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My journey in parallel computing (1/2)

∎ First experiences with the pthread library (with Xin Li, 2006) for
computing normal forms and distributed computing (with Yuzhen Xie,
2006) for computing triangular decompositions.

∎ Visiting scholar at MIT/CSAIL (2008-2009) in the team of Charles
Leiserson,

ë I discover Cilk and cache complexity,
ë Yuzhen Xie starts BPAS with multi-dimensional FFTs/TFTs

∎ First steps with NVIDIA CUDA, with Wei Pan in 2008-2011 then
with Sardar Haque in 2009-2012.

∎ Return to Canada and collaboration with IBM, more interested in
OpenMP than Cilk:

ë automatic translation between OpenMP and Cilk, see the Metafork
(Xiaohui Chen & Ning Xie)

ë participation to the C++ committee, designing C++ 11.
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My journey in parallel computing (2/2)

∎ In 2013, IBM Canada (and us ) switches to automatic
parallelization from C to CUDA:

ë this culminates with KLARAPTOR, a tool for dynamically finding
optimal kernel launch parameters targeting CUDA programs (Alex
Brandt, Davood Mohajerani, Linxiao Wang)

ë work on polyhedral geometry (Delaram Talaashrafi, Rui-Juan Jung
Linxiao Wang) to support automatic parallelization.

∎ With the arrival of Alexander Brandt, the BPAS library took off (see
next slide):

ë Key contributions from Svyatoslav Covanov (FFT) and Ali Asadi
(subresultants)

ë Ali Asadi, Alex Brandt and Robert Moir ported the algorithms of
Maple’s RegularChains library to BPAS.

ë Experimentation with pipelining (Alex Brandt, Delaram Talaashrafi)
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The computer algebra community and parallel computing

• Parallelization of high-level algebraic and geometric algorithms was
more common roughly 30 years ago

ë Such as in Gröbner bases [5, 11, 18] and CAD [39]
ë see the proceedings of CAP [15, 40] and PASCO [26, 27]

• In the past 15 years, work on parallelism has been on low-level
routines with regular parallelism:

ë Polynomial arithmetic [22, 33]
ë Modular methods for GCDs and factorization [29, 35]
ë see the proceedings of PASCO [16, 19, 36, 37].

• Recently, high-level algorithms are receiving attention again:
ë The normalization algorithm of [6] finds components serially, then

processes each component with a parallel map
ë Today, parallel decomposition of polynomial systems is made (much)

easier by multi/many-core processors, new concurrency platforms and
libraries (e.g. C++ 11) and, of course, better algebraic algorithms .
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Tentative Plan

∎ We will not define multithreading, but I will show some pictures .

∎ Part 1: Memory access patterns (45 min)

∎ Part 2: Parallel programming patterns (30 mins)

∎ Part 3: BPAS multi-threading (15 mins)

∎ Part 4: Extracting patterns (10 mins)

∎ The conclusions will be after Parts 1 and 2.

∎ I prefer to take questions between parts
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The BPAS library

A high-performance polynomial algebra library
∎ Core of library written in C, wrapped in C++ interface for usability

and object-oriented programming
Optimized algorithms and data structures, data locality, and parallelism
∎ Sparse multivariate polynomials [3], dense univariate and bivariate [38]
∎ Triangular decomposition of polynomial systems [2, 4]

User-friendly, object-oriented interface based on template
meta-programming [9]
∎ A natural encoding of the algebraic hierarchy
∎ “Dynamic” creation of algebraic types through composition
∎ Compile-time type safety between algebraic types

Generic support for parallel programming and parallel patterns (this talk)

http://www.bpaslib.org/
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Outline

1. Memory access patterns
1.1 Cache complexity estimates
1.2 Concluding remarks
2. Parallel Programming Patterns
2.1 Incremental triangular decompositions
2.2 Parallel map and workpile
2.3 Generators and pipelines
2.4 Divide-and-conquer and fork-join
2.5 Parallel incremental triangular decompositions: experimentation
2.6 Hensel’s lemma in a pipeline
3. Implementing and using parallel patterns
3.1 Multi-threading in C++
3.2 Implementing a thread pool
3.3 Parallel patterns with ExecutorThreadPool

4. Extacting patterns
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The CPU-Memory GAP

∎ In the 1980’s, a memory access and a CPU operation were both as
slow as the other

∎ CPU frequency increased between 1985 and 2005 has reduced CPU
op times much more than DRAM technology improvement could
reduce memory access times

∎ Even after the introduction of multicore processors, the gap is still
huge.
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Multicore processor

∎ In the 1st Gen. Intel Core i7, each core had an L1 data cache and an
L1 instruction cache, together with a unified L2 cache

∎ The cores share an L3 cache
∎ Note the sizes of the successive caches
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Hierarchical memory
Capacity
Access Time
Cost

Staging
Xfer Unit

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 d L2 C h

Registers

L1 Cache
Instr. Operands prog./compiler

1-8 bytes

Upper Level

faster

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

L1 Cache
Blocks

cache cntl
32-64 bytes

L2 Cache
h tl

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Memory
OS

cache cntl
64-128 bytesBlocks

Disk
10s T Bytes, 10 ms 
(10,000,000 ns)
~ $1 / GByte

Disk

Pages OS
4K-8K bytes

user/operator $1 / GByte

Tape
infinite
sec-min

Tape

Files user/operator
Mbytes

Lower Level
Larger

sec min
~$1 / GByte

∎ Data moves in blocks (cache-lines, pages) between levels
∎ On the right, note the block sizes
∎ On the left, note the access times, sizes and prices.
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The ideal cache model (1/5)

∎ Computer with a two-level memory hierarchy:
ë an ideal (data) cache of 𝑍 words partitioned into 𝑍⇑𝐿 cache lines,

where 𝐿 is the number of words per cache line.
ë an arbitrarily large main memory.

∎ Data moved between cache and main memory are always cache lines.
∎ The cache is tall, that is, 𝑍 is much larger than 𝐿, say 𝑍 ∈ Ω(𝐿2).
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The ideal cache model (2/5)

∎ The processor can only reference words that reside in the cache.
∎ If the referenced word belongs to a line already in cache, a cache hit

occurs, and the word is delivered to the processor.
∎ Otherwise, a cache miss occurs, and the line is fetched and installed

into the cache.
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The ideal cache model (3/5)

∎ The ideal cache is fully associative: cache lines can be stored
anywhere in the cache.

∎ The ideal cache uses the optimal off-line strategy of replacing the
cache line whose next access is furthest in the future, and thus it
exploits temporal locality perfectly.
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The ideal cache model (4/5)

∎ For an algorithm with an input of size 𝑛, the ideal-cache model uses
two complexity measures:

ë the work complexity 𝑊 (𝑛), which is its conventional running time in
a RAM model.

ë the cache complexity 𝑄(𝑛; 𝑍, 𝐿), the number of cache misses it
incurs (as a function of the size 𝑍 and line length 𝐿 of the ideal cache).

ë When 𝑍 and 𝐿 are clear from context, we simply write 𝑄(𝑛) instead of
𝑄(𝑛; 𝑍, 𝐿).
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The ideal cache model (5/5)

∎ An algorithm is said to be cache aware if its behavior (and thus
performances) can be tuned (and thus depend on) on the particular
cache size and line length of the targeted machine.

∎ Otherwise the algorithm is cache oblivious.
∎ Cache oblivious naturally performs well on hierarchical memories.
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Scanning

∎ Scanning 𝑛 words stored in a contiguous segment of memory with
cache-line size 𝐿 costs at most [︂𝑛⇑𝐿⌉︂ + 1 cache misses.

∎ If this vector of 𝑛 words is aligned in memory, then this estimate is
simply [︂𝑛⇑𝐿⌉︂.

Proof.
∎ Let (𝑞, 𝑟) be the quotient and remainder in the integer division of 𝑛 by 𝐿.

∎ Let 𝑢 (resp. 𝑤) be the total number of words stored in cache-lines fully (not fully) used
by those 𝑛 consecutive words. Thus, we have 𝑛 = 𝑢 +𝑤. Three cases arise.

1 if 𝑤 = 0 then (𝑞, 𝑟) = (⟨︀𝑛⇑𝐿⧹︀, 0) and the scanning costs exactly 𝑞; thus the
conclusion is clear since [︂𝑛⇑𝐿⌉︂ = ⟨︀𝑛⇑𝐿⧹︀ in this case.

2 if 0 < 𝑤 < 𝐿 then (𝑞, 𝑟) = (⟨︀𝑛⇑𝐿⧹︀, 𝑤) and the scanning cost is at most 𝑞 + 2; the
conclusion is clear since [︂𝑛⇑𝐿⌉︂ = ⟨︀𝑛⇑𝐿⧹︀ + 1 in this case.

3 if 𝐿 ≤ 𝑤 < 2𝐿 then (𝑞, 𝑟) = (⟨︀𝑛⇑𝐿⧹︀, 𝑤 −𝐿) and the scanning cost is at most 𝑞 + 1;
the conclusion is clear again.
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Adding vectors

∎ Consider 𝑚 ≥ 2 vectors 𝑉1, . . . , 𝑉𝑚 of size 𝑛 ≥ 1 aligned in memory.
∎ Consider 𝑚 − 1 scalars 𝛼1, . . . , 𝛼𝑚−1, stored in a contiguous segment

of memory in 𝑚 − 1 words.
∎ Assume that the ideal cache has at least [︂𝑚⇑𝐿⌉︂ + 4 cache-lines.
∎ Then, computing the linear combination 𝛼1𝑉1 +⋯ + 𝛼𝑚−1𝑉𝑚−1 and

writing it to 𝑉𝑚 can be done in no more cache misses than those
required for scanning 𝑉1, . . . , 𝑉𝑚, 𝛼1, . . . , 𝛼𝑚−1,

∎ thus, within 𝑚[︂𝑛⇑𝐿⌉︂ + [︂𝑚⇑𝐿⌉︂ + 1 cache misses.

Proof.
∎ We first load 𝛼1, . . . , 𝛼𝑚−1 into the cache, thus using at most [︂𝑚⇑𝐿⌉︂ + 1 cache-lines.

∎ In the pseudo-code below, vector indexing starts at 0.
1 For 𝑏 with 0 ≤ 𝑏 ≤ ⟨︀𝑛⇑𝐿⧹︀, for each 𝑗 with 1 ≤ 𝑗 < 𝑚, for each 𝑖 with 0 ≤ 𝑖 < 𝐿 do:

1 𝑘 := 𝑏 ∗𝐿 + 𝑖,
2 if 𝑘 < 𝑛 then 𝑉𝑚(︀𝑘⌋︀ := 𝑉𝑚(︀𝑘⌋︀ + 𝛼𝑗𝑉𝑗(︀𝑘⌋︀

∎ Use the optimal replacement policy and the fact that vectors are aligned in memory
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Counting sort: the algorithm
allocate an array Count[0..k]; initialize each array cell to zero
for each input item x:

Count[key(x)] = Count[key(x)] + 1
total = 0
for i = 0, 1, ... k:

c = Count[i]
Count[i] = total
total = total + c

allocate an output array Output[0..n-1]
for each input item x:

store x in Output[Count[key(x)]]
Count[key(x)] = Count[key(x)] + 1

return Output

∎ Counting sort takes as input a collection of n items, each of which
known by a key in the range 0⋯𝑘.

∎ The algorithm computes a histogram of the number of times each key
occurs.

