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Abstract

Wi discuss the parallelization of algorithms for solving polynomial systems symbalically, We
acddress the ollowing questions: How to discover geometrical indormation, at an early stage of
the solving proces, that would be favarable to paralld execution? How to emswre load balancing
arnang the processors? We amswer these questions in the context of triangular decompositions.
Weshaw that rich opportunities for pamlld esseution are obbaines] by combining modalar tech-
nigues together with a slving proces prodocing components by decreasing order of dimeresion.

Introduction

Sinee the discovery of Grobner bases, the algornithmic advances in Commutabive Algebra have macde
pessible to tackle many classical problems in Algebraic Geometry that were previously out of reach.
However, algonthmic progress iz still desirabls, for instance when scbang symbalically a large syvs-
tem of algebraic non-linear equations. For such o system, i particular af 1ts salation set consists of
geometrie components of different dimension [points, corves, surfaces, =) iF 15 necessary bo combane
Grobner bases with decomposibion techngues, such as toangular decompositions,. Ideally, one woaald
like each of the different components to b= produced by an independent processor, or set of pro-
cemsors. In practice, the input polynomial system, which s hiding those components, regquires scme
translormations in order o sphit the computations inks sub-systems and, then, lead to the desired
components, The efficiency of this approach depends cn s abiliby to detect and explot geometrical
information during the salving process. lis implementation, which natarally most nvolve parallel
symbolic computations, i& yet another challenge,

Chur work addresses two questions: How to discover geometrical information, at an early stage
af the solving process, that would ke favorable o parallel execotion? Hew to ensure load balancing
among the processcrs” We answer these questions in the context of trangular decompositions 3]
which are a popular way of salving polynomial systems symbolically, They are used in geometnic
computations |3 such as imphicibzabion and classification problems [8, 9], They have interesting
properiies |6 for developing modular methods and stable numerical technigues.

Algorithms computing trnangular decompositions tend to sphit the input poly nomial system mto
subaystems and, therelore, are natural candidate for parallel implementation. However, the only
=uch method which has been parallelized so Gar s the Charcteristic Set Method of W, as reported
i [ 11, This approach suflers from several limitations.  For instance, the computation of the
secomd compeonent cannct start before that of the first one 1= completed; this s a hmitation o
view of coarsegraim parallelization, Actually, the operation which s parallelized o [1, 11] 15 the
psendorreduction of several polynomials w.rb. a toangular ==, This is somilar to most approaches
in parallelizing Buchberger’s algomthm [4, 2]; we view them as medivm-gran parallelhizatbion,



The algorithms in [10], that we call Trade, for TRIArgular DEcompesitions, llows o different
approach, summarized in Section 1. 1 appears to be o patural candidate for conrse—grain parcallel
implementation, basel on gecmetrieal considerations,

Heowever, several challenges remain to be considered. Fiest, load balancing s very difficult o
control due bo irregular tasks,  Even woase:  for some inpub polynomial systems, mesource cone
surmning, tasks may not be execubed concurrently,  (In characternstic sero, most examples from
www.BynbolicData.org have a tniangular deccanpesiticon consisting of a single component, | Sec-
cnd, data commuonieation can be very heavy due bo large intermediate resalts,

[0 order to achieve load balancing we rely on the bllowing facts, For an input palynomial system,
the Triade algorithm can generabe the (intermediate or oubput] components by decreasing order of
cimension, as explained in Section 1. As a consequence, expensive basks [those in lower dimension)
can be procesed concurrently. In addition, when solving a (non-trivial] pelynomial system modulo
a prime inbeger, the number of these tazks may be sullicient for expecting a good speesd-up in a
parallel execution. The case of polynomial systems with integer cosflicients can alss beneht from
these [matures by using the maodular technigques intraduced in |6G].

We hiaves developed a paralle] scheme for the Trade algorithm, presented in Section 2, aiming at
minimizing data communication cverhead. Tasks are scheduled and updated by a process manager.
Individual tazks are solved “lazily” by process workers. However, each process werber keeps trads of
encugh information such that it can continue the solving of some of these tasks, when needed, We
hive resalized a preliminacy implementation on a shared memory multiprocessor, In Section 3, we
report on our experimental resalis,

1 Intersecting Varieties with Quasi-Components

This section s an cverview of the Tnade algorithm [10] with an emphasie onotis properties that are
favorable boais parallehzation. The notions of a regular chaine and a quasi-component can be found
in [3]. Defimtions 1.1 and 1.2 mireduce notions specific to the algorthm, after scme notabions,

Let K be o held and X =5 = = oy ke ordered vanables, For a subset FoC KLY, we denote
by V[ F) the mero st of Fan the afline space K" where K is an algebraie closure of K. For a subsei
Wz K, we denobe by W the Zarishs closure of Wowrt. K. Far a regular chain T K[X], we
denote by W(T its quasi-component, by S8at(T) ibs saturated ideal, and, for F o E|JX]. we denote
|'.|_'.-' AR T} the intersection 1'-I:F_I nT.

