
Implementation Techniques for Power, Laurent, and
Puiseux Series in Several Variables

Marc Moreno Maza

Ontario Research Center for Computer Algebra
Departments of Computer Science and Mathematics

University of Western Ontario, Canada

CASC 2022, Gebze, Turkey, 23 August 2022

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 1 / 49



Acknowledgements

∎ Many thanks to the CASC 2022 organizers, in particular François
Boulier and Matthew England.

∎ I would have loved to visit Gebze Technical University and our local
colleagues.

∎ This tutorial is based on research projects in which some of my former
and current graduate students have played an essential role. By
alphabetic order: Parisa Alvandi, Masoud Ataei, Ali Asadi, Alexander
Brandt Changbo Chen, Mahsa Kazemi, Juan-Pablo Gonzàlez Trochez.

∎ This tutorial is based on my collaboration with Erik Postma, with
funding support from Maplesoft, MITACS and NSERC of Canada.

∎ Special thanks go to Juan-Pablo Gonzàlez Trochez who helped me
prepare the Maple worksheetp illustrating this talk.

∎ The Maple package MultivariatePowerSeries implement power,
Laurent and Puiseux series, as presented in this talk, see [5, 8].

∎ Multivariate power series, as presented in this talk, are implemented
in the Basic Polynomial Algebra Subprograms (BPAS) [4].

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 2 / 49

https://maliasadi.github.io/
https://www.csd.uwo.ca/~abrandt5/
https://www.csd.uwo.ca/~abrandt5/
http://www.orcca.on.ca/~cchen/
https://www.csd.uwo.ca/~jgonza55
https://www.csd.uwo.ca/~jgonza55
http://www.bpaslib.org/


Talk features and tentative plan

∎ We will not review the theory of formal power series, Laurent series
and Puiseux series, but we will have examples .

∎ A detailed review can be found in my CASC 20218 tutorial.
∎ This talk is dedicated to the key implementation strategies of

MultivariatePowerSeries and its BPAS counterpart.
∎ We will not cover benchmarks and complexity analysis of the

underlying algorithms; they can be found in our papers [1, 2, 5–8, 13].
∎ But we will use this worksheet

Tentative plan

∎ Part 1: Motivations
∎ Part 2: formal power series
∎ Part 3: Laurent series
∎ Part 4: Puiseux series in Maple’s MultivariatePowerSeries library.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 3 / 49

https://en.wikipedia.org/wiki/Formal_power_series
https://www.csd.uwo.ca/~mmorenom/Publications/Polynomials_over_power_series_and_their_applications_tutorial.PDF
https://www.csd.uwo.ca/~mmorenom/Publications/MultivariatePowerSeries-CASC-2022.pdf
https://github.com/orcca-uwo/MultivariatePowerSeries
https://www.csd.uwo.ca/~mmorenom/Publications/MultivariatePowerSeriesPresentation.pdf


Outline

1. Motivations
1.1 Computation of Zariski closures
1.2 Puiseux series

2. Power series
2.1 Lazy evaluation scheme
2.2 Weierstrass preparation
2.3 Hensel lifting
2.4 Composition of power series

3. Laurent series
3.1 Mathematical construction
3.2 Encoding
3.3 Addition and multiplication
3.4 Inversion

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 4 / 49



Outline

1. Motivations
1.1 Computation of Zariski closures
1.2 Puiseux series

2. Power series
2.1 Lazy evaluation scheme
2.2 Weierstrass preparation
2.3 Hensel lifting
2.4 Composition of power series

3. Laurent series
3.1 Mathematical construction
3.2 Encoding
3.3 Addition and multiplication
3.4 Inversion

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 5 / 49



A first example: computing limit lines

The question
Consider the following set of polynomials

𝐹 = {
𝑥2𝑎 + 𝑦 + 1
𝑦2𝑏 + 𝑥 + 1

and the following regular chain for 𝑥 > 𝑦 > 𝑎 > 𝑏:

𝑇 = {
𝑥 + 𝑦2𝑏 + 1
𝑎 𝑏2𝑦4 + 2𝑎𝑏 𝑦2 + 𝑦 + 𝑎 + 1

It turns that we have

𝑉 (𝐹 ) =𝑊 (𝑇 ) where 𝑊 (𝑇 ) = 𝑉 (𝑇 ) ∖ 𝑉 (ℎ𝑇 ) and ℎ𝑇 = 𝑎 𝑏.

How to compute 𝑊 (𝑇 ) ∖𝑊 (𝑇 )?

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 6 / 49



A first example: computing limit lines

Unsatisfactory answers
With 𝐹 = {𝑥2𝑎 + 𝑦 + 1, 𝑦2𝑏 + 𝑥 + 1}, existing algorithms for decomposing
polynomial systems:
∎ either return 𝑇 and do not compute 𝑊 (𝑇 ) ∖𝑊 (𝑇 ) explicitly,
∎ or returns 𝑇 with an explicit decomposition of 𝑊 (𝑇 ) ∖𝑊 (𝑇 ), obtained

by recursively decomposing 𝑉 (𝐹 ∪ {ℎ𝑇 }).

