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Abstract. In this series of papers “On Approximate Triangular Decompo-
sitions,” we describe progress on development of algorithms for triangular
decomposition of approximate systems.

In this paper, we begin with the treatment of linear, homogeneous sys-
tems with positive-dimensional solution spaces, and approximate coefficients.
We use the Singular Value Decomposition to decompose such systems into a
stable form. Results from the linear case are used in the commencement of
a discussion on the fully nonlinear case. We introduce linearized triangular
sets, and show that we can obtain useful stability information about sets cor-
responding to different variable orderings. We also discuss condition numbers
for approximate triangular decompositions. To augment the theory which we
have collected here, examples are provided, experiments are described, and
connections with the works of Sommese, Verschelde, and Wampler are made.
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gular Value Decomposition, Linear Systems.

1. Introduction

In applications, we are often interested in producing a useful triangular form, where
from a given set {x1, . . . , xn}, some of these variables are expressed as functions of
the remaining “free” variables. Already, methods exist which are designed to com-
pute triangular sets for exact systems whose varieties are of arbitrary dimension
[39, 18, 24, 38]. However, for real world problems, the systems under consideration
frequently have approximate coefficients that are inferred from experimental data.
This means that the stability of these triangular representations is a valid concern.
To be more clear, we are not merely concerned with the sensitivity of the trian-
gular representation to perturbations in the original data, but we also want the
solution set to be stable under small changes in values taken by the free variables.
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In the previous paper of this series: On Approximate Triangular Decom-
positions I: Dimension Zero [25], we gave a detailed treatment of approximate
triangular decomposition for systems with finitely many roots (zero-dimensional
systems). That work follows the equiprojectable decomposition presented in [8]
and also makes use of the interpolation formulas recently proposed by Dahan and
Schost [10]. In this second paper, we study the simplest class of positive dimen-
sional systems: linear homogeneous systems.

It is true that Gaussian elimination, with respect to a given variable order-
ing, will transform any input exact linear system into a triangular solved form.
However, in the case of approximate systems, neither replacement of floating point
numbers with rational numbers nor use of Gaussian Elimination with full pivoting
can be guaranteed to give orderings which are ideal (see the standard text [17] for
a discussion of these issues). Furthermore, such methods may lead to approximate
triangular representations which are practically unstable, even in the case of exact
systems.

The key idea for the portion of the current paper which deals with linear,
homogeneous systems, is to use stable methods from Numerical Linear Algebra.
Specifically we use the Singular Value Decomposition (SVD) to determine whether
a stable approximate triangular set exists for some variable ordering. We will show
that such a stable set and ordering always exists, but that a given ordering may
lead to an unstable representation. Furthermore, an interpretation of this set is
given in terms of an exact solution to some nearby (homogeneous) system.

From there we will go farther to explore some local structure of nonlinear
problems with Linearized Approximate Triangular Decompositions. Applying re-
sults from the treatment of linear problems to the linearization of nonlinear sys-
tems, variable orderings for locally-stable approximate triangular sets can be de-
termined. To do this, we use the homotopy continuation methods of PHCpack
[37] to generate generic points on each irreducible component of a given nonlinear
polynomial system [29, 31, 32, 30]. A collection of certain results on the decompo-
sition of non-linear systems is also provided here. For example, for n variables, the
interpolation methods of Sommese, Verschelde, and Wampler give approximate
triangular representations of the n− 1 dimensional components.

The above results, together with certain results using the equi-projectable
decomposition (presented in [25],the first paper) form an accessible bridge to the
study of the fully non-linear case. This will be described in a forthcoming work.

2. Approximate Triangular Sets for Positive Dimensional Linear
Systems

In this section we discuss triangular representations for linear systems. The foun-
dation of our treatment is the Singular Value Decomposition, and techniques that
have now become standard in Numerical Linear Algebra [17, 36].
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2.1. The Singular Value Decomposition and Variable Orderings

Suppose we are given a system of m linear homogeneous equations in n variables,
and that the solution space of the system has some positive dimension d. We wish
to express the solution with n− d variables in terms of d free variables.

Indeed, for reasons that will become clear, if the system includes approximate
coefficients, we worry that Gaussian elimination might produce an unstable (tri-
angular) representation of the solution set. Instead of Gaussian Elimination, our
main tool will be the Singular Value Decomposition (SVD) of Numerical Linear
Algebra.

Given A ∈ Fm×n where F is R or C one can compute the SVD [17, 36]:

A = UΣV t.

Here, Σ is a diagonal matrix with the same dimensions as A, both U ∈ Fm×m,
V ∈ Fn×n are orthogonal matrices, and V t denotes the transpose of V if F = R
or the complex conjugate transpose if F = C. If the rank of A is r, then the last
n− r columns of V form a basis for Null(A). The diagonal elements of Σ are real,
and are called the singular values of A. Often, it is enough to take the number of
nonzero singular values as the numerical rank of A. For later purposes, it is useful
to mention that the singular values are the square roots of the eigenvalues of
matrices AtA and AAt (where the transpose is the hermitian transpose if F = C).

Let P ∈ Fn×d be a matrix of whose columns form a basis for Null(A). In
particular, we can let P be composed of the last n− r columns of V from the SVD
of A and define d := n− r. Then

x = α1p1 + α2p2 + . . . + αdpd

= Pα, (2.1)

with α ∈ Fd.

Remark 2.1. Since the columns of P are orthogonal, then the matrix P tP is the
identity matrix, whose eigenvalues are all equal to 1. Thus every singular value of
P is equal to 1.

