of K[x] together with two sequences of

positive integers E = (e1, e2, . . . , en) and F = (f1, f2, . . . , fr). The output is a factor

refinement of a1
e1 , . . . , an

en , b1
f1 , . . . , br

fr .

The input and outputs specification of Algorithm 21 are respectively the same as

those of Algorithm 20. The difference is that Algorithm 21 is a parallel execution,

which uses Algorithm 20 as serial base case.

Finally, the top level algorithm (Algorithm 22) takes a sequence of square-free

univariate polynomials A = (m1,m2, . . . ,mk) ∈ K[x] as input and generates as out-

put a sequence of univariate polynomials N = (n1, n2, . . . , ns) ∈ K[x] and a sequence

40

Algorithm 18: PolyRefine(a, e, b, f)

Input: Two square-free univariate polynomials a, b ∈ K[x] for a field K and
two positive integers e, f .

Output: (c, u,G, V, d, w) where c, d ∈ K[x] and u, w ∈ N and G is a sequence
(g1, . . . , gs) of polynomials of K[x] and V is a sequence (v1, . . . , vs) of
positive integers such that (c, u), (g1, v1), . . . , (gs, vs), (d, w) is a factor
refinement of (a, e), (b, f) .

g ← gcd(a, b);1:

a′ ← a quotient g;2:

b′ ← b quotient g;3:

if g = 1 then4:

return (a, e,∅,∅, b, f) ; // Here ∅ designates the empty sequence5:

else if a = b then6:

return (1, 1, (a), (e+ f), 1, 1)7:

else8:

(ℓ1, e1, G1, V1, r1, f1)← PolyRefine(a′, e, g, e+ f);9:

(ℓ2, e2, G2, V2, r2, f2)← PolyRefine(r1, f1, b
′, f);10:

if ℓ2 6= 1 then11:

G2 ← G2 + (ℓ2) ; // Here + designates sequence concatenation12:

V2 ← V2 + (e2);13:

return (ℓ1, e1, G1 + G2, V1 + V2, r2, f2) ;14:

of positive integers E = (e1, e2, . . . , es) such that ((n1, e1), (n2, e2), . . . , (ns, es)) is a

refinement of (m1,m2, · · · ,mk). Moreover, n1, n2, . . . , ns are square-free.

Proposition 18 analyzes the parallelism of Algorithm 22 for the fork-join paral-

lelism model under one simplification hypothesis, which is stated below.

Hypothesis 4. Assume that each polynomial operation (division or GCD computa-

tion) involved in Algorithm 22 or its subroutines has a unit cost.

Remark 6. As for Proposition 15, our primary goal with Proposition 18 is to give

a first complexity result on the parallelism of Algorithm 22. Obviously, Hypothesis 4

is not realistic. However, if D is the maximum degree of an input polynomial and

if each arithmetic operation (addition, multiplication, inversion) in K has a constant

bit cost, then each subsequent polynomial operation performed by Algorithm 22 or its

subroutines runs in O(D2) bit operations. Therefore, Hypothesis 4 can still be seen

as a first approximation of what really happens.

Remark 7. In order to analyze Algorithm 22 and its subroutines, one needs to choose

a measure of the input data. Hypothesis 4 suggests the following choice. For each of

41

Algorithm 19: MergeRefinePolySeq(a, e, B, F)

Input: A square-free polynomial a ∈ K[x], a positive integer e, a sequence of
square-free pairwise coprime polynomials B = (b1, b2, . . . , bn) of K[x]
and a sequence of positive integers F = (f1, f2, . . . , fn).

Output: (ℓ,m,Q,R, S, T) where ℓ ∈ K[x], m ∈ N, Q = (q1, . . . , qs) and
S = (s1, . . . , sp) are two sequences of polynomials of K[x],
R = (r1, . . . , rs) and T = (t1, . . . , tp) are two sequences of positive
integers such that (ℓ,m), (q1, r1), . . . , (qs, rs), (s1, t1), . . . , (sp, tp) is a
factor refinement of ae, b1

f1 , . . . , bn
fn .

ℓ0 ← a;1:

m0 ← e;2:

Q← ∅;3:

R← ∅;4:

S ← ∅;5:

T ← ∅;6:

for i from 1 to n do7:

(ℓi,mi, Gi, Vi, di, wi)← PolyRefine(ℓi−1,mi−1, bi, fi) ;8:

Q← Q + Gi ;9:

R← R + Vi ;10:

if di 6= 1 then11:

S ← S + (di) ;12:

T ← T + (wi) ;13:

return (ℓn,mn, Q,R, S, T);14:

Algorithms 18, 19, 20, 21 or 22, the input size is the number of polynomials in the

input.

Proposition 18. Hypothesis 1, for an input data of size n, the work, span, and

parallelism of Algorithm 22 are respectively O(n2), O(Cn) and O(n/C), where C is

the threshold BASESIZE.

Proof ⊲ Let us denote by W22(n), W21(n), W20(n), W19(n), W18(n) (resp. S22(n),

S21(n), S20(n), S19(n), S18(n)) the work (resp. span) of Algorithms 22, 21, 20, 19 and

18 on input data of order n.

The top-level routine is Algorithm 22. It proceeds in a divide-and-conquer manner,

dividing the input data into two equal parts, performing two recursive calls and then

merging their results with Algorithm 21. Thus we have:

W22(n) ≤ 2W22(n/2) +W21(n) and S22(n) ≤ S22(n/2) + S21(n). (4.10)

42

Algorithm 20: MergeRefineTwoSeq(A,E,B, F)

Input: Two sequences of square-free pairwise coprime polynomials
A = (a1, . . . , an) and B = (b1, b2, . . . , br) of K[x] together with two
sequences of positive integers E = (e1, e2, . . . , en) and
F = (f1, f2, . . . , fr).

Output: (L,M,Q,R, S, T) where L = (ℓ1, . . . , ℓh), Q = (q1, . . . , qs) and
S = (s1, . . . , sp) are three sequences of polynomials of K[x],
M = (m1, . . . ,mh), R = (r1, . . . , rs) and T = (t1, . . . , tp) are three
sequences of positive integers such that
(ℓ1,m1), . . . , (ℓh,mh), (q1, r1), . . . , (qs, rs), (s1, t1), . . . , (sp, tp) is a
factor refinement of (a1, e1), . . . , (an, en), (b1, f1), . . . , (br, fr).

