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Abstract. Triangular decompositions for systems of polynomial equations with
n variables, with exact coefficients are well-developed theoretically and in
terms of implemented algorithms in computer algebra systems. However there
is much less research about triangular decompositions for systems with ap-
proximate coefficients.

In this paper we discuss the zero dimensional case, of systems having
finitely many roots. Our methods depend on having approximations for all
the roots, and these are provided by the homotopy continuation methods
of Sommese, Verschelde and Wampler. We introduce approximate equipro-
jectable decompositions for such systems, which represent a generalization of
the recently developed analogous concept for exact systems. We demonstrate
experimentally the favourable computational features of this new approach,
and give a statistical analysis of its error.

Keywords. Symbolic-numeric computations, Triangular decompositions, Di-
mension zero, Polynomial system solving.

1. Introduction

Ritt initiated the algebraic study of differential polynomial systems through char-
acteristic sets [22]. Their modern study was revitalized by the work of Wu. In
[32], he adapted the work of Ritt for solving algebraic systems: he showed that
the zero set of such a system could be decomposed as finitely many characteristic
sets, leading to the notion of a triangular decomposition of an algebraic variety.
Considerable developments have followed by many authors; among them: Chou [5],
Dahan et al. [7], Gao et al. [11], Kalkbrener [13], Lazard [14], Moreno Maza [19],
Schost [23], Wang [31], and others. These works have led to efficient algorithms
for triangular decomposition of an algebraic variety given by an exact input poly-
nomial system.

This work is supported by NSERC, MITACS and Maplesoft, Canada.
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Often, in applications we are interested in producing a useful triangular form
where some of the variables are functions of others. Such systems frequently have
approximate coefficients that are inferred from experimental data. This means that
the stability, or sensitivity to coefficient changes, of such triangular decompositions
is a concern. While considerable progress in both theoretical and algorithmic as-
pects has been made for exact input polynomial systems, much less is known about
generalizations of these methods to input systems which are approximate.

In this paper, we present some initial results in this direction, for the case of
an algebraic variety V over C. We rely on the methods of Sommese, Verschelde, and
Wampler [25, 30, 18, 26] which use Homotopy continuation, to determine so-called
generic points on the components of the numerical decomposition of V. We are
interested in the set Vp of the isolated points of V' (the 0 dimensional case). Each
point of V4, and more generally every irreducible component of V', is trivially a
triangular set, although not generally rationally constructible from rational input.
This is in contrast to the usual forms of exact triangular decomposition, which
are modeled on equi-dimensional decomposition over Q rather than irreducible
decomposition over C.

Following [6, 7], we consider the equiprojectable decomposition of V. Then,
we use the interpolation formulas of Dahan and Schost [8] for computing an ap-
proximate triangular set for each equiprojectable component of V4, leading to an
approximate triangular decomposition of Vj in Section 3.

We provide a stability analysis of the interpolation formulas of Dahan and
Schost in Section 4. One of our main tools is Lindeberg’s theorem [24] that is
described in the Appendix. In Sections 5 and 6, we report on experiments that
illustrate the efficiency of our approach and support the accuracy of our stability
analysis .

In [21], we study the simplest class of positive dimensional systems: linear
homogeneous systems. Our aim in that article is to explore local structure of
nonlinear problems with linearized approximate triangular decompositions. The
combination of the two approaches allows us to form an accessible bridge to the
study of the fully non-linear case which we will describe in a forthcoming paper.

2. Triangular decompositions

A triangular decomposition of a zero-dimensional algebraic variety V is a family
of polynomial sets, called triangular sets, that describe symbolically the points
of V' [14]. Triangular decompositions extend to algebraic varieties of arbitrary
dimension, see for instance [13, 19]. In [8] it is shown that the height of a coefficient
in a triangular set T can be bounded by the height of the variety represented by T'.
Combined with the notion of equiprojectable decomposition introduced in [6], this
motivated the work of [7], in which the authors obtained a very efficient method
for computing triangular decompositions of zero-dimensional varieties over Q given
by an input polynomial system with exact coefficients.
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On top of these good computational properties, triangular sets and triangular
decompositions have natural geometrical interpretations. In Section 3, we will rely
on these properties to introduce a notion of an approximate triangular decomposi-
tion of a zero-dimensional variety given by approximate coordinates of its points.
In the present section, we recall some results for triangular decompositions in the
exact case and refer to [8, 6, 7] for more details. For the reader’s convenience,
we sketch the proof of Propositions 2.4 and 2.5, which play a central role in this
paper. See [8] for their complete proofs.

Let K be a perfect field, let I be an algebraic closure of K and let X; < --- <
X, be n > 1 ordered variables.

Definition 2.1. A set T = {T1,...,T,} of n polynomials in K[X;,...,X,] is a
triangular set if the ideal (T') generated by T is radical and if for all 1 < i < n
the polynomial T; is not constant, the greatest variable occurring in T; is X;, and
its leading coefficient w.r.t. X; is invertible modulo the ideal (T1,...,T;_1). The
triangular set T is normalized if for all 1 < i < n the leading coefficient of T; w.r.t.
X; is one.

Clearly, a triangular set generates a zero-dimensional ideal and a normalized
triangular set is a reduced lexicographical Grobner basis. In [14], it is shown that
every maximal ideal of K[ X}, ..., X,] can be generated by a triangular set. Hence,
a natural question is to characterize the zero-dimensional varieties over K, that
can be generated by a triangular set. The answer is given by [2]. We report on it
here by means of Definition 2.2 and Theorem 2.3, after introducing some notation.

Let i and j be integers such that 1 < i < j < n. We denote by A‘(L)
the affine space of dimension i over L. For V' C A™(LL) we denote by Z(V') the
ideal of K[ X7, ..., X,] composed by the polynomials which vanish on V. For F C
K[X1,...,X,] we denote by V(F') the set of the points of A"(L) where every
element of F' vanishes. Finally, we denote by 7rf the natural projection map from
AJ(L) to A'(L), which sends (Xi,...,X;) to (X1,...,X;).

Definition 2.2. A zero-dimensional variety V C A7(LL) over K is said to be

(1) equiprojectable on V; = w{ (V), its projection onto A*(L), if there exists an
integer ¢ such that for every M € V; the cardinality of (77) "' (M) NV is c.
(2) equiprojectable if V' is equiprojectable on Vi,...,V;_ ;.

Theorem 2.3. A zero-dimensional variety V. C AJ(LL) over K is equiprojectable if
and only if there exists a triangular set T of K[X1,...,X;] such that T generates
V).