∎ Then performs a prefix sum to compute positions in the output.
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Counting sort: poor spatial locality

allocate an array Count[0..k]; initialize each array cell to zero
for each input item x:

Count[key(x)] = Count[key(x)] + 1
total = 0
for i = 0, 1, ... k:

c = Count[i]
Count[i] = total
total = total + c

allocate an output array Output[0..n-1]
for each input item x:

store x in Output[Count[key(x)]]
Count[key(x)] = Count[key(x)] + 1

return Output

∎ For 𝑛 large enough: 𝑄(𝑛; 𝑍, 𝐿) = 3𝑛 + 3𝑛⇑𝐿 + 2𝑘⇑𝐿 cache misses
(worst case).

∎ The possibly random distribution of the input values creates possibly
many non-cold misses, see counting_sort.pdf for an animation.
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Counting sort: improved by a blocking strategy
alloacate an array bucketsize[0..m-1]; initialize each array cell to zero
for each input item x:

bucketsize[floor(key(x) m/(k+1))] := bucketsize[floor(key(x) m/(k+1))] + 1
total = 0
for i = 0, 1, ... m-1:

c = bucketsize[i]
bucketsize[i] = total
total = total + c

alloacate an array bucketedinput[0..n-1];
for each input item x:

q := floor(key(x) m/(k+1))
bucketedinput[bucketsize[q] ] := key(x)
bucketsize[q] := bucketsize[q] + 1

return bucketedinput

∎ Split the input value range into 𝑚 buckets (given by well-chosen pivot
values) so that counting sort can be applied in succession to several
smaller input arrays, with smaller value ranges, incurring cold misses
only, see counting_sort_bucket.pdf for an animation.

∎ This yields 𝑄(𝑛; 𝑍, 𝐿) = 9𝑛⇑𝐿 + 3𝑚⇑𝐿 +𝑚 + 2𝑘⇑𝐿 (assuming
𝑚 < 𝑍⇑(1 +𝐿)) improving on 3𝑛 + 3𝑛⇑𝐿 + 2𝑘⇑𝐿.
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Counting sort: experimentation

∎ Experimentation on an Intel(R) Core(TM) i7 CPU @ 2.93GHz. It has
L2 cache of 8MB.

∎ CPU times in seconds for both classical and cache-friendly counting
sort algorithm.

∎ The keys are random machine integers in the range (︀0, 𝑛⌋︀.

n classical cache-friendly
counting counting sort

sort (bucketing + sorting)
100000000 13.74 4.66 (= 3.04 + 1.62 )
200000000 30.20 9.93 (= 6.16 + 3.77)
300000000 50.19 16.02 (= 9.32 + 6.70)
400000000 71.55 22.13 (= 12.50 +9.63)
500000000 94.32 28.37 (= 15.71 + 12.66)
600000000 116.74 34.61 (= 18.95 + 15.66)
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Cache-friendly counting sort: extension to sample sort

1 Split the input array into ⌋︂
𝑛 contiguous subarrays of size ⌋︂

𝑛 and
sort those subarrays recursively.

2 Choose 𝑚 ∶=
⌋︂

𝑛 − 1 “good” pivot values 𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝑚.
3 Distribute subarrays into buckets 𝐵1, . . . , 𝐵𝑚+1 according to pivots.

Bucket 𝐵𝑖 has size 𝑛𝑖 ≃
⌋︂

𝑛, expectedly.
4 Recursively sort the buckets
5 Copy-concatenate the buckets back to the input array.

Cache complexity analysis of Sample sort

∎ Step 1 costs ⌋︂𝑛𝑄(
⌋︂

𝑛), Step 4 (expectedly) costs ⌋︂𝑛𝑄(
⌋︂

𝑛) also
and Steps 2, 3, 5 cost Θ(𝑛⇑𝐿). Thus, we have:

𝑄(𝑛) = { 𝑛⇑𝐿 if 𝑛 < 𝑍 (base case)
2
⌋︂

𝑛𝑄(
⌋︂

𝑛) +Θ(𝑛⇑𝐿) if 𝑛 ≥ 𝑍 (recurrence)

∎ This yields 𝑄(𝑛) ∈ Θ(𝑛
𝐿 log𝑍(𝑛)).
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Transposition of a matrix

∎ Assume that multi-dimensional arrays (and in particular dense
rectangular matrices) are stored in memory using a row-major layout.

∎ Assume that each array coefficient is stored on a single word.
∎ Therefore, reading a 𝑘×𝑘 block may incur 𝑘([︂𝑘⇑𝐿⌉︂+1) caches misses.
∎ In this exercise sheet, determine the cache complexity of the proposed

algorithms for transposing a square matrix of order 𝑛. Assume 𝑛 large
(say 𝑛 > 𝑍) and 𝑛 is a power of 2.

∎ Algo 1: Θ(𝑛2). Algo 2: Θ(log2( 𝑛
𝑍 )

𝑛2

𝐿 ). Algo 3: Θ(𝑛2⇑𝐿). Proofs
and precise estimates below. skip slide
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Matrix transposition: various algorithms

∎ Matrix transposition problem: Given an 𝑚 × 𝑛 matrix 𝐴 stored in a
row-major layout, compute and store 𝐴𝑇 into an 𝑛 ×𝑚 matrix 𝐵 also
stored in a row-major layout.

∎ We shall describe a recursive cache-oblivious algorithm which uses
Θ(𝑚𝑛) work and incurs Θ(1+𝑚𝑛⇑𝐿) cache misses, which is optimal.

∎ The straightforward algorithm employing doubly nested loops incurs
Θ(𝑚𝑛) cache misses on one of the matrices when 𝑚 ≫ 𝑍⇑𝐿 and
𝑛 ≫ 𝑍⇑𝐿.

∎ We shall start with an apparently good algorithm and use complexity
analysis to show that it is even worse than the straightforward
algorithm.
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Matrix transposition: a first divide-and-conquer (1/4)

∎ For simplicity, assume that our input matrix 𝐴 is square of order 𝑛
and that 𝑛 is a power of 2, say 𝑛 = 2𝑘.

∎ We divide 𝐴 into four square quadrants of order 𝑛⇑2 and we have

𝐴 = ( 𝐴1,1 𝐴1,2
𝐴2,1 𝐴2,2

) ⇒ 𝑡𝐴 = (
𝑡𝐴1,1

𝑡𝐴2,1
𝑡𝐴1,2

𝑡𝐴2,2
) .

∎ This observation yields an “in-place” algorithm:
1 If 𝑛 = 1 then return 𝐴.
2 If 𝑛 > 1 then

1 recursively compute 𝑡𝐴1,1,𝑡 𝐴2,1,𝑡 𝐴1,2,𝑡 𝐴2,2 in place as

(
𝑡𝐴1,1

𝑡𝐴1,2
𝑡𝐴2,1

𝑡𝐴2,2
)

2 exchange 𝑡𝐴1,2 and 𝑡𝐴2,1.

∎ What is the number 𝑀(𝑛) of memory accesses to 𝐴, performed by
this algorithm on an input matrix 𝐴 of order 𝑛?
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Matrix transposition: a first divide-and-conquer (2/4)

∎ 𝑀(𝑛) satisfies the following recurrence relation

𝑀(𝑛) = { 0 if 𝑛 = 1
4𝑀(𝑛⇑2) + 2(𝑛⇑2)2 if 𝑛 > 1.

∎ Unfolding the tree of recursive calls or using the Master’s Theorem,
one obtains:

𝑀(𝑛) = 2(𝑛⇑2)2 log2(𝑛).
∎ This is worse than the straightforward algorithm (which employs

doubly nested loops). Indeed, for this latter, we have 𝑀(𝑛) = 𝑛2 − 𝑛.
Explain why!

∎ Despite of this negative result, we shall analyze the cache complexity
of this first divide-and-conquer algorithm. Indeed, it provides us with
an easy training exercise

∎ We shall study later a second and efficiency-optimal
divide-and-conquer algorithm, whose cache complexity analysis is
more involved.
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Matrix transposition: a first divide-and-conquer (3/4)

∎ We shall determine 𝑄(𝑛) the number of cache misses incurred by our
first divide-and-conquer algorithm on a (𝑍, 𝐿)-ideal cache machine.

∎ For 𝑛 small enough, the entire input matrix or the entire block (input of
some recursive call) fits in cache and incurs only the cost of a scanning.
Because of possible misalignment, that is, 𝑛([︂𝑛⇑𝐿⌉︂ + 1).

∎ Important: For simplicity, some authors write 𝑛⇑𝐿 instead of [︂𝑛⇑𝐿⌉︂.
This can be dangerous.

∎ However: these simplifications are fine for asymptotic estimates,
keeping in mind that 𝑛⇑𝐿 is a rational number satisfying

𝑛⇑𝐿 − 1 ≤ ⟨︀𝑛⇑𝐿⧹︀ ≤ 𝑛⇑𝐿 ≤ [︂𝑛⇑𝐿⌉︂ ≤ 𝑛⇑𝐿 + 1.

Thus, for a fixed 𝐿, the functions ⟨︀𝑛⇑𝐿⧹︀, 𝑛⇑𝐿 and [︂𝑛⇑𝐿⌉︂ are
asymptotically of the same order of magnitude.

∎ We need to translate “for 𝑛 small enough” into a formula. We claim
that there exists a real constant 𝛼 > 0 s.t. for all 𝑛 and 𝑍 we have

𝑛2 < 𝛼𝑍 ⇒ 𝑄(𝑛) ≤ 𝑛2⇑𝐿 + 𝑛.
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Matrix transposition: a first divide-and-conquer (4/4)

∎ 𝑄(𝑛) satisfies the following recurrence relation

𝑄(𝑛) = {
𝑛2⇑𝐿 + 𝑛 if 𝑛2 < 𝛼𝑍 (base case)

4𝑄(𝑛⇑2) + 𝑛2

2𝐿 + 𝑛 if 𝑛2 ≥ 𝛼𝑍 (recurrence)

∎ Indeed, exchanging 2 blocks amount to 2((𝑛⇑2)2⇑𝐿+𝑛⇑2) accesses.
∎ Unfolding the recurrence relation 𝑘 times (more details in class) yields

𝑄(𝑛) = 4𝑘 𝑄( 𝑛

2𝑘
) + 𝑘

𝑛2

2𝐿
+ (2𝑘 − 1)𝑛.

∎ The minimum 𝑘 for reaching the base case satisfies 𝑛2

4𝑘 = 𝛼𝑍, that is,
4𝑘 = 𝑛2

𝛼𝑍 , that is, 𝑘 = log4( 𝑛2

𝛼𝑍 ). This implies 2𝑘 = 𝑛⌋︂
𝛼𝑍

and thus

𝑄(𝑛) ≤ 𝑛2

𝛼𝑍 (𝛼𝑍⇑𝐿 +
⌋︂

𝛼𝑍) + log4( 𝑛2

𝛼𝑍 )
𝑛2

2𝐿 + 𝑛⌋︂
𝛼𝑍

𝑛

≤ 𝑛2⇑𝐿 + 2 𝑛2
⌋︂

𝛼𝑍
+ log4( 𝑛2

𝛼𝑍 )
𝑛2

2𝐿 .
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A matrix transposition cache-oblivious algorithm (1/2)

∎ If 𝑛 ≥ 𝑚, the Rec-Transpose algorithm partitions

𝐴 = (𝐴1 𝐴2) , 𝐵 = (𝐵1
𝐵2

)

and recursively executes Rec-Transpose(𝐴1, 𝐵1) and
Rec-Transpose(𝐴2, 𝐵2).