RegularChains:-Triangularize produces

𝑉 (𝐹 ) =𝑊 (𝑇 ) ∪𝑊 (𝑇𝑎) ∪𝑊 (𝑇𝑏), where

𝑇 = {
𝑥 + 𝑦2𝑏 + 1
𝑎 𝑏2𝑦4 + 2𝑎𝑏 𝑦2 + 𝑦 + 𝑎 + 1 , 𝑇𝑎 =

)︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀]︀

𝑥 + 𝑏 + 1
𝑦 + 1
𝑎

,and 𝑇𝑏 =

)︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀]︀

𝑥 + 1
𝑦 + 𝑎 + 1
𝑏

.

Ideally
One would like to obtain 𝑊 (𝑇𝑎) and 𝑊 (𝑇𝑏) as limit solutions of 𝑊 (𝑇 ).

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 7 / 49



A second example: computing limit points

A 1-dimensional regular chain 𝑇 in C(︀𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛⌋︀ typically looks like

𝑇 ∶

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑡2(𝑥1, 𝑥2) = ℎ2(𝑥1)𝑥
𝑑2
2 +⋯

𝑡3(𝑥1, 𝑥2, 𝑥3) = ℎ3(𝑥1)𝑥
𝑑3
3 +⋯

⋮ ⋮ ⋮

𝑡𝑛(𝑥1, 𝑥2, ..., 𝑥𝑛) = ℎ𝑛(𝑥1)𝑥
𝑑𝑛
𝑛 +⋯

(1)

∎ 𝑇 can be seen as a parametrization of a space curve 𝐶, namely
𝐶 =𝑊 (𝑇 ), where 𝑊 (𝑇 ) = 𝑉 (𝑇 ) ∖ 𝑉 (ℎ) and ℎ𝑇 = ∏

𝑛
𝑖=2 ℎ𝑖

∎ 𝑊 (𝑇 ) ∖𝑊 (𝑇 ) = {limits points of 𝐶 when 𝑥1 approaches 𝜁 ⋃︀ 𝜁 a root of ℎ}.
∎ We can compute these limit points by factorizing 𝑡2, 𝑡3, . . . , 𝑡𝑛 over

the field C((𝑥∗1)) of univariate Puiseux series in 𝑥1, see [2].

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 8 / 49



Example
Let 𝑇 ⊆ K(︀𝑥 > 𝑦 > 𝑧⌋︀ be a regular
chain

𝑇 ∶= {
𝑧 𝑥 − 𝑦2

𝑦5 − 𝑧4 .

In this case: ℎ = 𝑧 and 𝜁 = 0.
Then, over C((𝑧∗))

𝒱(𝑇 ) = {(𝑥 = 𝑧3⇑5, 𝑦 = 𝑧4⇑5
)}

Thus we have:

𝑊 (𝑇 ) ∖𝑊 (𝑇 ) = {(0,0,0)}.

Example
Consider 𝑇 ⊆ K(︀𝑥 > 𝑦 > 𝑧⌋︀:

𝑇 ∶= {
𝑧 𝑥 − 𝑦2 = 0
𝑦5 − 𝑧2 = 0 .

In this case: ℎ = 𝑧 and 𝜁 = 0.
Then, over C((𝑧∗))

𝒱(𝑇 ) = {(𝑥 = 𝑧−1⇑5, 𝑦 = 𝑧2⇑5
)}

Since the Puiseux series 𝑧−1⇑5 has
a negative order, we have:

𝑊 (𝑇 ) ∖𝑊 (𝑇 ) = ∅.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 9 / 49



Example
Let 𝑇 ⊆ K(︀𝑥 > 𝑦 > 𝑧⌋︀ be a regular
chain

𝑇 ∶= {
𝑧 𝑥 − 𝑦2

𝑦5 − 𝑧4 .

In this case: ℎ = 𝑧 and 𝜁 = 0.
Then, over C((𝑧∗))

𝒱(𝑇 ) = {(𝑥 = 𝑧3⇑5, 𝑦 = 𝑧4⇑5
)}

Thus we have:

𝑊 (𝑇 ) ∖𝑊 (𝑇 ) = {(0,0,0)}.

Example
Consider 𝑇 ⊆ K(︀𝑥 > 𝑦 > 𝑧⌋︀:

𝑇 ∶= {
𝑧 𝑥 − 𝑦2 = 0
𝑦5 − 𝑧2 = 0 .

In this case: ℎ = 𝑧 and 𝜁 = 0.
Then, over C((𝑧∗))

𝒱(𝑇 ) = {(𝑥 = 𝑧−1⇑5, 𝑦 = 𝑧2⇑5
)}

Since the Puiseux series 𝑧−1⇑5 has
a negative order, we have:

𝑊 (𝑇 ) ∖𝑊 (𝑇 ) = ∅.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 9 / 49



Outline

1. Motivations
1.1 Computation of Zariski closures
1.2 Puiseux series

2. Power series
2.1 Lazy evaluation scheme
2.2 Weierstrass preparation
2.3 Hensel lifting
2.4 Composition of power series

3. Laurent series
3.1 Mathematical construction
3.2 Encoding
3.3 Addition and multiplication
3.4 Inversion

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 10 / 49



Notations

Formal power series and formal Laurent series

∎ Let K be a field and K its algebraic closure.
∎ K(︀(︀𝑋1, . . . ,𝑋𝑛⌋︀⌋︀ denotes the ring (actually UFD) of formal power series

in 𝑋1, . . . ,𝑋𝑛 over K and ℳ= ∐︀𝑋1, . . . ,𝑋𝑛̃︀ its unique maximal ideal.
∎ K((𝑋1, . . . ,𝑋𝑛)) is the fraction field of K(︀(︀𝑋1, . . . ,𝑋𝑛⌋︀⌋︀.