Defnition 1.1, We call a fast any couple |[F, T where F C E[X] 1= 2 polynomial set and T KLY
i a regular chiain, The task [F.T) s sefved if F s emply, otherwize it s anselved, By solomg a task,

v mean compubing regular chams T, ..., Ti such that we have:

VIFy n WiT) © U WiT) < VIiF) n WiT).

The goal of the Trade algornithm is to sclve tasks in the above sense. Morecver, a motivation in
the algornithm design s to generate all regular chine (foal or inbermediate) by increasing order of
thear cardinality, and, thus by decreasing order of the dimension of their satorated ideals. Heowever,
the “basic routine” iz the computation of mtersections of the form Z({EE, T (for a polynomial
pl which may consist of components of different dimensions. Resolving this conflict of interest s
achieved by a form of laxy evaluation, ormalized below,

Detinition 1.2. The tasks [Fy, T, ..., [Fy Tyl form oa defayed split of the task [F, T] and we write
|F. T — [F1. T, ..., [Faq, T if the sllowing Ave properbies together hald: (13 £0F, T = 20F. T,
(] AAFTYy © AF.T0 0 -0 EF, T () SatlT) © Sak(Ti), vy B0 = F L Fi,
VIF=0 = WIT: < ViFl.



Property () means that each “cubput™ task |F:, T s more soloed than the “imput” one |[F, T
[in a sense that we do nob precize here and which 2 based cn Ritk-Wa ordering for characteristic
sobs [LO)), Properties (i) fo () inply:

ViF) n WiT) © L, Z(F.T:) © V(F)n W(T.

The properties of delayed splibs show that salving the task [F,T] reduces to solving tasks of
the form [p, T] where TLHER 15 o triangular set, bub nob necessanly a cegular chain, or of the form
4w}, TLHEY whers p,t are non-constant polynomials with the same main vanakle ¢ and such that
both TUE} and TU{#} are regular chains, By means of polynomial GCDs and resultants, o scme
general sense defined an [10], ane can design an operation extend [p, T producing a delayed split of
the above task [p. T and, an operaticon decompose(p, T U producing a delayed split of the above
task [{p}, T} Each of these operations satishes the allowing key property: for every oubput
task |[F., T:] we have F; =1 = |T;| = |T| + 1. Hence, these aperations sclve “lazily™ in each
branch where the dimension drope and solve “completely™ in the others,

We sketch now a procedure solving an input task [F, T] and generabting all computed regular
chains [Anal ar inkermediate] by decreasing order of the dimension of their saturated deals.

This procedure uses o list U conmisting of all unsalved tasks, a list 5 consisting of salved tasks, and
an integer f which s the current size of the regular dhiains bemg computed. Initaally 0 = |[F, T],
Sis the empty list and B = |T). Our procedure can be sketched as follows

(1) Lot V be the list of all tasks |F*, T in & wiath |[T'] = H.
(21 Let V' be the list of all tasks [F, 7] in V' to which the operation decomposs applies.
(31 IFV' 20, then apply decompose to its elements, apdate the lists £ and 5, and go to (1),

(43 If V' = [, then apply extend to mach slement in V), update the liste £ and 5, replace 8 by
H 4+ 1 and go to (1.

All steps (17 bo (47 lead naturally to parallel execotion. This procedure s alse different from
.'";||{-::-ril|1m 2 in |]|:||: which was meant to be executed .-|-::|.|u-r-11li'.:|||_'.-'.

Unnrr.'l.lim{ rr'[;u|.1.r chains |'.|_'.-' -:|-e-c'r-r:;a:iinl:: size has at least two benehts, First, it allows to detect
redundant components (by mesans of an inclusion test] at an early stage of the solnang process.
Indead, of WiT)| contaimns W{Ty) then we must have |T)| = |Tg]. Secand, it forees the algorithm to
delay the computations in lower dimension boward the end of the solving process, which increases
the -::-[:-panunilim [or r.|.'|.r.'|.||l::|i:.-:.'|.li-::-11. Indeed, when |:'-::-|11[:-uli|1g demmp:ua:p. TU I} i hes |'.:|.rF:l::r i |T|:
the more c:xpr'nﬁi'.-'-e'- are caleulaticns modula Eah[T.I. See for instance the -:'-c:-m[:-|l::¢.il_'.-' results in |'r'|

