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Characteristic sets, triangular

sets and regular chains

• Characteristic sets

(i) of prime ideals [Ritt, 1932]

(ii) (or representations) of differential ideals [Boulier,
Lazard, Ollivier & Petitot, 1995-1997], [Morri-
son, 1999], [Hubert, 2000]

(iii) of finite polynomial sets [Wu, 1987] [Chou &
Gao, 1990] [Gallo & Mishra, 1990] [Wang, 1992]

• Triangular sets

(i) with #equations = #unknowns and monic poly-
nomials [Lazard, 1992] [D5, 1985]

(ii) with monic and square-free polynomials [Lazard,
1991]

• Regular chains

– introduced in [Kalkbrener, 1991] [Yang & Zhang,
1994]

– compared with other notions in [Aubry, Lazard
& Moreno Maza, 1999]

– adapted to differential algebra [Boulier & Lemaire,
2000] [Lemaire, 2002]



The as many polynomials as

unknowns case.

• In [Lazard, 1992] a subset

T = {T1, . . . Tn} ⊆ k[x1 < · · · < xn]

is a triangular set if for i = 1 · · ·n

Ti = 1x
di
i + ai−1 x

di−1
i + · · ·+ a1 xi + a0

with

ai−1, . . . , a1, a0 ∈ k[x1, . . . , xi−1].

• Algorithmic properties. Let p ∈ k[x1, . . . , xn]

with deg(p, xn) > 0 and define I = (T ).

◦ One can decide whether p ∈ I. Indeed T

is a Gr. basis of I w.r.t. x1 < · · · < xn.

◦ One can decide whether p−1 mod I ex-

ists. Indeed, . . .



(1) For n = 1 by computing gcd(p, T1).

This may split T1 into 2 factors.

(2.1) For n = 2 one can try to compute

gcd(p, T2) modulo T1 (by running the

Eucl. algo as if k[x1]/(T1) was a field).

(2.2) Then, for n = 2 one can search for

p−1 mod I (by trying to compute gcd(p, T2)).

If p is not invertible mod. I then triang.

sets T ′, T ′′ appear s.t.
√
I =

√
I′∩

√
I′′.

◦ For p1, p2 ∈ k[x1, . . . , xn][y] one can com-

pute g1, . . . , gs ∈ k[x1, . . . , xn][y] and tri-

angular sets T1, . . . , Ts ⊆ k[x1, . . . , xn] s.t.

(1) a Bézout relation · · · p1 + · · · p2 = gi

holds modulo Ti.

(2) gi is monic (lc(gi, y) is inv. mod Ii).

(3)
√
I = ∩i

√
Ii.



• Generalisation to non-monic Ti’s

(2) For n = 2

T =

 x
d1
1 + · · ·+ a1 x1 + a0

h2 x
d2
2 + · · ·+ b1 x2 + b0

is a triangular set if h−1
2 exists modulo

T1. Then the previous properties re-

main valid by changing I to (T ) : h2
∞.

(3) For n = 3

T =


x
d1
1 + · · ·+ a1 x1 + a0

h2 x
d2
2 + · · ·+ b1 x2 + b0

h3 x
d3
3 + · · ·+ c1 x3 + c0

is a triangular set if h−1
2 exists modulo

T1 and h−1
3 exists modulo ({T1, T2}) :

h2
∞. Here I changes to (T ) : (h2 h3)

∞.

(n) I changes to Sat(T ) = (T ) : (h2 · · · , hn)
∞.



Regular chains

• The subset T ⊆ k[x1 < · · · < xn] is a regu-

lar chain if

– either T = ∅

– or T = T ′ ∪ {t} where T ′ is a regular

chain and

∗ t = ht x
di
i +ai−1 x

di−1
i + · · ·+a1 xi +a0

∗ T ′, {ht ai−1, . . . , a1, a0} ⊆ k[x1, . . . , xi−1].