Furthermore, P stable with respect to changes in the (approximate) coeffi-
cients of A. Indeed, adjoining α1, ... , αd as new indeterminates we simply have
the following:

Remark 2.2. Equation (2.1) is a (normalized) triangular set in any ordering rank-
ing the variables {x1, ..., xn} greater than the variables {α1, ..., αd}.
Remark 2.3. The triangular set (2.1) has the additional property that it is ex-
tremely well-conditioned. Common practice in such practical stability analysis is
to write:

‖δx‖
‖x‖ ≤ ‖P‖‖P †‖‖δα‖‖α‖ (2.2)

to estimate the sensitivity of the solution x to small perturbations of α, given the
matrix P . Since P is not a square matrix, the usual inverse has been replaced



4 Marc Moreno Maza, Greg Reid, Robin Scott and Wenyuan Wu

with the pseudo-inverse P † (see Remark 2.8 for more details). Thus, the condition
number of the triangular solution represented by equation (2.1) can be expressed
in terms of the singular values of P . Indeed,

‖P‖‖P †‖ = σ1
1
σd

= 1 (2.3)

(by Remarks 2.1 and 2.8). This result is independent of the condition number of
the given matrix A.

We can further our exploration of this problem by investigating approximate
linear triangular sets with respect to orderings of the variables {x1, ..., xn} alone.
It is natural to ask why we should investigate such sets, given that, by Remark
2.2, the SVD already directly yields the triangular set (2.1). One reason is that
in applications we are often interested in expressing some variables in terms of
others. Another, more mathematical reason, is that we wish to use the linear case
as our guide in the study of the positive dimensional nonlinear case where such
orderings on the variables {x1, ..., xn} are often used.

To obtain triangular sets in the variables {x1, ..., xn} alone, we need to elim-
inate the variables {α1, ..., αd} in (2.1) in favor of d free variables suitably chosen
from {x1, ..., xn}. We will then have the remaining n − d variables expressed in
terms of these free variables instead of the α’s. If we can find an invertible sub-
matrix Q of P , we can write

xfree = Qα, (2.4)

and consequently
α = Q−1xfree. (2.5)

Denoting by R the matrix composed of the n− d rows of P that do not appear in
Q, the remaining variables may be expressed as

xnon-free = Rα

= RQ−1xfree. (2.6)

Proposition 2.4. Let P ∈ Fn×d be a matrix whose d columns, as computed by the
SVD, form a basis for the null-space of some given matrix. Then P contains an
invertible d× d sub-matrix.

Proof. This is a consequence of the columns of P being orthogonal. By remark
2.1, all d singular values of P are equal to 1, and the rank of P is d. Thus, we are
guaranteed d linearly independent rows in P . ¤

Through the above results, we are led to an important and interesting con-
clusion:

Theorem 2.5. For every A ∈ Fm×n with dimension d = n− r 6= 0, there is always
an ordering of the variables {x1, x2, ..., xn} which can be used to produce a stable
triangular representation of the linear system Ax = 0.
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Proof. Because an invertible sub-matrix of P always exists (Proposition 2.4), we
can always write the solutions in the form of (2.6) so that we have the ordering:
{xnon-free} Â {xfree}. Moreover, the SVD guarantees that the computation of P
is stable with respect to small perturbations in the coefficients of A. Finally, we
note that here we are speaking about theoretical stability, and that the practical
stability of (2.6) will be discussed in Section 2.3. ¤

2.2. Backward Error Analysis for Positive Dimensional Linear Homogeneous Sys-
tems

Here, we will take the liberty of presenting some results on backward error analy-
sis. We will do this for triangular solutions of approximate linear homogeneous
systems, and in the sole context this paper. This area has undoubtedly been stud-
ied in both more general and applied settings. For some interesting works see [35]
and references therein.

Suppose that we have some A ∈ Fm×n for which Null(A) has some positive
dimension d, and that we want to solve Ax = 0. If the matrix A consists of
entries which are approximate, our numerical solution will not likely solve this
given problem exactly. However, it is standard to say that the solution we find is
the exact solution to some nearby problem.

If the solution that we find is x∗, it does not make sense to say that we
have solved Ax∗ = e exactly for some nonzero vector of constants e. Here are two
reasons why:
(1) The residual is really of the form e(x), a vector which depends on all of the

variables {x1, x2, . . . , xn},
(2) Since our problem is homogeneous, then the nearby problem which we have

solved should also be homogeneous.
So, we want to say that we have solved Ãx∗ = 0 where x∗ = Xx, X ∈ Fn×n, and
‖A − Ã‖ is small. In the context of the development in Section 2.1, we may find
a triangular solution of the form xnon-free = RQ−1xfree. So the problem that we
have solved can be written as

A

[
RQ−1

Ĩ

]
xfree = Exfree. (2.7)

Here the columns of A have simply been rearranged so that
[

RQ−1

Ĩ

]
may be used

to denote the n × d matrix with first (top) n − d rows formed by the n − d rows
of RQ−1, and the remaining (lowest) d rows are a suitable permutation of the
identity matrix. The right hand side of (2.7) is non-zero because we are unlikely to
find the exact solution to the original (approximate) problem. Presumably, there
is some perturbation matrix δA with which we can write

(A− δA)
[
RQ−1

Ĩ

]
xfree = 0. (2.8)

With equations (2.7) and (2.8), we can see that
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δA

[
RQ−1

Ĩ

]
= E. (2.9)