L← ∅;1:

M ← ∅;2:

Q← ∅;3:

R← ∅;4:

S0 ← B;5:

T0 ← F ;6:

for i from 1 to n do7:

(ℓi,mi, Qi, Ri, Si, Ti)← MergeRefinePolySeq(ai, ei, Si−1, Ti−1) ;8:

Q← Q + Qi ;9:

R← R + Ri ;10:

if ℓi 6= 1 then11:

L← L + (ℓi) ;12:

M ←M + (mi) ;13:

return (L,M,Q,R, Sn, Tn);14:

Algorithm 21 also proceeds in a divide-and-conquer manner, dividing the input

data into two parts and performing two recursive calls. Then using the output of these

two recursive calls as input of two subsequent recursive calls. To keep this analysis

simple, we assume that n is a power of 2. However, and on the contrary of what we

did in the proof of Proposition 15, we do not set the threshold BASESIZE to 2. The

reason is because the costs (algebraic and cache complexity) play a crucial role in the

performance of Algorithm 21. This fact will be made more clear within the proof of

our cache complexity result, namely Theorem 2. We define C := BASESIZE and we

have

W21(n) ≤

W20(n) for n < C

4W21(n/2) + Θ(1) otherwise,
(4.11)

43

Algorithm 21: MergeRefinementDNC(A,E,B, F)

Input: Two sequences of square-free pairwise coprime polynomials
A = (a1, . . . , an) and B = (b1, b2, . . . , br) ∈ K[x] together with two
sequences of positive integers E = (e1, e2, . . . , en) and
F = (f1, f2, . . . , fr).

Output: (L,M,Q,R, S, T) where L = (ℓ1, . . . , ℓh), Q = (q1, . . . , qs) and
S = (s1, . . . , sp) are three sequences of polynomials of K[x],
M = (m1, . . . ,mh), R = (r1, . . . , rs) and T = (t1, . . . , tp) are three
sequences of positive integers such that
(ℓ1,m1), . . . , (ℓh,mh), (q1, r1), . . . , (qs, rs), (s1, t1), . . . , (sp, tp) is a
factor refinement of (a1, e1), . . . , (an, en), (b1, f1), . . . , (br, fr).

if n ≤ BASESIZE or r ≤ BASESIZE then1:

return MergeRefineTwoSeq(A,E,B, F);2:

else3:

Divide A, E, B, and F into two halves called A1, A2, E1, E2, B1, B2, and4:

F1, F2, respectively ;
(L1,M1, Q1, R1, S1, T1)← spawn MergeRefinementDNC(A1, E1, B1, F1) ;5:

(L2,M2, Q2, R2, S2, T2)← spawn MergeRefinementDNC(A2, E2, B2, F2) ;6:

sync ;7:

(L3,M3, Q3, R3, S3, T3)← spawn MergeRefinementDNC(L1,M1, S2, T2) ;8:

(L4,M4, Q4, R4, S4, T4)← spawn MergeRefinementDNC(L2,M2, S1, T1) ;9:

sync ;10:

return11:

{L3+L4,M3+M4, Q1+Q2+Q3+Q4, R1+R2+R3+R4, S3+S4, T3+T4} ;

Algorithm 22: ParallelFactorRefinementDNC(A)

Input: A sequence of square-free polynomials A = (m1,m2, . . . ,mk) ∈ K[x].
Output: A sequence of square-free pairwise coprime polynomials

N = (n1, n2, . . . , ns) ∈ K[x], and a sequence of positive integers
E = (e1, e2, . . . , es) such that (n1, e1), (n2, e2), . . . , (ns, es) is a factor
refinement of m1,m2, · · · ,mk.

if k < 2 then1:

return (m1), (1) ;2:

else3:

Divide A into two subsequences called A1 and A2;4:

(X1, Y1)← spawn ParallelFactorRefinementDNC(A1) ;5:

(X2, Y2)← spawn ParallelFactorRefinementDNC(A2) ;6:

sync;7:

return MergeRefinementDNC(X1, Y1, X2, Y2);8:

44

and

S21(n) ≤

S20(n) for n < C

2S21(n/2) + Θ(1) otherwise.
(4.12)

Hypothesis 4 implies that W20(n), W19(n), W18(n) fit within Θ(n2), Θ(n), Θ(1),

respectively. Moreover, since Algorithms 20, 19 and 18 are serial, we also have S20(n),

S19(n), S18(n) within Θ(n2), Θ(n), Θ(1), respectively.

Let k = ⌈log2(n/C)⌉. Then we have

W21(n) ≤ O(4kC2) = O(n2) and S21(n) ≤ O(2kC2) = O(Cn).

Therefore, from Relation (4.10), we deduce

W22(n) ∈ O(n2) and S22(n) ∈ O(Cn).

This completes the proof. ⊳

We observe that, under a “unit cost” hypothesis for the integer (or polynomial)

arithmetic, the work, span and parallelism of Algorithm 17 and Algorithm 22 are

essentially the same.

We turn now our attention to cache complexity, which will differentiate these two

algorithms substantially. As for the algorithms analyzed in Section 4.1, we analyze

the cache complexity of the serial versions of our algorithms. With Hypothesis 5, we

start by specifying how data is layed out in memory.

Hypothesis 5. We assume that each input or output sequence in Algorithms 18, 19,

20 or 21 is packed, that is, its successive polynomials occupy consecutive memory

slots. We also assume that each element of the field K can be stored in one machine

word.

Next, we specify a few helpful notations for establishing our cache complexity

results.

Notation 1. We denote by |p| the degree of a non-zero univariate polynomial p over

K. For a finite polynomial sequence P = (p1, . . . , pn), we denote by |P | the sum of

the degrees of p1, . . . , pn.

The purpose of the following hypothesis is to enforce the following property: any

polynomial p occurring in any input sequence or in any output sequence of Algo-

rithms 18, 19, 20 or 21 can be stored within |p| machine words.

45

Hypothesis 6. All polynomials in any input or output sequence of Algorithms 18,

19, 20 or 21 is not constant and monic. Each integer in any input or output sequence

of positive integers is stored in one machine word.

Remark 8. As they are currently stated, Algorithms 18, 19, 20 or 21 do not meet

Hypothesis 6. However, it is not difficult to modify them in order to satisfy Hypoth-

esis 6. Consider for instance Algorithm 18. The necessary modifications consist in

handling the cases a′ ∈ K and b′ ∈ K in order to avoid the unnecessary recursive calls

at Lines 9 and 10; moreover, if one of the returned polynomials ℓ1 or r2 is constant,

one can use a Boolean instead.

Lemma 1. Under Hypothesis 6, with the notations in the specifications of Algo-

rithm 18, we have

|c|+ |G| ≤ |a| and |G|+ |d| ≤ |b|. (4.13)

Proof⊲We proceed by induction on the sum of the degrees of the input polynomials

of Algorithm 18, that is, |a| + |b|. First, we observe that, at Line 4, if g = 1 holds,

then the conclusion trivially holds. Indeed, in this case, we have c = a, G = ∅ and

d = b. Similarly, at Line 6, if a = b holds, the conclusion also holds. These two cases

cover, in particular, the base case of the induction, that is, |a|+ |b| = 2.

Now, we assume that g has a positive degree. Thus, we can apply the induction

hypothesis to the two recursive calls at Lines 9 and 10, since we have |a′|+|g| < |a|+|b|
and thus |r1|+ |b′| ≤ |g|+ |b′| < |a|+ |b|.