∎ If 𝑚 > 𝑛, the Rec-Transpose algorithm partitions

𝐴 = (𝐴1
𝐴2

) , 𝐵 = (𝐵1 𝐵2)

and recursively executes Rec-Transpose(𝐴1, 𝐵1) and
Rec-Transpose(𝐴2, 𝐵2).
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A matrix transposition cache-oblivious algorithm (2/2)

∎ Recall that the matrices are stored in row-major layout.

∎ Let 𝛼 be a constant sufficiently small such that the following two
conditions hold:
(𝑖) two sub-matrices of size 𝑚 × 𝑛 and 𝑛 ×𝑚, where max {𝑚, 𝑛} ≤ 𝛼𝐿, fit

in cache
(𝑖𝑖) even if each row starts at a different cache line.

∎ We distinguish three cases for the input matrix 𝐴:
ë Case I: max {𝑚, 𝑛} ≤ 𝛼𝐿.
ë Case II: 𝑚 ≤ 𝛼𝐿 < 𝑛 or 𝑛 ≤ 𝛼𝐿 < 𝑚.
ë Case III: 𝑚, 𝑛 > 𝛼𝐿.
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Case I: max {𝑚, 𝑛} ≤ 𝛼𝐿.

∎ Both matrices fit in 𝑂(1) + 2𝑚𝑛⇑𝐿 lines.

∎ From the choice of 𝛼, the number of lines required for the entire
computation is at most 𝑍⇑𝐿.

∎ Thus, no cache lines need to be evicted during the computation.
Hence, it feels like we are simply scanning 𝐴 and 𝐵.

∎ Therefore 𝑄(𝑚, 𝑛) ∈ 𝑂(1 +𝑚𝑛⇑𝐿).
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Case II: 𝑚 ≤ 𝛼𝐿 < 𝑛 or 𝑛 ≤ 𝛼𝐿 <𝑚.

∎ Consider 𝑛 ≤ 𝛼𝐿 < 𝑚. The Rec-Transpose algorithm divides the
greater dimension 𝑚 by 2 and recurses.

∎ At some point in the recursion, we have 𝛼𝐿⇑2 ≤ 𝑚 ≤ 𝛼𝐿 and the
whole computation fits in cache. At this point:

ë the input array resides in contiguous locations, requiring at most
Θ(1 + 𝑛𝑚⇑𝐿) cache misses

ë the output array consists of 𝑛𝑚 elements in 𝑛 rows, where in the worst
case every row starts at a different cache line, leading to at most
Θ(𝑛 + 𝑛𝑚⇑𝐿) cache misses.

∎ Since 𝑚⇑𝐿 ∈ (︀𝛼⇑2, 𝛼⌋︀, the total cache complexity for this base case is
Θ(1 + 𝑛), yielding the recurrence (where the resulting 𝑄(𝑚, 𝑛) is a
worst case estimate)

𝑄(𝑚, 𝑛) = { Θ(1 + 𝑛) if 𝑚 ∈ (︀𝛼𝐿⇑2, 𝛼𝐿⌋︀ ,
2𝑄(𝑚⇑2, 𝑛) +𝑂(1) otherwise ;

whose solution satisfies 𝑄(𝑚, 𝑛) = Θ(1 +𝑚𝑛⇑𝐿).
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Case III: 𝑚, 𝑛 > 𝛼𝐿.

∎ As in Case II, at some point in the recursion both 𝑛 and 𝑚 fall into
the range (︀𝛼𝐿⇑2, 𝛼𝐿⌋︀.

∎ The whole problem fits into cache and can be solved with at most
Θ(𝑚 + 𝑛 +𝑚𝑛⇑𝐿) cache misses.

∎ The worst case cache miss estimate satisfies the recurrence

𝑄(𝑚, 𝑛) =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

Θ(𝑚 + 𝑛 +𝑚𝑛⇑𝐿) if 𝑚, 𝑛 ∈ (︀𝛼𝐿⇑2, 𝛼𝐿⌋︀ ,
2𝑄(𝑚⇑2, 𝑛) +𝑂(1) if 𝑚 ≥ 𝑛 ,
2𝑄(𝑚, 𝑛⇑2) +𝑂(1) otherwise;

whose solution is 𝑄(𝑚, 𝑛) = Θ(1 +𝑚𝑛⇑𝐿).
∎ Therefore, the Rec-Transpose algorithm has optimal cache

complexity.
∎ Indeed, for an 𝑚 × 𝑛 matrix, the algorithm must write to 𝑚𝑛 distinct

elements, which occupy at least [︂𝑚𝑛⇑𝐿⌉︂ cache lines.
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1-D FFTs: classical cache friendly algorithm

Cache friendly 1-D FFT

∎ If the input vector does not fit in cache, a recursive algorithm is
applied

∎ Once the vector fits in cache, an iterative algorithm (not requiring
shuffling) takes over.

∎ On an ideal cache of 𝑍 words with 𝐿 words per cache line this yields a
cache complexity of Ω(𝑛⇑𝐿(log2(𝑛)− log2(𝑍))) which is not optimal.
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1-D FFTs: cache complexity optimal algorithm

Cache optimal 1-D FFT

∎ Instead of processing row-by-row, one computes as deep as possible
while staying in cache (resp. registers): this yields a blocking strategy.

∎ On the left picture, assuming 𝑍 = 4, on the first (resp. last) two rows,
we successively compute the red, green, blue, orange 4-point blocks.

∎ On an ideal cache of 𝑍 words with 𝐿 words per cache line the cache
complexity drops to 𝑂(𝑛⇑𝐿(log2(𝑛)⇑ log2(𝑍))) which is optimal.
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1-D FFTs in BPAS

Figure: 1-D modular FFTs: Modpn (serial) vs BPAS (serial).

∎ In addition to the above optimal blocking strategy, instruction level
parallelism (ILP) is carefully considered: vectorized instructions are
explicitly used and instruction pipeline usage is highly optimized.

∎ BPAS 1-D FFT code automatically generated by configurable Python
scripts.
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Notations

∎ For two positive integers 𝑎, 𝑏, we write 𝑎⇑𝑏 instead of ⟨︀𝑎⇑𝑏⧹︀.
∎ Let k be a finite field so that each element of k can be stored in a

machine word.
∎ We assume that each polynomial 𝑃 of k(︀𝑥⌋︀ is stored in a vector 𝑉𝑃

of 𝑑 + 1 words, aligned in memory, where 𝑑 is the degree of 𝑃 , and so
that the coefficient of 𝑥𝑖 in 𝑃 is stored in the (𝑑− 𝑖)-th slot of 𝑉𝑃 , for
0 ≤ 𝑖 ≤ 𝑑.

∎ Let 𝐴 = ∑𝑖=𝑚−1
𝑖=0 𝑎𝑖𝑥

𝑖 and 𝐵 = ∑𝑖=𝑛−1
𝑖=0 𝑏𝑖𝑥

𝑖 be in k(︀𝑥⌋︀ with 𝑚 ≥ 𝑛.
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Plain polynomial multiplication

∎ Recall 𝐴 = ∑𝑖=𝑚−1
𝑖=0 𝑎𝑖𝑥

𝑖 and 𝐵 = ∑𝑖=𝑛−1
𝑖=0 𝑏𝑖𝑥

𝑖 in k(︀𝑥⌋︀ with 𝑚 ≥ 𝑛.
∎ Counting cache misses, the plain multiplication incurs

𝑂((𝑚⇑𝐿 + 1)𝑛)
∎ This estimate can be substantially improved by performing the plain

multiplication in a divide-and-conquer manner, following the scheme
of the matrix multiplication algorithm of [20].

∎ This recursive algorithm is presented in [14]; it runs within
𝑂(𝑚𝑛⇑(𝑍𝐿))

∎ It leads to clear gains on Graphics Processing Units (GPUs) due to
the fine grained control of hardware resources.

∎ However, with a CPU implementation, for relatively small 𝑛 and 𝑚,
any plain multiplication algorithm is outperformed by an FFT-based
polynomial multiplication.
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Plain polynomial division

∎ Let 𝑄 = quo(𝐴, 𝐵) and 𝑅 = rem(𝐴, 𝐵)
∎ The schoolbook plain Euclidean division, using a two-loop nest,

computes 𝑄 and 𝑅, within
𝑂((𝑚 − 𝑛 + 1)(𝑛⇑𝐿 + 3))

∎ By means of a blocking strategy, this estimate can be improved to
𝑂(((2𝑍 + 9𝐿)(𝑚 − 𝑛 + 1)(𝑛⇑(𝑍2𝐿) + 1))

See [24, 25].
∎ This strategy is inspired by the Half-Gcd algorithm, see Lemma 11.1

in Chapter 11 of [23] and the next slide.
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Plain polynomial division on the GPU: naive approach

∎ A naive approach consists in doing one division step (that is, a
combination of two vectors) by one kernel.

∎ That is, each thread (in thread-block) reads two coefficients (one from
𝐴 and one form 𝐵), combines them and writes the result back to 𝐴

∎ This causes many memory transactions (equivalent to cache misses)
between the global memory of the GPU and the local memories of the
streaming multi-processors,
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Plain polynomial division on the GPU: optimized approach

∎ Each thread-block loads the 𝑠 leading coefficients of both 𝐴 and 𝐵,
and a segment of 2𝑠 consecutive coefficients from both 𝐴 and 𝐵.

∎ So that each thread-block can independently work on (possibly) 𝑠
division steps.

∎ The authors of [24, 25] show how to determine 𝑠 in a way minimizing
cache misses, which leads to the above complexity estimate.
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Optimizing cache complexity

∎ For all results discussed above, the key towards cache-oblivious or
cache optimal algorithms is a blocking strategy.

∎ This blocking strategy may take different forms: from the buckets of
counting sort to matrix blocks in dense linear algebra.

∎ While blocking strategies naturally lead to recursive algorithms, the
implementation of the latter are often made in the form of for-loop
nests, which is more suitable for compiler optimization.
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In the context of multi/many-core processors

∎ When multiple threads are cooperating, cores executing those threads
share a common physical address space, causing a cache coherence
problem.

∎ Two well-known consequences of this problem are true sharing and
false sharing:

ë In the former, two cores are accessing the same memory address, with
at least one of them for writing.

ë In the latter, two cores are accessing the same cache-line (but not the
same memory address), with at least one of them for writing.

∎ Other parallel overheads should be watched like memory contention,
scheduling and synchronization costs, which are very hard to take into
account in complexity analysis [24, 28, 30].

∎ Nevertheless, on multicore processors, a good practical indication
about what to expect in 𝑊 (𝑛)⇑𝑄(𝑛; 𝑍, 𝐿), in addition to the more
standard ration 𝑇1(𝑛)⇑𝑇∞(𝑛).
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Data reshaping

∎ Other performance degradation can come from for-loop overheads.
∎ If a loop has a few iterations, then overheads due to branch

misprediction can have an impact, since a misprediction delay can be
between 10 and 35 clock cycles [17].

∎ Trying to avoid those issues with for-loop nests has several
advantages, including reducing overheads due to loop counter
manipulation.

∎ In the context of dense multivariate polynomials over finite fields, this
idea was studied in [31, 38] for multi-threaded multi-dimensional
FFTs (and TFTs) and their application to polynomial multiplication.

∎ The authors systematically reduce multivariate polynomials to
balanced bivariate polynomials. Balanced here means that partial
degrees are equal or as close as possible.

∎ A theoretical study, supported by extensive experimentation, shows
that this approach minimizes cache misses and maximizes parallelism.
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Overview

∎ As we saw, a blocking strategy extracts opportunities for improving
data and spatial locality

∎ Similarly, a parallel programming pattern is a meta-algorithm or
algorithmic structure used to organize code for efficient parallel
computation.