Proposition 2.6. Given an approximate, linear, homogeneous equation Ax = 0,
and a triangular representation for its solutions, there exists a perturbation to the
coefficients of A so that this triangular solution exactly solves the perturbed system
(A− δA). Furthermore, we have ‖δA‖ 6 ‖E‖.
Proof. Transposing (2.9) we have

[
RQ−1|Ĩ

]
δAt = Et, (2.10)

and we are free to choose the top n−d rows of δAt to be zero rows. The remaining
d rows are then a permutation of Et such that ĨẼt = E.
With this choice, we have ‖δA‖ = ‖E‖. There may also be alternative choices of
δA for which ‖δA‖ < ‖E‖. ¤

2.3. Some Stability Results: in Theory and in Practice

In the previous section, we had claimed that there is an invertible d×d sub-matrix
of P . However, this is a theoretical result which, in the approximate case, is rather
subtle.

If P was exact, it would then contain exactly d linearly independent rows
and n − d linearly dependent rows. Furthermore, any particular row is linearly
dependent on the other rows if and only if it is able to be expressed as an exact
linear combination of them. In our case, the entries of P are approximate, and it is
often quite unlikely that any row is an exact linear combination of the others. Thus,
we cannot speak of having exactly d linearly independent and n − d dependent
rows. However, we are still guaranteed a d×d sub-matrix of P which is invertible,
but there will likely be more than one such sub-matrix. So, our goal is to select
for our Q the “best” d× d sub-matrix of P .

Theorem 2.7. Given a matrix A = UΣV t ∈ Fm×n with rank r, the closest singular
matrix to A has rank r−1 and can be constructed as: Ã = U Σ̃V t where Σ̃ is equal
to Σ with σr replaced by zero. Furthermore, we have ‖A− Ã‖2 = σr.

Proof. See Trefethen and Bau [36] for an even more general result and proof. ¤
This means that for any d× d sub-matrix Q with singular values {σ1, σ2, . . . , σd},
there exists a singular matrix within distance σd of Q. In lieu of Theorem 2.7,
our initial inclination was to claim that the “best” Q is the d × d sub-matrix of
P which has the largest σd. Actually, the choice of the best Q is not quite that
simple. It is true that we want a nonsingular Q, but, unfortunately, the Q which is
farthest from singular may not give us the RQ−1 which is most practically stable.

Before explaining what we had meant by the previous comment, we wish to
state some well-known results which will be used in the beginning of a proof of
the conjecture which concludes this section.
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Remark 2.8. It is well-known that for any given matrix A = UΣVt, ‖A‖2 = σ1.
For any invertible matrix A ∈ Fn×n, we have A−1 = V Σ−1U , and so the singular
values of A−1 are { 1

σn
, 1

σn−1
, . . . , 1

σ1
}, and ‖A−1‖2 = 1

σn
. If A is not square, then

its pseudo-inverse A† = V Σ†U t can be computed instead of the inverse. For our
purposes, we regard A as having full rank, and then the diagonal elements of Σ†

are still { 1
σn

, 1
σn−1

, . . . , 1
σ1
}. See, for example, [17] for more information on the

pseudo-inverse.

Remark 2.9. Without proof we state the known result that if M is any sub-matrix
of a given matrix A, then ‖M‖p 6 ‖A‖p for any matrix p-norm.

A stable solution will have continuous dependence on its input data. However,
it may be very sensitive to changes in the values substituted for the free variables.
The acceptable magnitude of the condition number will depend on the particular
application that is involved, and will determine if the triangular representation is
practically stable. We introduce the notation: σQ and σR for the last (dth) singular
values of Q and R respectively. Simply, using Remarks 2.1, 2.8, and 2.9, and the
two norm, we have the following bound for the condition number of RQ−1:

Cond(RQ−1) = ‖RQ−1‖2‖(RQ−1)−1‖2
6 ‖R‖2‖Q−1‖2‖Q‖2‖R†‖2
6 ‖P‖2 1

σQ
‖P‖2 1

σR

=
1

σQ
· 1
σR

. (2.11)

By maximizing the product σQ · σR, we will have minimized the bound on
Cond(RQ−1). In our experiments, we have observed that choosing Q and R such
that Q is non-singular, and σQ · σR is maximal, yielded a solution for which the
condition number was minimal. It is interesting to note that there may be more
than one optimal solution (see the first example in Section 3). Also, choosing
Q such that it is the d × d sub-matrix which is farthest from singular does not
guarantee this least condition number (see the second example in Section 3).

Conjecture 2.10. For every A ∈ Fm×n with dimension d = n − r 6= 0, we can
write: xnon-free = RQ−1xfree. By choosing Q non-singular and such that σQ · σR

is maximal, we will have found ordered sets {xnon-free} Â {xfree} for which the
stable triangular representation of this linear system is most practically stable.

2.4. Some Notes on Computation

Given a rank r = n − d matrix A ∈ Fm×n one can easily compute the SVD of A
to get P , the n× d matrix whose columns form a basis for Null(A). The practical
difficulty in expressing the n− d non-free variables in terms of the d free variables
is in finding an invertible sub-matrix Q of P , and corresponding sub-matrix R
such that the solution is practically stable. It is considerably more difficult still to
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find the “best” combination of Q and R. An ideal algorithm would be one which
fulfills the following two criteria:

(1) The output variable ordering is optimal,
(2) The method is efficient.

This is not a straight-forward problem. Of course there exists an algorithm which
will fulfill criterion (1) Simply use brute force to try all (n

d ) combinations of d rows
taken from P . This is a sensible strategy for small problems, but the expense of
trying to solve systems which admit large P is unsatisfactory. We also note that
there may be several optimal choices (eg. consider x + y + z = 0, where every
ordering is optimal).

