Balanced Dense Polynomial Multiplication on Multi-cores

Marc Moreno Maza Yuzhen Xie
Ontario Research Centre for Computer Algebra Computer Science and Artificial Intelligence Laboratory
University of Western Ontario, London, Canada Massachusetts Institute of Technology, Cambridge, USA
moreno@csd.uwo.ca yxie@csail.mit.edu

Abstract— In symbolic computation, polynomial muiltipli- an option in our context. Indeed, this would lead us to
cation is a fundamental operation akin to matrix multiplication manipulate univariate polynomials of very large degrees,
in numerical computation. We present efficient implementa- g5y in the order of a machine word. Meanwhile, we aim
tion strategies for FFT-based dense polynomial multiplication
targeting multi-cores. We show that balanced input datacan at.computmg OveEl fle_ld_Z/pZ wherep is a machine word
maximize parallel speedup and minimize cache complexity Prime number, for efficiency reasons. Therefore, we would
for bivariate multiplication. However, unbalanced input data, not always be able to find i&@/pZ the appropriate primitive
which are common in symbolic computation, are challenging. roots of unity for performing a Cooley-Tukey 1-D FFT.

We provide efficient techniques, what we callcontractionand In the multivariate case, the row-column algorithm for

extensionto reduce multivariate (and univariate) multiplication L
to balanced bivariate multiplication Our implementation in multl-d.lmens-mnal FFT, reviewed in Section II, proceeds
Gi | k++ demonstrates good speedup on multi-cores. one dimension after another and performs several one-
Keywords parallel symbolic computation: parallel poly- dimensional FFTs along one dimension at a time. This yields
nomial multiplication; parallel multi-dimensional FFT/TFT; concurrent execution without even requiring that each one-
Cilk++: multi-core: dimensional FFT is computed in a parallel fashion. We take
advantage of this flexibility to make use of non-standard and
|. INTRODUCTION memory-efficient one-dimensional FFT techniques, such as
Polynomials and matrices are the fundamental objects ofiruncated Fourier Transform (TFT), for which no efficient
which most computer algebra algorithms operate. In the lagparallel algorithm is known. More importantly, we do not
decade, significant efforts have been deployed by differenseek a very fine grain of parallelism in our multiplication
groups of researchers for delivering highly efficient soft-code since it will itself be a low-level routine in highen
ware packages for computing symbolically with polynomialscodes for computing polynomial GCDs and solving polyno-
and matrices. Among them: LinBox [12], MAGMA [13], mial systems, for which parallel algorithms are availabid a
NTL [16]. However, most of these works are dedicated to sedistributed computing is desired.
rial implementation, in particular in the case of polynolsia Efficient implementation of algorithms on multi-cores
None of the computer algebra software packages availablmakes necessary to consider complexity measures such as
today offers parallel implementation of asymptoticallgtfa parallel speedup and cache complexity. We analyze the
algorithms for polynomial arithmetic. The work reported performances of dense multiplication based on row-column
hereafter aims at filling this gap. multi-dimensional FFT for these complexity measures in
We present high-performance techniques for the impleSection Ill. On bivariate input and when the partial degrees
mentation of multivariate polynomial multiplication tatg of the product are equal, the performances are nearly op-
ing multi-cores. Symbolic computations with polynomials timal; we call balancedthis degree configuration. When
rely, indeed, directly or indirectly on multiplication. We the ratio between these two partial degrees is large, our
commit ourselves to polynomials over finite fields sinceexperimentation confirms poor performances.
the so-calledmodular techniqueseduce all computations Motivated by these theoretical and experimental results,
to such fields of coefficients. In addition, we focus onwe show how multivariate multiplication can be efficiently
dense polynomial arithmetic because most computer algebraduced tobalanced bivariate multiplicationbased on 2-
algorithms, such as the Euclidean Algorithm and its vasiant D FFT. With respect to a multiplication based on
tend to densify intermediate data, even when the input andimensional FFT, our approach may increase the input data
output polynomials are sparse. See Chapter 5 in [8] for asize by at most of factor of. However, it provides much
extensive presentation of these ideas. larger parallel speedup as reported in our experimentation
Dense representations permit the use of multiplication Our approach combines two fundamental techniques that
algorithms based oirast Fourier Transform(FFT) which we call contractionand extensionpresented in Sections IV
run in quasi-linear sequential time w.r.t. output size, whe and V. The first one reduces multivariate multiplication to
counting the number of operations on coefficients. Thishivariate one, without ensuring that dimension sizes are
result holds for univariate as well as for multivariate pay equal; however, the work remains unchanged and in many
mials. We observe that reducing multivariate multiplioati practical cases the parallelism and cache complexity are
to univariate one through Kronecker’s substitution is notimproved substantially.

The technique of extension turns univariate multiplicatio if and only if s divides p — 1. Therefore, the product of
to bivariate one. This has several applications. First, itwo univariate polynomialg, g over K can be computed by
permits to overcome the difficult cases where primitive soot evaluation and interpolation based on the radix 2 Cooley-
of unity of “large” orders cannot be found in the field Tukey Algorithm (see the algorithm of Section II-B with
of coefficients. Secondly, combined with the technique ofn = 1) if and only if the degreel of the productfyg is less
contraction, this leads in Section VI to balanced bivariatethan the largest power & dividing p — 1. When this holds,
multiplication. computingf g amounts to% lg(s)s+3s operations irK using

The techniques proposed in this paper are implemented ithe Cooley-Tukey Algorithm (and (1g(s) + 1)(d + 1) + 3s
the Cilk++ language [3], which extends C++ to the realm ofoperations inK using TFT) wheres is the smallest power
multi-core programming based on the multi-threaded modebf 2 greater thand. When this does not hold, one can
realized in [7]. The Cilk++ language is also equipped withuse other techniques, such as the @w@ge-Strassen Al-
a provably efficient parallel scheduler by work-stealin [2 gorithm [8, Chapter 8], which introduces “virtual primigv
We use the serial C routines for 1-D FFT and 1-D TFTroots of unity”. However, this increases the running time to
from thenodpn library [10]. Our integer arithmetic modulo O(slg(s)lg(lg(s))) scalar operations.