Next, we shall estimate |ℓ1|, |G1+G2| and |r2| at the return point of Algorithm 18,

that is, at Line 14. We designate by G0
2 the value of G2 after executing Line 10 and

before executing Line 11. Then we have:

|ℓ1|+ |G1 +G2| ≤ |ℓ1|+ |G1|+ |G2| by definition

≤ |ℓ1|+ |G1|+ |G0
2|+ |ℓ2| by definition

≤ |a′|+ |g| by induction

≤ |a| since a = a′g.

46

Similarly, we have

|G1 +G2|+ |r2| ≤ |G1|+ |G2|+ |r2| by definition

≤ |G1|+ |ℓ2|+ (|G0
2|+ |r2|) by definition

≤ |G1|+ |r1|+ |b′| by induction

≤ |g|+ |b′| by induction

≤ |b| since b = b′g.

This completes the proof. ⊳

Lemma 2. Under Hypothesis 6, with the notations in the specifications of Algo-

rithm 19, we have

|ℓ|+ |Q| ≤ |a| and |Q|+ |S| ≤ |B|. (4.14)

Proof ⊲ We use the notations of the pseudo-code of Algorithm 19. We have the

following inequalities:

|ℓn|+ |Q| ≤ |ℓn|+ |Gn|+ |Gn−1|+ · · ·+ |G1| by definition

≤ |ℓn−1|+ |Gn−1|+ · · ·+ |G1| by Lemma 1

...
...

≤ |ℓ1|+ |G1| by Lemma 1

≤ |l0| by Lemma 1

≤ |a| by definition.

With Lemma 1, we also have:

|Q|+ |S| ≤
∑i=n

i=1
(|Gi|+ |di|) ≤

∑i=n

i=1
|bi| ≤ |B|.

This completes the proof. ⊳

Lemma 3. Under Hypothesis 6, with the notations in the specifications of Algo-

rithm 20, we have

|L|+ |Q| ≤ |A| and |Q|+ |Sn| ≤ |B|. (4.15)

47

Proof ⊲ We use the notations of the pseudo-code of Algorithm 20. We have the

following inequalities:

|L|+ |Q| ≤
∑i=n

i=1 (|ℓi|+ |Qi|) by definition

≤
∑i=n

i=1 |ai| by Lemma 2

≤ |A| by definition

We also have:

|Q|+ |Sn| ≤ |Sn|+ |Qn|+ |Qn−1|+ · · ·+ |Q1| by definition

≤ |Sn−1|+ |Qn−1|+ · · ·+ |Q1| by Lemma 2

...
...

≤ |S1|+ |Q1| by Lemma 2

≤ |S0| by Lemma 2

≤ |B| by definition.

This completes the proof. ⊳

Proposition 19. Under Hypothesis 6, for an input of size n, each of the Algo-

rithms 18, 19 and 20 can be run in space Θ(n) bits.

Proof ⊲ Lemmas 1, 2 and 3 imply that for an input of size n, the output size is

at most n. Recall that by input size or output size, we mean the total number of

polynomial coefficients (except the leading coefficients since they are all set to 1).

The output contains also sequences of positive integers, the number of those being

at most n. Finally, we observe that each of the Algorithms 18, 19 and 20 does not

require extra memory space other than:

• the space for the input and output data,

• a constant number of pointers and index variables.

This completes the proof. ⊳

Lemma 4. Under Hypotheses 5 and 6, for an ideal cache of Z words, with L words

per cache-line, there exists a positive constant α such that for an input of size n,

satisfying n < αZ, the number of cache misses of Algorithm 20 is O(n/L+ 1).

48

Proof ⊲ Indeed, it follows from Proposition 19, that, there exists a positive constant

β such that for an input of size n, the memory requirement for running Algorithm 20

is at most βn bits. And those βn bits, up to a constant number of them, are used

for storing a number (independent of n) of sequences of polynomials and positive

integers. Now recall from Hypotheses 5 that each sequence of polynomials (resp.

positive integers) is stored in an array. Finally, recall that loading to cache (resp.

writing back to main memory) an array of length ℓ requires O(ℓ/L+1) cache misses.

This conclusion follows. ⊳

Theorem 2. Under Hypotheses 5 and 6, consider an ideal cache of Z words, with L

words per cache-line. Then, for C small enough, for any input of size n, the number

of cache misses of Algorithm 21 is Q(n) = O(n2/ZL + n2/Z2). Using the tall cache

assumption, this becomes Q(n) ∈ O(n2/ZL).

Proof ⊲ We use the idealized cache model described in Section 2.5. It follows from

Lemma 4 and the recursive structure of Algorithm 21 that there exists a positive

constant α such that Q(n) satisfies the following relation:

Q(n) ≤

O(n/L+ 1) for n < αZ

4Q(n/2) + Θ(1) otherwise,

provided C < αZ. Strictly speaking the above recurrence assumes that each of the

input polynomial sequences A and B can be split into two sequences of approximately

the same size. When the total number of polynomials in A and B is large, this is

likely. When it is small, the condition n < αZ is likely holds and we are “out of the

woods”. A more formal treatment can be done using standard (but quite involved)

proof techniques, as for the parallelization of quick-sort algorithm1.

The above recurrence leads to the following inequality for all n ≥ 2:

Q(n) ≤ 4Q(n/2) + Θ(1)

≤ 4[4Q(n/4) + Θ(1)] + Θ(1)

...

≤ 4kQ(n/2k) +
k−1
∑

j=0

4jΘ(1)

1For details, see the slides of the lecture Analysis of Multithreaded Algorithms available at

http://www.csd.uwo.ca/∼moreno/CS9624-4435-1011.html

49

where k = ⌈log2(n/αZ)⌉. Since n/2k ≤ αZ, we deduce:

Q(n) ≤ (n/αZ)2(αZ/L+ 1) + Θ((n/αZ)2)

= O(n2/ZL+ n2/Z2).

This completes the proof. ⊳

50

Chapter 5

Implementation Issues

In this chapter, we will discuss some important implementation issues of the algo-

rithms presented in the previous chapter. Effective use of caches of multicore machines

to exploit the benefit of data locality is one of the most important issues among them

to be considered. The implementation of multi-dimensional array in available pro-

gramming languages does not guarantee the possible storing of all array elements

in consecutive memory locations. It possibly stores every elements of each row in

consecutive memory slots but not one row after another. As a result, this implemen-

tation is not cache friendly in terms of data locality. In order to achieve the benefit

of spatial locality, we have to implement multi-dimensional arrays in such a way that

array elements are stored in consecutive memory locations. Alternatively, we can

say that we have to pack the data for eventually storing it in consecutive memory

locations. The non-packed and packed version of a two-dimensional array are shown

in Figure 5.1.