Employing randomness will give us (2), but not necessarily (1). We can ran-
domly select d rows from P . For large P , we are not likely to select the best Q
(and R), but we can also expect not to obtain the worst combination. For an even
better solution, one could repeat this a number of times, and take the best result.
For further study, one would like to know more about the distribution of the σd

for all d×d and n−d×d sub-matrices of P . Furthermore, thought on this strategy
raises another question: If we aren’t guaranteed an optimal solution, what may be
accepted as a “sufficient” solution?

3. Linear Examples

3.1. Example 1

The purpose of this first example is two-fold. First, the size of this example is
small so as to ensure that the notation and ideas previously presented are clear.
Secondly, this system admits two optimal variable orderings. Consider that we are
given the following system to solve:




−0.1 −0.2 0.7 1.1
0.7 1.4 1.1 1.3
0.6 1.2 −0.2 −0.6
0.5 1.0 0.5 0.5







x
y
z
w


 =




0
0
0
0


 ,

and assume that the accuracy of each entry is known only to the number of decimal
places given (ie. 1 decimal place, and the digits to the right of those given are
unknown [7]).

The singular values of this system, rounded to two decimal places, are
[2.80, 1.79, 4.79 × 10−15, 8.54 × 10−15]. With these, we can clearly see that the
numerical rank of the matrix above is 2, and so the dimension of Null(A) will be
n− r = 4− 2 = 2. From the last two columns of V from A = UΣV t, we form the
4× 2 matrix P .

There are (n
d ) =

(
4
2

)
= 6 possible choices for the partitioning of P into

matrices Q and R. Since, in this case, n = 2d, in terms of practical stability, there
will be (at least) two optimal variable orderings.
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Checking all 6 possibilities, we find that there are two options for which the
computed Cond(RQ−1) ≈ 2.29 × 1016 < 1

σQ
· 1

σR
≈ 8.60 × 1016. There are two

others for which Cond(RQ−1) ≈ 3.09 < 1
σQ

· 1
σR

≈ 4.12. Finally, there are two
optimal choices such that Cond(RQ−1) ≈ 1.50 < 1

σQ
· 1

σR
≈ 2.87.

These best choices translate into ordering the variables such that either
{x, z} ≺ {y, w} or {y, w} ≺ {x, z}. Respectively, the most practically stable trian-
gular representation for the solutions is either:

y = −0.50x− 0.17z,

w = −0.67z,

or

x = −2.0y + 0.5w,

z = −1.5w.

3.2. Example 2

In this example, we use the 10 × 15 Hilbert Matrix, which has full rank and has
as each entry hi,j = 1

i+j . We will denote this exact matrix by He and its floating
point approximation by Hf .

First, we want to point out that the issue of stability is not encountered only
in the numerical realm. The stability of a triangular representation for the solutions
of an exact system may also be ordering-dependent. Suppose that we are given a
system of linear, homogeneous polynomials P = {p1, . . . , pm} ∈ Q ∈ [x1, . . . , xn],
and that we want a triangularization of the solutions to Px = 0 in the form of
2.6. The coefficients in the solution may be computed exactly (say, using exact
Gaussian Elimination). However, the solutions to the system are still real. The
Substitution of real values for the free variables admits the possibility of practical
instability.

Using Gaussian Elimination to solve Hex = 0 with x = (x1, ..., x15), we
achieve the variable ordering {x11, x12, x13, x14, x15} ≺ {x1, x2, . . . , x9, x10}. This
is as expected as He has (exactly) full rank. The condition number of this (trian-
gular) solution is ≈ 2.66 × 105. Using the SVD, we can check that this solution
corresponds to one for which σQ ≈ 0.11×10−2, so Q is not singular. Also, we have
σR ≈ 0.35× 10−2.

Another suitable solution strategy for linear polynomial solving is to use
Gaussian Elimination on the floating point system. This, instead of doing exact
computation, can yield a considerable speed up, at least, due to a decrease in
required storage and intermediate computations. With partial pivoting, Gaussian
Elimination does not re-order the columns of a given dimension−d matrix A.
Thus, generally, a solution will be achieved for which the free variables will be
those associated with the last d columns of A. Gaussian Elimination with full
pivoting, however, will exchange the order of the columns. Although this strategy
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may consistently yield solutions for which the residual is small, the triangular
representation may be unstable, or at least not guaranteed to be optimal.

Applying Gaussian Elimination with full pivoting to solve Hfx = 0, yields the
ordering {x2, x3, x4, x5, x6} ≺ {x1, x7, . . . , x14, x15}, and ‖E‖F = 6.82×10−15. So,
at first glance, we appear to have found a good solution. However, the approximate
triangular form is practically unstable, with computed condition number ≈ 1.29×
108. Again using the SVD, we find that this corresponds to selecting a Q for which
σQ ≈ 5.97× 10−9, and R such that σR ≈ 0.79.

The solution for which Q is farthest from singular, with σQ ≈ 0.55, has
xfree = {x7, x9, x11, x12, x14}. Here, Cond(RQ−1) ≈ 11.70, so that this is close to
the optimal solution, below.

There is (at least) one choice for Q and R such that Cond(RQ−1) is minimized
at ≈ 7.64. We have found one such partitioning with σQ ≈ 0.46, σR ≈ 0.24, and
corresponding to xfree = {x6, x8, x10, x12, x14}.