a prime number relies also on the efficient functions from o S

modpn, in particular the improved Montgomery trick [14], B: Multivariate Multiplication

presented in [11]. This trick is another important spedifici Let f,g € K[z1,...,z,] be two multivariate polynomials
of 1-D FFTs over finite fields which makes their paralleliza- with coefficients inK and with n ordered variableg:; <
tion even more difficult. All our benchmarks are carried out- - - < z,,. For each, let d; andd’; be the degree im; of
on a 16-core machine with 16 GB memory and 4096 KB L2f and g respectively. For instance, if = z3zo + 2323 +
cache. All the processors are Intel Xeon E7340 @ 2.40GHza32% + 1 we haved; = 3 andd, = d3 = 2. We assume
the existence of primitives;-th roots of unityw;, for all 7,
wheres; is a power of 2 satisfying; > d; +d’; + 1. Then,
Throughout this papeK designates the finite field/pZ the productfg is computed as follows.

with p elements, wherg@ > 2 is a prime number. In this Step 1: Evaluate f and g at each point of then-
section, we review algorithms and complexity results for dimensional grid ((wi',...,wt*),0 < e <
multiplying multivariate polynomials oveK by means of s1,...,0 < en < sp) via multi-dimensional FFT.
FFT techniques. We start by stressing the specificities of giep 2: Evaluatefg at each pointP of the grid, simply
performing FFTs over finite fields. by computingf(P) g(P),

A EETs over Finite Fields Step 3. Interpolate fg (from its values on the grid) via

multi-dimensional FFT.
The above procedure amounts to

Il. BACKGROUND

Using the Cooley-Tukey algorithm [4] (and its extensions
such as Bluestein’s algorithm) one can computeDfserete
Fourier Transform(DFT) of a vector ofs complex numbers 9 2 9
within O(s1g(s)) scalar operations. For vectors with coordi- 5 > (Ts)sitelsi+(n+1)s = 3518(s)+(n+1)s (1)
nates in the prime fiel& two difficulties appear with respect =1 57
to the complex case. operations inK, wheres = s; - - - s,,. In practice the benefit

First, in the context of symbolic computation, it is de- of using 1-D TFT instead of 1-D FFT increases with the
sirable to restrict ourselves to radix 2 FFTs since the radiumber of variables and the number of cores in use. The cut-
must be invertible irK and one may want to keep the ability off criteria and a detail performance evaluation are regbrt

of computing modulo small primes, evenp = 3,5,7,... in [15].

for certain types modular methods, such as those for poly- Consider now the following map from the monomials of
nomial factorization; see [8, Chapter 14] for details. As aK[z,...,z,] to those ofK[z;]:

consequence the FFT of a vector of sizeover K has

e1tazeztagez+-+anen

€1 .62 .3 €n 5 T
1

the same running time for alf in a range of the form Ty Lo X3™ Ty
£ o9l+1 i i

[2¢,25F1). This stalrcasephenom_enon can be smoothenedwherea2 —ditd 41, a3 =as(dotds 1), ..., an =

by the so-calledTruncated Fourier Transforn(TFT) [9]. n_1(dn_y + d'n_1 +1). This induces a polynomial ring

In most practical cases, the TFT performs better in te”mf’lomomorphismtIf (calledthe Kronecker substitutiorfrom
of running time and memory consumption than the radix-2 [

)) X K[z1,...,z,] to K[z1], hence a map satisfying(a + b) =
Cooley-Tukey Algorithm; see the experimentation reportedq,(a) + W(b) and ¥(ab) = ¥(a)¥(b), for all polynomials
in [11]. However, the TFT has its own practical limitations. a,b. Moreover, one can check thay is the only pre-image

In particular, no efficient parallel algorithm is known fdr i of U(f)¥(g). This latter polynomial has degree
Another difficulty with FFTs over finite fields comes from '

the following fact: a primitives-th root of unity exists inkK Opi=(d+d1+1)--(dy+d,+1)—1.

It follows from this construction that one can reduce multi- In Section 1lI-D, we claim that dense multivariate mul-

variate multiplication to univariate one.lK admits primitive tiplication can be efficiently reduced to balanced bivariat

s-th roots of unity fors,, < s = 2¢ for some/, then using multiplication. Efficiently means here that the overheatls o

the FFT-based multiplication, one can compfitein at most the reduction are in general much less than the performance

glg(s)s+35 operations irkK. Using the TFT approach, this gains. Sections IV to VI formally establish this reduction

upper bound becomed(lg(s) + 1)(, + 1) + 3s. and prove its performances, including experimental result
Multivariate multiplications based on multi-dimensional

FFT and Kronecker substitution have similar serial run-A. Parallel Running Time Estimates

ning time. However, the latter approach has at least two

drawbacks. First, the fieldt may not admit primitives- of Section II-B with the multi-threaded programming model
th roots of unity. Recall that primitive-th roots of unit k g
roots ot unity. wecaf that primifive-ih roots of uniy of [7]. Under the assumption that 1-D FFT may be run

exist in K if and only if s dividesp — 1, see [8, Chapter X . .
8]. Secondly, as mentioned above, it is desirable to achiev%?queht'a"y’ the following estimate holds for the span of

efficient parallel multiplication without assuming thatDL- 9
FFTs are performed in a parallel fashion. 3 (s1lg(s1) + -+ snlg(sn)).