Univariate Puiseux series

∎ K(︀(︀𝑈∗⌋︀⌋︀ = ⋃
∞
ℓ=1 K(︀(︀𝑈

1
ℓ ⌋︀⌋︀ the ring of formal univariate Puiseux series.

∎ Hence, given 𝜙 ∈ K(︀(︀𝑈∗⌋︀⌋︀, there exists ℓ ∈ N>0 such that 𝜙 ∈ K(︀(︀𝑈
1
ℓ ⌋︀⌋︀

holds. Thus, we can write 𝜙 = ∑
∞
𝑚=0 𝑎𝑚𝑈

𝑚
ℓ , for 𝑎0, . . . , 𝑎𝑚, . . . ∈ K.

∎ We denote by K((𝑈∗)) the quotient field of K(︀(︀𝑈∗⌋︀⌋︀.
∎ Puiseux’s theorem: if K is an algebraically closed field of characteristic

zero, then K((𝑈∗)) is the algebraic closure of K((𝑈)).

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 11 / 49



Algorithms for factoring in C((𝑋∗
1 , . . . 𝑋∗

𝑛))(︀𝑌 ⌋︀

With non-explicit use of Puiseux series

∎ the original Newton-Puiseux algorithm and its variants manipulate
every 𝜙 ∈ K(︀(︀𝑈∗⌋︀⌋︀ as a pair (ℓ,𝜓 ∈ K(︀(︀𝑇 ⌋︀⌋︀), where 𝑇 ℓ = 𝑈 .

∎ the Extended Hensel Construction (EHC), invented by T. Sasaki and
his students, allows to factor in C((𝑋∗

1 , . . .𝑋
∗
𝑛))(︀𝑌 ⌋︀, see [16].

∎ The EHC can be implemented efficiently and outperform theoretically
faster algorithms, see [1].

With explicit use of Puiseux series

∎ In [15], K. J. Nowak reduces factorization in K((𝑈∗))(︀𝑌 ⌋︀ to Hensel
lifting in K(︀(︀𝑈⌋︀⌋︀(︀𝑌 ⌋︀ and avoids the “corner cases” of the EHC.

∎ Explicit computations in K((𝑈∗))(︀𝑌 ⌋︀ are needed before the
reduction.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 12 / 49



Algorithms for factoring in C((𝑋∗
1 , . . . 𝑋∗

𝑛))(︀𝑌 ⌋︀

In the above Maple session:
∎ we factor 𝑓 = 𝑦𝑥3 + (−2𝑦 + 𝑧 + 1)𝑥 + 𝑦 in C((𝑦∗, 𝑧∗))(︀𝑥⌋︀ using the EHC

implemented in the RegularChains library.
∎ Note that the factors are not expanded over the monomial basis of

C((𝑦∗, 𝑧∗))(︀𝑥⌋︀.
∎ Instead, algebraic functions are introduced dynamically by the

algorithm.
∎ For pretty printing reasons only, we introduce the alias 𝑇 = 𝑦1⇑2 before

the call to the EHC.
Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 13 / 49



Outline

1. Motivations
1.1 Computation of Zariski closures
1.2 Puiseux series

2. Power series
2.1 Lazy evaluation scheme
2.2 Weierstrass preparation
2.3 Hensel lifting
2.4 Composition of power series

3. Laurent series
3.1 Mathematical construction
3.2 Encoding
3.3 Addition and multiplication
3.4 Inversion

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 14 / 49



Outline

1. Motivations
1.1 Computation of Zariski closures
1.2 Puiseux series

2. Power series
2.1 Lazy evaluation scheme
2.2 Weierstrass preparation
2.3 Hensel lifting
2.4 Composition of power series

3. Laurent series
3.1 Mathematical construction
3.2 Encoding
3.3 Addition and multiplication
3.4 Inversion

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 15 / 49



Power series: notations
A = K(︀(︀𝑋1, . . . ,𝑋𝑛⌋︀⌋︀ is the ring of multivariate formal power series

∎ K an algebraically closed.
∎ 𝑓 = ∑𝑒 𝑎𝑒𝑋

𝑒 ∈ K(︀(︀𝑋1, . . . ,𝑋𝑛⌋︀⌋︀

∎ 𝑋𝑒 =𝑋𝑒1
1 ⋯𝑋𝑒𝑛

𝑛 , ⋃︀𝑒⋃︀ = 𝑒1 +⋯ + 𝑒𝑛

∎ ℳ = ∐︀𝑋1, . . . ,𝑋𝑛̃︀ is the maximal ideal of A
∎ homogeneous part of degree 𝑘 : 𝑓(𝑘) = ∑⋃︀𝑒⋃︀=𝑘 𝑎𝑒𝑋