∗ ht is regular modulo Sat(T ′).

• Notations

◦ Let h be the product of the initials of

T and s be the product of the sepa-

rants of T .



◦ Let X = {x1, . . . , xn}, A the set of the

x ∈ X s.t. x is the greatest variable of

some t ∈ T . Define B = X \A.

• Reduction to dimension zero.

◦ For every prime P associated with Sat(T )

dim(P) = n−m and P ∩ k[B] = {0}.

⇒ Every non-zero p ∈ k[B] is regular mod-

ulo Sat(T ).

⇒ T can be viewed as a triangular set in

k(B)[A].

◦ For every prime P associated with J =

(T ) : s∞ we have

dim(P) = n−m and P ∩ k[B] = {0}.

Moreover J is radical (Lazard’s Lemma).



Characteristic sets

• Notations. Let F ⊆ k[x1 < · · · < xn] s.t.
F ∩ k ⊆ {0}. Let C ⊆ F s.t.

– two different polynomials in C have dif-
ferent greatest variables,

– C is (algebraically) auto-reduced.

• Definition The subset C is a characteristic
set of F if every f ∈ F reduced w.r.t. C is
zero.

• Properties. If C char. set of an ideal I
then for all p ∈ I we have prem(p, C) = 0.
Moreover,

Sat(C) = {p | prem(p, C) = 0}
m

C regular chain
m

C characteristic set of Sat(C)



Regular differential chains

• Notations. Let R = k{U} a ring of differ-
ential polynomials. Let C ⊆ R such that

– two different polynomials in C have dif-
ferent greatest leaders (variables),

– C is (differentially) auto-reduced and co-
herent.

• Definition. The subset C is a regular dif-
ferential chain if C is a regular chain such
that Sat(C) is radical.

• Properties.

[C] : (h s)∞ = {p | full-rem(p, C) = 0}
m

C regular differential chain
m

C characteristic set of [C] : (h s)∞



Canonicity of regular chains

• Let T ⊆ k[X] be a regular chain with A ⊆
X as the set of the leading variables of T .

Define B = X \A.

• Canonicity. Assume that

– T is auto-reduced,

– for every t ∈ T we have ht ∈ k[B],

– every t ∈ T is primitive as a polynomial

in (k[B])[A].

Then T depends only on Sat(T ) and the

ordering on the variables.



• Among the T such that P = Sat(T ) which

one is the one ?

P =


x31 − x6 − x− y

x8 − z

x10 − t

with x > y > z > t.

(T1) =


(
t4 − t

)
x− ty − z2

tzy2 + 2z3y − t8 + 2t5 + t3 − t2

z5 − t4

(T2) =


(
t4 − t

)
x− ty − z2

t3y2 + 2t2z2y +
(
−t6 + 2t3 + t− 1

)
z4

z5 − t4

• Push the non-algebraic variables down, nor-

malize the initials and clear.



Regular chains and prime ideals

• Every prime ideal P in a polynomial ring
k[x1, . . . , xn] may be given by a regular chain.

P =

 ax + by − c
dx + ey − f
gx + hy − i

m

T =

 gx + hy − i
(hd− eg) y − id + fg
(ie− fh) a + (ch− ib) d + (fb− ce) g

• The relation between both is P = Sat(T ).

• The lex. basis is

xa + yb− c
xd + ye− f

xg + yh− i

yae− ydb− af + dc
yah− ygb− ai + gc

ydh− yge− di + gf

aei− ahf − dbi + dhc + gbf − gec



• The common zeros of every polynomial sys-
tem can be decomposed into finitely many
triangular sets

V(P) = W(T ) ∪W

{
dx + ey − f
hy − i
(ie− fh) a + (−ib + ch) d
g

∪W

{
gx + hy − i
(ha− bg) y − ia + cg
hd− eg
ie− fh

∪W

{
x
(hd− eg) y − id + fg
fb− ce
ie− fh

∪W


ax + by − c
hy − i
d
g
ie− fh

∪ · · ·

where W(T ) denotes the zeros of T that
do not cancel its initials. Note that we
have W(T ) = V(Sat(T )).