Let us consider the parallel running time of the algorithm

[1l. M AIN RESULTS Therefore, the parallelism (i.e. theoretical speedupptep

I L 1 is lower bounded by
The specificities of 1-D FFTs over finite fields, see

Section II-A, lead us to the following hypothesis. We assume s1++Splg(s1- - sn)
throughout this paper that we have at our disposhlaak s11g(s1) + - + s lg(sn)
box computing the DFT at a primitive’-th root of unity
(when K admits such value) of any vector of sizein and thus by
the range(2¢=',2¢] in time O(slg(s))). However, we do s/max(sy, ..., 5n).)
not make any assumptions about the algorithm and its
implementation. In particular, we do not assume that thisSimilar estimates can be given f8tep 3 while the costs of
implementation is a parallel one. As mentioned in the intro-Step 2 can be neglected comparing to the others.
duction, we do not seek a very fine-grained parallelism for Observe thatnax(sy,...,s,) is lower bounded by!/".
our polynomial multiplication since it is meant to be a core-Hence, for a fixeds, one could conclude that the larger is
routine in higher-level parallel code. Therefore, we rety o n, the better. In practice, this would be a mistake. Suppose
the row-column multi-dimensional FFT to create concurrentfor instance that = 2¢ for some/. Assume first that each
execution in the algorithm presented in Section II-B. s; can be set t@, implying n = £. In this case the serial
This strategy has its own challenges. Suppose that onand parallel running time foBtep 1 are respectively given
dimensionz; has a small size;, say in the order of units, by 2¢2¢ and 2¢2; hence the theoretical speedup2s.
whereas another dimensian has sizes, in the thousands. Alternatively, we can set each to be 2¢/2, implying n =
Then a lot of small FFTs have to be performed alang 2. The parallel running time now becom%ﬂm; hence
while only a few large FFTs can be run simultaneously alonghe theoretical speedup /2. Apparently the parallelism
Zo. In the former case, the parallel overhead may dominatefpor the casen = ¢ is more attractive than that of =
reducing severely the benefits of concurrent runs. In therlat 2. But this is neglecting parallel overhead! In our analysis
case, the measured speedup factor may simply be too smaif the casen = ¢, we are implicitly assuming that one
by lack of parallelism. can run concurrentlg‘~! threads with each of them doing
We formalize this remark in Section IlI-A where we very little work (actually computing a 1-D FFT of siz.
give a lower bound for the parallel running time of the Not only is this not realistic ag becomes large, but also
algorithm of Section 1I-B. Then, in Section IlI-B we give this makes simply no sense since the overhead of executing
an upper bound for the number of cache misses of tha thread is certainly greater than the cost of executing an
same algorithm. We observe that these lower and uppdrFT of size2. In the casen = 2, a theoretical speedup
bounds reach a “local” maximum and minimum respectively,of 2/2 is already good, say fof > 20. In addition, the
when the number of variables equalg and the dimension work performed by each thread is an FFT of s¥2€ which
sizes of the 2-D FFT are equal. Therefore, the algorithm ofs larger (for theCi | k++ concurrency platform) than the
Section II-B performs very well in terms of parallelism and overhead of executing that thread.
cache complexity on bivariate polynomial input when the Our experimentation hereafter confirms that the case
partial degrees of the product are equal. For this reason, w2 performs better than = ¢ for a fixeds = 2¢. Finally, we
introduce in Section IlI-C the concept balanced bivariate observe that fom = 2 and for a fixeds the lower bound
multiplication s/max(s1,...,8,) iS maximum ats; = so = +/s.

B. Cache Complexity Estimates

. . . n+1 + (i + ..
We now turn to cache complexity estimates, using the? (5L St , v
lower and upper bounds are respectively maximized and

theoretical model introduced in [6]. We focus @tep 1

by s/max(sq,...

,s,) and its cache complexity is within
-+). For fixed s and n, these

again. LetL be the size of a cache line. We assume that théninimized when the paif, g is balanced. The second bound
cache size is large enough such that all data involvedby réaches a local minimum at=2 ands; = s, = V/s.

concurrent runs of 1-D FFT (whe® is the number of pro-
cessors) fit in cache. This is justified in the experimentatio
with our balanced bivariate multiplicatiorfsee Section VI)

where our 16-core machine has 4MB of L2 unified cache and
each FFT vector has at most size 128KB. We also assume

that ourn-D FFT is performed without data transposition
by loading directly from main memory to cache the vectors
on which 1-D FFT is run. This technique is used in the

implementation of the FFTW [5]. Therefore, cache misses
arise essentially when reading data before performing a 1-D

FFT. For a vector of size; the number of cache misses is
at mosts; /L + 1. Thus the number of cache missesSap
1 and Step 3 fits in

At Step 2, this number is withinO(+ + 1). Hence, if

16.00 +

Bivariate Multiplication

14.00 -

12.00 -

10.00 +

8.00 A

Speedup

6.00 A

4.00 -

2.00 -

0.00

6 8 10 16
Number of Cores

4 12 14

Figure 1. Speedup of bivariate multiplication on balanced input.

Multiplication

- — - linear speedup

Q(s1,...,s,) denotes the total number of cache misses for
the whole algorithm, we obtain
1 1
Q(sla"wsn)écs +CS(;++?) (3)
1 n

for some constant. As in Section IlI-A let us consider
s =s1--- s, to be fixed. The following is easy to prove:
n 1 n n 1
si/n = gy Sn
Moreover this latter inequality is an equality when eagh
equalss'/™. Noting "T“ < 2 for n > 1 we deduce:

1
Sl/n)

2

I + 4)
whens; = s/ holds for alli. This suggests to minimize,
thus settingn = 2. Therefore, for fixeds, the upper bound

of (3) reaches a local minimum at= 2 ands; = sy = /s.

Q(Sl,...

ySn) < nes(

C. Balanced Bivariate Multiplication
The analysis of Sections IlI-A and IlI-B suggests that,

—&— bivariate (32765, 63)
| —><—8-variate (all 4)
4-variate (1023, 1, 1, 1023) .
—e— univariate (25427968) .
d

s

,

8 10 12 14 16
Number of Cores
Figure 2. Speedup of multiplication for non-bivariate or non-

balanced input.