𝑒 and we have
𝑓(𝑘) ∈ ℳ

𝑘 ∖ℳ𝑘+1

Example:
𝑓 = 1 + 𝑋1 + 𝑋1𝑋2 + 𝑋

2
2 + 𝑋1𝑋

2
2 + 𝑋3

1 + ⋯ is known to precision 3

𝑓(1) =𝑋1 𝑓(2) =𝑋1𝑋2 +𝑋
2
2 𝑓(3) =𝑋1𝑋

2
2 +𝑋

3
1

A(︀𝑌 ⌋︀ is the ring of Univariate Polynomials over Power Series (UPoPS)
∎ 𝑓 = ∑

𝑑
𝑖=0 𝑎𝑖𝑌

𝑖, 𝑎𝑖 ∈ A, 𝑎𝑑 ≠ 0, is a UPoPS of degree 𝑑
Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 16 / 49



Lazy evaluation scheme
Motivations:

1 Only compute terms explicitly needed:
ë requested by user or needed for subsequent operations

2 Ability to resume and increase precision of an existing power series

Data-structure:
1 stores previously computed homogeneous parts;

2 returns previously computed homogeneous parts and, otherwise,

3 uses an update function to compute homogeneous parts as needed;

4 captures parameters required for the update function and effectively
create a closure.

Where update parameters are power series, they are called ancestors.
Addition, 𝑓 = 𝑔 + ℎ

∎ 𝑓(𝑘) = 𝑔(𝑘) + ℎ(𝑘)

Multiplication 𝑓 = 𝑔ℎ

∎ 𝑓(𝑘) = ∑
𝑘
𝑖=0 𝑔(𝑖)ℎ(𝑘−𝑖)

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 17 / 49



Lazy evaluation scheme
Motivations:

1 Only compute terms explicitly needed:
ë requested by user or needed for subsequent operations

2 Ability to resume and increase precision of an existing power series

Data-structure:
1 stores previously computed homogeneous parts;

2 returns previously computed homogeneous parts and, otherwise,

3 uses an update function to compute homogeneous parts as needed;

4 captures parameters required for the update function and effectively
create a closure.

Where update parameters are power series, they are called ancestors.
Addition, 𝑓 = 𝑔 + ℎ

∎ 𝑓(𝑘) = 𝑔(𝑘) + ℎ(𝑘)

Multiplication 𝑓 = 𝑔ℎ

∎ 𝑓(𝑘) = ∑
𝑘
𝑖=0 𝑔(𝑖)ℎ(𝑘−𝑖)

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 17 / 49



Ancestry example

𝑝 = 𝑓𝑔 + 𝑎𝑏

𝑓 = 𝑔 = 𝑎 = 𝑏 =
1 + 𝑥 + 𝑦𝑧 + . . . 1 + 𝑧 + 𝑦 + . . . 1 + 𝑦 + 𝑥2 + . . . 1 + 𝑦𝑧 + 𝑥𝑧 + . . .

× ×

ℎ = 𝑐 =
1 + 𝑧 + 𝑦 + 𝑥 + 𝑦𝑧 + 𝑥𝑧 + 𝑥𝑦 + . . . 1 + 𝑦 + 𝑦𝑧 + 𝑥𝑧 + 𝑥2 + . . .

+

𝑝 =
2 + 𝑧 + 2𝑦 + 𝑥 + 2𝑦𝑧 + 2𝑥𝑧 + 𝑥𝑦 + 𝑥2 + . . .

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 18 / 49



Why lazy evaluation works?

∎ ℳ = ∐︀𝑋1, . . . ,𝑋𝑛̃︀ is the unique maximal ideal of K(︀(︀𝑋1, . . . ,𝑋𝑛⌋︀⌋︀.
∎ For 𝑑 ≥ 0, ℳ𝑑 is generated by the monomials of degree 𝑑.
∎ We have ℳ𝑑+1 ⊆ℳ𝑑 and ⋂𝑘∈Nℳ

𝑘 = ∐︀0̃︀.

Krull topology

∎ Such a filtration yields a topology, the Krull topology, where the
neighbourhoods of a power series 𝑓 are of the form 𝑓 +ℳ𝑑.