Figure 5.1: Demonstration of unpacking and packing.

51

Another issue that may impact performances negatively is unbalanced data traf-

fic. This phenomenon can be explained as follows. Suppose that, on a multicore

architecture, several threads are making requests to the memory controller. If the

requests of one of those threads deal with much larger chunks than the other threads

requests, then the memory controller may give a higher priority to this particular

thread, resulting in possible data starvation of the others.

Returning to the algorithms of the previous chapter, the low-level routines are

GCD calculations and divisions which may take as input data of very different sizes.

These routines are called by higher level procedures which generally take as input

a set of data items. Proceeding in a divide-and-conquer manner, these procedures

divide the data set in ”tentatively” equal parts. When a base case is reached, low-

level routines operate on the data items. Consequently, unbalanced data divisions

may substantially increase the burdened span of the actual application. Indeed, for

a given unbalanced data division, threads handling recursive calls getting smaller

portion may starve. Therefore, for the call which made the unbalanced data division,

the span might become essentially equal to work!

In order to deal with this issue, we ensure balanced data division, by sorting the

data set before division. This prepossessing may increase the work but experimentally,

this extra work compensated by the reduction of the burdened span. This data

traffic balancing for polynomial inputs is illustrated in Figure 5.2. Here in (a), input

to the algorithm for computing GCD and division is 10, 9 in its left sub-problem

and 1, 2 in its right sub-problem. Clearly, data traffic for the left sub-problem in

memory is more than that of of the right one, if data was not already in cache. Due

to thread starvation, the right sub-problem may not complete before the left sub-

problem. Consequently, the core executing the right sub-problem is not fully available

to help processing work that could be spawned from the left sub-problem. If, in

addition, the left sub-problem itself performs unbalanced data division, performances

might reduce further.

On the other hand, in (b), inputs to both the left and right sub-problems are bal-

anced and they should be completed possibly within the same time without without

thread starvation.

For certain applications, this data traffic balancing may increase the work. Sup-

pose that the low-level routines (here division and GCD computation) have a running

time which is between linear and quadratic in the size of the input. Suppose also that

every data item has to be compared every other. Then data traffic balancing may

not have a negative impact on the work. However, if this assumption does not hold,

52

Figure 5.2: Balancing polynomials for data traffic during divide-and-conquer.

for instance when searching the minimal elements of a partially ordered set [19], then

data traffic balancing might increase the work. But, as mentioned above, this seems

not to be the case in our application.

Figure 5.3: Balancing polynomials for GCD calculation and division during divide-
and-conquer.

Finally, choosing the base case size for the implementation of multithreaded al-

gorithms is one of the vital issues. Choosing these thresholds are guided by two

motivations. First, the need of reducing parallelization overheads, that is, reducing

the cost of thread management (creation, synchronization, etc.). In this point of view,

large thresholds mean less parallelization overheads, but also less parallelism. Thus

a trade-off has to be found. A second motivation is to reduce cache misses in algo-

rithms processing data by block decomposition, as for blocked matrix multiplication.

In that point of view, small block sizes mean that the corresponding sub-problems fit

53

in cache (limiting cache misses to cold misses only) but small block sizes also imply

overhead in dividing the data set (due to alignments and related issues). Therefore,

another trade-off has to be found here.

The effect of these implementation issues is presented in next chapter titled ex-

perimental results.

54

Chapter 6

Experimental Results

Chapter 4 describes proposed parallel algorithms followed by some important im-

plementation issues discussed in Chapter 5. In this chapter, we will restrict our-

selves to verifying the theoretical analysis of these algorithms by presenting some

experimental results. All the algorithms are implemented in the Cilk++ concurrency

platform [10, 14, 20, 22, 26] with a software library called “Basic Polynomial Alge-

bra Subroutines (BPAS)” implemented by Dr. Yuzhen Xie and Dr. Marc Moreno

Maza in our laboratory (ORCCA), as stated before, and execute them on two ma-

chines. The speedup estimates (scalability analysis) of these algorithms are obtained

by Cilkview, feature of Cilk++, after executing them in an Intel(R) Xeon(R) (64 bit)

Machine, with CPU (E7340) Speed 2.40GHz, 128.0 GB of RAM, and having a total of

16 Cores available in one of the sharcnet clusters [3]. On the other hand, all timings of

the proposed algorithms and Maple [2] functions (Maple’s built-in function ifactor

for int and non-built-in function GcdFreeBasis mod for polynomial) are obtained by

running these algorithms in an Intel(R) Core(TM) i7 (64 bit) Machine, with CPU

(870) Speed 2.93GHz, 8.0 GB of RAM with 8 Cores configured in the ORCCA Lab.

Moreover, the results of timings are generated with the average value of 5 executions.

The input polynomials supplied in these algorithms for experimentation are of

two degree classes: naive refinement based parallel factor refinement algorithm takes

polynomials each of degree 60 while augment refinement based parallel factor refine-

ment algorithm takes those of degree 150. However, operations on coefficients, for

both cases as well as for Maple, are done in modulo a small prime, say 5.

55

6.1 Integers of type int inputs

Figure 6.1 and 6.2 show the speedup estimates and execution times, respectively,

for augment refinement based parallel algorithm described in Section 4.2 in case of

int type data as input. It is observed that, the speedup is almost linear with the

number of cores of the machine. The reason is that, its merging of two refined

outputs is efficient in terms of data locality and parallelism which is also presented in

Section 4.2. Moreover, its running times are also improved compared to Maple even

if we consider these for a single processor.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Cores

Parallelism = 170.733083, Ideal Speedup
Lower Performance Bound

Measured Speedup

Figure 6.1: Scalability analysis of the augment refinement based parallel factor re-
finement algorithm for 200, 000 int type inputs by Cilkview.

6.2 Polynomial type inputs

The following two figures (Figure 6.3 and 6.4) show the speedup estimates and execu-

tion times, respectively, with dense polynomials as input in case of naive refinement

based parallel factor refinement algorithm described in Section 4.1. The speedup

shown here is not linear, because the merging of two refined polynomials in this

algorithm is not efficient in terms of data locality and it is also verified in that sec-

56

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5000 5200 5400 5600 5800 6000

T
im

e
(S

ec
)

Input size

Algorithm: Cores = 1
Algorithm: Cores = 8

Maple

Figure 6.2: Running time comparisons of the augment refinement based parallel factor
refinement algorithm for int type inputs.

tion. However, the timings compared to Maple are improved, because current Maple

procedure for refinement is not parallel as well as data locality is not considered.

On the other hand, the experimental results of the augment refinement based

parallel algorithm described in Section 4.2, with dense polynomials as input, are

shown in Figure 6.5 and 6.6. It is also observed that, the speedup is almost linear

with the number of cores of the machine similar to the inputs of type int. The reason

is that, its merging of two refined outputs is efficient in terms of data locality and

parallelism like the case of int type. Moreover, its running times are also improved

compared to Maple even if we consider this for a single processor.