We present here experimental results which confirm the

for bivariate input, the algorithm of Section II-B is nearly above analysis. Figure 1 provides speedup factors of dif-
optimum in terms of parallelism and cache complexity whenferent balanced pairs of bivariate polynomials. The number
s1 = Sg, that is, when the partial degrees of the product areassociated with each curve is the common partial degree

equal. This brings the definition and proposition below.

Definition 1: The pair of polynomials f,g €
K[z1,...,2,] is balancedif all the partial degrees of
their product are equal, that is,df + d’; = d; + d’; holds
forall 2 <i<n.

Proposition 1: Under our assumption of 1-D FFT black
box, for two multivariate polynomials, g the theoretical
speedup of the algorithm in Section II-B is lower bounded

of the input. This illustrates the good performances of the
algorithm of Section 1I-B for such input. For the partial
degree 8191, our implementation reaches a speedup factor
of 14 on 16 cores. Figure 2 provides speedup factors
of different pairs which are either non-bivariate or non-
balanced. The performances reported there are clearly much
less satisfactory than what could be observed on Figure 1.
Note that these poor results are obtained on both non-
balanced bivariate and balanced non-bivariate input.

D. Reduction to Balanced Bivariate Multiplication IV. CONTRACTION

The results of Sections Ill-A to IIl-C indicate that a Before introducing the concept of contraction in Defi-
reduction to bivariate multiplication with balanced input Nition 3, we specify in Definition 2 how polynomials are
could improve the performance of multivariate multiplica- '€Presented in our implementation. Proposition 2 statas th
tion based on FFT techniques. This is, indeed, possible argPntraction can be performed essentially “at no cost” with

we achieve this reduction through the rest of the paper. this representation. The experimental results reporteteat

In Section IV we describe a first fundamental technique end of this section illustrate the benefits of contraction.
" As in Section Il, letf, g € K[z, ..., x,] be multivariate

that we callcontraction This generalization of Kronecker’s X X R ! X X
substitution allows us to turn a-variate multiplication (for ~Polynomials with coefficients in the prime field = Z/pZ
n > 2) into a bivariate multiplication without any overheads 2"d W'ﬂ) ordered variables, < --- < x,. For each, let
in terms of serial running time. This technique provides? @ndd’; be the degree in; of f andg respectively.
performance improvements on many practical cases. Definition 2: Let /;, ..., ¢, be positive integers such that
In Section V, we study how univariate polynomial multi- ¢; > d; holds for all1 < i < n. Definel := (¢1,...,£,).
plication can be performed efficiently via bivariate muitip We call £-recursive dense representatigRDR, for short)
cation based on 2-D TFT. This technique, that we eal of f any one-dimensional arra§ of sizel := ¢, ---¢,, and
tension has several motivations. First, under our assumptiomwith integer indices in the range- - - (¢ — 1) such that the
of 1-D FFT black-box (which may be a serial program) this following two conditions hold.
trick creates concurrent execution for FFT-based unitaria (i) the coefficient inf of the monomialz'z5? - - - x¢r

1 n

multiplication. Secondly, when the base fiekl does not for 0 < e; < d;, is in the slotF[j] of F with index
possess primitive roots of unity of sufficiently large osler j=e1+lies+lilses+ -+ (b Ly_1)en,
for performing a Cooley-Tukey radix-2 FFT, this trick can ;) the coefficientF[j] is 0 whenever the indey equals
reduce the computations to a case where this latter algorith e1 4 lreg + lilges + -+ (y - Ln_1)e, Where0 <
can be applied. Finally, this technique of extension, toget e; < 0; for 1 <i <n andd; < e; holds for somei;
with that of contraction studied in Section 1V, is the basis such a coefficienf[;] is called apadding zero
of dense multivariate multiplication vibalanced bivariate o
multiplication presented in Section VI. Remark 1:Whenn = 1, an{-RDR of f is given by any
vector I’ of size at leastl; + 1 where F'[i] is the coefficient
a5 4-variate Multiplication of 2 in f when0 < i < d; and 0 otherwise. Consider
20 | degrees = (1023, 1, 1, 1023) nown > 1 and letéq, ..., ¢, be positive integers such that
35 —e—4D-TFT method, size = ¢; > d; holds for all1l < i < n. For allo < i < d,, let
2047x3x3x2047 ¢i € K[zy,...,z,-1] be the coefficient off regarded as a
30 T Balanced 2pTe T method, univariate polynomial inz,, and C; be an(fy,...,0,1)-
2 RDR of ¢;. Let Z4,41,..., %, 1 be zero-vectors, all of
8 sizet,---£,_1. Then anf-RDR of f is obtained by con-
£ catenating’o, C, ..., Cq., Zq, +1,-- ., Zs, —1 in this order.

This fact justifies the termecursive dense representation

Recall how the producfg can be computed in parallel via

5 - n-dimensional FFT in the context of our implementation.
o . . . : . . — During Step 1 and Step 3 of the algorithm of Section I11-B,

o 2 4 6 8 10 12 1 16 n-dimensional FFT's are performed by computing in par-

Number of Cores allel one-dimensional FFT’'s along;, for i = 1,...,n
Figure 3. Timing of 4-variate multiplication with unbalanced input Successively. As pointed out in Section lll, this approach
via 4-D TFT vs balanced 2-D TFT methods. suffers from the following bottleneck. In practice (and in
particular when solving systems of polynomial equations)

Figures 3 gives the timing of a 4-variate multiplication the partial degred; is likely to be large whereas,, ..., d,

with unblanced input via 4-D TFT method vs balanced 2-are likely to be as small a$ or 2. This implies that the