We have seen that, for the purpose of finding practically stable triangular
representations, both Gaussian Elimination on exact systems and Gaussian Elim-
ination with full pivoting on approximate systems may indeed provide a poor
variable ordering. Finally, it is interesting to note that, given an efficient and re-
liable method of computing an optimal ordering, one might think about using it
to find practically stable triangular solutions even for exact systems. The ordering
could be computed by such a numerical method, and used to order the columns
of an exact matrix such that Gaussian Elimination would yield the best solution.

4. Approximate Linearized Triangular Decompositions &
Numerical Algebraic Geometry

In Section 4.1 we introduce triangular sets, linearized about points on the variety
of a polynomial system (linearized triangular sets). The approximate points about
which we linearize are computed using the methods of Numerical Algebraic Geom-
etry due to Sommese, Verschelde, and Wampler. We discuss some background on
this material in Section 4.2.

4.1. Approximate Linearized Triangular Decompositions

In this section we will make use of the results from our study of the linear case
to introduce Linearized Triangular Sets. Suppose that we are given a nonlinear
polynomial system p = {p1, p2, ..., pm} in n variables x = (x1, ..., xn). Then the
affine variety of the system over C is defined as:

V (p) = {x ∈ Cn : p(x) = 0}. (4.1)

The key idea of this section is to linearize about some given point x0 =
(x0

1, ..., x
0
n) on the variety of the system and let v = (x1 − x0

1, ..., xn − x0
n)t. This

will yield the linear system:
∂pj

∂xk

(
x0

)
v = 0. (4.2)
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If p generates a radical ideal, it is easy to know that this linearized system is
the tangent space of V (p) at x0 [6]. We know the tangent space has the same
dimension as the variety at this point. It is important to note that, to avoid rank
deficiency, the condition number of the Jacobian matrix at x0 must be considered.
An extremely large condition number will either mean that this point is a multiple
root, or that the polynomial system p is ill-conditioned.

It is natural to use this linearization to study the fully non-linear positive
dimensional case.

4.2. Numerical Algebraic Geometry

In order to achieve the linearization above we need to determine points x0 ∈ V (p).
The tools we use to determine approximations of such points are the homotopy
continuation methods of Sommese, Verschelde, and Wampler [34, 30].

Homotopy methods define families of systems, embedding a system to be
solved in a family, and connecting it to a start system whose solutions are known
or easier to compute. Numerical path tracking routines are then applied to follow
the paths defined by the homotopy, and lead to all solutions of the system. In [34],
Sommese and Wampler outlined the development of a new field “Numerical Al-
gebraic Geometry,” which led to the development of homotopies to describe all
irreducible (or the weaker equi-dimensional) components of the solution set of a
polynomial system.

The key data in a numerical irreducible or equi-dimensional decomposi-
tion [30] is a witness set. A witness set for a k-dimensional solution component
consists of k random hyperplanes together with the set of isolated solutions which
comprise the intersection of the component with those hyperplanes. The degree
of the solution component equals the number of witness points. Witness sets are
equivalent to lifting fibers in a geometric resolution [15, 16, 21].

Candidate witness points are computed efficiently using a cascade of homo-
topies [29], peeling off the hyperplanes in going from high to lower dimensional
solution components. This idea of cutting with hyperplanes to determine the di-
mensions of the solution components appeared in Giusti and Heintz [14]. Using
monodromy loops [31], certified by linear traces [32], a pure dimensional solu-
tion component is factored into irreducibles. These techniques have been applied
to factor multivariate polynomials, see e.g. [2, 3, 5, 12, 26]. These methods have
been implemented in PHCpack [37]: see [33] for a description of some of its added
capabilities. An interface to PHCpack within Maple is described in [23].

An irreducible affine variety V is an affine variety that can not be expressed as
a finite union of proper sub-varieties. This is equivalent to Vreg, the set of manifold
points of V , being connected in the usual (complex) Euclidean topology. A well-
known result is that that any affine variety can be expressed uniquely as a union
of finitely many irreducible affine varieties. Geometrically the irreducible varieties
are the closures of the distinct connected components of Vreg. The dimension of
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these irreducible components can vary from 0 to n− 1:

V (p) = Z =
n−1⋃

i=0

Zi =
n−1⋃

i=0

⋃

j∈Ii

Zij , (4.3)

where Zi is the union of all i-dimensional components, Zij are the irreducible
components and Ii are index sets with finitely many entries. See Section 5 for an
example.

Definition 4.1. Given a polynomial system p(x) = 0 having a decomposition Z into
irreducible components Zij or more weakly into equi-dimensional components Zi

in (4.3), a witness set W is a set of points of the form

W :=
n−1⋃

i=0

Wi =
n−1⋃

i=0

⋃

j∈Ii

Wij , (4.4)

where
1. Wij is a finite sub-set of Zij (i.e. Wij ⊂ Zij),
2. Wij contains no points from any other Zk,` (i.e. Wij ∩ Zk` = ∅ for (i, j) 6=

(k, `)),
3. Wij contains degZij points, each occurring νij times for some integer νij ≥ µij

where µij is the multiplicity of Zij as an irreducible component of p−1(0).
Moreover, if µij = 1 then νij = 1.

See Section 5 for an example. The Wi above are the witness sets for the
equi-dimensional decomposition and Wij are the witness sets for the irreducible
decomposition. Approximate points for these can be determined by numerical ho-
motopy continuation methods. It is important to note that the witness sets for an
equi-dimensional decomposition can be computed more cheaply than that for the
irreducible decomposition.