Given an equiprojectable variety V' C A™(LL) the normalized triangular set T
generating Z(V') can be constructed as follows from the coordinates of the points
of V (see [8] for details). Let K be a field such that K C K C L and such that
every point of V has its coordinates in K. We define V; = #*(V). Let 1 < /£ < n.
Following [8], we describe how to interpolate Tp41 from the coordinates (in K) of
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the points of Vpy1. Let @ = (a1, ...,ay) € V;. Define:

Vi = {B=(B1,---:Be:Be+1) € Veyr | B #eu},
vz = {B=(,P2,--, B0 Be41) € Vey1 | B2 # an},
v = {B=(,a,B3,.--,00,Be41) € Vig1 | B3 # as}, (2.1)
Vi = {B=(a,---,00 1,B0,Be41) € Vg1 | Be # au},
Vof+1 = {B=(,--- 0 B041) € Viy1-}
The sets V1, V2,V2,...,VE VAL partition Vp ;. We consider also the projections:
vg = m(Va) = {(B)eVi | B # e},
2 o= mtVE) = {(a,B) €Va | B # as),
i = a3 = {(,02,83) €V | B3 #as}, (2.2)
/Ué = 7T5+1(V¢f) = {((11,---7066—1;54) EVe | ﬂf#af}
For 1 <i </ +1, we define
Ta,i = Ti(al, .. .,ai_l,X,-) and €a,i = H (X, — ,Bz) (23)
BEVE
Observe that for 1 <i < £+1 we have T, ; € K[X;] and e,,; € K[X;]. Finally, we
define
E, = H Coi (2.4)
1<i<e
and note that E, € K[X1,...,X,] holds.
Proposition 2.4. For 1 <i </ we have
To,i = H (Xi = Bi) = ea,i (Xi—a), (2.5)
(a1,en0-1,8:)EV;
Tourr= [] Kerr —Ber), (2.6)
Bevet?
E, T,
Tey1= T(f)ﬂ' (2.7)
a€V, @

ProoF. Relations (2.5) and (2.6) follow easily (2.1), (2.2) and (2.3). In order to
prove (2.7) we observe that:

(VBeVi) Ea(f) =0 <= [ # (2.8)

Indeed, for 1 < i < £, we have e, i(«) # 0 leading to E,(a) # 0. Now let 3 € V
with § # a. Then, there exists ¢ < £ such that

(@)™ (B) € v

Hence, for this index ¢ we have ey ;(8) = 0, which proves (2.8). From there,
establishing (2.7) is routine. O
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In [8], another triangular set N is obtained from the coordinates of the points
of V, see Proposition 2.5. The authors show that it has much smaller coefficients
than the normalized triangular set given by the formulas of Proposition 2.4. We

will be generalizing this second triangular set to the approximate case.

Proposition 2.5 (Interpolation formulas). Let Dy = 1 and m = Ny = Ty. For

2 <t <n, define

oT;
D, = H 8X’ mod (T, ..., Ti_1)
1<i<e—1 O

and
N( = D(Tg mod (Tl, . ,Tg_l).
Then, for 1 <i < /¢ we have

Ney = Zaew EoTo 041
ProoOF. Indeed, for 1 <i < /¢, we have
Toi = €ai (Xi —a;) € K[X;]
leading to

aT ,
T @ = Tai@)

= ela’i(a) (ai - ai) + eavi(a)

eq,ia).

By definition, we have

oT
Nepi=1{ ]I Teyr  mod (T,...,Te).

1<i<t 0X;

Hence, we have

K3

New(@) = (I s2(@)] Tl
1<i<t

II eail@] Terale)

1<i<e
= Eq(a) Tega(a)
where Ty11(a) = Ty e4+1 holds. Finally we obtain

EoNeyi(a)
Nepr = Z —
a€eV, Ea(a)

> EuTiga(a).

€V,

(2.9)

(2.10)

(2.11)
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O

Clearly, not all zero-dimensional varieties over Q are equiprojectable. Con-

sider, for instance, with n = 2 the variety consisting of the three points A, B,

C with respective coordinates (1,0), (0,0) and (0,1). However, we do have the
following result, see for instance [14].

Proposition 2.6. For every radical ideal T of K[X1,...,X,] there exists finitely

many triangular sets T', ..., T® such that T is the intersection of the ideals (T*),
, (T®). If, in addition, the ideals (T'), ..., (T®) are pairwise relatively prime,

then the set {T',... ,T¢} is called a triangular decomposition of the ideal T.

Triangular decompositions of algebraic varieties (with arbitrary dimension)
are discussed in depth in [19] together with an algorithm for computing them,
which is implemented in [16]. Observe that a radical ideal may admit several tri-
angular decompositions. For instance, there are four different triangular decompo-
sitions for the ideal Z({A, B,C}). Choosing a canonical triangular decomposition
for the radical Z with the variable ordering X; < --- < X, is achieved by the
following combinatorial construction. We refer to [7] for a more formal definition.

Definition 2.7. Consider a zero-dimensional variety V' and denote by # = #}_,
the projection which removes the last coordinate. To a point z in V', we associate
N(z) = #r(n(x)), that is, the number of points lying in the same n-fiber as .
Then, we split V into the disjoint union V3 U---UVy, where for alli = 1,...,d, V;
equals N71(7), that is, the set of points € V which have N(x) = 4. This splitting
process is applied recursively to all varieties V4,...,Vy, taking into account the
fibers of the successive projections 7*, for i =n—1,...,1. In the end, we obtain a
family of pairwise disjoint, equiprojectable varieties, whose reunion equals V'; they
form the equiprojectable decomposition of V.

3. Approximate Equiprojectable Decomposition in Dimension Zero

In this section, we consider a zero-dimensional variety V' C A"(C) over Q. Each
point of V is given by approximate coordinates in a sense that we make precise
in Definition 3.1. We aim at defining and computing an approzimate triangular
decomposition of V. To do so, we extend the construction given by Definition 2.7
and introduce a notion of an approximate equiprojectable decomposition of V in
Definition 3.7. Then, to each approximate equiprojectable component, we asso-
ciate an approximate triangular set, leading to Definition 3.8 of an approximate
triangular decomposition of V.

Therefore, an approximate triangular decomposition of V' is obtained by in-
terpolating the points of V' given by approximate coordinates. We provide stability
analysis for this interpolation in Section 4. Moreover, we report on experiments
that illustrate the accuracy of our stability analysis in Sections 5 and 6.

Definition 3.1. Let ¢ > 0 and r > 0 be real numbers. Let T = (Z1,...,T,) be a
point of V and let z = (z1,...,7,) € A®(C) with z # 0. We say that (z,r) is an
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approzimate point for T with tolerance €, denoted by Z ~. (z,r), if the following
conditions hold for all 1 <7 < n:
(l) |£E','—SU,'| S r,
(@) r < el|lz .
where | ¢ |[=max(| z1 |,...,| zn |).