∎ Well-known parallel patterns are fork-join, parallel map, stencil, and
pipeline.

∎ See the book [32] of McCool, Reinders and Robison.
∎ We shall illustrate those patterns with two types of computations:

1 polynomial system solving via incremental triangular decomposition
(Maple’s Triangularize command) [2, 4, 12],

2 power series arithmetic via lazy evaluation [7, 8, 10].
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Preliminary observations

∎ Different parallel patterns may apply to the same algorithm:
ë the construction of Pascals’ Triangle can be done in a

divide-and-conquer way (dividing the triangle into 2 triangles and a
square), or

ë as a stencil pattern (in conjunction with a blocking strategy) to the
formula, see [13]

∎ Keep in mind the targeted hardware:
ë the parallelization of vector addition on a CPU multicore processor is

limited (and yields low speedup factors) because of various overheads
(memory contention, etc.) while

ë it can implemented in a SIMD fashion on GPU with good speedup
factors

∎ Keep in mind thread scheduling and synchronization costs
ë Doing 𝐴𝑣, for a triangular dense square matrix 𝐴, by computing

concurrently all products of a row of 𝐴 by 𝑣 would keep cores idle for
(at least) half of the execution time, while

ë the fork-join pattern (applied to a divide-and-conquer approach) would
make better use of resources.
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Regular vs irregular tasks

∎ In our previous three examples, the work to be executed in parallel
can be decomposed evenly and easily with predictable dependencies
and predictable computing resource needs; one then uses the term
regular parallelism.

∎ The term irregular parallelism refers to the opposite case, when the
decomposition of work into tasks creates unbalanced work, dissimilar
tasks, unpredictable dependencies or unpredictable computing
resource needs.

∎ Decomposing polynomial systems (unless they have properties like
strongly unmixed or regular sequence) fits in that second category:

ë Some systems never split
ë Some split only at the final step, leaving very little concurrency
ë Some split into one “main” component and several degenerative cases
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Incremental solving: a toy example
∅

𝐹 (︀1⌋︀
××Ö

{𝑦 +𝑤}
𝐹 (︀2⌋︀

{5𝑦 + 1
5𝑤 − 1(︀, {𝑦

𝑤
(︀

𝐹 (︀3⌋︀

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 + 𝑧2 + 1
5𝑦 + 1
5𝑤 − 1

[︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌊︀
,

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

5𝑦 + 1
𝑧

5𝑤 − 1

[︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌊︀
,

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 + 𝑧2 + 1
𝑦
𝑤

[︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌊︀
,

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑦
𝑧
𝑤

[︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌊︀
𝐹 (︀4⌋︀

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 + 𝑧2 + 1
5𝑦 + 1
𝑧8 +⋯
5𝑤 − 1

,

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 − 𝑧
5𝑦 + 1

𝑧2 + 𝑧 + 1
5𝑤 − 1

,

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥
5𝑦 + 1

𝑧
5𝑤 − 1

,

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥2 + 1
5𝑦 + 1

𝑧
5𝑤 − 1

,

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 + 𝑧2 + 1
𝑦

𝑧8 +⋯
𝑤

,

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 − 𝑧
𝑦

𝑧2 + 𝑧 + 1
𝑤

,

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥2 + 1
𝑦
𝑧
𝑤

,

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥
𝑦
𝑧
𝑤

𝐹 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑦 +𝑤
5𝑤2 + 𝑦
𝑥𝑧 + 𝑧3 + 𝑧
𝑥5 + 𝑥3 + 𝑧
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Incremental solving: tracing a non-toy example

∎ more parallelism exposed as more components found
∎ yet, work unbalanced between branches
∎ mechanism needed for dynamic parallelism: “workpile” or “task pool”
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Regular chains, notations
Let k be a perfect field, and k(︀𝑋⌋︀ have ordered vars. 𝑋 = 𝑋1 < ⋯ < 𝑋𝑛

A triangular set 𝑇 is a regular chain if either 𝑇 is empty, or 𝑇−
𝑣 is a regular

chain and ℎ is regular modulo sat(𝑇−
𝑣 )

𝑇 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑇𝑣 = ℎ 𝑣𝑑 + tail(𝑇𝑣)

𝑇−
𝑣 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

[︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌊︀

[︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌊︀
⊂ k(︀𝑋⌋︀

Example:

𝑇 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

(2𝑦 + 𝑏𝑎)𝑥 − 𝑏𝑦 + 𝑎2

2𝑦2 − 𝑏𝑦 − 𝑎2

𝑎 + 𝑏

[︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌊︀
⊂ Q(︀𝑏 < 𝑎 < 𝑦 < 𝑥⌋︀

Saturated ideal of a regular chain:
∎ sat(𝑇 ) = (sat(𝑇−

𝑣 ) + 𝑇𝑣) ∶ ℎ∞

∎ sat(∅) = ∐︀0̃︀

Quasi-component of a regular chain:
∎ 𝑊 (𝑇 ) ∶= 𝑉 (𝑇 ) ∖ 𝑉 (ℎ𝑇 ), ℎ𝑇 ∶= ∏

𝑝∈𝑇
ℎ𝑝

∎ 𝑊 (𝑇 ) = 𝑉 (sat(𝑇 ))
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Triangular decomposition algorithms
A triangular decomposition of an input system 𝐹 ⊆ k(︀𝑋⌋︀ is a set of
regular chains 𝑇1, . . . , 𝑇𝑒 such that:
(a) 𝑉 (𝐹 ) = ⋃𝑒

𝑖=1 𝑊 (𝑇𝑖), in the sense of Kalkbrener, or
(b) 𝑉 (𝐹 ) = ⋃𝑒

𝑖=1 𝑊 (𝑇𝑖), in the sense of Wu and Lazard

Triangular decomposition by incremental intersection has key subroutines:
Intersect. Given 𝑝 ∈ k(︀𝑋⌋︀, 𝑇 ⊂ k(︀𝑋⌋︀, compute 𝑇1, . . . , 𝑇𝑒 such that:
𝑉 (𝑝) ∩𝑊 (𝑇 ) ⊆ ⋃𝑒

𝑖=1 𝑊 (𝑇𝑖) ⊆ 𝑉 (𝑝) ∩𝑊 (𝑇 )

Regularize: Given 𝑝 ∈ k(︀𝑋⌋︀, 𝑇 ⊂ k(︀𝑋⌋︀, compute 𝑇1, . . . , 𝑇𝑒 such that:
(𝑖). 𝑊 (𝑇 ) ⊆ ⋃𝑒

𝑖=1 𝑊 (𝑇𝑖) ⊆ 𝑊 (𝑇 ), and
(𝑖𝑖). 𝑝 ∈ sat(𝑇𝑖) or 𝑝 is regular modulo sat(𝑇𝑖), for 𝑖 = 1, . . . , 𝑒

RegularGCD: Given 𝑝 ∈ k(︀𝑋⌋︀ with main variable 𝑣, 𝑇 = {𝑇𝑣} ∪ 𝑇−
𝑣 , find

pairs (𝑔𝑖, 𝑇𝑖) such that:
(𝑖). 𝑊 (𝑇 −

𝑣 ) ⊆ ⋃𝑒
𝑖=1 𝑊 (𝑇𝑖) ⊆ 𝑊 (𝑇−

𝑣 ), and
(𝑖𝑖). 𝑔𝑖 is a regular gcd of 𝑝, 𝑇𝑣 w.r.t. 𝑇𝑖
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Finding splittings: GCDs and Regularize

Let 𝑝 ∈ k(︀𝑋⌋︀∖k with main variable 𝑣. Let 𝑇 = 𝑇−
𝑣 ∪𝑇𝑣. All are square free.

A regular GCD 𝑔 of 𝑝 and 𝑇𝑣 w.r.t. sat(𝑇−
𝑣 ) has:

1 ℎ𝑔 is regular modulo sat(𝑇−
𝑣 )

2 𝑔 ∈ ∐︀𝑝, 𝑇𝑣̃︀ (every solution of 𝑝 and 𝑇𝑣 solves 𝑔 as well)
3 if deg(𝑔, 𝑣) > 0, then 𝑔 pseudo-divides 𝑝 and 𝑇𝑣.

Let 𝑞 = pquo(𝑇𝑣, 𝑔). In Regularize, 𝑔 says where 𝑝 vanishes or is regular:
𝑊 (𝑇 ) ⊆ 𝑊 (𝑇 −

𝑣 ∪ 𝑔) ∪ 𝑊 (𝑇−
𝑣 ∪ 𝑞) ∪ (𝑉 (ℎ𝑔) ∩𝑊 (𝑇 )) ⊆ 𝑊 (𝑇 )

In Intersect, splittings are found via recursive calls:
𝑉 (𝑝) ∩𝑊 (𝑇 ) ⊆

𝑊 (𝑇 −
𝑣 ∪ 𝑔) ∪ (𝑉 (𝑝) ∩ (𝑉 (ℎ𝑔) ∩𝑊 (𝑇 )))

⊆ 𝑉 (𝑝) ∩𝑊 (𝑇 )
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The foundation of splitting: regularity testing
To intersect a polynomial with an existing regular chain, it must have a
regular initial, regularizing finds splittings via a case discussion
∎ either the initial is regular, or it is not regular

𝑓 = (𝑦 + 1)𝑥2 − 𝑥

𝑇 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦2 − 1 = 0
𝑧 − 1 = 0

𝑇1 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦 + 1 = 0
𝑧 − 1 = 0

𝑇2 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦 − 1 = 0
𝑧 − 1 = 0

𝑇1 =

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 + 1 = 0
𝑧 − 1 = 0

𝑇2 =

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

2𝑥2 − 𝑥 = 0
𝑦 − 1 = 0
𝑧 − 1 = 0

𝑦 +
1 =

0

𝑦 + 1 ≠ 0

𝑓 = 𝑥

𝑓 = 2𝑥2
− 𝑥
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All roads lead to Regularize

The Triangularize algorithm iteratively calls intersect, then a network of
mutually recursive functions do the heavy-lifting.

ë In all cases, polynomials are forced to be regular and splittings are
(possibly) found via Regularize

Triangularize

Intersect
IntersectFree

CleanChain

IntersectAlgebraicRegularize

RegularGCD

Extend
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Parallel map and workpile
Map is the possibly the most well-known parallel programming pattern

ë execute a function on each item in a collection concurrently
ë with multiple Maps, tasks must execute in lockstep

Map Pattern [32] Thread Pool (Wikipedia)

Workpile generalizes Map to a queue of a tasks, allowing tasks to add
more tasks, thus enabling load-balancing as tasks start asynchronously

ë one possible implementation of workpile is a thread pool

Data Item Function Execution
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Triangularize: incremental triangular decomposition

Algorithm 1 Triangularize(𝐹 )
Input: a finite set 𝐹 ⊆ k(︀𝑋⌋︀
Output: regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ k(︀𝑋⌋︀ encoding the solutions of 𝑉 (𝐹 )

1: 𝒯 ∶= {∅}
2: for 𝑝 ∈ 𝐹 do
3: 𝒯 ′ ∶= {}
4: for 𝑇 ∈ 𝒯 Map ▷ map Intersect over the current components
5: 𝒯

′
∶= 𝒯

′
∪ Intersect(𝑝, 𝑇 )

6: 𝒯 ∶= 𝒯
′

7: return RemoveRedundantComponents(𝒯 )

• Coarse-grained parallelism: each Intersect represents substantial work
• At each “level” there are ⋃︀𝒯 ⋃︀ components with which to intersect,

yielding ⋃︀𝒯 ⋃︀ concurrent calls to intersect
• Performs a breadth-first search, with intersects occurring in lockstep
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Triangularize: a task-based approach

Algorithm 2 TriangularizeByTasks(𝐹 )
Input: a finite set 𝐹 ⊆ k(︀𝑋⌋︀
Output: regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ k(︀𝑋⌋︀ encoding the solutions of 𝑉 (𝐹 )

1: Tasks ← { (𝐹,∅) }; 𝒯 ← {}
2: while ⋃︀Tasks ⋃︀ > 0 do
3: (𝑃, 𝑇 ) ← pop a task from Tasks
4: Choose a polynomial 𝑝 ∈ 𝑃 ; 𝑃 ′ ← 𝑃 ∖ {𝑝}
5: for 𝑇 ′ in Intersect(𝑝, 𝑇 ) do
6: if ⋃︀𝑃 ′⋃︀ = 0 then 𝒯 ← 𝒯 ∪ {𝑇 ′}
7: else Tasks← Tasks ∪ {(𝑃 ′, 𝑇 ′)}
8: return RemoveRedundantComponents(𝒯 )

• Tasks is really a task scheduler augmented with a thread pool
• Tasks create more tasks, workers pop Tasks until none remain.
• Adaptive to load-balancing, no inter-task synchronization
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Generators and pipelines

Generators
∎ A generator function (i.e. iterator) yields data items one at a time,

allowing the function’s control flow to resume on its next execution.