4.3. Results for Approximate Triangular Decomposition

Examples illustrating the results of this section can be found in Section 5.
Since the witness points computed for the zero dimensional case each have

the form x1 = a1, x2 = a2, ..., xn = an it follows that:

Remark 4.2. For an exactly given input system of polynomials over C, the (exact)
witness point representation of the set of isolated points Z0 is a collection of
triangular representations over C.

The homotopy continuation methods of [30] give a method for approximating
all such isolated points, provided a small enough tolerance is used, which rely
for their stability on Bernstein’s theorem [1]. Certification that the tolerance is
small enough for Newton’s method using approximate arithmetic to be certified
as converging to an exact of the original exact system requires use, for example
of Shub and Smale’s γ theory [28]. We note that the case of approximate input
systems is more involved and the subject of current research.
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In our previous paper, we reassembled this collection of approximate triangu-
lar representations to give an approximate equi-projectable decomposition of the
Z0 (which is an equi-dimensional decomposition). That triangular decomposition
can be regarded as an approximation of the decomposition that is obtained by
exact methods.

For the positive n − 1-dimensional case, the witness set characterization,
introduced by Sommese, Verschelde, and Wampler [30], can be regarded as an
exact, probability 1, non-algorithmic construction using exact complex arithmetic.
In addition an exact interpolation process can be given, leading us to:

Remark 4.3. Each such interpolating polynomial for each irreducible component
of dimension n − 1 constitutes a triangular representation for that irreducible
component. In the equi n−1-dimensional case the single interpolation polynomial
is also a triangular representation.

The methods of Sommese, Verschelde, and Wampler, regarded exactly, gen-
erate enough generic points to exactly interpolate each such irreducible component
by a single polynomial in the variables x1, x2, ... , xn. In addition, by these methods
a single interpolation polynomial can be obtained for Zn−1, ie. for the components
of dimension n− 1 in the equi-dimensional decomposition. In the case of approxi-
mate arithmetic, the zero dimensional systems arising in the above process again
require certification for convergence, and algorithmic certification (in the sense of
Shub and Smale) is a topic of current research.

The interpolation procedure applied in Remark 4.3 incrementally increases
the interpolation degree from 1 until the minimum degree where interpolation is
successful is obtained, and yields triangular representations which generate radical
ideals.

From Remarks 4.2 and 4.3 we have:

Remark 4.4. Approximate triangular representations can be obtained for each
irreducible (and each equi-dimensional) component of a bivariate system of poly-
nomials.

An easy consequence of Remark 2.5 is:

Remark 4.5. Given x0 ∈ V (p), an ordering of the variables can be determined so
that there is a stable linearized triangular representation of the polynomial system
about x0.

Such linearized triangular systems give information on the existence and con-
struction of associated nonlinear triangular systems. Again we add the cautionary
remarks that the above statements are true as exact statements of C, and care
must be taken in approximate counterparts of such statements.
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5. An Example of Sommese, Verschelde and Wampler

Consider the system, which is used as an illustrative example by [30]:

p =




(y − x2)(x2 + y2 + z2 − 1)(x− 0.5)
(z − x3)(x2 + y2 + z2 − 1)(y − 0.5)

(y − x2)(z − x3)(x2 + y2 + z2 − 1)(z − 0.5)


 = 0. (5.1)

In this illustrative example, it is easy to find the decomposition:

V (p) = Z2 ∪ Z1 ∪ Z0 = {Z21} ∪ {Z11 ∪ Z12 ∪ Z13 ∪ Z14} ∪ {Z01}, (5.2)

where

1. Z21 is the sphere x2 + y2 + z2 − 1 = 0,
2. Z11 is the line (x = 0.5, z = 0.53),
3. Z12 is the line (x =

√
0.5, y = 0.5),

4. Z13 is the line (x = −√0.5, y = 0.5),
5. Z14 is the twisted cubic (y − x2 = 0, z − x3 = 0),
6. Z01 is the point (x = 0.5, y = 0.5, z = 0.5).

For the example above, which is executed by the algorithm IrreducibleDecom-
position in [30], the witness set W , the degrees dij and multiplicity bounds νij

are:

W = W2 ∪W1 ∪W0 = {W21} ∪ {W11 ∪W12 ∪W13 ∪W14} ∪ {W01}, (5.3)

where

1. W21 contains 2 points, d21 = 2 and ν21 = 1,
2. W11 contains 1 point, d11 = 1 and ν11 = 1,
3. W12 contains 1 point, d12 = 1 and ν12 = 1,
4. W13 contains 1 point, d13 = 1 and ν13 = 1,
5. W14 contains 3 points, d14 = 3 and ν14 = 1,
6. W01 is a non-singular point.

See Section 7.2 of [30] for the execution summary of this example.

Consider the system p from (5.1), with decomposition (5.2), and the description of
the witness points and their degrees given above. As previously noted, the possible
dimensions of the irreducible components are 0, 1 and n− 1 = 2.

Zero Dimensional Components: Using the methods of [30] yields one single isolated
point of degree 1: x = 0.5, y = 0.5, z = 0.5. This, of course, is a triangular set
(and is also equi-projectable).