With the notations of Definition 3.1 let (z,r) be an approximate point for
T with tolerance e. Let 1 < 4 < n be fixed. If Z; and z; are complex numbers
and Z; # 0 then a frequently-used measure of the number of correct significant
decimal digits in the approximate coordinate z; is the logarithm of the relative
error lre(z;, %;) given by

| Z; — o |

Ire(x;, Z;) = —logyg—— (3.1)
|Z]
Properties (i) and (i7) of Definition 3.1 lead to
z
Ire(z;,Z;) > —logp€— 108;10%- (32)
K]

In practice, one requires € < 1 and thus Formula (3.2) gives a good measure of the
approximation of coordinate Z; by means of coordinate x;. Similarly, Formula (3.3)
below gives a good measure of the approximation of point Z by means of point z,
for x #0:

|z - |

lre(a:,zi) = —IOgloT. (33)
As we shall see now, another good measure of this approximation is
Ib(Z,z) = —logm%. (3.4)
Indeed, one can easily check that the following holds:
| Z —z | |Z —z | Z|
1 — 1 — =1 —. 3.5
0810 |.’E| 0810 |i’| 0810 |.’L’| ( )
Moreover, we claim that for all € > 0:
|z
1 — . =~ 3.6
OglO |$| €, ( )

Thus, lre(z, Z) and lb(Z, z) are very close when € is very small. To prove our clain,
we start from

2| =zl <lZ—z]< elal, (3.7)
which holds by assumption (points (i) and (i¢) of Definition 3.1). We deduce
|z|
— -1 < e (3.8)
||

Since € is meant to be very small, using log;,(1 — €) & —e and log;o(1+¢€) = €, we
finally obtain Formula (3.6).
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A representation (using approximate points in the sense of Definition 3.1)
of the isolated roots of the variety V' C A™(C) of an input polynomial system
F={F,...,F,} CQXi,...,X,] can be obtained by numerical homotopy con-
struction. In particular, we used the PHC software [30]. Indeed, for each point
of V, the corresponding solution z returned by PHC is given with the condition
number of the Jacobian matrix of F' at x, denoted by cond. The value cond can
be used to estimate the distance between Z and z (see [18] for details). More pre-
cisely, because we use double precision floating-point numbers in the computation,
a reasonable formula is: | Z; — z; | /|z;| = cond - 1071 for all 1 < i < n (see Table
4). Given € > 0, with this estimate, one can check whether each isolated point
of V admits approximate points within tolerance e. Theoretically, the homotopy
continuation method can obtain approximate points arbitrarily close to the exact
roots for any tolerance €. So, if the multiplicity of each point is 1, a one-to-one
map between approximate roots and exact ones can be computed. Note that none
of the systems used in Section 6 have multiple roots (see Table 2).

Remark 3.2. Let € > 0. From now on, we assume that for each point Z € V we
are given € A™"(C) and r > 0, such that Z ~, (z,7) holds. Then, we denote by
V the set of all (z,r), and we write V ~, V.

We now return to the construction given by Definition 2.7. Again let 7 =
7_; be the natural projection from A"(C) to A" 1(C) which removes the last
coordinate. Given two points Z and ' of V we have to decide whether they lie
in the same w-fiber. Since Z and Z' are given by approximate points we need the
following.

Definition 3.3. Let ¢ and j be integers such that 1 < ¢ < j < n. Let Z,§ €
7?(V). Let = (21,...,3;) (resp. y = (y1,-...,9;)) and (z,7) (resp. (y,r')) be
approximate coordinates of Z (resp. §) with tolerance e. We say that Z and 7 lie
approximately in the same 7;-fiber with tolerance € if for all 1 < k < i we have

|z —yp | < r+7'. (3.9)
Proposition 3.4. With the notations of Definition 3.3, if the points z,y € n7 (V)
are in the same 7] -fiber, that is, if w}(Z) = m](§) then, the points T and j lie
approzimately in the same ) -fiber with tolerance €.
ProoF. By contradiction. Assume that z and y do not lie approximately in the
same 77 -fiber with tolerance e. Then, there exists 1 < k < i such that |zy — y| >
r + r'. By assumption, we have Ty, = g, |Zr — 2| < r and |gr —yx| < r'. This
leads to
|k — Y| < |k — zk| + |Gk —yr| < r4+r. (3.10)
A contradiction. O
Remark 3.5. Suppose 1 <4 < j < n. For the points of 77 (V'), the relation “lying

approximately in the same 77{ -fiber with tolerance €’ may not be an equivalence
relation, because of roundoff errors. We need to exclude this situation in order to
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FIGURE 1. x1,x2,x3 are exact points, x1,x2,x3 are the approxi-
mate points respectively. Here, x1, x2 lie in different fibers, but are
approximately in the same fiber, and V satisfies the equivalence
condition.

adapt the construction of Definition 2.7 with approximate points for the points
of V. In theory, this situation may be avoided by reducing the tolerance €, and
thus the radius r at each point of V. However, in practice, for some systems it
is hard to obtain the approximate roots when e is very small. For example, for
systems possessing a cluster of points for which we could not get a tolerance small
enough, we would not be able to meet the requirements of Definition 3.7. These
precautionary remarks being made, we will propose in Definition 3.7 a notion of an
approximate equiprojectable decomposition of V', where the points of V' are given
by approximate points in the sense of Definition 3.1.

Definition 3.6. We say that V satisfies the weak equivalence condition with tolerance
e if for all 1 <4 < j < n, the relation ”lying approximately in the same 7] -fiber
with tolerance €” is an equivalence relation in 77 (V). Furthermore, we say that

V satisfies the strong equivalence condition with tolerance € if for every z,§ € V
with approximate points (z,r), (y,r') € V, with tolerance ¢, for all 1 < j < n the
following conditions are equivalent:

e we have W;‘(a_?) = 71'?(:‘7)7

e the points Z and 7 lie approximately in the same 77-fiber.
Here we illustrate Definition 3.6 through Figures 1, 2 and 3 where we consider
different V’s for the same V. In Figure 1, the set V satisfies the weak equivalence
condition; observe that x1,x2 lie approximately in the same fiber, but x1 and x2 lie

in different fibers. In Figure 2, the points x1,x2 and x1,x3 are pairs of points lying
approximately in the same fiber, but x2,x3 do not lie approximately in the same
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FIGURE 2. refining x3 we get a smaller radius. Here, both pairs
x1,x2 and x1,x3 lie approximately in the same fiber, but x2,x3
do not lie approximately in the same fiber. The set V' does not
satisfy the weak equivalence condition.
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FIGURE 3. refining x1 we get the correct result. Here, x1,x2 lie in
different fibers and both weak and strong equivalence conditions
are satisified.

fiber. Hence, in this case, the set V does not satisfy weak equivalence condition.
In Figure 3, we refine the three approximate roots until the weak equivalence
condition is satisfied again (the strong equivalence condition is also satisfied); we
see that x1,x2 lie in the different fibers.
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In practice, the "exact” points of V' are unknown, so we cannot determine
whether the strong equivalence condition is satisfied or not. But we can detect
whether the weak equivalence condition holds or not. However, in our experiments
reported in Sectign 6, for each variety V, the exact points are known and we could
decide whether V satisfies the strong equivalence condition.