D TFT method. Even onl core, the balanced 2-D TFT n-dimensional FFT approach will compute a lot of “small
method is2.5 times faster. The work by the two methods 1-D FFTs” (whereas such 1-D FFTs of short vectors are
is essentially the same. However, our balanced 2-D TFTot worth the game) and only a few “large 1-D FFTs”
method has better cache efficiency. Moreover, it scales weloncurrently (leading to poor parallelism). To deal witisth
on 16 cores. As a result, the total “net speedup” using“unbalanced work” the techniques developed in this paper
balanced 2-D TFT method instead of the direct 4-D TFTaim at transforming the polynomialg and g into bivariate
method reache81 on 16 cores. ones in a way that they can be efficiently multiplied by a

2-D FFT approach. In this section, we accomplish a firstExperimental results. In our experimentation illustrated in
step toward this goal using the notion afntraction Figure 4, we study the case of multiplying twivariate
polynomials f and g. Their partial degreeds,ds,d’s,d’s

Definition 3: Let ¢4, ..., ¢, be positive integers such that . ; , .
¢; > d; holds for all1 < i < n. Let m be an integer are all equal tol while d, = d'y andd, = d'y vary in
-y ' the rangel024 - --2047. These degree patterns are typical
satisfyingl < m < n. Definea; = 1, as = ¥4, . X . .
in computing normal forms based on the algorithm in [11].
az = (14 « = {4 4 « =1
3 - 1425« vy m 1€2 " " tm—1, m+1 — ’
OéerQ - €m+1, rres On = £7n+1€m+2 N '67171. Then' we 4-D TFT method on 1 core (43.5-179.9 s) X
seta := (a,...,a,). Consider the following map from Kronec(l;ersub$tituti?2zl)3f4-liz>E)%;:E_)I_TFTlon103|§8(3§ééés) +
. ntraction -D t - n I .6-80..
the monomials ofK Tr1,...,2Tn| tO those ofK L1y, Lo+1]- Contraction of 4-D to 2-D TF%’ or?cléoco?es (8.20-13.2x spe%dup?olfie-éOx netgairﬁ% °
)) ’ +
180 |
wag A e =t
135 | g X I T RN
where ¢ = aje; +ages + -+ apme, and cg = 120 - %}&g&é& 3 e
Ot 1€mt1 + Qmi2€mas 4 -+ -+ anen. This induces a "™ 'so [x%gx§xfg R
. . . < X X
polynomial ring homomorphisn®,, from K[z, ..., z,] to or § xﬁgxﬁ%;
K[z1, zmy1], that we calla-contraction Hence, this map a5 f ziif%”” 800

satisfies¥, (ab) = ¥, (a) T, (b), for all polynomialsa, b. 15

Proposition 2: With the notations of Definition 3, define e
tq :€1€2~--€m,t2:€m+1-~-€n andzz(tl,tg).LetF be =d;’ 2 2048
an one-dimensional array of sizeto = ¢1---£,. If Fis an

¢-RDR of f, thenF is also at-RDR of ¥, (f). Conversely, Figure 4. Timing (s) for4-variate multiplication by direct 4-D TFT
i i . (P x; on 1 core vs Kronecker’s substitution dncore vs contraction from
if F'is at-RDR of ¥,(f), then it is anl-RDR of f. 4-D 1o 2.0 TFT onl core andlé cores.

d,=d,’ (dy=dy’=dy=dy'=1)

Proposition 2 follows easily from theecursive structure _
of RDR’s, as pointed out in Remark 1. We explain now On 1 core, we compare three methods for computing

how we make use of contraction for computing the producthe productfg: direct 4-D TFT, 1-D TFT via Kronecker
fg. We definet; := d; + d’; + 1, for all i. Then, we set substitution (see Section II-B) and our contraction to 2-
£:=(ly,...,0,). Let F andG be(-RDR of f andg respec- D method. We should observe first that the Kronecker

tively. We choose an integes such that the “distance” given substitution method fails on most input due to the fact #at
by |01l — by - - - £ is minimum. With these values does not have primitive roots of unity of sufficiently large
for ¢ and m, consider thea-contraction of Definition 3. order; in those cases our contraction method clearly out-
Then U, (f) and ¥,(g) are two bivariate polynomials in Performs the direct 4-D TFT method, which was expected,
K[xl,a:,;]. By the choice of/;’s, the polynomialfg is the ~based on our complexity estimates. When the Kronecker
only pre-image o, (f) x ¥, (g) under¥ . Therefore, this substitution method does not fail, our contraction method
map can be used To Compﬁf@ via a 2_5 FFT approach. is Clearly the most efficient technique. The fact that the
Moreover, it follows from Proposition 2 that this change of contraction outperforms Kronecker's substitution in ttase
representation is made at no cost! In addition, by the choicéan probably be explained by cache complexity arguments,
of m, the degrees ob,(fg) W.r.t. z; andz,, are as close see the discussion on FFT computation in [6]. The results
to each other as possible. also show that the contraction method scales very well on
Let us compare the work, the parallelism and the cachd6 cores, reaching a speedup factor betweerto 13.2 for
complexity of the multiplication based onD FFT with the this large range of problems. The net speedup on 16 cores
multiplication based on contraction and 2-D FFT approachW.I.t. the direct 4-D method oh core is between6 and30.
To keep the discussion simple, let us assume that we can
chooses; = ¢; for all i. (Recall thats; is the size of our o
1-D FFT input vectors along;.) This is actually realistc -t f>9 € K[z1] be two non-constant univariate polyno-
if all 1-D FFTs are computed by TFT, which is the case™Mia!s with coefficients in the prime fiel& = Z/pZ and
in our implementation. It follows from Proposition 2 and with respective degreesy, d,. Letb > 2 be an integer. We

Expression (1) that the work is unchanged. The inequality CONsider the mag, from K[z,] to Klz1, -] that replaces
3 1 1 ntl 1 any monomialz{ by z}x%, wherewu,v are the remainder

S +) +(—+---4+—) and quotient in the Euclidean division efby b, and that
L sicSme1 Smoccsn L 51 Sn leaves all coefficients unchanged. More formafly is the

combined with Expression (3) suggests that contractiortanonical ring homomorphism frorfK[z,] to the residue
is likely to reduce cache misses. As discussed in Secelass ringK |z, x2]/(z} — x2).