Asynchronous Generators, Producer-Consumer
∎ async generators can concurrently produce items while the generator’s

caller is consuming items, creating a producer-consumer pair

Pipeline
∎ By connecting many producer-consumer pairs we create a pipeline
∎ Pipelines need not be linear, they can be directed acyclic graphs
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Intersect as a generator

Algorithm 3 Intersect(𝑝, 𝑇 )
Input: 𝑝 ∈ k(︀𝑋⌋︀ ∖ k, 𝑣 ∶= mvar(𝑝), a regular chain 𝑇 s.t. 𝑇 = 𝑇 −

𝑣 ∪ 𝑇𝑣

Output: regular chains 𝑇1, . . . , 𝑇𝑒 satisfying specs.
1: for (𝑔𝑖, 𝑇𝑖) ∈ RegularGCD(𝑝, 𝑇𝑣, 𝑣, 𝑇 −

𝑣 ) do
2: if dim(𝑇𝑖) ≠ dim(𝑇 −

𝑣 ) then
3: for 𝑇𝑖,𝑗 ∈ Intersect(𝑝, 𝑇𝑖) do
4: yield 𝑇𝑖,𝑗

5: else
6: if 𝑔𝑖 ⇑∈ k and deg(𝑔𝑖, 𝑣) > 0 then
7: yield 𝑇𝑖 ∪ {𝑔𝑖}
8: for 𝑇𝑖,𝑗 ∈ Intersect(lc(𝑔𝑖, 𝑣), 𝑇𝑖) do
9: for 𝑇 ′ ∈ Intersect(𝑝, 𝑇𝑖,𝑗) do

10: yield 𝑇 ′

∎ yield “produces” a single data item, and then continues computation
∎ each for loop consumes a data item one at a time from the generator
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Generators are both producers and consumers

Algorithm 3 Intersect(𝑝, 𝑇 )
1: for (𝑔𝑖, 𝑇𝑖) ∈ RegularGCD(𝑝, 𝑇𝑣 , 𝑇−

𝑣 ) do
2: if dim(𝑇𝑖) ≠ dim(𝑇−

𝑣 ) then
3: for 𝑇𝑖,𝑗 ∈ Intersect(𝑝, 𝑇𝑖) do
4: yield 𝑇𝑖,𝑗

5: else
6: if 𝑔𝑖 ⇑∈ k and deg(𝑔𝑖, 𝑣) > 0 then
7: yield 𝑇𝑖 ∪ {𝑔𝑖}
8: for 𝑇𝑖,𝑗 ∈ Intersect(lc(𝑔𝑖, 𝑣), 𝑇𝑖) do
9: for 𝑇 ′ ∈ Intersect(𝑝, 𝑇𝑖,𝑗) do

10: yield 𝑇 ′

Algorithm 4 Regularize(𝑝, 𝑇 )
1: for (𝑔𝑖, 𝑇𝑖) ∈ RegularGCD(𝑝, 𝑇𝑣 , 𝑇−

𝑣 ) do
2: ▷ assume dim(𝑇𝑖) = dim(𝑇−

𝑣 )
3: if 0 < deg(𝑔𝑖, 𝑣) < deg(𝑇𝑣 , 𝑣) then
4: yield 𝑇𝑖 ∪ 𝑔𝑖

5: yield 𝑇𝑖 ∪ pquo(𝑇𝑣 , 𝑔𝑖)
6: for 𝑇𝑖,𝑗 ∈ Intersect(lc(𝑔𝑖, 𝑣), 𝑇𝑖) do
7: for 𝑇 ′ ∈ Regularize(𝑝, 𝑇𝑖,𝑗) do
8: yield 𝑇 ′

9: else
10: yield 𝑇𝑖

∎ Establishing mutually recursive functions as generators allows data to
stream between subroutines; subroutines are effectively non-blocking

∎ function call stack of generators creates a dynamic parallel pipeline.
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The subroutine pipeline
Triangularize

Intersect
IntersectFree

CleanChain
IntersectAlgebraicRegularize

RegularGCD
Extend

∎ All subroutines, as generators, allow the pipeline to evolve
dynamically with the call stack.

∎ The call stack forms a tree if several generators are invoked by one
consumer

∎ This pipeline creates fine-grained parallelism since work diminishes
with each recursive call

∎ A thread pool is used and shared among all generators; generators run
synchronously if the pool is empty
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Divide-and-conquer and fork-join

∎ Divide a problem into
sub-problems, solving each
recursively

∎ Combine sub-solutions to
produce a full solution

∎ Fork: execute multiple
recursive calls in parallel
(divide)

∎ Join: merge parallel
execution back into serial
execution (combine)
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Removal of redundant components
After a system is solved, and many components found, we can remove
components from the solution set that are contained within others
∎ Follow a merge-sort approach; spawn/fork and sync/join

Algorithm 5 RemoveRedundantComponents(𝒯 )
Input: a finite set 𝒯 = {𝑇1, . . . , 𝑇𝑒} of regular chains
Output: an irredundant set 𝒯 ′ with the same algebraic set as 𝒯

if 𝑒 = 1 then return 𝒯
ℓ← [︂𝑒⇑2⌉︂; 𝒯≤ℓ ← {𝑇1, . . . , 𝑇ℓ}; 𝒯>ℓ ← {𝑇ℓ+1, . . . , 𝑇𝑒}

𝒯1 ∶= spawn RemoveRedundantComponents(𝒯≤ℓ)
𝒯2 ∶= RemoveRedundantComponents(𝒯>ℓ)
sync
𝒯
′

1 ∶= ∅; 𝒯 ′2 ∶= ∅
for 𝑇1 ∈ 𝒯1 do

if ∀𝑇2 in 𝒯2 IsNotIncluded (𝑇1, 𝑇2) then 𝒯 ′1 ∶= 𝒯 ′1 ∪ {𝑇1}

for 𝑇2 ∈ 𝒯2 do
if ∀𝑇1 in 𝒯 ′1 IsNotIncluded (𝑇2, 𝑇1) then 𝒯 ′2 ∶= 𝒯 ′2 ∪ {𝑇2}

return 𝒯 ′1 ∪ 𝒯 ′2
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Experimentation setup

Thanks to Maplesoft, we have a collection of over 3000 real-world systems
from: actual user data, the literature, bug reports. In this
experimentation, we solve 2815 of these systems in under 2 hours.

Of these 2815 systems, 300 require greater than 0.1s to solve
∎ Non-trivial systems to warrant the overheads of parallelism

1739 of these 2815 systems do not split at all
∎ No speed-up expected; some slow-down is expected in these cases
∎ however, we include them to ensure that slow-down is minimal

These experiments are run on a node with 2x6-core Intel Xeon X560
processors (24 physical threads with hyperthreading)
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BPAS serial vs Maple

Comparing the runtime performance of triangular decomposition in the
RegularChains library of Maple 2020 against the serialized
implementation in BPAS.
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Speedup obtained from tasks and fork-join

The parallel-speedup obtained from using parallel triangularize tasks and
parallel removal of redundant components (RRC) together for solving in
Kalkbrener and Lazard modes.
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Timings for a few well-known systems
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Inspecting the geometry: Sys2691

∎ Bottom “main” branch is majority of the work.
∎ Little overlap with the quickly-solved degenerative branches
∎ 2.13× speedup achieved; 88% efficient compared to work/span ratio
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Inspecting the geometry: Sys3295

∎ Up to 11 active branches at once, but overlap is only for 0.1s
∎ 4.94× speedup; 75% efficient
∎ Could consider other parallelism in “main” branch once all other tasks

have finished and released resources (poly arithmetic, subresultants)
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Incremental decomposition: conclusion

We have tackled irregular parallelism in a high-level algebraic algorithm
∎ our solution dynamically finds and exploits opportunities for

concurrency
∎ uses dynamic parallel task management, async. generators, and DnC
∎ Dnc is also used to construct subresultant chains via

evaluation/interpolation techniques
∎ While async. generators do not help much (because the

corresponding tasks became too fine-grained as we were optimizing
polynomial arithmetic) they did help in the past (ISSAC 2021).

∎ All our parallel patterns (task management, async. generators, and
DnC) are part of the BPAS library and do not rely on any other
concurrency plafform;

∎ The benefit is that all those parallel patterns rely on the same
scheduler.

Marc Moreno Maza Design, Implementation of Multi-Threaded Algs. for Polynomial Algebra ISSAC 2021 79 / 128



Incremental decomposition: future work

Further parallelism can be found through:
∎ solving over a prime field, which produces more splittings;
∎ then lifting to solutions over the rational numbers, which can be done

by evaluation/interpolation techniques.

Our parallel techniques could be employed in further high-level algorithms.
∎ e.g. factorization: pipelining between square-free, distinct-degree, and

equal-degree factorization
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Notations

A = k(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀ is the ring of multivariate power series over an
algebraically closed field. Its maximal ideal is ℳ= ∐︀𝑋1, . . . , 𝑋𝑛̃︀.
∎ 𝑓 = ∑

𝑒∈N𝑛
𝑎𝑒𝑋𝑒 ∈ k(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀

∎ 𝑋𝑒 = 𝑋𝑒1
1 ⋯𝑋𝑒𝑛

𝑛 , ⋃︀𝑒⋃︀ = 𝑒1 +⋯ + 𝑒𝑛

∎ 𝑓(𝑘) = ∑
⋃︀𝑒⋃︀=𝑘

𝑎𝑒𝑋𝑒 is the homogeneous part of 𝑓 of degree 𝑘

∎ 𝑓(𝑘) ∈ ℳ𝑘 ∖ℳ𝑘+1

∎ The units of A are {𝑢 ⋃︀𝑢 ⇑∈ ℳ}

A(︀𝑌 ⌋︀ is the ring of Univariate Polynomials over Power Series (UPoPS)
∎ 𝑓 = ∑𝑑

𝑖=0 𝑎𝑖𝑌
𝑖, 𝑎𝑖 ∈ A, 𝑎𝑑 ≠ 0 is a UPoPS of degree 𝑑

∎ Denote degree of 𝑓 in 𝑌 by deg 𝑓 = 𝑑
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Lazy evaluation for power series arithmetic

Power series implemented using a lazy evaluation scheme allow for terms
to be computed on demand, increasing precision as needed.