If the weak equivalence condition is satisfied but the strong equivalence con-
dition is not (e.g. see Figure 1), then there exists two distinct points Z,y € V, with
respective approximate points (z,7), (y,7'), and an index 1 < ¢ < n such that Z;
and g; are different but very close to each other; more precisely |Z; — ;| < 2r + 2r'
holds (generally the distance |#; — ;| will be less than 10713, see Table 4). Due
to roundoff errors in numerical computation, we cannot always avoid these rare
cases.

Finally, we note that introducing the notion of “weak equivalence condition”
is needed by Definition 3.7.

Definition 3.7. Assume that V satisfies the weak equivalence condition with tol-
erance e. Define 7 = 7n”_;. To every point Z in V, we associate N(Z) the number
of points in V' which lie approximately in the same 7-fiber as x with tolerance e.
For all 4 > 1, we denote by V; the set of points x € V satisfying N(x) = 4. Then,
we split V' into a disjoint union V3U---UVy, for some d € N large enough. This
splitting process is applied recursively to all Vi,...,Vy, taking into account the
fibers of the successive projections n7*, for i =n —1,...,1. In the end, we obtain a
family of pairwise disjoint subsets of V', whose union equals V; they form an ap-
prozimate equiprojectable decomposition of V' with tolerance e. If this approximate
equiprojectable decomposition of V' (with tolerance €) consists of only one subset,
that is, V itself, we say that V is equiprojectable with tolerance €, otherwise the
parts of the approximate equiprojectable decomposition of V' (with tolerance €)
are called approzimate equiprojectable components of V' with tolerance e.

Note that each approximate equiprojectable component of V is equipro-
jectable with tolerance e. To each approximate equiprojectable component of V/
with tolerance e we can associate an approximate triangular set by means of Def-
inition 3.8. This leads to a notion of an approzrimate triangular decomposition for
the variety V.

Definition 3.8. Assume that the zero-dimensional variety V is equiprojectable with
tolerance €. Then, by means of the interpolation formulas of Proposition 2.5 one
can compute a triangular set {Ny,..., N,} called an approzimate triangular set of
V with tolerance e.

Now, assume that V is not approximately equiprojectable with tolerance €. A
family of approximate triangular sets of approximate equiprojectable components
of V' (with tolerance €) forms an approzimate triangular decomposition of V', with
tolerance €.
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4. Stability Analysis

In this section, we explore the relation between the relative error on the coordi-
nates of the approximate points of V' and the relative error on the interpolated
polynomials of the approximate triangular decomposition given by Definition 3.8.
The coefficients of a polynomial continuously depend on its roots. However, a small
error in a root may result in a large error in the coefficients, motivating some of
stability analysis.

For the relation between the errors mentioned above to be useful in practice,
we are must face the following fact: the relative error of a root cannot be computed
when the exact root is unknown. In order to overcome this difficulty, for a point
Z of V given by an approximate point (z,r), we view the exact coordinates Z =
(Z1,...,T,) as a random variable which takes values in the region defined by the
following: for all 1 <i <mn

|z —Z; | < (4.1)
In this paper, we used the word bias instead of relative error in order to avoid
conflicting terminology.

Definition 4.1. For z,z € C, we call the the bias of z w.r.t.  the fraction

T —x

P (4.2)

x
simply denoted by J, when no confusion may occur.

Remark 4.2. We would like to observe at this point that none of the results of
this section require knowledge of the exact coordinates of the points of V. Hence,
our results apply also in practice to the situation where V' is initially given by a
polynomial system with inexact coefficients rather than a polynomial system with
exact coefficients. Note that the PHC software [30, 18] can process both types of
polynomial systems.

We define now the bias for the coefficients of a polynomial. OQur defini-
tion applies to univariate polynomials as well as to multivariate polynomials.
Let e = (e1,...,en) € N* be an exponent vector. We denote by X¢ the mono-
mial X7'---Xp» of C[Xy,...,Xc]. We write p = > 5 feX® a polynomial of
C[X1,...,Xe] with (finite) support S. For every e € N* with e ¢ S we set to zero
the coefficient f., i.e. we define f. = 0. Hence we can simply write p =3, fo X°.

Typically, in our stability analysis, the polynomial f of Definition 4.3 will be a
polynomial interpolating the approximate coordinates of the points of V', whereas
f will be the corresponding polynomial obtained from the exact coordinates of the
points of V.

Definition 4.3. Letp =, feXeandp = >, feX® be polynomials in Clzy,. .., z.).
For every e € N, the bias of coefficient fo w.r.t. p is defined by

fe_fe

5o =
e

. (4.3)
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The bias of the polynomial p w.r.t. p is the bias of the coeflicient of p w.r.t. p which
has the largest norm.

The interpolated polynomials given by Proposition 2.5 are multivariate poly-
nomials that are constructed as univariate polynomials over a suitable coeffi-
cient ring. Because of these formulas, we can focus on the univariate case. Let
p € C[X] be a univariate monic polynomial of degree b given by approximate

values z1, ...,y of its roots with respective radii rq,...,7s.
i=b
p= (.73 - SE,’). (44)
i=1
Let 41, ..., 0, be the respective bias of x1, ...,z such that the exact roots of p are
1 + x1 61, - ,2p + Tp §- Hence we have
i=b
p=1]@ -z —z:8). (4.5)
i=1
Notation 1. In the remainder of this section, we assume that 61,...,0 are inde-
pendent random (complex) variables, each of them with uniform distribution in a
disk centered ot 0 and with respective radii v1/|z1),-..,7/|2s|. We define the bias
bound and we denote it by p the mazimum of r1/|z1|,-..,7/|Zs]-

In the proofs of Propositions 4.4, 4.6, and 4.7, we will denote by O(6%) any
term in §;0;. When p is very small, we can ignore such higher order terms keep
only the linear terms.

We will consider the bias of the polynomial p w.r.t. p as a random variable
denoted by . We direct the reader to the Appendiz, for a brief review of the
standard probability results we are using.