Our final goal is to analyze the performance of the augment refinement based

parallel algorithm described in Section 4.2 when the provided input pattern is already

a GCD-free basis. The analysis from Figure 6.7 and 6.8, generated for this pattern,

shows that the speedup is still almost linear and its running time outperforms Maple.

57

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Cores

Parallelism = 2395.73432, Ideal Speedup
Lower Performance Bound

Measured Speedup

Figure 6.3: Scalability analysis of the naive refinement based parallel factor refinement
algorithm for 4, 000 dense square-free univariate polynomials by Cilkview.

6.3 Integers of type my big int inputs (work in

progress)

Factor refinement of large integer (GMP) type data does not show linear speedup due

to the structure of this data type. It actually uses structure of pointers to int to

hold large integer numbers, divided into chunks, which are not necessarily stored in

consecutive memory slots. But, storing the data possibly in consecutive memory slots

is very necessary to achieve linear speedup, because, it preserves spatial data locality

in caches. Without this, there are lots of cache misses while executing the program

and a significant impact on whole program performance. In order to recover this

problem of locality in case of large integer numbers, we need to design a user defined

large integer data type called my big int, where all the chunks of integer numbers are

possibly stored in consecutive memory slots. We are currently working on designing

the data structure of this data type and its implementation prior to applying this to

the factor refinement algorithm to examine its performance.

58

 0

 10

 20

 30

 40

 50

 60

 100 200 300 400 500 600

T
im

e
(S

ec
)

Input size

Algorithm: Cores = 1
Algorithm: Cores = 8

Maple

Figure 6.4: Running time comparisons of the naive refinement based parallel factor
refinement algorithm for dense square-free univariate polynomials.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Cores

Parallelism = 265.204981, Ideal Speedup
Lower Performance Bound

Measured Speedup

Figure 6.5: Scalability analysis of the augment refinement based parallel factor re-
finement algorithm for 4, 000 dense square-free univariate polynomials by Cilkview.

59

 0

 20

 40

 60

 80

 100

 120

 140

 100 200 300 400 500 600

T
im

e
(S

ec
)

Input size

Algorithm: Cores = 1
Algorithm: Cores = 8

Maple

Figure 6.6: Running time comparisons of the augment refinement based parallel factor
refinement algorithm for dense square-free univariate polynomials.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Cores

Parallelism = 136.931277, Ideal Speedup
Lower Performance Bound

Measured Speedup

Figure 6.7: Scalability analysis of the augment refinement based parallel factor re-
finement algorithm for 4, 120 sparse square-free univariate polynomials by Cilkview

when the input is already a GCD-free basis.

60

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 200 300 400 500 600

T
im

e
(S

ec
)

Input size

Algorithm: Cores = 1
Algorithm: Cores = 8

Maple

Figure 6.8: Running time comparisons of the augment refinement based parallel factor
refinement algorithm for sparse square-free univariate polynomials when the input is
already a GCD-free basis.

61

Chapter 7

Parallel GCD-free Basis Algorithm

Based on Subproduct Tree

Techniques

Parallel algorithms for computing coprime factorization for plain (or quadratic) arith-

metic are discussed in Chapter 4. Fast arithmetic techniques are not applied there.

In this chapter we will discuss the extension of asymptotically fast algorithms (Algo-

rithm 11, 12, and 13) described in Section 3.3 to a parallel processing setting. These

algorithms are designed based on the subproduct tree techniques presented in Sec-

tion 2.3. The detailed description of these algorithms in a serial setting is available

in [15] as well as in Section 3.3. We focus here on the parallel versions of these al-

gorithms, leading to Algorithm 23, 24, and 25 where Algorithm 25 is the top level

procedure. Section 7.1 is dedicated to these parallel algorithms and an analysis of

their parallelism in the fork-join parallelism model, while in Section 7.3, we discuss

challenges toward their implementation on multicore architectures.

7.1 Algorithms and parallelism estimates

Since Algorithms 11, 12, and 13 essentially rely on subproduct tree techniques, our

first task is to parallelize the construction of subproduct trees, that is, Algorithm 2.

Observe that Algorithm 2 is stated for the case where the n nodes are univari-

ate polynomials of degree 1. The same algorithm works correctly with polynomials

of arbitrary degree. If the sum of their degree is d then Algorithm 2 runs within

O(M(d) log2(n)) operations in K. See Proposition 2 for the notations.

62

Obviously, parallelizing Algorithm 2 requires to parallelize univariate polynomial

multiplication. In the fork-join parallelism model, a one-dimensional FFT computa-

tion of a vector of length d has a span of O(logp(d)2). Therefore, assuming that we

are using an FFT-based univariate multiplication with O(M(d) ∈ O(d logp(d)) (as

often in practice), we have the following result.

Proposition 20. There exists a multithreaded algorithm computing the sub-

product tree of n arbitrary polynomials a1, a2, . . . , an in K[x] with a work of

O(d logp(d) log2(n)) and a span of O(logp(d)2 log2(n)), where d =
∑i=n

i=1deg(ai).

Our next task is to parallelize Algorithm 10. Since this algorithm involves GCD

computations of univariate polynomials, we need to specify how we perform those.

Euclidean algorithms for univariate polynomial GCD computations in degree d

run in O(M(d)logp(d)) operations in K. In the fork-join parallelism model, they

have a span of O(d logp(d)). Indeed, each division step runs in O(logp(d)). In the

PRAM model, univariate polynomial GCDs can be computed in polylog time, but

the corresponding algorithm has a work of O(d4) and is not suitable for a multicore

implementation due to an overhead in memory consumption, This leads to us to the

following simplification assumption.

Hypothesis 7. For simplicity, we will assume that we have a multithreaded algorithm

computing univariate polynomial GCD in degree d with a work of O(M(d)logp(d)) and

a span of O(d). This latter estimate can be established for systolic arrays, see [11].

Proposition 21. Assume that Algorithm 10 takes as input a polynomial f of degree

less than d and n polynomials a1, . . . , an with d =
∑i=n

i=1deg(ai). Then, in the fork-join

parallelism model, Algorithm 10 can be executed with a work of O(M(d)logp(d)) and

an expected span of O(log2(n) logp(d)
2 + d/n).

Proof ⊲ At Line 4, Algorithm 10 constructs a subproduct tree with a span of

O(log2(n) logp(d)
2). Then, at Line 5, it computes n GCDs concurrently, each of them

in degree d/n on average. ⊳

Algorithm 23 below is a parallel version of Algorithm 11. It takes two sequences

of polynomials A = a1, a2, . . . , ae and B = b1, b2, . . . , bs as input and computes all

pairs of GCDs gcd(a,bj), for 1 ≤ i ≤ e and 1 ≤ j ≤ s. This algorithm assumes that

the polynomials in A (resp. B) are pairwise coprime.