∎ Let (𝑓𝑛)𝑛∈N be a sequence of elements of K(︀(︀𝑋⌋︀⌋︀ and let 𝑓 ∈ K(︀(︀𝑋⌋︀⌋︀.
The sequence (𝑓𝑛)𝑛∈N converges to 𝑓 if for all 𝑘 ∈ N there exists 𝑁 ∈ N
s.t. for all 𝑛 ∈ N we have 𝑛 ≥ 𝑁 ⇒ 𝑓 − 𝑓𝑛 ∈ ℳ𝑘,

∎ Therefore, a bivariate function 𝑓 ∶ K(︀(︀𝑋⌋︀⌋︀ ×K(︀(︀𝑋⌋︀⌋︀ z→ K(︀(︀𝑋⌋︀⌋︀ is
continuous at (𝑝, 𝑞) if for every 𝑑 ∈ N we can find 𝑏, 𝑐 ∈ N such that

𝑓(𝑝 +ℳ𝑏, 𝑞 +ℳ𝑐, ) − 𝑓(𝑝, 𝑞) ⊆ℳ𝑑.
∎ Continuous functions are those which can be implemented by lazy

evaluation; this is the case for addition, multiplication, inversion.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 19 / 49



Outline

1. Motivations
1.1 Computation of Zariski closures
1.2 Puiseux series

2. Power series
2.1 Lazy evaluation scheme
2.2 Weierstrass preparation
2.3 Hensel lifting
2.4 Composition of power series

3. Laurent series
3.1 Mathematical construction
3.2 Encoding
3.3 Addition and multiplication
3.4 Inversion

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 20 / 49



Weierstrass Preparation Theorem in K(︀(︀𝑋⌋︀⌋︀(︀(︀𝑌 ⌋︀⌋︀

Theorem (Weierstrass Preparation)
Let 𝑓 ∈ K(︀(︀𝑋1, . . . ,𝑋𝑛⌋︀⌋︀(︀𝑌 ⌋︀. Assume 𝑓 ⇑≡ 0 mod ℳ(︀𝑌 ⌋︀. Write
𝑓 = ∑

𝑑+𝑚
𝑖=0 𝑎𝑖𝑌

𝑖 ∈ K(︀(︀𝑋1, . . . ,𝑋𝑛⌋︀⌋︀(︀𝑌 ⌋︀ where 𝑑 ≥ 0 be the smallest integer
such that 𝑎𝑑 ⇑∈ ℳ and 𝑚 ∈ Z+.
Then, there exists a unique pair (𝑝,𝛼) satisfying the following:

1 𝑓 = 𝑝𝛼,
2 𝛼 is an invertible element of K(︀(︀𝑋1, . . . ,𝑋𝑛⌋︀⌋︀(︀(︀𝑌 ⌋︀⌋︀,
3 𝑝 is a monic polynomial of degree 𝑑,
4 writing 𝑝 = 𝑌 𝑑 + 𝑏𝑑−1𝑌

𝑑−1 +⋯𝑏1𝑌 + 𝑏0, we have 𝑏𝑑−1, . . . , 𝑏0 ∈ ℳ.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 21 / 49



Lazy evaluation for Weierstrass Preparation

Let 𝑓 = ∑
𝑑+𝑚
ℓ 𝑎ℓ=0𝑌

ℓ, 𝑝 = 𝑌 𝑑 +∑
𝑑−1
𝑗=0 𝑏𝑗𝑌

𝑗 , 𝛼 = ∑
𝑚
𝑖=0 𝑐𝑖𝑌

𝑖 be UPoPS.

ë 𝑎ℓ, 𝑏𝑗 , 𝑐𝑖 are power series ë 𝑏𝑗 ∈ ℳ for 𝑗 = 0, . . . , 𝑑 − 1

𝑓 = 𝛼𝑝 Ô⇒ 𝑎0 = 𝑏0𝑐0
𝑎1 = 𝑏0𝑐1 + 𝑏1𝑐0

⋮

𝑎𝑑−1 = 𝑏0𝑐𝑑−1 + 𝑏1𝑐𝑑−2 +⋯ + 𝑏𝑑−2𝑐1 + 𝑏𝑑−1𝑐0
𝑎𝑑 = 𝑏0𝑐𝑑 + 𝑏1𝑐𝑑−1 +⋯ + 𝑏𝑑−1𝑐1 + 𝑐0

⋮

𝑎𝑑+𝑚−1 = 𝑏𝑑−1𝑐𝑚 + 𝑐𝑚−1
𝑎𝑑+𝑚 = 𝑐𝑚

We update 𝑝 and 𝛼 by solving these equations modulo ℳ𝑘, 𝑘 = 1,2, . . .

Moreover, the structure of those equations yields interesting parallel
patterns (parallel mao-reduce) and a fine complexity analysis, see [7].

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 22 / 49



Outline

1. Motivations
1.1 Computation of Zariski closures
1.2 Puiseux series

2. Power series
2.1 Lazy evaluation scheme
2.2 Weierstrass preparation
2.3 Hensel lifting
2.4 Composition of power series

3. Laurent series
3.1 Mathematical construction
3.2 Encoding
3.3 Addition and multiplication
3.4 Inversion

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 23 / 49



Hensel’s Lemma
Theorem (Hensel’s Lemma)
Let 𝑓 = 𝑌 𝑑 +∑

𝑑−1
𝑖=0 𝑎𝑖𝑌

𝑖 be a monic polynomial in K(︀(︀𝑋1, . . . ,𝑋𝑛⌋︀⌋︀(︀𝑌 ⌋︀.
Let 𝑓 = 𝑓(0, . . . ,0, 𝑌 ) = (𝑌 − 𝑐1)

𝑑1(𝑌 − 𝑐2)
𝑑2⋯(𝑌 − 𝑐𝑟)

𝑑𝑟 for 𝑐1, . . . , 𝑐𝑟 ∈ K
and positive integers 𝑑1, . . . , 𝑑𝑟. Then, there exists
𝑓1, . . . , 𝑓𝑟 ∈ K(︀(︀𝑋1, . . . ,𝑋𝑛⌋︀⌋︀(︀𝑌 ⌋︀, all monic in Y, such that:

1 𝑓 = 𝑓1⋯𝑓𝑟,
2 deg(𝑓𝑖, 𝑌 ) = 𝑑𝑖 for 1 ≤ 𝑖 ≤ 𝑟, and
3 𝑓𝑖 = (𝑌 − 𝑐𝑖)

𝑑𝑖 for 1 ≤ 𝑖 ≤ 𝑟.