One Dimensional Components: The methods of [30] predict 3 one-dimensional
degree 1 (linear) components, and 1 one-dimensional degree 3 component. Im-
mediately, the linearized triangular set method of Section 4.1 can be applied to
approximate the linear one-dimensional components. Here is a sketch of the details.
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First, from [30], we can determine an approximate generic point, x0, on each linear
component: a ∈ Z11, b ∈ Z12, c ∈ Z13. Then, we can make use of the SVD to
achieve linearized triangular representations of the form:

x = x0 + αw, α ∈ C (5.4)

where x0 ∈ {a,b, c} and w ∈ {wa,wb,wc} are the corresponding basis vectors given
by the SVD. Here, α is regarded as an additional indeterminate with {x, y, z} Â α.

Recalling (2.6), if wk 6= 0 we can choose xk as a free variable and rewrite (5.4) as

xj = x0
j +

wj

wk

(
xk − x0

k

)
(5.5)

where all other xj (j 6= k) are the two non-free variables.

We used for x0 (respectively for each of the 3 linear 1−dimensional components):

ã ≈ [
0.50 + 2.08× 10−11i, 1.00 + 1.64× 10−11i, 0.125− 7.13× 10−11i

]t
,

b̃ ≈ [
0.71 + 4.10× 10−11i, 0.50− 9.30× 10−11i, 1.00 + 2.92× 10−11i

]t
,

c̃ ≈ [−0.71− 9.68× 10−11i, 0.50− 4.28× 10−11i, 1.00− 8.51× 10−11i
]t

.

The corresponding vectors w obtained by applying the SVD to the linearized
systems about x0 are:

wa ≈ [−2.50× 10−10 − 0.i, 0.68 + 0.74i, 3.37× 10−10 − 6.32× 10−10i]t,
wb ≈ [−5.22× 10−10 + 0.i, 1.73× 10−10 + 3.54× 10−10i,−0.85 + 0.53i]t,
wc ≈ [1.51× 10−10 + 0.i, 1.39× 10−11 + 3.64× 10−10i,−0.73− 0.69i]t,

where we have rounded the above results to two decimal places (and 0.i is used to
denote floating point zero). The next step is to find the stable orderings of {x, y, z}
on each linear component.
Z11: For the one-dimensional case, we do want to find the invertible d × d sub-
matrix Q of wa which has greatest dth singular value. Since here we have d = 1,
the singular values of each of the three 1 × 1 sub-matrix of wa are simply the
magnitudes of each complex entry itself. This means that we are looking for the
entry of wa with greatest magnitude, and this will tell us which of {x, y, z} will be
the best free-variable. We find a single stable choice:

xfree = {y},
xnon-free = {x, z},

which corresponds to either of the orderings: y ≺ x ≺ z, or y ≺ z ≺ x.

Geometrically, this can be interpreted as follows: the linear component Z11 is ex-
actly a line perpendicular to the xz-plane. Because the numerical approximation
to this component contains errors (due in part to the inexact point ã) and is a line
which is not exactly perpendicular to the xz-plane. Solving for y, z in terms of x,
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or x, y in terms of z, are unstable choices. A small change in x would then cause a
change in y roughly on the order of 109 (in the first case), or a change in z would
cause a change in y which would also be around the order of 109 (in the second
case).

The (only) stable approximate linearized triangular representation is:

x = ãx − (1.69× 10−10 − 1.84× 10−10i)(y − ãy),

z = ãz − (2.37× 10−10 + 6.76× 10−10i)(y − ãy).

Z12: As for Z11, we find just one stable choice of free variables:

xfree = {z},
xnon-free = {x, y},

which corresponds to either of the orderings: z ≺ x ≺ y, or z ≺ y ≺ x. This
corresponds to approximate solution:

x = b̃x + (4.43× 10−10 + 2.76× 10−10i)(z − b̃z),

y = b̃y + (4.07× 10−11 − 3.92× 10−10i)(z − b̃z).

Z13: Here the stable choice of free variables is:

xfree = {z},
xnon-free = {x, y},

which corresponds to either of the orderings: z ≺ x ≺ y, or z ≺ y ≺ x. The stable
approximate solution is:

x = c̃x − (1.10× 10−10 − 1.04× 10−10i)(z − c̃z),
y = c̃y − (2.60× 10−10 + 2.55× 10−10i)(z − c̃z),

It is both interesting and important to note that for exact triangular decomposi-
tion, one can set a single order for the entire computation. However, here there
is no single stable choice of {xnon-free} and {xfree} which covers all three cases
(Z11, Z12, and Z13).

Z14 (Twisted Cubic): Consider the linearization of p about the (random) point x0

on the twisted cubic given by:

d̃ ≈ [0.50 + 4.16× 10−11i, 0.25 + 3.41× 10−11i, 0.125 + 9.63× 10−11i]t.

Applying the SVD to the linearization of the system about x0 = d yields w given
by

wd ≈ [0.48 + 0.i, 0.80 + 0.10i, 0.36− 4.30× 10−10i]t.
Then the method above yields the most stable choice:

xfree = {y},
xnon-free = {x, z},
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which corresponds to either y ≺ x ≺ z, or y ≺ z ≺ x. We obtain the following
linearized triangular decomposition:

x = d̃x − (5.90× 10−1 − 0.76× 10−1i)(z − d̃z),

z = d̃z − (4.43× 10−1 − 0.57× 10−1i)(z − d̃z).

However, we are more interested in what can be said about the triangular decom-
position of the original non-linear problem.