Proposition 22. Assume that Algorithm 23 takes as input two sequences of the same

length n = e = s and such that we have

d =
∑i=n

i=1
deg(ai) =

∑i=n

i=1
deg(bi).

63

Then, Algorithm 23 has a span of O(d
n

log2(n)).

Proof ⊲ Indeed, executing Algorithm 23 means traversing a binary tree, top-

down level by level, such that this tree has log2(n) levels each node has a span of

O(log2(n) logp(d)
2 + d/n). ⊳

Algorithm 23: parallelPairsOfGcd(A,B)

Input: Sequence of square-free polynomials A = a1, a2, . . . , ae and
B = b1, b2, . . . , bs in K[x] such that the elements of A (resp. B) are
pairwise coprime.

Output: gcd(a1, b1), . . . , gcd(a1, bs), . . . , gcd(ae, b1), . . . , gcd(ae, bs).
Build a subproduct tree called Sub(a1, a2, . . . , ae) like Algorithm 2 where the1:

root is labeled by the product of a1a2 . . . ae and let f = RootOf(Sub);
Label the root of Sub by multiGcd(f,B) ;2:

for every node N ∈ Sub, going top-down, processing all nodes of the same3:

level concurrently do
if N is not a leaf and has label g then4:

f1 ← spawn leftChild(N);5:

f2 ← spawn rightChild(N);6:

sync;7:

Label f1 by multiGcd(f1, g);8:

Label f2 by multiGcd(f2, g);9:

Print the leaf labels in a in-fix traversal of the tree;10:

Algorithm 24 is a parallel version of Algorithm 12. It takes two sequences of

square-free polynomials A = a1, a2, . . . , ae and B = b1, b2, . . . , bs as input and com-

putes a GCD-free basis of A and B where the polynomials in A (resp. B) are pairwise

coprime.

Proposition 23. Assume that Algorithm 24 takes as input two sequences of the same

length n = e = s and such that we have

d =
∑i=n

i=1
deg(ai) =

∑i=n

i=1
deg(bi).

Then, Algorithm 24 has an expected span of O(d
n

log2(n)).

Proof ⊲ Indeed, executing Algorithm 24 requires

• executing Algorithm 23 at Line 1 with an expected span of O(d
n

log2(n)),

• at Lines 4 and 8, computing subproduct trees in degree d/n (on average) with

n items leading to an expected span of O(logp(d/n)2 log2(n))

64

• performing (fast) polynomial divisions in degree d/n (on average) at Lines 5

and 9, leading to an expected span of O(logp(d/n)3).

The conclusion follows. ⊳

Algorithm 24: parallelGcdFreeBasisSpecialCase(A,B)

Input: Sequence of polynomials A = a1, a2, . . . , ae and B = b1, b2, . . . , bs where,
in each sequence, all polynomials are square-free and pairwise coprime.

Output: A sequence of polynomials forming a GCD-free basis of A,B.
(gi,j)1≤i≤e,1≤j≤s ← parallelPairsOfGcd(A,B);1:

parallel for j = 1 to s do2:

Lj ← removeConstants(g1,j, g2,j , . . . , ge,j) ;3:

// remove constant polynomials

βj ←
∏

l∈Lj
l;4:

γj ← bj quotient βj;5:

parallel for i = 1 to e do6:

Li ← removeConstants(gi,1, gi,2, . . . , gi,s) ;7:

// remove constant polynomials

αi ←
∏

l∈Li
l;8:

δi ← ai quotient αi;9:

return removeConstants({g1,1, . . . , gi,j , . . . , ge,s, γ1, γ2, . . . , γs, δ1, δ2, . . . , δe}) ;10:

// remove constant polynomials

Algorithm 25 is a parallel version of Algorithm 13. It takes a sequence of non-

constant square-free polynomials A = a1, a2, . . . , ae as input and produces a GCD-free

basis of A as output.

Theorem 3. Assume that Algorithm 25 takes as input sequence A of n square-free

polynomials such that we have

d =
∑i=n

i=1
deg(ai).

Then, Algorithm 25 has a work of O(M(d)logp(d)3).

For an FFT-based parallel univariate multiplication with M(d) ∈ O(d logp(d)),

Algorithm 25 has an expected span of

O(
d

n
log2(n)

2).

Consequently, for this multiplication, Algorithm 25 has an expected parallelism of

O(n
logp(d)4

log2(n)
2
).

65

Proof ⊲ The work estimate was stated in Proposition 14. For the span, we observe

that executing Algorithm 25 means traversing a binary tree, bottom-up level by level,

such that each node at level i (for i = 1, . . . , log2(n)) one needs to apply Algorithm 24

to 2i polynomials with a degree sum of 2i d
n
(expectedly). Applying Proposition 23

this leads to a total expected span of O(d
n

log2(n)
2). ⊳

Algorithm 25: parallelGcdFreeBasis(A)

Input: Sequence of square-free polynomials A = a1, a2, . . . , ae.
Output: A GCD-free basis of A.
Build a subproduct tree called Sub′(A) like Algorithm 2 where the root is1:

labelled by the sequence of polynomials A;
for every node N ∈ Sub′, bottom-up, processing all nodes of the same level2:

concurrently do
if N is not a leaf then3:

f1 ← spawn leftChild(N);4:

f2 ← spawn rightChild(N);5:

sync;6:

Label N by parallelGcdFreeBasisSpecialCase(f1, f2);7:

return the label of RootOf(Sub′);8:

7.2 Asymptotic analysis of memory consumption

Hypothesis 8. We assume that each element of the field K of each input or output

sequence of polynomials (which themselves are assumed to be non-constant and monic)

in Algorithms 10, 23, 24 or 25 can be stored in one machine word.

Proposition 24. Let d denote the sum of the degrees of the input polynomials in

Algorithms 10, 23, 24 or 25, with input data of size n. Then, under Hypothesis 8,

the space complexity of Algorithm 25 is O(d log(d)) bits.

Proof ⊲ Consider first Algorithm 23. Assuming that, at each tree level, each node

is handled by a dedicated processor, then Algorithm 23 requires O(log(n) d) bits for

storage. Assuming that the products at Lines 4 and 8 are performed by means of

subproduct trees, Algorithm 24 requires O(log(d) d) bits for storage. Finally, using

the superadditivity of the space storage estimates for Algorithm 24, we deduce that

each tree level of Algorithm 25 can be processed within O(log(d) d) bits of storage. ⊳

66

7.3 Challenges toward an implementation

Theorem 3 is a negative result. Indeed, the paralllelism estimate becomes O(n) up to

log factors. Therefore, no speed up comes from the parallelization of the polynomial

multiplication. This is due to the fact that there is no practically efficient solution

for parallelizing univariate polynomial GCD computation.