Proof:
Let 𝑔 = 𝑓(𝑋1, . . . ,𝑋𝑛, 𝑌 + 𝑐𝑟) = 𝑌

𝑑 +∑
𝑑−1
𝑖=0 𝑏𝑖𝑌

𝑖, sending 𝑐𝑟 to the origin.
By construction, 𝑏0, . . . , 𝑏𝑑𝑟−1 ∈ ℳ and Weierstrass preparation can be
applied to produce 𝑔 = 𝑝𝛼 with deg 𝑝 = 𝑑𝑟,deg𝛼 = 𝑑 − 𝑑𝑟.
Reversing the shift, 𝑓𝑟 = 𝑝(𝑌 − 𝑐𝑟).
Induction on 𝑓 = 𝛼(𝑌 − 𝑐𝑟) completes the proof.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 24 / 49



Hensel lifting in a pipeline

𝑓 𝑔1 𝛼1

𝑝1 𝑓1

𝑓2 𝑔2 𝛼2

𝑝2 𝑓2

𝑓3 𝑔3 𝛼3

𝑝3 𝑓3

𝑓4
+𝑐1

−𝑐1

−𝑐1 +𝑐2

−𝑐2

−𝑐2 +𝑐3

−𝑐3

−𝑐3

∎ The output of one Weierstrass becomes input to another
∎ 𝑓𝑖+𝑖(𝑘) relies on 𝑓𝑖(𝑘)
∎ Can compute 𝑓𝑖(𝑘+1) and 𝑓𝑖+𝑖(𝑘) concurrently in a pipeline
∎ See [7] for complexity analysis and implementation report.

Stage 1 (𝑓1) Stage 2 (𝑓2) Stage 3 (𝑓3) Stage 4 (𝑓4)
Time 1 𝑓1(1)
Time 2 𝑓1(2) 𝑓2(1)
Time 3 𝑓1(3) 𝑓2(2) 𝑓3(1)
Time 4 𝑓1(4) 𝑓2(3) 𝑓3(2) 𝑓4(1)
Time 5 𝑓1(5) 𝑓2(4) 𝑓3(3) 𝑓4(2)

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 25 / 49



Hensel or EHC: how to decide which one to use?

The problem
Hensel’s lemma requires 𝑓 ∈ K(︀(︀𝑋1, . . . ,𝑋𝑛⌋︀⌋︀(︀𝑌 ⌋︀ to be monic. How to
check that requirement and avoids calling the EHC which handles the
non-monic case but does potentially more work.

The answer: closed-form expression
The MultivariatePowerSeries library package frequently has some
information beyond just the homogeneous-component procedure:
∎ the user can specify a closed-form expression for the power series:

expX := PowerSeries(d -> X^d/d!, analytic=exp(X));

∎ this closed-form expression is also automatically given for
MultivariatePowerSeries objects constructed by most other
commands, in particular rational functions.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 26 / 49



Outline

1. Motivations
1.1 Computation of Zariski closures
1.2 Puiseux series

2. Power series
2.1 Lazy evaluation scheme
2.2 Weierstrass preparation
2.3 Hensel lifting
2.4 Composition of power series

3. Laurent series
3.1 Mathematical construction
3.2 Encoding
3.3 Addition and multiplication
3.4 Inversion

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 27 / 49



Substituting non-units into power series

∎ This is well-defined, but can it be done by lazy evaluation?
∎ For simplicity, we describe the univariate case and refer to [13] for the

multivariate one.
∎ The input is 𝑎 ∶= ∑𝑖 𝑎𝑖𝑋

𝑖 and 𝑏 ∶= ∑𝑗 𝑏𝑗𝑋
𝑗 . We want 𝑎⋃︀𝑋=𝑏

∎ By definition, we have:

𝑎⋃︀𝑋=𝑏 = ∑
𝑖

𝑎𝑖 𝑋
𝑖⋂︀

𝑋=∑𝑗 𝑏𝑗𝑋𝑗 = ∑
𝑖

𝑎𝑖
⎛

⎝
∑
𝑗

𝑏𝑗𝑋
𝑗⎞

⎠

𝑖

.