tion 1lI-A, “contracting dimensions” will keep enough the- We determine a value fob such that the producfg

oretical speedup while reducing parallel overhead. can be obtained by computinB, (f)®,(g) using a number

V. EXTENSION

IN

of operations inK which is at most twice the number of constructs arids+d,+1)-RDR of fg from H, the(sq, s2)-
operations for a direct computation ijx;]. Moreover, we RDR of &,(f)®,(g). Recall thats; ands, have been set to
impose that the pai®,(f), ®,(g) is balanced, or nearly 2b—1 andgy+ g4+ 1 respectively. Define := ds +d, and
balanced. Indeed, the cache complexity upper bound giveq := ¢, +¢,. This procedure clearly runs ifi(d) operations

by Expression (3) is minimized in this case. in K. Finally, we obtain Proposition 3.
To this end, we need some notation. lsefs, be positive for u:=0---(b—1) do Ulu] := H[u]; end da
integers andF,G, H be (s1,s2)-RDR’s of ®&,(f), ®u(g) for w:=1---¢do
and @,(f)®,(g). Since the produc®,(f)®,(g) will be X:=wb, Z:=w(2b—1);
computed by means of 2-D TFTs applied o and G, Y= (w—1)(2b—1)+b;
we shall determiné, s;, s, such that boths := s;s, and for u:=0---(b—2) do

I ible i d d K UX +u]:=H[Y +u]l+ H[Z +u]; end dg
|s1 — so| are as small as possible in order to reduce wor UIX + (b—1)] = H[Z + (b— 1)];

and cache complexity, and improve parallelism as well. Let end dg

qf,7¢ (resp.qq,ry) be the quotient and remainder in the X :=(¢+1)b; Z:=d- X,

Euclidean division ofi; (resp.d,) by b. Since®;(f)®(g) Y :=q(2b—1) +b;

will be calculated by 2-D TFTs ovekK, this polynomial for u:=0---Z do U[X +u]:= H[Y +u]; end da
product will be obtained as an elementldfz,, x| (not one Proposition 3: Let f,g € K[z1] have respective positive
of K[z1,x]/(x% — 22)). Hence the degrees @f,(f)®;(9) degreesdy,d,. Then, one can compute froni, g a pair
w.r.t. z; andxy will be at most2b — 2 andgy + g,, respec- of bivariate polynomialsh,k € K[z, z] within O(d)
tively. Thus we should set; = 2b—1 andss = gy +¢,+1. bit operations, such that the produg¢y can be recov-
Roughly speaking, the RDR'8, G of f and g contain at ered fromhk within O(d) operations inK, and such that
least 50% of padding zeros. More precisely, the size (i.es;s, < 2(dy + dy) + 3 and |s; — s2| < 2 hold, where
number of slots) of each of the array$G, H is deg(h, 1) +deg(k, k1) < s1, deg(h, z2) +deg(k, k2) < s2
5= 20(q; +) + (51 — s2) + 1. andd = dy + d,.

Extension of 1-D to 2-D TFT on 1 core (2.2-80.1 s)
1-D TFT method on 1 core (1.8-59.7 s)

iti I E i f 1-D to 2-D TFT on 2 1.96-2.0: dup, 1.5-1.7. i
It follows from Lemma 1 hereafter that it is always possible e 0 o R oRean o 5711 6 et g

X o +

to chooseb such that the absolute valyie — s, is at most e L
equal to2. This implies the following:s < 2(d; + d,) + 3. 70 |
Since the size of the univariate polynomfaj is dy+d,+1, 60 EO5E, s s bt
this b “essentially” realizes our objectives of increasing thaime 50 | 0 +++**+;O
data size at most by a factor of 2, while ensuring that our ¥ *g?f 3.
2-D TFT'’s will operate on (nearly) square 2-D arrays. FFIL T

Lemma 1:With df,dg,b,q¢,q4,7¢,74 @S above, given a

positive integew, definet; := (2b—1) andts := (¢ +q4+
1)o. There exists at least one intedgesuch that we have
—1 < t; — ts < 20. In particular, foro = 1, the inequality

|s1 — s2| < 2 can be achieved. If, in additionl; = dy is Figure 5. Univariate multiplication timing (s) via extension to 2-D
satisfied, there exists such that|s; — so| < 1 holds. TFT on 1, 8, 16 cores vs direct 1-D TFT.

Proof: We solve forb (as positive integer) the quadratic ~ We stress the fact that, the construction that has led
equation2b® — ob — (ds + dy)o = 0, which meanss; = s2. to Proposition 3 permits to efficiently multiply univariate
Its discriminant isA := (o + 1)® + 8(dy + dg)o. Letk be polynomials via 2-D TFT without requiring that 1-D TFTs
the positive integer satisfying® < § < (k+1)>. We define are computed in a parallel fashion. Moreover this strategy
b := ZHEL Fori = —1,0,1,2, elementary calculations allows us to take advantage of FFT techniques evindbes
bring the inequalities:-2 < t, —t; <20, ~1 <t —t2 < not admit primitive roots of unity of sufficiently large onde
20, =1 <t; —ty <20 andl <, —t2 < 20. For the case for using the radix 2 Cooley Tukey Algorithm. Corollary 1
whereo = 1 andd; = dy, we have|s; — so| < 1 for either states that over any field of characteristic different from
b=k orb=FK +1 with k'* < dj < (k' +1)2, B 2 our techniques compute the product of two univariate
polynomials of degreé within O(d1g*(d)) coefficient oper-
ations. This is slower than Sehage-Strassen Algorithm [8,
Chapter 8] which runs it®(d1g(d) 1g(1g(d))) but for which
no parallelism or cache complexity results are known.