One could argue that an estimated paralllelism of O(n) is not that bad. This

is actually what we obtained with our algorithms based on quadratic polynomial

arithmetic, see Proposition 18. In addition, this parallelism associated with a better

work (thanks to asymptotically fast arithmetic) should lead to an efficient algorithm.

At this stage, one should take the targeted architecture into consideration. The

works reported in [13] and [29] show that parallelizing fast algorithms for polynomial

multiplication on multicore architecture is a hard problem. The parallelization over-

heads on this type of architecture make parallel implementation of these algorithms

efficient from degree 100, 000 to 1, 000, 000. This will have a very negative impact on

the span of subproduct tree construction.

One should also observe that polynomial GCD computation are even harder to

parallelize efficiently and our O(d) span hypothesis is a very optimistic assumption.

Finally, subproduct tree construction has also a negative impact on memory con-

sumption and no cache-friendly algorithms is known to us for that task.

67

Chapter 8

Conclusion

Within Chapter 7 and Chapter 4, we have studied the parallelization of three algo-

rithms for coprime factorization. For the one presented in Chapter 7 our theoretical

results and pre-existing partial experimentation were not encouraging a multicore

implementation. For the one presented in Section 4.1, its theoretical study was not

discouraging in the first place and we decided to implement it. However, this did

not bring satisfactory results. Finally, the parallel algorithm presented in Section 4.2

yielded very satisfactory results in practice.

It is interesting to compare the theoretical study of these latter two algorithms.

First, we note that the cache complexity result of the algorithm of Section 4.1 is of the

form O(n2/L) while the one of the algorithm of Section 4.2 is of the form O(n2/ZL).

This implies that the ratio work to cache complexity is respectively L and ZL. The

second ratio is prefered since the penalty for one cache miss in a multicore processor is

typically in the order of 100 CPU cycles while a machine word operation may cost less

than one CPU cycle, thanks to instruction level parallelism (ILP). One may wonder

where did the Z factor disappear in the algorithm of Section 4.1. The trap is the

work space used by Algorithm 14 (the a 2-D array G) which creates an overhead of

cache misses. In fact, this array G is not really needed since most of its entries are

just “1”.

In conclusion, this research work shows that asymptotically fast algorithms do

not always pay off on multicore architectures and that it is worth investing effort

on algorithms based on plain arithmetic. In addition, this research work shows that

the à la FORTRAN “work space passed as parameter” can create a performance

bottleneck in terms of cache complexity. Moreover, it is worth investing effort on

sophisticated divide-and-conquer algorithms, such as Algorithm 22, which are able to

save on memory consumption and reduce memory traffic.

68

Bibliography

[1] GMP: Arithmetic without limitations. http://gmplib.org.

[2] Maple. http://www.maplesoft.com.

[3] Sharcnet: Computing tomorrow’s solutions. https://www.sharcnet.ca.

[4] L. A. Belady. A Study of Replacement Algorithms for Virtual Storage Comput-

ers. IBM Systems Journal, 5:78–101, 1966.

[5] P. Aubry, D. Lazard, and M. Moreno Maza. On the Theories of Triangular Sets.

J. Symb. Comput., 28:105–124, July 1999.

[6] E. Bach, J. Driscoll, and J. Shallit. Factor Refinement. In Symposium on Discrete

Algorithms, pages 201–211, 1990.

[7] L. Bernardin. On Square-free Factorization of Multivariate Polynomials over a

Finite Field. Theoretical Computer Science, 187:105–116, November 1997.

[8] D. J. Bernstein. Factoring into Coprimes in Essentially Linear Time. J. Algo-

rithms, 54(1):1–30, 2005.

[9] D. J. Bernstein, H. W. Lenstra Jr., and J. Pila. Detecting Perfect Powers by

Factoring into Coprimes. Math. Comput., 76(257):385–388, 2007.

[10] R. D. Blumofe and C. E. Leiserson. Scheduling Multithreaded Computations by

Work Stealing. Foundations of Computer Science, Annual IEEE Symposium on,

0:356 – 368, 1994.

[11] R. P. Brent, H. T. Kung, and F. T. Luk. Some Linear-time Algorithms for

Systolic Arrays. In IFIP Congress, pages 865–876, 1983.

[12] A. Brown, editor. VLSI Circuits and Systems in Silicon. McGraw-Hill, Inc., New

York, NY, USA, 1991.

69

[13] M. F. I. Chowdhury, M. Moreno Maza, W. Pan, and É. Schost. Complexity and

Performance Results for non FFT-based Univariate Polynomial Multiplication,

2011.

[14] Intel corporation. Cilk++. http://www.cilk.com.

[15] X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and Y. Xie. On the Complexity

of the D5 Principle. SIGSAM Bull., 39:97–98, September 2005.

[16] J. Dennis. On Newton’s Method and Nonlinear Simultaneous Replacements.

SIAM J. Numer. Anal., 4:103 – 108, 1967.

[17] J. Dennis. On Newton-like Methods. Numerische Mathematik, 11:324 – 330,

1968. 10.1007/BF02166685.

[18] G. E. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical Al-

gebraic Decomposition–Preliminary Report. SIGSAM Bull., 8:80–90, August

1974.

[19] C. E. Leiserson, L. Li, M. Moreno Maza, and Y. Xie. Parallel Computation of

the Minimal Elements of a Poset. In 4th International Workshop on Parallel and

Symbolic Computation, pages 53–62, 2010.

[20] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin. Reducers and Other

Cilk++ Hyperobjects. In SPAA ’09: Proceedings of the Twenty-first Annual

Symposium on Parallelism in Algorithms and Architectures, pages 79–90, New

York, NY, USA, 2009. ACM.

[21] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious

Algorithms. In Proceedings of the 40th Annual Symposium on Foundations of

Computer Science, FOCS ’99, pages 285–297, New York, USA, October 1999.

[22] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation of the Cilk-5

Multithreaded Language. In ACM SIGPLAN, 1998.

[23] M. Frigo and V. Strumpen. The Cache Complexity of Multithreaded Cache

Oblivious Algorithms. In Proceedings of the Eighteenth Annual ACM Symposium

on Parallelism in Algorithms and Architectures, SPAA ’06, pages 271–280, New

York, NY, USA, 2006. ACM.

[24] J. Hong and H. T. Kung. I/O Complexity: The Red-blue Pebble Game. In

STOC, pages 326–333, 1981.

70

[25] M. Kalkbrener. Three Contributions to Elimination Theory. PhD thesis, Jo-

hannes Kepler University, Linz, 1991.

[26] C. E. Leiserson. The Cilk++ Concurrency Platform. In DAC ’09: Proceedings

of the 46th Annual Design Automation Conference, pages 522–527, New York,

NY, USA, 2009. ACM.

[27] Y. Lu. Artificial Intelligence in Mathematics. chapter Searching dependency

between algebraic equations: an algorithm applied to automated reasoning, pages

147–156. Oxford University Press, Inc., New York, NY, USA, 1994.