There are essentially three steps in computing the interpolated polynomials
of Proposition 2.5:

(I1) compute the univariate polynomials e, ;,

(I2) compute the multivariate polynomials E,, which are products of univariate
polynomials eq i,

(I3) compute the multivariate polynomials Ny, which are sums of some multivari-
ate polynomials.

For each step, we provide properties on the stability analysis of the corresponding
calculations. For our study of the relation between p and p, we need the following
notation.

Notation 2. For 1 < k < b, the k-th elementary symmetric function of z1,...,xp
is given by

ok = Z oy Lay (4.6)

1<a1<a2<...<ar <b
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and let 0% := 1. Observe that we have:

b b

p= H(w —z;) = Z(—l)kakxb*k. (4.7)
i=1 k=0

Let 1 < j < b. We denote by a}“ the element of C[z;,...,z,] obtained from o* by

specializing x; to 0, that is J;? =dt |, ;=0- Let [; be the j-th Lagrange interpolation

polynomial. Observe that we have:

b b—1
l; = H (x —x;) = Z(—l)kofxb*kfl. (4.8)
i=1,i#j k=0

Proposition 4.4. The bias v of p w.r.t p is bounded by

b k
| ot
max(%,kz&...,b—l)p. (4.9)
We define
V3% | ofai 2
wE = 3 | o—k+1 | p (410)
w = maz(wk,k=0,...,b—1). (4.11)

If b is big enough, then «y is bounded by the normal distribution N(0,w). (For the
precise meaning of the statement being bounded by a distribution, please refer to
Definition 7.3 in the Appendiz.)

PrROOF. By the definitions of p and p, we have

b
p—p = H(w—mi—wi&)—n(m—xi)

=1 =1
b b b
= [[e-20-> J] (@-z)zidi+00*) -][[@@-=)
i=1 i=1 j=1,j#i i=1
b
= =) Lzid; +0(8°)
=1
b b-1
~ —Z(Z(—l)kaf@",éz)xb_k—l
i=1 k=0
b—1 b
= - Z(_l)k(z Uzlcxz(sz)wb_k_la
k=0 =1
and
b b—1
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Thus, the absolute value of the bias for each coefficient v, for £k =0,...,b—1,is
given by

b b
|y |= | Yiy oFidi | < i | ok |
Ye 1= |ak+1 | = | ok+1 |

Hence, to order O(62)

Yy | o |
v < maz (W,kzo,...,b—l p-

Recall that, by assumption, the random variables 1, ..., d; are independent. Also
observe that, to order O(6?), the bias of each coefficient of p is a linear combination
of these variables. Hence, we can compute the variance w} of the bias ; of the
coefficient z=*~1 | for k = 0,...,b — 1, by means of the properties given in the
Appendix:

b
wi = Var (Zafﬂfifsz’/UHl)

i=1

b
Var (Z afxi5i> |o*+ 2
im1

= Wkg-

When b is big enough, the distribution of 7, will tend to a normal distribution
N(0,ws), by the results in the Appendix. Let w= maz(wg,k =0,...,b— 1), then
vk is bounded by N(0,w) for each k. Finally, v is bounded by N(0, w). O

Remark 4.5. If v follows the normal distribution N(0,w) and x = 2w then we have
P(| v |< z) = 0.95. In fact, our ezperiments show that for b > 10, the probability
P(| v |< z) is close to 0.95. Thus we can use Formula (4.10) to estimate the
bias in the coefficients even if b is not very big. From the output of PHC we can
estimate 0 using condition numbers, compute w, and finally estimate the bias for
the coefficients with confidence level 0.95. In this section assuming b is big enough,
then we have:

Proposition 4.6. Given n univariate polynomials, p;(z;) =Y, aixzt, i =1,...,n,
if each &; (the bias of p;) satisfies N(0,w), then the bias of [[;—, pi is bounded by
N(0,/nw) to order O(8?).

PROOF. Write the product of the univariate polynomials as a sum of monomials :

P1-"Pn = ZfeXea
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where
fe = fel,...,en = Q1,e;" " "Ane, -

Denote the exact coefficient by
fe = (al,el + al,elél)' - '(an,e,L + Qn,e, 677,)

By the same arguments as above:

fe - fe
fe
_ e (B0 )
Al,e;” " "On,en

PV R

Ye =

Because each §; satisfies N(0,w), their sum is also normally distributed (see
the Appendix) with distribution function N(0,/nw). So, to order O(62) the bias
of [T, pi is bounded by N(0, y/nw). O

Proposition 4.7. Let p;(X) = fi . X¢, i =1,..., N, be multi-variate polynomials
such that §; (the bias of p;) is normally distributed with distribution N(0,w). Let

N -
V Ez:l iz,e

We = TSN . ¥ 4.12
, | Zi:1 fi,e | ( )

w' = maz(we)-
Then, to order O(62), the random variable y for Eil pi(X) is bounded by N(0,w').

ProoF. Examine the coefficients of the monomials:

prtotpy = SLX
fe = fl,e+"'+fN,e-

Let the exact coefficient be denoted by
ﬁ = (fl,e + fl,e(sl) + -+ (fN,e + fN,e(SN)-

Again, by the same arguments, the bias . is:

fe_fe — fl,e61+"'+fN,e(5N
fe fl,e+"'+fN,e
Because each ¢; is normally distributed by N(0,w), the distribution of 7, is still

normal and equal to N(0,w,) (see the Appendix). So y for the sum is bounded by
N(0,w'") (again, see the Appendix for the meaning of bounded here). O

+0(8%).

Definition 4.8. Given an approximate triangular set 7' and the bias bound p of the
approximate roots, let the bias of T be bounded by N(0,w). Denote the standard
deviation of T by sd where sd = w/p.
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Remark 4.9. Let V ~, V. Assume that V satisfies the strong equivalence condi-
tion with tolerance €, in the sense of Definition 3.6. Then, it follows from Propo-
sitions 4.4, 4.6, and 4.7 that we can determine sd and the bias of the approzimate
triangular sets (in the approrimate equiprojectable decomposition) of V' with a
given probability. Moreover, for an approximate system, given a perturbation of
the approximate roots, we can estimate the change of the coefficients of the asso-
ciated approximate triangular sets.

5. An illustrative example

Here we use a simple example to illustrate concept of approximate triangular set
and our algorithm for determining the standard deviation. Let us consider:

sys = [z2° — 2y, 2% — dy + y> + 2, —32y + 2y% + 3z — 3]. (5.1)
The exact triangular set of the system with order z <y < = :
[z —3,y* — 3y + 2,27 —y]. (5.2)

1. Solving the system by PHC, we get 4 isolated points:
[z = 3.0,y = 2.0,z = 1.41421356237309, rco = 0.01511]
[z =3.0,y =1.0,z = 1.0,7co = 0.02089]
[z = 3.0,y = 2.0,z = —1.41421356237309, rco = 0.01511]
[z =3.0,y =1.0,z = —1.0,rco = 0.02089].
Here rco is the inverse of the condition number of Jacobian matrix at this
point.