Our lazy power series require:
1 an update function to compute homogeneous parts of a given degree
2 capturing parameters required for the update function
3 storing previously computed homogeneous parts

Where update parameters are power series, they are called ancestors.
Addition, 𝑓 = 𝑔 + ℎ

∎ 𝑓(𝑘) = 𝑔(𝑘) + ℎ(𝑘)

Multiplication 𝑓 = 𝑔ℎ

∎ 𝑓(𝑘) = ∑𝑘
𝑖=0 𝑔(𝑖)ℎ(𝑘−𝑖)
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Ancestry example

𝑝 = 𝑓𝑔 + 𝑎𝑏

𝑓 = 𝑔 = 𝑎 = 𝑏 =
1 + 𝑥 + 𝑦𝑧 + . . . 1 + 𝑧 + 𝑦 + . . . 1 + 𝑦 + 𝑥2 + . . . 1 + 𝑦𝑧 + 𝑥𝑧 + . . .

× ×

ℎ = 𝑐 =
1 + 𝑧 + 𝑦 + 𝑥 + 𝑦𝑧 + 𝑥𝑧 + 𝑥𝑦 + . . . 1 + 𝑦 + 𝑦𝑧 + 𝑥𝑧 + 𝑥2 + . . .

+

𝑝 =
2 + 𝑧 + 2𝑦 + 𝑥 + 2𝑦𝑧 + 2𝑥𝑧 + 𝑥𝑦 + 𝑥2 + . . .
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Weierstrass preparation theorem in k(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀(︀𝑌 ⌋︀

Theorem (Weierstrass preparation)
Let 𝑓 ∈ k(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀(︀𝑌 ⌋︀ and assume 𝑓 ⇑≡ 0 modℳ(︀𝑌 ⌋︀. Write
𝑓 = ∑𝑑+𝑚

𝑖=0 𝑎𝑖𝑌
𝑖 ∈ k(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀(︀𝑌 ⌋︀, where 𝑑 ≥ 0 is the smallest integer

such that 𝑎𝑑 ⇑∈ ℳ and 𝑚 ∈ Z+.
Then, there exists a unique pair 𝑝, 𝛼 satisfying the following:

1 𝑓 = 𝑝 𝛼,
2 𝛼 is an invertible element of k(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀(︀(︀𝑌 ⌋︀⌋︀,
3 𝑝 is a monic polynomial of degree 𝑑,
4 writing 𝑝 = 𝑌 𝑑 + 𝑏𝑑−1𝑌 𝑑−1 +⋯𝑏1𝑌 + 𝑏0, we have 𝑏𝑑−1, . . . , 𝑏0 ∈ ℳ.

Theorem (Algebraic complexity for Weierstrass)
For 𝑓 = 𝑝 𝛼 ∈ k(︀(︀𝑋1⌋︀⌋︀(︀𝑌 ⌋︀, deg 𝑝 = 𝑑, deg 𝛼 = 𝑚, computing 𝑝 and 𝛼 to
precision 𝑘 requires 𝑑(𝑚 + 1)𝑘2 + 𝑑𝑚𝑘 operations in k.
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Weierstrass preparation by lazy evaluation
Let 𝑓 = ∑𝑑+𝑚

ℓ 𝑎ℓ=0𝑌 ℓ, 𝑝 = 𝑌 𝑑 +∑𝑑−1
𝑗=0 𝑏𝑗𝑌 𝑗 , 𝛼 = ∑𝑚

𝑖=0 𝑐𝑖𝑌
𝑖 be UPoPS.

ë 𝑎ℓ, 𝑏𝑗 , 𝑐𝑖 are power series ë 𝑏𝑗 ∈ ℳ for 𝑗 = 0, . . . , 𝑑 − 1

𝑓 = 𝛼𝑝 Ô⇒ 𝑎0 = 𝑏0𝑐0
𝑎1 = 𝑏0𝑐1 + 𝑏1𝑐0

⋮
𝑎𝑑−1 = 𝑏0𝑐𝑑−1 + 𝑏1𝑐𝑑−2 +⋯ + 𝑏𝑑−2𝑐1 + 𝑏𝑑−1𝑐0

𝑎𝑑 = 𝑏0𝑐𝑑 + 𝑏1𝑐𝑑−1 +⋯ + 𝑏𝑑−1𝑐1 + 𝑐0
⋮

𝑎𝑑+𝑚−1 = 𝑏𝑑−1𝑐𝑚 + 𝑐𝑚−1
𝑎𝑑+𝑚 = 𝑐𝑚

We update 𝑝 and 𝛼 by solving these equations modulo ℳ𝑘, 𝑘 = 1, 2, . . .

modulo ℳ we have:
(1) 𝑏𝑗 ≡ 0 modℳ, 𝑗 = 0, . . . , 𝑑 − 1 (2) 𝑐𝑖 ≡ 𝑎𝑖 modℳ for 𝑖 = 0, . . . , 𝑚.

skip slide
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Lazy Weierstrass Phase 1: update 𝑝

Let 𝑓 = ∑𝑑+𝑚
ℓ 𝑎ℓ𝑌

ℓ, 𝑝 = 𝑌 𝑑 +∑𝑑−1
𝑗 𝑏𝑗𝑌 𝑗 , 𝛼 = ∑𝑚

𝑖 𝑐𝑖𝑌
𝑖 be UPoPS.

ë 𝑎ℓ, 𝑏𝑗 , 𝑐𝑖 are power series ë 𝑏𝑗 ∈ ℳ for 𝑗 = 0, . . . , 𝑑 − 1

𝑎0 = 𝑏0𝑐0
𝑎1 − 𝑏0𝑐1 = 𝑏1𝑐0

𝑎2 − 𝑏0𝑐2 − 𝑏1𝑐1 = 𝑏2𝑐0
⋮

𝑎𝑑−1 − 𝑏0𝑐𝑑−1 − 𝑏1𝑐𝑑−2 +⋯ − 𝑏𝑑−2𝑐1 = 𝑏𝑑−1𝑐0

∎ let 𝐹𝑗 = 𝑎𝑗 −∑𝑗−1
𝑖=0 𝑏𝑖𝑐𝑗−𝑖

∎ with power series division we can solve 𝐹𝑗 = 𝑏𝑗𝑐0 from 𝑗 = 0 to 𝑑 − 1
ë 𝑏𝑗(𝑘) = 1⇑𝑐0(0) (𝐹𝑗(𝑘) −∑

𝑘−1
𝑖=1 𝑏𝑗(𝑖)𝑐0(𝑘−𝑖))

∎ each 𝐹𝑗 lazily updated through lazy power series arithmetic
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Lazy Weierstrass Phase 2: update 𝛼

Let 𝑓 = ∑𝑑+𝑚
ℓ 𝑎ℓ𝑌

ℓ, 𝑝 = 𝑌 𝑑 +∑𝑑−1
𝑗 𝑏𝑗𝑌 𝑗 , 𝛼 = ∑𝑚

𝑖 𝑐𝑖𝑌
𝑖 be UPoPS.

ë 𝑎ℓ, 𝑏𝑗 , 𝑐𝑖 are power series ë 𝑏𝑗 ∈ ℳ for 𝑗 = 0, . . . , 𝑑 − 1

𝑐𝑚 = 𝑎𝑑+𝑚

𝑐𝑚−1 = 𝑎𝑑+𝑚−1 − 𝑏𝑑−1𝑐𝑚

𝑐𝑚−2 = 𝑎𝑑+𝑚−2 − 𝑏𝑑−2𝑐𝑚 − 𝑏𝑑−1𝑐𝑚−1
⋮

𝑐0 = 𝑎𝑑 − 𝑏0𝑐𝑑 − 𝑏1𝑐𝑑−1 −⋯ − 𝑏𝑑−1𝑐1

∎ 𝑐𝑚−𝑖(𝑘) = 𝑎𝑑+𝑚−𝑖(𝑘) −∑𝑖
𝑗=1 (𝑏𝑑−𝑗𝑐𝑚−𝑖+𝑗)(𝑘), for 𝑖 ≤ 𝑑

∎ each 𝑐𝑚−𝑖 lazily updated through lazy power series arithmetic
∎ (𝑏𝑑−𝑗𝑐𝑚−𝑖+𝑗)(𝑘) only requires up to 𝑐𝑚−𝑖+𝑗(𝑘−1) since 𝑏𝑑−𝑗(0) = 0
∎ each 𝑐𝑚−𝑖 can thus be updated simultaneously
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Parallelization opportunities in Weierstrass
parallel map-reduce or parallel for loops

In phase 1: 𝑏𝑗(𝑘) = 1⇑𝑐0(0) (𝐹𝑗(𝑘) −∑
𝑘−1
𝑖=1 𝑏𝑗(𝑖)𝑐0(𝑘−𝑖)), with

𝐹𝑗 = 𝑎𝑗 −∑𝑗−1
𝑖=0 𝑏𝑖𝑐𝑗−𝑖

∎ compute summation using map-reduce:
∑𝑘

𝑖=1 𝑏𝑗(𝑖)𝑐0(𝑘−𝑖)
∎ notice in multivariate case, e.g., 𝑏𝑗(1)𝑐0(𝑘−1) is less work than

𝑏𝑗( 𝑘
2 )

𝑐0(𝑘− 𝑘
2 )

In phase 2: 𝑐𝑚−𝑖(𝑘) = 𝑎𝑑+𝑚−𝑖(𝑘) −∑𝑖
𝑗=1 (𝑏𝑑−𝑗𝑐𝑚−𝑖+𝑗)(𝑘)

∎ compute each 𝑐𝑚−𝑖(𝑘), 0 ≤ 𝑖 ≤ 𝑚 simultaneously, and/or
∎ compute product homogeneous parts using a map-reduce:

(𝑏𝑑−𝑗𝑐𝑚−𝑖+𝑗)(𝑘) = ∑
𝑘
ℓ=1 𝑏𝑑−𝑗(ℓ)𝑐𝑚−𝑖+𝑗(𝑘−ℓ)

∎ load-balance issue again in the multivariate case
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Update to degree: Map-Reduce
Algorithm 6 UpdateToDegParallel(𝑘, 𝑓 , 𝑡)

Input: 𝑘 ∈ Z+, 𝑓 ∈ k(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀ known to at least precision 𝑘 − 1. If 𝑓 has ancestors, it is
the result of a binary operation. 𝑡 ∈ Z+ for the number of threads to use.

Output: 𝑓 is updated to precision 𝑘, in place.
1: 𝑔, ℎ← FirstAncestor(𝑓), SecondAncestor(𝑓)
2: UpdateToDegParallel(𝑘, 𝑔, 𝑡);
3: UpdateToDegParallel(𝑘, ℎ, 𝑡);

4: if 𝑓 is a product then ▷ compute 𝑓(𝑘) by map-reduce
5: 𝒱 ← (︀0, . . . , 0⌋︀ ▷ 0-indexed list of size 𝑡
6: parallel_for 𝑗 ← 0 to 𝑡 − 1
7: for 𝑖← 𝑗𝑘⇑𝑡 to (𝑗+1)𝑘⇑𝑡 − 1 while 𝑖 ≤ 𝑘 do
8: 𝒱(︀𝑗⌋︀ ← 𝒱(︀𝑗⌋︀ + 𝑔(𝑖)ℎ(𝑘−𝑖)

9: 𝑓(𝑘) ← ∑𝑡−1
𝑗=0 𝒱(︀𝑗⌋︀ ▷ reduce

10: else if 𝑓 is a 𝑝 from a Weierstrass preparation then
11: WeierstrassPhase1Parallel(𝑘,𝑔,𝑓 ,ℎ,WeierstrassData(𝑓),𝑡)
12: else if 𝑓 is an 𝛼 from a Weierstrass preparation then
13: WeierstrassPhase2Parallel(𝑘, 𝑔, ℎ, 𝑓 , 𝑡)
14: else
15: UpdateToDeg(𝑘, 𝑓) ▷ fallback to serial algorithm
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Hensel’s Lemma
Theorem (Hensel’s Lemma)
Let 𝑓 = 𝑌 𝑑 +∑𝑑−1

𝑖=0 𝑎𝑖𝑌
𝑖 be a monic polynomial in k(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀(︀𝑌 ⌋︀.