First, we mention that the methods of [30] interpolate this one-dimensional
curve as the intersection of n + 1 = 4 hyper-surfaces, which are in fact ruled sur-
faces. These ruled surfaces correspond to random (generic) projections. Lemma
5.3 in [30] expresses the fact that the irreducible component, corresponding to
this one-dimensional curve, is precisely cut out by the intersection of these 4 ruled
hyper-surfaces. Equivalently in terms of generic coordinates X, Y , Z, which are
random linear combinations of x, y, z, the irreducible component is defined in terms
of 4 polynomials in X, Y , Z. Three of the polynomials are bivariate polynomials
(of (X, Y ), (X, Z), and (Y,Z) respectively) and correspond to projections onto the
generic coordinate hyperplanes. Triangular decomposition of this one-dimensional
curve should require only 2 rather than 4 polynomials. However, approximate
triangular representations in the generic coordinates can be extracted by choos-
ing subsystems of 2 polynomials from the 3 bivariate polynomials. Note that, in
general, such triangular representations will have excess components (removed by
intersection with the remaining polynomials). In some cases, excess components
don’t occur (a fact that can be checked in a number of ways, e.g. by numerical
membership testing, or testing numerically for irreducibility). In this case, a tight
generic triangular representation is determined.

We now briefly discuss the task of finding triangular decompositions in terms
of the original coordinates x, y, z, rather than the generic coordinates. It is clear
from our comments above, in the linear case, that we need an ordering of the vari-
ables that is numerically stable, and should be applicable even in the non-linear
case. Here, we require a projection that maps the nonlinear curve onto one which
has the same dimension. The linearization shows that any projection will have
this property. This projection can be interpolated, so the degree of the interpo-
lated curve is important. The approach of [30] determines that the degree of the
curve is 3, and this can only drop on projection. So a second obvious property for
a ‘good’ projection is that this degree not be diminished. At this stage, we have
reached the limits of the applicability of the methods presented in this current
paper.

Two Dimensional Components: There is one single component of p, predicted by
[30] which has dimension n − 1 = 2 and degree 2. Homotopy continuation can
be used to generate enough points from which a single polynomial of degree 2 in
x, y, z can be interpolated. This interpolation can be carried out automatically
by PHCPack [37]. This is a triangular set for the component. Note also that
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the minimality of the degree ensures that the ideal is radical (one property of
a triangular set). It is equivalent to a multiple of x2 + y2 + z2 − 1 = 0, which is
easily seen independently here, but, of course, the method will work on examples
where such an expression cannot be so easily extracted.

6. Discussion

Exact triangular decomposition methods for representing exact polynomials sys-
tems (see for example [39, 20, 24, 18, 38]) have proved valuable in applications
[4, 19, 11, 27, 13], and there are well-developed algorithms [24, 8] for their con-
struction. There have also been considerable recent improvements [10, 9] in the
complexity of algorithms for their construction. Such representations are desir-
able, not only because of their triangular solved-form structure, but also because
(in comparison with other exact methods) they give the minimum number of
polynomials required to form a description of the equi-dimensional decomposition
components of such systems.

In this series of papers, we extend such methods to approximate systems
of polynomials. The first paper of the series gave a detailed treatment of zero-
dimensional systems, and in this paper we have studied linear positive dimensional
systems using methods from Numerical Linear Algebra.

The methods of [30] enable approximate generic points on the solution com-
ponents of polynomial systems to be computed by numerical homotopy continu-
ation. These witness points give the layout of the decomposition as well as the
number of witness points on a component, which is its degree. As we indicate in
this paper, the zero-dimensional components, computed by the methods of [30] are
a solved form, and constitute a collection of triangular sets (each being an isolated
root). However, these sets don’t directly correspond to the triangular represen-
tation computed by exact methods. Also, if n is the number of variables, each
irreducible component of dimension n − 1 (hyper-surfaces) can have additional
generic points generated by homotopy continuation, and interpolated by a single
polynomial. This representation, which is automatically generated by PHCPack of
[37, 30], is again, as we note, trivially, a triangular set.

In the d-dimensional case where 0 < d < n−1, the methods of [30] also gener-
ate additional points on each irreducible component, and give interpolating poly-
nomials to represent the component. Each interpolating polynomial corresponds
to a random projection of the component in Cn to a d+1 dimensional affine space.
In general, n+1 generic projections (and n+1 interpolating polynomials) are used
in that approach to precisely describe the component (see especially Lemma 5.3 of
[30] for the theoretical justification). Such a representation is not triangular, since
a triangular representation would only require n−d polynomials. However a trian-
gular sub-system of n−d polynomials can be extracted in generic coordinates (e.g.
as discussed for the twisted cubic example). Such generic triangular sub-systems
are not generally irreducible, however, (although a numerical test for irreducibility
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can be applied). Their chance of irreducibility can be enhanced by adding random
linear combinations of the remaining d + 1 polynomials to the triangular system,
while maintaining its triangular structure.

Given a point x0 on a d-dimensional irreducible component of a polyno-
mial system computed using SVW, we compute a local linearization of the form
x = x0 +Pα, where P is computed using the SVD, and the α’s are d newly intro-
duced parameters. In the case of linear varieties this is actually a triangular repre-
sentation. Secondly, by eliminating α, and provided certain stability-invertibility
properties are satisfied, stable triangular representations in the variables x can
be obtained for the linearization. We note that both of these representations in-
volve n− d linear polynomials. For linear components, [30] gives a non-triangular
representation, also only requiring n− d linear polynomials.

The next paper in our series will build on the foundations of the first two,
and will deal with the construction of approximate triangular sets for positive
dimensional systems of polynomials.
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[2] G. Chèze. Absolute polynomial factorization in two variables and the knap-
sack problem. In J. Gutierrez, editor, Proc. ISSAC 2004, pages 87–94. ACM
Press, 2004.
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