• For F ⊆ k[X] one can compute decompo-
sitions of the form

◦ V(F ) = ∪`
i=1W(Ti) or

◦ V(F ) = ∪`
i=1W(Ti).



Ranking conversions
• For R = x > y > z > s > t and R = t > s > z > y > x
we have:

palgie(

 x− t3

y − s2 − 1
z − s t

,R,R)

= s t− z
(x y + x)s− z3

z6 − x2y3 − 3x2y2 − 3x2y − x2

• For R = · · · > vxx > vxy > · · · > uxy > uyy > vx > vy >

ux > uy > v > u and R = · · ·ux > uy > u > · · · > vxx >
vxy > vyy > vx > vy > v we have:

pardi(


vxx − ux

4u vy − (ux uy + ux uy u)
u2

x − 4u
u2

y − 2u

R,R)

=
u− v2

yy

vxx − 2 vyy

vy vxy − v3
yy + vyy

v4
yy − 2 v2

yy − 2 v2
y + 1



PARDI, PODI, PALGIE

Input: In k[X]

◦ two rankings R,R over X,

◦ a R-triangular C set such that Sat(C)
is prime.

Output: a R-triangular set C such that de
Sat(C) = Sat(C).

PALGIE: Prime ALGebraic IdEal implemented
in Aldor, C and Maple,

PODI: Prime Ordinary Differential Ideal,
implemented in C,

PARDI: Prime pARtial Differential Ideal,
implemented in Maple.



Si tu veux arriver à temps,

ménage ta monture

• The main difficulty while computing trian-
gular decompositions is the generation of
superfluous components.

• If we could generate components by de-
creasing order of dimension we could re-
move superfluous components as soon as
they appear by inclusion test.

• However while we are building a large com-
ponent we may have to consider special
cases and then build small components.

• Hence we need to be able to delay some
parts of each computation (gcd, regularity-
test, enlarging a triangular set).



Delayed Splits

• F, F1, . . . , Fd, T, T1, . . . , Td ⊆ k[x1, . . . , xn]. T, Ti

triangular sets.
We put Z(F, T ) := V(F ) ∩W(T ) and define
Z(F, T ) −→D (Z(F1, T1), . . . ,Z(Fd, Td)) if we have:

(D1) Z(Fi, Ti)≺Z(F, T ),

(D2) Z(F, T ) ⊆ Z(F1, T1) ∪ · · · ∪ Z(Fd, Td),

(D3) Sat(T ) ⊆ Sat(Ti),

(D4) Fi 6= ∅ =⇒ F ⊆ Fi,

(D5) Fi = ∅ =⇒ W(Ti) ⊆ V(F ).

This implies:

V(F )∩W(T ) ⊆ Z(F1, T1)∪· · ·∪Z(Fd, Td) ⊆ V(F )∩W(T ).



Decomposing by means of

Delayed Splits

• For p 6∈ Sat(T ) decompose(p, T ) = ([F1, T1], . . . , [Fd, Td])
such that

(i) Z(p, T )−→D ([F1, T1], . . . , [Fd, Td]),

(ii) dim(Ti) < dim(T ) =⇒ Fi 6= ∅.

solve(F ⊆ k[x1, . . . , xn]): L-split of V(F ) by regular chains ==

Tasks := [[F, ∅]]
while Tasks 6= [ ] repeat

choose and remove a process [F1, T1] from Tasks

F1 = ∅ =⇒ output T1

choose and remove a polynomial p Ritt-minimal in F1

p ∈ Sat(T1) =⇒ Tasks := cons ([F1, T1], Tasks)

for [G, U ] ∈ decompose(p, T1) repeat

Tasks := cons ([F1 ∪G, U ], Tasks)