Let 𝑓 = 𝑓(0, . . . , 0, 𝑌 ) = (𝑌 − 𝑐1)𝑑1(𝑌 − 𝑐2)𝑑2⋯(𝑌 − 𝑐𝑟)𝑑𝑟 for 𝑐1, . . . , 𝑐𝑟 ∈ k
and positive integers 𝑑1, . . . , 𝑑𝑟. Then, there exists
𝑓1, . . . , 𝑓𝑟 ∈ k(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀(︀𝑌 ⌋︀, all monic in Y, such that:

1 𝑓 = 𝑓1⋯𝑓𝑟,
2 deg 𝑓𝑖, 𝑌 = 𝑑𝑖 for 1 ≤ 𝑖 ≤ 𝑟, and
3 𝑓𝑖 = (𝑌 − 𝑐𝑖)𝑑𝑖 for 1 ≤ 𝑖 ≤ 𝑟.

Proof:
Let 𝑔 = 𝑓(𝑋1, . . . , 𝑋𝑛, 𝑌 + 𝑐𝑟) = 𝑌 𝑑 +∑𝑑−1

𝑖=0 𝑏𝑖𝑌
𝑖, sending 𝑐𝑟 to the origin.

By construction, 𝑏0, . . . , 𝑏𝑑𝑟−1 ∈ ℳ and Weierstrass preparation can be
applied to produce 𝑔 = 𝑝 𝛼 with deg 𝑝 = 𝑑𝑟, deg 𝛼 = 𝑑 − 𝑑𝑟.
Reversing the shift, 𝑓𝑟 = 𝑝(𝑌 − 𝑐𝑟).
Induction on 𝑓 = 𝛼(𝑌 − 𝑐𝑟) completes the proof.
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Hensel Factorization

Algorithm 7 HenselFactorization(𝑓)

Input: 𝑓 = 𝑌 𝑑 +∑𝑑−1
𝑖=0 𝑎𝑖𝑌

𝑖, 𝑎𝑖 ∈ k(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀.
Output: 𝑓1, . . . , 𝑓𝑟 satisfying Theorem 3.

1: 𝑓 = 𝑓(0, . . . , 0, 𝑌 )
2: (𝑐1, . . . , 𝑐𝑟), (𝑑1, . . . , 𝑑𝑟) ← roots and their multiplicities of 𝑓
3: 𝑐1, . . . , 𝑐𝑟 ← sort((︀𝑐1, . . . , 𝑐𝑟⌋︀) by increasing multiplicity
4: 𝑓1 ← 𝑓
5: for 𝑖← 1 to 𝑟 − 1 do
6: 𝑔𝑖 ← 𝑓𝑖(𝑌 + 𝑐𝑖)
7: 𝑝𝑖, 𝛼𝑖 ← WeierstrassPreparation(𝑔)
8: 𝑓𝑖 ← 𝑝𝑖(𝑌 − 𝑐𝑖)
9: 𝑓𝑖+1 ← 𝛼𝑖(𝑌 − 𝑐𝑖)

10: 𝑓𝑟 ← 𝑓𝑟

11: return 𝑓1, . . . , 𝑓𝑟
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Parallel Opportunities in Hensel

∎ The output of one Weierstrass becomes input to another
∎ 𝑓𝑖+𝑖(𝑘) relies on 𝑓𝑖(𝑘)
∎ Can compute 𝑓𝑖(𝑘+1) and 𝑓𝑖+𝑖(𝑘) concurrently in a pipeline

Stage 1 (𝑓1) Stage 2 (𝑓2) Stage 3 (𝑓3) Stage 4 (𝑓4)
Time 1 𝑓1(1)
Time 2 𝑓1(2) 𝑓2(1)
Time 3 𝑓1(3) 𝑓2(2) 𝑓3(1)
Time 4 𝑓1(4) 𝑓2(3) 𝑓3(2) 𝑓4(1)
Time 5 𝑓1(5) 𝑓2(4) 𝑓3(3) 𝑓4(2)
Time 6 𝑓1(6) 𝑓2(5) 𝑓3(4) 𝑓4(3)

𝑓 𝑔1 𝛼1

𝑝1 𝑓1

𝑓2 𝑔2 𝛼2

𝑝2 𝑓2

𝑓3 𝑔3 𝛼3

𝑝3 𝑓3

𝑓4
+𝑐1

−𝑐1

−𝑐1 +𝑐2

−𝑐2

−𝑐2 +𝑐3

−𝑐3

−𝑐3
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Parallel Challenges and Composition

𝑓 𝑔1 𝛼1

𝑝1 𝑓1

𝑓2 𝑔2 𝛼2

𝑝2 𝑓2

𝑓3 𝑔3 𝛼3

𝑝3 𝑓3

𝑓4
+𝑐1

−𝑐1

−𝑐1 +𝑐2

−𝑐2

−𝑐2 +𝑐3

−𝑐3

−𝑐3

∎ Degrees and computational work diminish with each stage
ë deg 𝑔1 = 𝑑, deg 𝑔2 = 𝑑 − 𝑑1, deg 𝑔3 = 𝑑 − 𝑑1 − 𝑑2, . . .

∎ To load-balance each stage, give a decreasing number of threads to
each stage to be used within Weierstrass preparation.

∎ From Theorem 1: updating 𝑓𝑖 requires 𝒪(𝑑𝑖𝑑𝑖+1𝑘2) operations

∎ Assign 𝑡𝑖 threads to stage 𝑖 so that 𝑑𝑖𝑑𝑖+1⇑𝑡𝑖 is equal for each stage.

∎ Better still, update a group of successive factors per stage.
ë To each stage 𝑠 assign factors 𝑓𝑠1 , . . . , 𝑓𝑠2 and 𝑡𝑠 threads so that
∑𝑠2

𝑖=𝑠1
𝑑𝑖𝑑𝑖+1⇑𝑡𝑠 is roughly equal for each stage.

skip slide
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Hensel Pipeline Algorithm

Algorithm 8 HenselPipeStage(𝑘, 𝑓𝑖, 𝑡, gen)

Input: 𝑘 ∈ Z+, 𝑓𝑖 a UPoPS, 𝑡 ∈ Z+ the number
of threads to use within this stage. gen a
generator for the previous pipeline stage.

Output: a sequence of integers 𝑗 signalling 𝑓𝑖 is
known to precision 𝑗; the sequence ends at 𝑘.

1: 𝑝← Precision(𝑓𝑖) ▷ current precision of 𝑓𝑖

2: do
▷A blocking function call until gen yields

3: 𝑘′ ← gen()

4: for 𝑗 ← 𝑝 to 𝑘′ do
5: UpdateToDegParallel(𝑗, 𝑓𝑖, 𝑡)
6: yield 𝑗

7: 𝑝← 𝑘′

8: while 𝑘′ < 𝑘

Algorithm 9 HenselFactorizationPipeline(𝑘, ℱ , 𝒯 )

Input: 𝑘 ∈ Z+, ℱ = {𝑓1, . . . , 𝑓𝑟} the output of Hen-
selFactorization. 𝒯 ∈ Z𝑟 a 0-indexed list of the
number of threads to use in each stage, 𝒯 (︀𝑟−1⌋︀ > 0.

Output: 𝑓1, . . . , 𝑓𝑟 updated in-place to precision 𝑘.

▷ an anonymous function asynchronous generator
1: gen ← () → {yield 𝑘}

2: for 𝑖← 0 to 𝑟 − 1 do
3: if 𝒯 (︀𝑖⌋︀ > 0 then

▷ Capture function as a function object,
passing the previous gen as input

4: gen ← AsyncGenerator(
HenselPipeStage, 𝑘, 𝑓𝑖+1, 𝒯 (︀𝑖⌋︀, gen)

▷ ensure last stage completes before returning
5: do
6: 𝑘′ ← gen()
7: while 𝑘′ < 𝑘
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Hensel Pipeline Example

𝑓 = (𝑌 − 1)(𝑌 − 2)(𝑌 − 3)(𝑌 − 4) +𝑋1(𝑌 3 + 𝑌 )
𝑓1 = 𝑌 − 1, 𝑓2 = 𝑌 − 2, 𝑓3 = 𝑌 − 3, 𝑓4 = 𝑌 − 4

factor serial shift 𝑑𝑖𝑑𝑖+1 Complexity- parallel wait Time-est. parallel wait
time (s) time (s) est. threads time (s) time (s) threads time (s) time (s)

𝑓1 18.1989 0.0012 1 ⋅ 3 6 4.5380 0.0000 7 3.5941 0.0000
𝑓2 6.6681 0.0666 1 ⋅ 2 4 4.5566 0.8530 3 3.6105 0.6163
𝑓3 3.4335 0.0274 1 ⋅ 1 1 4.5748 1.0855 0 - -
𝑓4 0.0009 0.0009 1 ⋅ 0 1 4.5750 4.5707 2 3.6257 1.4170

∎ 𝑓4 requires at least one thread so that it (the last factor) gets updated
∎ work estimates based on complexity results okay, but does not

account for, e.g., coefficient size or data locality.
∎ can also use serial time to suggest thread assignments
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Parallel Speed-up Hensel Factorization 1

𝑥𝑟 =
𝑟

∏
𝑖=1

(𝑌 − 𝑖) +𝑋1(𝑌 3 + 𝑌 )
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Parallel Speed-up Hensel Factorization 2

𝑧𝑟 =
𝑟

∏
𝑖=1

(𝑌 +𝑋1 +𝑋2 − 𝑖) +𝑋1𝑋2(𝑌 3 + 𝑌 )
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Compiler-Level automatic parallelization

∎ Cilk and OpenMP provide automatic parallelization though
compiler extensions

∎ Very easy but flexibility more challenging

void mergeSort (int* A, int i,
int j) {

//... base case , k
cilk_spawn mergeSort (A, i, k);
mergeSort (A, k, j);
cilk_sync
merge (A, i, k, j);

}

void mergeSort (int* A, int i, int
j) {

//... base case , k
# pragma omp parallel

num_threads (2)
{

# pragma omp sections {
# pragma omp section {

mergeSort (A, i, k);
}
# pragma omp section {

mergeSort (A, k, j);
}

}
}
merge (A, i, k, j);

}
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Fork-Join parallelism with BPAS

∎ Object-oriented

∎ Standard C++, no compiler extensions

∎ Extends the Thread Support Library of C++11

1 void mergeSort (int* A, int i, int j) {
2 //... base case , k
3 threadID id;
4 ExecutorThreadPool & pool =
5 ExecutorThreadPool :: getThreadPool ();
6
7 pool. obtainThread (id);
8 pool. executeTask (id , std :: bind (mergeSort , A, i, k));
9 mergeSort (A, k, j);

10
11 pool. returnThread (id);
12
13 merge (A, i, k, j);
14 }
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Threading primitives
C++11 introduced the Thread Support Library
∎ std::thread

ë C++ class encapsulating a thread (often a pthread) and its low-level
spawn and join

∎ std::mutex
ë shared object between threads to indicate mutual exclusion to a

critical region.
ë mutex is locked or owned by at most one thread at a time.