[28] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations

in Several Variables. Academic Press (New York), 1970.

[29] M. Moreno Maza and Y. Xie. Balanced Dense Polynomial Multiplication on

Multi-cores. Int. J. Found. Comput. Sci., 22(5):1035–1055, 2011.

[30] M. Moreno Maza and Y. Xie. FFT-based Dense Polynomial Arithmetic on Multi-

cores. In D.J.K. Mewhort, editor, Proc. HPCS 2009, volume 5976 of LNCS,

Heidelberg, 2010. Springer-Verlag Berlin.

[31] P. S. Wang. The EEZ-GCD Algorithm. SIGSAM Bull., 14:50–60, May 1980.

[32] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley Publishing Company, 1974.

[33] J. von zur Gathen. Representations and Parallel Computations for Rational

Functions. SIAM J. Comput., 15:432–452, May 1986.

[34] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge

University Press, New York, NY, USA, 2 edition, 2003.

[35] D. Y. Y. Yun. On Square-free Decomposition Algorithms. In Proceedings of the

Third ACM Symposium on Symbolic and Algebraic Computation, SYMSAC ’76,

pages 26–35, New York, NY, USA, 1976. ACM.

71

Curriculum Vitae

Name: Md. Mohsin Ali

Post-

Secondary

Education and

Degrees:

The University of Western Ontario

London, Ontario, Canada

M.Sc. in Computer Science, December 2011

Khulna University of Engineering & Technology (KUET)

Khulna, Bangladesh

B.Sc. in Computer Science and Engineering, March 2007

Work

Experience:

Research Assistant, Teaching Assistant

University of Western Ontario, London, Canada

September 2010 - December 2011

Full-time Faculty Member

Dept. of Computer Science and Engg., KUET, Bangladesh

July 2007 - August 2010

Part-time Faculty Member

Dept. of Computer Science and Engg., KUET, Bangladesh

March 2007 - June 2007

Publications:

72

Md. Mohsin Ali, A. K. M. Sazzadul Alam, and Md. Shohan Sarker. TCP Perfor-

mance Enhancement in Wireless Mobile Ad Hoc Networks. International Journal on

Internet and Distributed Computing Systems (IJIDCS), ISSN: 2219-1887, vol. 1, no.

1, pp. 12 – 15, June 01, 2011, Dhaka, Bangladesh.

Md. Kowsar Hossain, Md. Amjad Hossain, M. M. A. Hashem, and Md. Mohsin Ali.

Quantum Evolutionary Algorithm Based on Particle Swarm Theory in Multiobjective

Problems. 13th International Conference on Computer and Information Technology

(ICCIT), ISBN: 978-1-4244-8496-6, pp. 21 – 26, December 23 – 25, 2010, Dhaka,

Bangladesh.

Md. Mohsin Ali, Mst. Shakila Khan Rumi, Md. Hasnat-E-Rabbi, and M. M.

Zakariya. A Selective Aperiodic Checkpointing Approach for VLR Failure Restora-

tion in Wireless Mobile Networks. International Journal of Computer Applications

(IJCA), ISBN: 978-93-80747-12-7, ISSN: 0975-8887, DOI: 10.5120/1612-2167, vol.

11, no. 9, pp. 10 – 16, December 10, 2010, New York, USA.

Md. Mohsin Ali, Md. Ziaur Rahman Khan, and Md. Ashraful Alam. A

Profile-Based Two-Level Pointer Forwarding Cache Scheme for Reducing Location

Management Cost in Wireless Mobile Networks. International Journal of Computer

Applications (IJCA), ISBN: 978-93-80746-34-0, ISSN: 0975-8887, DOI: 10.5120/744-

1052, vol. 3, no. 7, pp. 12 – 18, June 10, 2010, New York, USA.

Md. Mohsin Ali, G. M. Mashrur-E-Elahi, and Md. Asadul Islam. A New

Location Caching with Fixed Local Anchor for Reducing Overall Location Man-

agement Cost in Wireless Mobile Networks. International Journal of Computer

Networks (IJCN), ISSN: 1985-4129, vol. 2, no. 2, pp. 77 – 100, June 10, 2010,

Malaysia.

Md. Mohsin Ali, Md. Kowsar Hossain, and Md. Amjad Hossain. A New

Hashing and Caching Approach for Minimizing Overall Location Management Cost

in Next-Generation Wireless Networks. International Journal of Computer Science

and Information Technologies (IJCSIT), ISSN: 0975-9646, vol. 1, no. 2, pp. 67 – 76,

May 2010, India.

Muhammad Nazrul Islam, Md. Mohsin Ali, Md. Ali-Al-Mamun, and Md.

73

Motaharul Islam. Semiotics Explorations on Designing the Information Intensive

Web Interfaces. The International Arab Journal of Information Technology (IAJIT),

ISSN: 1683-3198, vol. 7, no. 1, pp. 45 – 54, January 2010, Jordan.

Md. Mohsin Ali, Md. Amjad Hossain, Md. Kowsar Hossain, G. M. Mashrur-

E-Elahi, and Md. Asadul Islam. A New Hashing and Caching Approach for

Reducing Call Delivery Cost and Location Servers Load in Wireless Mobile Net-

works. 12th International Conference on Computer and Information Technology

(ICCIT), IEEE Catalog Number: CFP0917D-CDR, ISBN: 978-1-4244-6283-4, pp.

61 – 66, December 21 – 23, 2009, Dhaka, Bangladesh.

Md. Mohsin Ali, Muhammad Nazrul Islam, and A. B. M. Foysal. Algorithms

for Generating Binary Reflected Gray Code Sequence: Time Efficient Approaches.

2009 International Conference on Future Computer and Communication (ICFCC),

ISBN-13: 978-0-7695-3591-3, DOI: 10.1109/ICFCC.2009.41, vol. 12, pp. 79 – 83,

April 3 – 5, 2009, Kuala Lumpur, Malaysia.

Md. Mohsin Ali, Monotosh Kumar Ghosh, and Abdullah-Al-Mamun. Multi-

document Text Summarization: SimWithFirst Based Features and Sentence

Co-selection Based Evaluation. 2009 International Conference on Future

Computer and Communication (ICFCC), ISBN-13: 978-0-7695-3591-3, DOI:

10.1109/ICFCC.2009.42, vol. 12, pp. 93 – 96, April 3 – 5, 2009, Kuala Lumpur,

Malaysia.

Md. Mohsin Ali, Kazi Md. Rokibul Alam, and Muhammad Nazrul Islam. A

Flow Transparent Multicast Pre-reservation Modification of RSVP for Providing

Real-time Services in Wireless Mobile Networks. 2nd IEEE International Conference

on Computer, Control & Communication (IEEE-IC4), ISBN: 978-1-4244-3314-8, pp.

1 – 6, February 17 – 18, 2009, Karachi, Pakistan.

74