Once the bivariate produd,(f)®,(g) is computed, one
task remains: converting this polynomial to the univariate
polynomial fg. This operation is non-trivial since, stands
for 24 meanwhile the degree @b, (f)®,(g) W.r.t. z; can
be larger tharb, but at most equal t@b — 2. Elementary al- Corollary 1: Let f,g € K[z;] be non-zero polynomials
gebraic manipulations lead to the pseudo-code below whicbf degreed — 1. Then, one can compute the produtj

within O(d1g®(d)) operations inkK. In this section, we develop a “short cut” which combines
extension and contraction in a single transformation. In
order to focus on the main ideas, we shall assume first
that the input polynomials are iBhape Lemma positipn

see Definition 4. This assumption is actually a practical
have used the fact that the degrees @indg are equal, see . . .
Lemma 1.) Therefore the overhead factor between a radix ?bservatlon (formalized by the so-calléthape Lemméd])

Cooley Tukey Algorithm (if the appropriate primitive roots or the polynomlals de_scnpmg the symbollc_solutlons of
o : polynomial systems with finitely many solutions. In Re-

exist inK) and our extension method {dd — 2)1g(4d —2) 115 e describe how to relax this assumption

divided by(2d —1) lg(2d—1), which is at most for d > 2. '

Observe that each partial degreewof: is in O(v/d). It could Definition 4: The pair f,g € Klz1,...,2,] is in Shape

happen that one of these degrees is still too large for rgnninLemma positionf d; + 1 andd’; + 1 exceed the products

the radix 2 Cooley Tukey Algorithm. One can, then, apply(d2+1)---(d, +1) and(d's+1) - - (d',, + 1) respectively.

to h, k the construction of Proposition 3 in order to extend to This assumption suggests to extend the variableo two

4 variables. Observe that the number of consecutive calls tg

. L . variabl h th n rned vi ntraction
this construction is at mosg(lg(d))); hence the cumulative ariablesey, y such thatf, g can be turned via a contractio

o - U, from K[z1,y,z2,...,2,] t0 K[z1,y] into a balanced
1g(1g(d))) 2 a 1,Y, T2, y In 1, Y
overhead is withint = lg“(d) yielding the result.m pair of bivariate polynomials.

Experimental results. We compare the timings of univariate ~ For an integerb > 2, we consider the mapd,
polynomial multiplications based on direct 1-D TFT and ourfrom K[z1, x2, ..., z,] t0 K[z1,y, 22, .. ., x,] that replaces
extension method to 2D, for input degree ranging betwee@ny monomialz{ by z}y”, where u,v are the remain-
8126460 and32505900. The results are reported on Figure 5. der and quotient in the Euclidean division af by b,
On 1 core, our extension method is slower than the direcand that leaves all coefficients and other monomials un-
1-D TFT method for about0%. This is not a surprise since changed. More formally®, is the canonical ring homo-
we know that the extension from 1-D to 2-D can increase thenorphism fromK][z1, zo, ..., z,] to the residue class ring
size s of the product by (at most) a factor 8f On 2 cores, Kz1,vy,...,x,]/{z} —y).
the extension method provides a speedup factor betdisen ~ We shall determiné such that after contracting the vari-
and 1.7 with respect to the direct 1-D TFT method. On 16 ablesy, zs, ..., x, ontoy in the polynomials®,(f)®s(g),
cores, this gain ranges betweérs and 11.5. These data the resulting bivariate polynomials andk form a balanced
also show that extending univariate polynomials to baldnce pair. The construction is similar to that of Section V. Let
bivariate pairs can create substantial parallelism eveanwh si1, s, be positive integers andl, K be (s1, s2)-RDR’s of
1-D FFTs are executed serially! h and k. Defineo := (de + d'2+1)---(d, + d'r, + 1).
Let ¢y and g, be the quotients in the Euclidean division
by b of d; andd’; respectively. Following the reasoning of
We turn now to the question of performing multivariate Section V, we sek; =2b — 1 and s2 = (g5 + ¢4 + 1)o
polynomial multiplication efficiently via bivariate muii- and we aim at determining such that boths := s;s5 and
cation, based on 2-D TFTs applied to (nearly) balanceds; — s;| are as small as possible, in order to reduce work
pairs. We calbalanced multiplicatiorthe resulting strategy. and cache complexity, and improve speedup factors. Since

Proof: The number of terms (null or not) ifig is d; +
dg+1, thatis,2d—1. The number of terms ink is bounded
by 2(ds +dg) +2, that is,2(2d — 2) +2 = 4d — 2. (Here we

VI. BALANCED MULTIPLICATION

As in Sections Il and IV, letf,g € K[zy,...,2,] be two o is regarded as small (comparingdp andd’;), Lemma 1
multivariate polynomials with coefficients in the prime flel provides us with a candidate Our experimental results
K = Z/pZ and with ordered variables; < -+ < x,. confirm that this choice achieves our goals.

For eachi, let d; andd’; be the degree with:; of f andg

Remark 2:To transform a pairf, g into a pair in Shape
Lemma position withinO(s) bit operations, we proceed as
follows. We re-order the variables such that there exists an
index j satisfyingl < j < n, (di +1)---(d; +1) >
(djp1+1) - (dp+1) and(dy+1) - (d'j+1) = (d'j1 +
1)---(d’'y, + 1). Then, contractry,...,z; to z;. In rare
cases, such a variable ordering may not exist and one can
use Krocnecker’s substitution followed by extension.

respectively.