2. We remark, as we did in the Introduction, that each solved form [z = 3.0,y =
2.0,z = 1.41421356237309], [z = 3.0,y = 1.0,z = 1.0], [z = 3.0,y = 2.0,z =
—1.41421356237309], [z = 3.0,y = 1.0,z = —1.0] is an approximate triangu-
lar set.

3. We use the condition numbers to estimate dmax: § = 1/rco x 10716 = 6.62 x
10715 and call this the estimated value of p. For this example, we know the
exact solutions, and the exact distance between roots. In particular p should
be v/2—1.41421356237309 = 5.1 x 10~ 2. In practice we don’t know the exact
solution of input system, and we only can give an estimated value for p. But
we need to point out that this estimation works well for many examples.
Comparisons are given in next section.

4. By the definition of approximate equiprojectable decomposition, the projec-
tion of the first and third points above are numerically equal since |2.0—2.0| <
(2.0/0.01511 + 2.0/0.01511) x 1076,

Also the projection of first and second points are not numerically equal since
|2.0 — 1.0| > (2.0/0.01511 + 1.0/0.02089) x 10716 = 1.8 x 10~ 4.

In the same way, we get two different projected points pl = (3.0,2.0),
p2 = (3.0,2.0) on zy-plane, and there are two points on each fiber. The
projections of pl, p2 onto the z axis is just one point z = 3.0. So the variety
of sys is approximately equiprojectable. From the cardinality of the fibers,
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# roots | # tests % of trials: % of trials: % of trials:
rel. err. > 1sd | rel. err. > 2sd rel. err. > 3sd
(0.32 expected) | (0.05 expected) | (0.003 expected)

10 1000 0.328 0.0503 0.0168
20 1000 0.312 0.0425 0.0050
30 1000 0.350 0.0579 0.0023
40 800 0.335 0.0517 0.0067
50 500 0.342 0.0474 0.0042

TABLE 1. Experiments for our probabilistic analysis (sd =
standard dev., rel. err. is relative error)

we know the degree sequence is [1, 2, 2] with respect to the main variables
of each polynomial in the triangular set. The degree sequence can be equiv-
alently written as 1 - 22.

5. By formula 2.7, we get the approximate triangular set of sys:

[—.999999999999986y + 1.0z2, 42 — 3.0y + 2.0, z — 3.0]. (5.3)

The biggest relative error of coefficients is 1.4 x 1014, By formula (4.10) and
(4.12) the standard deviation (sd) is 2.89.

Sosdxp=19x10"" > 1.4 x 10~ is a good estimate for the relative
error. In the next section we will give more nontrivial examples to support
our statement. Because of the input error and round off error in numerical
computation, there will be some monomials of approximate triangular sets
with very small coefficients that do not appear in exact triangular set. Then
the biggest relative error of coefficients is 1. So in practice we will consider
coefficients which are smaller than a given tolerance as 0.

6. Experimental Results

We have conducted two sets of experiments. The first one illustrates the proba-
bilistic analysis of Proposition 4.4. Experiments are described in Section 6.1, and
the results appear in Table 1.

The second set of experiments deal with the computation of exact and ap-
proximate triangular decompositions. Section 6.2 presents the exact case whereas
Section 6.3 reports on the approximate one. Most of the test polynomial sys-
tems that we use (see Table 2) are well known problems [1, 7, 29]. They are
zero-dimensional square systems defined by multivariate polynomials over QQ gen-
erating radical ideals. Table 3 shows data for the exact triangular decompositions
of these systems, the output by PHC is collected in Table 4, and Table 5 shows
their approximate triangular decompositions computed from the PHC output. The
main results for the purposes of this paper are given by this latter table.
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Sys | Name n|d| h| H H | reference
1 Issac97 412 2| 1N 1498 [29]
2 | L3 303 1| 1] 1678 [1]
3 | Sendra 27| 7| 59| 2421 [29]
4 | fabfaux 31313 72| 2650 [10]
5 |14 34| 1| 2| 3977 [1]
6 Cylohexne 314 3 9 4361 [29]
7 Weispfenning94 | 3 | 5| 0| 10 7392 [29]
8 UteshevBikker 413 3| 88 7908 [29]
9 | Fee-l 42| 2| 34| 23967 [29]
10 | Reimer-4 45| 1| 14| 56013 [29]
11 | S9 8|2| 2| 33| 58116 [29]
12 | ecob 6|13| 0| 12| 105718 [29]
13 | Geneig 63| 2| 82114466 [29]
14 | gametwob 54| 8674158075 [29]
15 | dessin-2 10 | 2| 7| 436 | 360596 [29]
16 | eco7 73| 0| 26| 387754 [29]
17 | Methan61 10 | 2| 16 | 227 | 452756 [29]

TABLE 2. Input systems (n =# polys.; d = degree system; h =
height input coeffs; H = height output coeffs; H = estimated

height output coeffs.)

Sys | Exact equiproj Degree configuration | #C-roots | Time to isolate | #R-roots
dec. tim. (secs) R-roots (secs)
1 164 16 13 16 <1 0
2 <1|(131), (811),(821) 27 <1 5
3 33 46 1 46 5 6
4 28 27 12 27 1 3
5 1 (2421), (1611) 64 <1 8
6 6 (412), (811) 16 <1 12
7 72 54 121 54 <1 0
8 29201 36 1° 36 7 10
9 24 26 13 26 2 6
10 10097 18 2 12 36 5 4
11 26 10 17 10 1 4
12 50 16 1° 16 <1 4
13 18 10 18 10 2 10
14 24320 44 1* 44 45 12
15 527 14218 42 15 1
16 2742 32 1° 32 4 8
17 6251 27 1° 27 28 13

TABLE 3. Exact equiprojectable triangular decomposition with

the RegularChains library
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Sys | #C-roots | #C-roots by PHC | PHC tim.(secs) | estimated p exact p
1 16 16 1 0.448e-14 | 0.239e-14
2 27 27 1 0.186e-14 | 0.337e-14
3 46 46 4 0.159¢-11 | 0.274e-14
4 27 27 2 0.224e-14 | 0.154e-14
5 64 64 1 0.143e-14 | 0.331e-14
6 16 16 <1 0.835e-14 | 0.181e-14
7 54 49 5 0.183e-13 | 0.336e-14
8 36 36 6 0.767e-12 | 0.781e-14
9 26 26 5 0.229e-11 | 0.759e-14
10 36 36 3 0.73%¢-13 | 0.544e-14
11 10 10 3 0.107e-13 | 0.125e-14
12 16 16 3 0.292e-13 | 0.287e-14
13 10 10 2 0.629e-13 | 0.105e-13
14 44 43 6 0.665e-12 | 0.144e-13
15 42 41 11 0.585e-7 | 0.271e-14
16 32 32 14 0.760e-13 | 0.264e-14
17 27 13 10 0.846e-6 | 0.563e-13

TABLE 4. Approximate roots by PHC where the estimate p = con-
dition number x10716 and ezact p = largest 2-norm of distance
between exact and approx root divided by the 2-norm of approx
root.