∎ By the multinomial formula, we have:

𝑎⋃︀𝑋=𝑏 = ∑
𝑖

𝑎𝑖
⎛

⎝
∑

𝑚∈𝑀𝑖

((
𝑖

𝑚
)∏(𝑏𝑗𝑋

𝑗
)

𝑚𝑗
)
⎞

⎠

where 𝑀𝑖 is the set of all infinite non-negative integer sequences
(𝑚1,𝑚2, . . . , ) with finitely many nonzero entries and whose sum is 𝑖.
Note the multinomial coefficients.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 28 / 49



Substituting non-units into power series

∎ This is well-defined, but can it be done by lazy evaluation?
∎ For simplicity, we describe the univariate case and refer to [13] for the

multivariate one.
∎ The input is 𝑎 ∶= ∑𝑖 𝑎𝑖𝑋

𝑖 and 𝑏 ∶= ∑𝑗 𝑏𝑗𝑋
𝑗 . We want 𝑎⋃︀𝑋=𝑏

∎ By definition, we have:

𝑎⋃︀𝑋=𝑏 = ∑
𝑖

𝑎𝑖 𝑋
𝑖⋂︀

𝑋=∑𝑗 𝑏𝑗𝑋𝑗 = ∑
𝑖

𝑎𝑖
⎛

⎝
∑
𝑗

𝑏𝑗𝑋
𝑗⎞

⎠

𝑖

.

∎ By the multinomial formula, we have:

𝑎⋃︀𝑋=𝑏 = ∑
𝑖

𝑎𝑖
⎛

⎝
∑

𝑚∈𝑀𝑖

((
𝑖

𝑚
)∏(𝑏𝑗𝑋

𝑗
)

𝑚𝑗
)
⎞

⎠

where 𝑀𝑖 is the set of all infinite non-negative integer sequences
(𝑚1,𝑚2, . . . , ) with finitely many nonzero entries and whose sum is 𝑖.
Note the multinomial coefficients.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 28 / 49



Substituting non-units into power series

∎ This is well-defined, but can it be done by lazy evaluation?
∎ For simplicity, we describe the univariate case and refer to [13] for the

multivariate one.
∎ The input is 𝑎 ∶= ∑𝑖 𝑎𝑖𝑋

𝑖 and 𝑏 ∶= ∑𝑗 𝑏𝑗𝑋
𝑗 . We want 𝑎⋃︀𝑋=𝑏

∎ By definition, we have:

𝑎⋃︀𝑋=𝑏 = ∑
𝑖

𝑎𝑖 𝑋
𝑖⋂︀

𝑋=∑𝑗 𝑏𝑗𝑋𝑗 = ∑
𝑖

𝑎𝑖
⎛

⎝
∑
𝑗

𝑏𝑗𝑋
𝑗⎞

⎠

𝑖

.

∎ By the multinomial formula, we have:

𝑎⋃︀𝑋=𝑏 = ∑
𝑖

𝑎𝑖
⎛

⎝
∑

𝑚∈𝑀𝑖

((
𝑖

𝑚
)∏(𝑏𝑗𝑋

𝑗
)

𝑚𝑗
)
⎞

⎠

where 𝑀𝑖 is the set of all infinite non-negative integer sequences
(𝑚1,𝑚2, . . . , ) with finitely many nonzero entries and whose sum is 𝑖.
Note the multinomial coefficients.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 28 / 49



Substituting non-units into power series

∎ Up to elementary expansions, we had above:

𝑎⋃︀𝑋=𝑏 = ∑
𝑖

𝑎𝑖
⎛

⎝
∑

𝑚∈𝑀𝑖

(
𝑖

𝑚
)(∏ 𝑏𝑗

𝑚
𝑗 )𝑋

∑𝑗 𝑗𝑚𝑗
⎞

⎠

∎ By grouping terms of equal degree in 𝑋, we obtain:

𝑎⋃︀𝑋=𝑏 = ∑
𝑖

⎛

⎝
∑

𝑚∈𝑀𝑖

𝑎⋃︀𝑚⋃︀(
⋃︀𝑚⋃︀

𝑚
)(∏ 𝑏𝑗

𝑚
𝑗 )

⎞

⎠
𝑋𝑖

where 𝑀𝑖 is now the set of all infinite non-negative integer sequences
(𝑚1,𝑚2, . . . , ) with finitely many nonzero entries and such that
∑𝑗 𝑗𝑚𝑗 = 𝑖.

∎ Because 𝑏0 = 0, we can start numbering such a sequence 𝑚 at 𝑚1
and we have ⋃︀𝑚⋃︀ ≤ ∑𝑗 𝑗𝑚𝑗 = 𝑖.

∎ Therefore, only finitely many coefficients of 𝑎 and 𝑏 contribute to
each coefficient of 𝑎⋃︀𝑋=𝑏.

∎ In a sum, this process is continuous in the Krull topology.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 29 / 49



Substituting non-units into power series

∎ Up to elementary expansions, we had above:

𝑎⋃︀𝑋=𝑏 = ∑
𝑖

𝑎𝑖
⎛

⎝
∑

𝑚∈𝑀𝑖

(
𝑖

𝑚
)(∏ 𝑏𝑗

𝑚
𝑗 )𝑋

∑𝑗 𝑗𝑚𝑗
⎞

⎠

∎ By grouping terms of equal degree in 𝑋, we obtain:

𝑎⋃︀𝑋=𝑏 = ∑
𝑖

⎛

⎝
∑

𝑚∈𝑀𝑖

𝑎⋃︀𝑚⋃︀(
⋃︀𝑚⋃︀

𝑚
)(∏ 𝑏𝑗

𝑚
𝑗 )

⎞

⎠
𝑋𝑖

where 𝑀𝑖 is now the set of all infinite non-negative integer sequences
(𝑚1,𝑚2, . . . , ) with finitely many nonzero entries and such that
∑𝑗 𝑗𝑚𝑗 = 𝑖.