∎ std::lock_guard, std::unique_lock
ë temporary object wrapping a mutex whose object lifetime

automatically locks and unlocks the mutex.
ë the constructor blocks and only returns once the shared mutex is

successfully owned by the calling thread.
∎ std::condition_variable

ë blocks the current thread and temporarily releases a lock
ë receives notification from another thread to awaken the blocked thread
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std::function

Functors, function objects, callable objects

∎ First-class objects which are callable using normal function syntax
∎ Are often constructed by passing function names, function pointers
∎ std::bind binds arguments to a function or function object,

returning a function object which requires fewer arguments

1 void printInteger (int a) {
2 std :: cout << a << std :: endl ;
3 }
4
5 // Function object from function name
6 std :: function <void(int)> f_printInt ( printInteger );
7 f_printInt (12);
8
9 // Function object binding arguments to function name

10 std :: function <void () > f_print 42( std :: bind ( printInteger ,42) );
11 f_print 42();
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Parallel overheads

Creating and managing multiple threads of execution can be expensive
∎ Every thread spawn requires non-insignificant amount of time
∎ If more threads are active than the hardware supports,

over-subscription occurs and repeated context switching slows
down the program

∎ Thread synchronization, locking mutexs, accessing critical regions
require special care

Thread pools mitigate the first two, by supplying a fixed number of
long-running threads.

Parallel programming patterns are algorithmic designs for efficient
thread scheduling and minimizing locking
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Long-Running threads

Threads typically terminate once their assigned function/code block
finishes

In order to implement and benefit from a thread pool, we require a
mechanism which allows threads to:

1 Remain active until explicitly told to exit (or the entire program exits)

2 Receive new code blocks to execute on demand

FunctionExecutorThreads are such long-running threads which receive
functions or code blocks and executes them asynchronously.
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FunctionExecutorThread usage

1 int A[N];
2 int* ret = new int ();
3 FunctionExecutorThread t;
4
5 t. sendRequest ( [=]() void -> {
6 int s = 0;
7 for (int i = 0; i < N; ++i) {
8 s += A[i];
9 }

10 *ret = s;
11 });
12
13 doSomethingElse ();
14
15 // make sure result is available before continuing
16 t. waitForThread ();
17
18 std :: cout << "sum: " << *ret << std :: endl ;
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Object streams

The key to the implementation of FunctionExectorThread is the
AyncObjectStream class. It provides:

1 a queue for tasks (or any object) and
2 a blocking mechanism to keep the FunctionExecutorThread alive

and idle when waiting for tasks

∎ Actually a class template for any kind of object being passed between
two threads

∎ Implements a queue satisfying the producer-consumer problem

∎ A std::queue combined with a mutex and condition variable
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Thread pools

A thread pool manages a collection of long-running threads and a queue
of tasks
∎ spawn all threads once at the beginning of program
∎ idle threads receive and execute tasks as required
∎ if all threads busy, tasks are added to queue

Marc Moreno Maza Design, Implementation of Multi-Threaded Algs. for Polynomial Algebra ISSAC 2021 110 / 128



ExecutorThreadPool

∎ A thread pool built using FunctionExecutorThreads
∎ An internal queue of tasks and queue of threads
∎ When threads are busy, they are temporarily removed from the pool
∎ When all threads busy, tasks are added to task queue

1 class ExecutorThreadPool {
2
3 private :
4 std :: deque <FunctionExecutorThread *> threadPool ;
5 std :: deque <std :: function <void () >> taskPool ;
6 std :: mutex m_mutex ;
7 std :: condition_variable m_cv; // used in waitForThreads
8
9 void tryPullTask ();

10 void putBackThread ( FunctionExecutorThread * t);
11
12 public :
13 void addTask (std :: function <void () > f);
14 void waitForThreads ();
15 }
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ExecutorThreadPool: flexible usage
∎ In support of certain parallel patterns, clients can (temporarily)

obtain ownership of threads from the pool, rather than using addTask
∎ Abstract away actual threads through thread IDs
∎ Once thread obtained, repeat Steps 2–3 as often as necessary

1 class ExecutorThreadPool {
2 // Storage for threads removed from pool by obtainThread
3 std :: vector <FunctionExecutorThread *> occupiedThreads ;
4
5 // Step 1: obtain a thread ’s ID , removing it from the pool
6 void obtainThread ( threadID & id);
7
8 // Step 2: execute a task on a particular thread
9 void executeTask ( threadID id , std :: function <void () >& f);

10
11 // Step 3 ( optional ): wait for thread to become idle
12 void waitForThread ( threadID id);
13
14 // Step 4: return thread to pool ( waits before returning )
15 void returnThread ( threadID id);
16 }
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Fork-Join with ExecutorThreadPool

1 void mergeSort (int* A, int i, int j) {
2 if (j <= i) { return ; }
3 int k = i + (j-1)/2;
4 mergeSort (A, i, k);
5 mergeSort (A, k, j);
6 merge (A, i, k, j);
7 }

1 void mergeSort (int* A, int i, int j) {
2 if (j <= i) { return ; }
3 int k = i + (j-1)/2;
4 threadID id;
5 ExecutorThreadPool & pool = getThreadPool ();
6
7 pool. obtainThread (id);
8 pool. executeTask (id , std :: bind (mergeSort , A, i, k));
9 mergeSort (A, k, j);

10
11 pool. returnThread (id);
12 merge (A, i, k, j);
13 }
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Workpile with ExecutorThreadPool

1 void processInt (std :: queue <int > B, int a) {
2 a -= 10;
3 if (a > 0) {
4 getThreadPool (). addTask (std :: bind ( processInt , B, a));
5 } else {
6 B.push(a);
7 }
8 }
9

10 void WorkpileExample (std :: queue <int > B, std :: queue <int > A) {
11 ExecutorThreadPool & pool = getThreadPool ();
12 while (!A. empty ()) {
13 pool. addTask ( std :: bind ( processInt , B, A. front ()) );
14 A.pop ();
15 }
16 pool. waitForAllThreads ();
17 }
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AsyncGenerator and AsyncObjectStream

We want an object-oriented approach to create and use generators.

AsyncObjectStream already solves the producer-consumer problem.
∎ It provides a queue which blocks and notifies the consumer as data is

produced, implemented using a condition variable
∎ As a class template, can be used within AsyncGenerator to yield any

type of object

1 template <class Object >
2 class AsyncObjectStream {
3 void addResult ( Object && res); // Producer
4
5 void resultsFinished (); // Producer
6
7 bool getNextObject ( Object & res); // Consumer
8
9 void streamEmpty (); // Consumer

10 };
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AsyncGenerator

AsyncGenerator is itself a class template, templated by Object, the type
of object to generate.
∎ The AsyncGenerator acts as interface between producer and

consumer

∎ The consumer constructs the AsyncGenerator, passing the
constructor the producer’s function and arguments

∎ The producer’s signature should be:
1 void producerFunction (..., AsyncGenerator <Object >&);

∎ The AsyncGenerator being constructed inserts itself into the
producer’s list of arguments so that it has reference to the generator
object
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AsyncGenerator example
1 void FibonacciGen (int n, AsyncGenerator <int >& gen) {
2 int Fn_1 = 0;
3 int Fn = 1;
4 for (int i = 0; i < n; ++i) {
5 gen. generateObject (Fn_1); // yield Fn_1 and continue
6 Fn = Fn + Fn_1;
7 Fn_1 = Fn - Fn_1;
8 }
9 gen. setComplete ();

10 }
11
12 void Fib () {
13 int n;
14 std :: cin >> n;
15 AsyncGenerator <int > gen( FibonacciGen , n);
16
17 int fib;
18 // get one integer at a time until generator is finished
19 while (gen. getNextObject (fib)) {
20 std :: cerr << fib << std :: endl ;
21 }
22 }
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Cooperative parallelism

With several simultaneous clients of ExecutorThreadPool (workpile,
fork-join, generators), some tasks should be given priority.
∎ Some tasks are more coarse-grained, offer more potential speed-up
∎ Some tasks may expose more parallelism and should be executed first

Often, parallelism coming from Fork-Join or Map is preferred over
Producer-Consumer.
∎ Goal: allow Fork-Join and Map to access thread pool threads over

Producer-Consumer while still keeping the latter possible when there
are idle threads

∎ Solution: priority tasks
∎ addTask() vs addPriorityTask()

∎ If all threads busy, addPriorityTask() temporarily spawns new
thread to start execution immediately
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Automatic parallelization: plain multiplication

Serial dense univariate polynomial multiplication

for(i=0; i<=n; i++){
c[i] = 0; c[i+n] = 0;
for(j=0; j<=n; j++)

c[i+j] += a[i] * b[j];
}

Dependence analysis suggests to set 𝑡(𝑖, 𝑗) = 𝑛 − 𝑗 and 𝑝(𝑖, 𝑗) = 𝑖 + 𝑗.

Asynchronous parallel dense univariate polynomial multiplication

parallel_for (p=0; p<=2*n; p++){
c [ p ] =0;
for (t=max(0,n-p); t<= min(n,2*n-p);t++)

C [ p ] = C [ p ]
+ A [ t+p-n ] * B [ n-t ] ;

}
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Generating parametric code & use of tiling techniques

parallel_for (p=0; p<=2*n; p++){
c [ p ] =0;
for (t=max(0,n-p); t<= min(n,2*n-p);t++)

C [ p ] = C [ p ]
+ A [ t+p-n ] * B [ n-t ] ;

}

Improving the parallelization

∎ The above generated code is not practical for multicore implementation: the
number of processors is in Θ(𝑛). (Not to mention poor locality!) and the work is
unevenly distributed among the workers.

∎ We group the virtual processors (or threads) into 1D blocks, each of size 𝐵. Each
thread is known by its block number 𝑏 and a local coordinate 𝑢 in its block.

∎ Blocks represent good units of work which have good locality property.
∎ This yields the following constraints: 0 ≤ 𝑢 < 𝐵, 𝑝 = 𝑏𝐵 + 𝑢.
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Generating parametric code: using tiles
We apply RegularChains:-QuantifierElimination on the left system
(in order to get rid off 𝑖, 𝑗) leading to the relations on the right:

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑜 < 𝑛
0 ≤ 𝑖 ≤ 𝑛
0 ≤ 𝑗 ≤ 𝑛
𝑡 = 𝑛 − 𝑗
𝑝 = 𝑖 + 𝑗

0 ≤ 𝑏
𝑜 ≤ 𝑢 < 𝐵

𝑝 = 𝑏𝐵 + 𝑢,

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝐵 > 0
𝑛 > 0

0 ≤ 𝑏 ≤ 2𝑛⇑𝐵
0 ≤ 𝑢 < 𝐵

0 ≤ 𝑢 ≤ 2𝑛 −𝐵𝑏
𝑝 = 𝑏𝐵 + 𝑢,

(1)

From where we derive the following program:
for (p=0; p<=2*n; p++) c [ p ] = 0;
parallel_for (b=0; b<= 2 n / B; b++) {

parallel_for (u=0; u<=min(B-1, 2*n - B * b); u++) {
p = b * B + u;
for (t=max(0,n-p); t<=min(n,2*n-p) ;t++)

c [ p ] = c [ p ] + a [ t+p-n ] * b [ n-t ];
}

}
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Thank You!

http://www.bpaslib.org/
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