2 Parallel Implementation Scheme

Bazed on the procedurs of Section 1. we propose now an dmplenentation scheme for parallel b
angular decompositicns,  We denote by Foothe Process Manager, Any other process worker waill
be denoted by some 2 for @ = 00 Each task [F T has o unique fash sdenfifier (TID) and each
worker & cwns a u11i-::|ur:: wxarker En!ml':l:,ﬁrrr WD) The Marager oo mmntaims a taskTable, which
confains the tasks that are already sclved, and those which are waiting (1o ke selected ], For each
task, we also record tis T and WD (the worker that bas prodoced it]. Every process worker 2
records all the tasks that B has -:'-::-m[:-ul.r'-c:l in a3 localTaekTable (P stores their actual walues and
not emly thear identifiers). Recall that the key idea of the algorithm e to selve by decreasing arder
of dimension. To this eflect, we have a global varable [visible by all worlers) i baking sucoessively



the values |T|, [T+ 1. .. . When H = k. then all the regular chains in the triangular decomposition
ol VIIF) which have less than & elements have already been computed. In addition, the algorithm i
currently computing those regular chains which bave & elements, We describe below the algorithm

ol i with the mnput task [FT]. Inially B .= |T|.

r ]

(1) S=lect all the tasks which can lesad o components of dimension n — &, dencted as By, .00, K.

(2) Find & workers to solve these tasks. This may result in launching new workers, buat bry to salve
[@s much as possikble] sach tazk on the worker that created it (when this s possible, cnly the
T nescds to be sent bo bhe worker].

(3) Callect all the tasks [solved or uneclved) produced by the workers and wpdate taskTable.

(4 I all the basks are solved, send @ stop message to each worker and halt, ctherwase B o= T+ |
and go bo (1),

We demeribe now the algorithm of process worker 2. Initially 1localTaekTable := { 1
(1) Receive a task, or a message from manager . In case of a “stop™ message, then halk.

(2) In ase of a T, look up the localTaskTable for this task, say [F;, T3], Compute a delayed
split of [F;, T;] such that all unsclved tasks are contained in components of dimension (strictly)
leme than n — H. Update the cutput tasks and localTaskTable by removing redundant ones,

(3) Send the cutput tasks to manager M and go to (1),

As much as possible we let process workers continue salving the tasks they have produced, so as
to reduce the data communication cverhead, Besides, new worker processes are activated cnly when
the number of selected tasks exoeeds the number of running workers, This strabegy helpe minmizing
the cost of dynamic process creation and management.

3 Experimentation

We hiave realized a preliminary implementation of the algorithm m Section 1 on a shared memoey
|11u|lir.|r\-::--:'-:::im:|r. Authentic AMD with four CPLUs [!EH!'-.IU."ﬂHz:I and B OB batal FAECry. |rnr.||-e*fnl::nL'.:|—
tion is based cn the existing BasicHath Library wribten in ALDoR, see www. alder . oog, which s a
sequential implementation of the Triade algorthm. We have created bwo binary madules: Procese
Manager and Process Worker. The lakter one s activated and termimated dynamically by the fBarmer
cne as soon as a delayed spht computation s required. Betwesn theses binanes, daba communieation
it done through shared memory segments, which are efficient wayes for System Vonter process com-
mumication. To this end, tasks, and thus multivanate polynomials, are tuned inbo machine imteger
arrays through Kronecker substibution.

The polynomial systems that are used in this experimentation are taken from s Synbol icData-
corg. For each system, nodencbes the number of vanables, d 12 the todal degree of the polynomial
system and @is the prime number used im0 both the sequeniial and the parallel salving, We report
in the lollowing figures two examples, namely: gametwod and Dteshev-Bikker, For each of them:
(1} we plot the number of processes acting at o time dunng the whole solving procedure, and [2)
we shonw bhe average number of processes. Although the speed-up rabio we ganed = between 1.5
and 2 by comparing with the ssquential implementabion in Avpor, this s very promasing for such
a roarse-gram pacallel implementation, whers truly expensive tasks can be processed inoparallel. 16
iz noticed that the average number of processes m the entire solving procedure s akoot 3.



The implementation of the scheme in Section 2 s work in progress. In our coreent implementa-
tion, branching coe expensive tazk into two expensive tasks relies only an the D8 Principle, Applying
factornzation inko irreducible polyoomials shoald improve the spesd-up ratio, Further more, we need
to inbegrate fine-grain parallelizaticn, for QOO resultant computations, which should improsve the
tine and space efficiency of cur parallel triangular decompesitions,
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