A first approach for computing the produgy via bivari-
ate multiplication would be to convert the polynomigfs
andg to univariate polynomials via Kronecker's substitution
and then, to apply the techniquesadtensiondeveloped in
Section V. This would have the following severe limitation.
RDR'’s of the images of andg by Kronecker’s substitution
must have padding zeros such that the prodictcan be
recovered. The extension technique of Section V requiregExperimental results. We study the performance of our
also the introduction of padding zeros. A naive combinationbalanced multiplication method fot-variate polynomial
of these two transformations would introduce far too manyinput. All partial degreesis, ds, dy, d}, d5, d, are set to2
padding zeros. We actually checked experimentally that thiwhile d; andd’; range betweef2768 and65536. Figure 6
approach is unsuccessful. illustrates our experimental results. On 1 core we compare

x

Ext.+Contr. of 4-D to 2-D TFT on 1 core (7.6-15.7 s)

Kronecker substitution of 4-D to 1-D TFT on 1 core (6.8-14.1s) +

Ext.+Contr. of 4-D to 2-D TFT on 2 cores (1.96x speedup, 1.75x net gain) ¢
Ext.+Contr. of 4-D to 2-D TFT on 16 cores (7.0-11.3x speedup, 6.2-10.3x net gain)

16 |
14 |
12

Time 10 [

Q8 s
Jy o=

(&
Now.bmm
<

SN T

491!
dy (dx=d3=d,=2)

7
65536 dy’ (dy'=dg'=d,'=2)

Figure 6. 4-variate multiplication timing (s) via balanced multipli-
cation on 1, 2, 16 cores vs Kronecker substitution to 1-D TFT.

our balanced multiplication with the one through Kro-
necker’s substitution. The latter approach performs #iigh

better than ours; indeed our method has a higher algebral
complexity, even though it improves on cache complexity.

On 2 cores our method reaches a speedup gain7éfw.r.t
Kronecker's substitution and a speedup factod 6 w.r.t.
itself on 1 core. On 16 cores, these maxima becdma

and11.3. For comparison with the direct 4-D TFT approach,

see Figure 3 in Section II.

VIl. CONCLUDING REMARKS

We have presented strategies for the implementation dfl

dense polynomial multiplication on multi-core architaetst
We have focused on polynomial multiplication over finite

fields based on FFT techniques since this is a fundamentgﬂ

we had to take advantage of the row-column algorithm
for multidimensional FFT computations. Our theoretical
analysis has shown that balanced bivariate multiplication
as defined in Section IlI-C, is a good kernel.

Based on this observation, we have developed two fun-
damental techniques, contraction and extension, in oaler t
efficiently reduce any dense multivariate polynomial multi
plication to this kernel.

Our experimental results demonstrate that these tech-
nigues can substantially improve performances with raspec
to multiplication based on a direct (and potentially un-
balanced) multidimensional FFT. Moreover, they can lead to
efficient parallel code for univariate multiplication, gée
of our 1-D FFT black box assumption. We believe that
symbolic computation software packages such asPM,
MAGMA, NTL can greatly benefit from our work.

Acknowledgements. This work was supported in part by
MSERC and the MITACS NCE of Canada, and NSF under
Grants 0540248, 0615215, 0541209, and 0621511. We are
also very grateful for the help of Professor Charles E. Leis-
erson, Dr. Matteo Frigo and all other members of SuperTech
Group at CSAIL MIT and Cilk Arts.

REFERENCES

[1] E. Becker, T. Mora, M. G. Marinari, and C. Traverso. The
shape of the shape lemmaroc. of ISSAC'94 pages 129-
133, 1994.

R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealindgEEE FOCS941994.

Cilk Arts. Cilk++. http://www.cilk.com/.

J. Cooley and J. Tukey. An algorithm for the machine
calculation of complex Fourier seriedath. Comp. 19:297—

(3]

operation for symbolic computation. The techniques that
we have developed for this operation are highly efficient in[5]
terms of parallelism and cache complexity. Our results are
both theoretical and practical. We are not aware of similaf®]
work in the context of symbolic computation.

The design of our techniques has mainly two motivationsm
First, we aim at supporting higher-level parallel algarith
for solving systems of non-linear equations. Therefore, ou
multiplication must perform efficiently in terms of serial [8]
running time, parallelism and cache complexity, on any
possible input degree patterns, insisting on those whith pLP]
code efficiency to challenge.

Secondly, we have integrated the specificities of 1-D FF
computations over finite fields in the context of symbolic

301, 1965.

M. Frigo and S. G. Johnson. The design and implementation
of FFTW3. Proc. of the IEEE 93(2):216-231, 2005.

M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithmglOth Annual Symposium on Foun-
dations of Computer Sciencpages 285-297, 1999.

M. Frigo, C. E. Leiserson, and K. H. Randall. The implemen-
tation of the cilk-5 multithreaded languagACM SIGPLAN
1998.

J. Gathen and J. Gerhardlodern Computer AlgebraCam-
bridge University Press, 1999.

J. Hoeven. The Truncated Fourier Transform and applications.
Proc. of ISSAC'04pages 290-296, 2004.

10] X. Li, M. Moreno Maza, R. Rasheed, ar#l Schost. The

modpn library: Bringing fast polynomial arithmetic into maple.
Proc. of MICA'0§ 2008.

computation with polynomials. On one hand, these 1-D[11] X. Li, M. Moreno Maza, ancE. Schost. Fast arithmetic for

FFTs are applied to vectors which are large enough such
that the base field may not contain the appropriate primitiv
roots of unity for a radix 2 Cooley Tukey Algorithm. On the

for making efficient use of parallel code for 1-D FFT.

triangular sets: From theory to practic®roc. of ISSAC'07
pages 269-276, 2007.

%12] LinBox Project. http://www.linalg.org/.

i 13] MAGMA Project. http://magma.maths.usyd.edu.au/magma/.
other hand, the length of these vectors is not large enougfi4] p. L. Montgomery.

Modular multiplication without trial
division. Math. of Comp.44(170):519-521, 1985.

As a consequence of these constraints, we have assumgd] M. Moreno Maza and Y. Xie. FFT-based dense polynomial

that 1-D FFTs in our implementation could be computed

arithmetic on multi-coresProc. of HPCS'09 2009.

by a black box program, possibly a serial one. Therefore!m] NTL. The Number Theory Libraryhttp://www.shoup.net/ntl.