6.1. Normal distribution test

Let b be a number of roots given in the column # roots. We randomly generate b
roots, and view them as the exact roots of a polynomial p of degree d. Then, we
perturb each of these roots by a uniformly distributed random variable, leading
to an approximate polynomial p. The two polynomials p and p are expanded
in order to obtain g, the largest relative error for a coefficient. We compute the
standard deviation sd by formula ( 4.10), and compare it with . These experiments
are repeated many times (between 500 and 1000, see the column # tests) for
b = 10,20, 30,40, 50. The third column is the percentage of times for which the
relative error is bigger than one standard deviation. If the relative error is normally
distributed, then this percentage should be 0.32, which we verify in our tests.

6.2. Exact triangular decomposition

The test polynomial systems are given in Table 2. For each input system F', we
give n the number of variables, d the total degree of F', the logarithm h of the
largest coefficient, the number of digits H appearing in the largest coefficient in the
(exact) equiprojectable decomposition of F', and the height H of that coefficient
as estimated by the formulas of [7].

In order to compute the exact equiprojectable decomposition, we use the
RegularChains library written in MAPLE by Lemaire, Moreno Maza and Xie [16]
in which the algorithms of [19, 7]are implemented. Our computations are done on a
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Sys sd | exact p- sd dcoet | < 8d? | < 2sd? | residual
1 403.3 | 0.9639¢-12 | 0.197e-12 yes yes | 0.444e-15
2 7.492 | 0.2529e-13 | 0.211e-13 yes yes | 0.125e-13
3 1729.2 | 0.4736e-11 | 0.542e-11 no yes | 0.89e-11
4 1056.7 | 0.1625e-11 | 0.463e-12 yes yes | 0.201

5 59188.4 | 0.1959e-09 | 0.248e-09 no yes | 0.555e-7
6 23835.5 | 0.4314e-10 | 0.179e-11 yes yes | 0.7e-13

7 NA NA NA NA NA | NA

8 383.8 | 0.2996e-11 | 0.942e-12 yes yes | 0.163e-8
9 151.6 | 0.1151e-11 | 0.181e-12 yes yes | 0.504e-13
10 3928.4 | 0.2137e-10 | 0.397e-12 yes yes | 0.193e-18
11 45.77 | 0.5708e-13 | 0.133e-13 yes yes | 0.188e-15
12 121.7 | 0.3488e-12 | 0.184e-12 yes yes | 0.216

13 551.7 | 0.5815e-11 | 0.761e-13 yes yes | 0.314e-17
14 NA NA NA NA NA | NA

15 NA NA NA NA NA | NA

16 317.7 | 0.8397e-12 | 0.154e-11 no yes | 0.218¢20
17 NA NA NA NA NA | NA

TABLE 5. Approximate Triangular Sets: sd = standard dev. de-
fined in Section 4; exact p = largest 2-norm distance between exact
and approx root divided by the 2-norm of approx root; deeefr =
largest relative error of coeffs of approx triangular set compared
with the exact one.

2799 MHz Pentium 4 machine. The timings of exact equiprojectable decomposition
are given in the first column of Table 3. To understand these timings, we should
mention that the RegularChains code is high-level interpreted code (and not
compiled). Moreover, this code is not supported by fast arithmetic, such as FFT-
based arithmetic.

Each degree configuration specifies the degree sequences of the triangular sets
in the decomposition (see [1] for similar data). Hence, the number of sequences
in a degree configuration equals the number of equiprojectable components of the
system. In Table 3 #C-roots and #R-roots are respectively the total number of
complex and real roots of the system. The column labeled Time to isolate R-roots,
gives the total time in seconds to isolate all the real roots to a precision of 273°
using interval arithmetic.

We have also isolated each complex root. This was done by Eric Schost (Ecole
Polytechnique, France) using Magma as follows. First, the splitting circle method of
Schonhage was used to separate the complex roots. Then, Newton iteration was
used to refine the isolation boxes. A precision of 200 digits could be achieved for
our 17 test systems in less than 10 minutes on a Pentium P3 running at 1Ghz.
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6.3. Approximate triangular sets

We use the PHC package [30, 18] to compute the approximate isolated roots of all
the benchmark systems. Then we interpolate the approximate triangular sets and
give the results of our error analysis for each system. The computations in Tables
4 and 5 are done on a 1.5 GHz Pentium M machine, and the timings for finding the
roots using PHC are listed in PHC' Timing of Table 4. In Table 4: the first column is
the exact number of roots and second column is the number of roots found by PHC.
For some systems, PHC (in black box mode) does not get every root. This simply
means that the default settings in the black box version of PHC did not solve the
system. We did not compute the approximate triangular sets for such systems.
Some of these systems could certainly have been solved by using PHCPack, by
exploiting the flexibility of its powerful user specified options, designed for more
challenging problems. But we did not do that here. The estimate p is defined as
the condition number x107¢, and ezact p = maz(|z; — %i|/|zi|),Z; € V where
the &; are the "exact” roots, the z; are the roots given by PHC, and the distance is
given by the 2 norm. The results show that our estimated distance is often larger
than the exact distance.

In Table 5: The second column gives the standard deviation of the approxi-
mate triangular set, as discussed in Remark 4.9. The third column is the product of
the exact p and one standard deviation. In the fourth column deesr is the largest
relative error of the coefficients of the approximate triangular set as compared
with the exact one. If this relative error is less than exact p - sd, the element of
the fifth column (labeled < sd?) is “yes”, otherwise it is “no”. Moreover, for every
approximate triangular set, the relative error is bounded by 2 sd (see column 6).
The last column, labeled residual, gives the maximum residual of an approximate
triangular set at the roots given by PHC. The results of this table support the
conclusions of Remark 4.9.

7. Discussion

Exact triangular decomposition of exact polynomial systems have proved valuable
in applications. There are well-developed algorithms for computing them and con-
siderable recent improvements in their time complexity [7]. Such representations
are desirable, not only because of their triangular solved-form structure, but also
because, in comparison to other exact methods, their space complexity is well con-
trolled [8]. In particular, they use the minimum number of polynomials needed to
describe the equi-dimensional decomposition components of a polynomial system.

In this paper we have extended such methods to approximate systems of
polynomials in the dimension zero case.

We have exploited the methods of Sommese, Verschelde, and Wampler [25,
30, 26] and the newly developing area of Numerical Algebraic Geometry, together
with new ideas of Dahan, Schost, Moreno Maza, Wu, and Xie for forming the
so-called equiprojectable decomposition [6] of a zero-dimensional variety.
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Throughout this paper we have assumed that the input is a zero dimensional
radical ideal. We briefly discuss the situation where both restrictions are removed,
that is we consider general input polynomial systems. The methods of Sommese,
Verschelde, and Wampler yield isolated points, possibly of higher multiplicity cor-
responding to the 0 dimensional equi-dimensional components. Such multiplicities
can be removed (deflated) numerically using the techniques of [9] and [17] (see [15]
for a symbolic method for the exact case). Hence the methods of this paper can
be applied.

Our contribution in the zero-dimensional case, has been to show that the
isolated points, given by approximate coordinates, can be interpolated in order to
obtain the triangular decomposition for the zero-dimensional components which
is an approximation of the exact equiprojectable decomposition. The methods of
Sommese, Verschelde, and Wampler yield a numerical irreducible decomposition
for this case, in particular they give a collection of triangular sets, each of them
corresponding trivially to an isolated point.

In addition the n—1 dimensional components can be numerically interpolated
by the methods of Sommese, Verschelde, and Wampler to obtain single polynomial
which can be considered as a representation for the highest dimensional compo-
nents with triangular shape. In addition their methods also give (non-triangular)
representations of all of the positive dimensional components using generic points
on each component. The above results, together with those in our paper on lin-
earized triangular decompositions [21], represent progress on the general problem
of obtaining approximate triangular representations for all components of a given
polynomial system. Our detailed study of the zero dimensional case is particularly
important as a preparation for the study of the general case.

The interpolation formulas of Dahan and Schost are an extension of classical
Lagrange interpolation formulas for univariate polynomials to multivariate poly-
nomials. For improperly distributed interpolation points, such as uniformly spread
points, the interpolation problem can be ill-conditioned regardless of whether one
uses a Lagrange or a Newton formulation [3, 12]. One way to avoid unstable in-
terpolation is to choose some specially distributed interpolation points, such as
Chebyshev or Legendre points. Obviously this cannot apply in the context of this
paper: indeed, the location of the interpolation points is fixed; we have no freedom
to change them.

In [4], the authors compute an exact absolute factorization of a bivariate
polynomial from an approximate factorization. It is natural to ask if one could
compute an exact equiprojectable decomposition from an approximate one. One
preliminary answer is as follows. Let F' be an (exact) input polynomial system in
Q[X1 < --- < X,,] with total degree d and largest coefficient h. Then, the height of
any coefficient of any (exact) triangular set in the equiprojectable decomposition
of V(F) € A™(C) is in O(hnd™) [7]. This suggests that the numbers d and n
must be small for this reconstruction (from approximate to exact) to be realistic.
However, the question remains open for future work. Indeed, Table 6 shows that
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the actual coefficient size H in the triangular set is much less than the above height
upper bound H.

Standard deviation is a measure of error distribution of coefficients. The very
large standard deviation means the coefficients are very sensitive to the change of
roots. For such system, interpolation is not a good method to get the approximate
triangular set from the roots. For example, recall system 5 in Table 6 of Section 6.
Although the error of roots is 0.331 - 10~ !4, the error of coefficients accumulates
up to 0.248 - 10~2 because of its large sd.

In [27] fundamental theorem on backward error are given for polynomials.
We will use these results to exploit the backward error for approximate triangular
sets in a future paper.

When the input system F' is approximate, although discontinuous phenom-
ena can occur, some continuity aspects remain under the perturbation [28]. The
favorable properties of the equiprojectable decomposition of V(F) under special-
ization [7] suggests that the continuity of approximate equiprojectable decompo-
sition needs to be discussed in future work.
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Appendix - Brief review of probability theory

In our stability analysis of coefficients, a probability model was introduced. We
will give a brief review of the relevant standard probability knowledge required.

e If § is a random variable and c is a constant in R then Var(cd) = c2Var(d).

e If 4, ...,0, are random variables and £= ) §; then expectation value is ad-
ditive: E(€) = > E(d;). Moreover if they are independent, then the variance
of sum of these random variables is also additive: Var(§) = > Var(d;).

e Suppose § = ;¢ + 0;mv/—1 and 6, ;,,, are independent random variables
with the same distribution with ¢ € C. Then Var(R(cd)) = |¢|*Var(d,e) =
Var(S(ed)) = |c|*Var(dim), where R(z) and $(z) are the real and imaginary
parts of z. In this paper we define Var(d) := Var(d)-

e N(0,1) is standard normal distribution with mean 0, standard deviation 1,

probability density function p(x) = ﬁe_wz/ 2 and cumulative density func-

tion ®(z) = [* p(z)dz. Note that ®(1) ~ 0.68, (2) ~ 0.95.

e Suppose that 61, ...,0; are independent random variables with distribution
functions Fi, ..., Fy and E(6;) = 0, 0 < Var(8;) < oo, s = Y Var(d;). The
Lindeberg condition for a sum of independent random variables is that for
any t > 0:

& Vet Jig/ s, T2dFk(@) — 0 when b — 0o (7.1)

From our assumptions about the roots, the bias is uniformly distributed and be-
cause 0 < Var(8;) < oo we have s — oo as b —» co. So for any t > 0, there
always exists L, when b > L the integral above is 0.
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Proposition 7.1 (uniform distribution and Lindeberg condition). If d1,...,d, are
independent random wvariables with uniform distribution, and E(6;) = 0, if the
variance of each 0; is nonzero and finite then this family of random wvariables
satisfies the Lindeberg condition.

Proposition 7.2 (Lindeberg’s central limit theorem [24]). Suppose 41, ...,0, are
uniformly distributed independent random variables, E(§;) = 0 and §; satisfies the
Lindeberg condition. Let Sy = Zle d0; then when b —+ 0o, the sum of variables di-
vided by its standard deviation is convergent (in distribution) to a standard normal
distribution:

% — N(0,1) as b— o0 (7.2)

Definition 7.3. We say a random variable £ or || is bounded by N(0,w) if the
probability P(|{| < zw) > ®(z).

When w is bigger, the probability will also be bigger. In particular if w' > w
then P(|¢| < zw') > P(|€] < zw), so ¢ is also bounded by N(0,w’).
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