∎ Because 𝑏0 = 0, we can start numbering such a sequence 𝑚 at 𝑚1
and we have ⋃︀𝑚⋃︀ ≤ ∑𝑗 𝑗𝑚𝑗 = 𝑖.

∎ Therefore, only finitely many coefficients of 𝑎 and 𝑏 contribute to
each coefficient of 𝑎⋃︀𝑋=𝑏.

∎ In a sum, this process is continuous in the Krull topology.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 29 / 49



Substituting non-units into power series

∎ Up to elementary expansions, we had above:

𝑎⋃︀𝑋=𝑏 = ∑
𝑖

𝑎𝑖
⎛

⎝
∑

𝑚∈𝑀𝑖

(
𝑖

𝑚
)(∏ 𝑏𝑗

𝑚
𝑗 )𝑋

∑𝑗 𝑗𝑚𝑗
⎞

⎠

∎ By grouping terms of equal degree in 𝑋, we obtain:

𝑎⋃︀𝑋=𝑏 = ∑
𝑖

⎛

⎝
∑

𝑚∈𝑀𝑖

𝑎⋃︀𝑚⋃︀(
⋃︀𝑚⋃︀

𝑚
)(∏ 𝑏𝑗

𝑚
𝑗 )

⎞

⎠
𝑋𝑖

where 𝑀𝑖 is now the set of all infinite non-negative integer sequences
(𝑚1,𝑚2, . . . , ) with finitely many nonzero entries and such that
∑𝑗 𝑗𝑚𝑗 = 𝑖.

∎ Because 𝑏0 = 0, we can start numbering such a sequence 𝑚 at 𝑚1
and we have ⋃︀𝑚⋃︀ ≤ ∑𝑗 𝑗𝑚𝑗 = 𝑖.

∎ Therefore, only finitely many coefficients of 𝑎 and 𝑏 contribute to
each coefficient of 𝑎⋃︀𝑋=𝑏.

∎ In a sum, this process is continuous in the Krull topology.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 29 / 49



Substituting non-units into power series

∎ Up to elementary expansions, we had above:

𝑎⋃︀𝑋=𝑏 = ∑
𝑖

𝑎𝑖
⎛

⎝
∑

𝑚∈𝑀𝑖

(
𝑖

𝑚
)(∏ 𝑏𝑗

𝑚
𝑗 )𝑋

∑𝑗 𝑗𝑚𝑗
⎞

⎠

∎ By grouping terms of equal degree in 𝑋, we obtain:

𝑎⋃︀𝑋=𝑏 = ∑
𝑖

⎛

⎝
∑

𝑚∈𝑀𝑖

𝑎⋃︀𝑚⋃︀(
⋃︀𝑚⋃︀

𝑚
)(∏ 𝑏𝑗

𝑚
𝑗 )

⎞

⎠
𝑋𝑖

where 𝑀𝑖 is now the set of all infinite non-negative integer sequences
(𝑚1,𝑚2, . . . , ) with finitely many nonzero entries and such that
∑𝑗 𝑗𝑚𝑗 = 𝑖.

∎ Because 𝑏0 = 0, we can start numbering such a sequence 𝑚 at 𝑚1
and we have ⋃︀𝑚⋃︀ ≤ ∑𝑗 𝑗𝑚𝑗 = 𝑖.

∎ Therefore, only finitely many coefficients of 𝑎 and 𝑏 contribute to
each coefficient of 𝑎⋃︀𝑋=𝑏.

∎ In a sum, this process is continuous in the Krull topology.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 29 / 49



Substituting non-units into power series

∎ Up to elementary expansions, we had above:

𝑎⋃︀𝑋=𝑏 = ∑
𝑖

𝑎𝑖
⎛

⎝
∑

𝑚∈𝑀𝑖

(
𝑖

𝑚
)(∏ 𝑏𝑗

𝑚
𝑗 )𝑋

∑𝑗 𝑗𝑚𝑗
⎞

⎠

∎ By grouping terms of equal degree in 𝑋, we obtain:

𝑎⋃︀𝑋=𝑏 = ∑
𝑖

⎛

⎝
∑

𝑚∈𝑀𝑖

𝑎⋃︀𝑚⋃︀(
⋃︀𝑚⋃︀

𝑚
)(∏ 𝑏𝑗

𝑚
𝑗 )

⎞

⎠
𝑋𝑖

where 𝑀𝑖 is now the set of all infinite non-negative integer sequences
(𝑚1,𝑚2, . . . , ) with finitely many nonzero entries and such that
∑𝑗 𝑗𝑚𝑗 = 𝑖.

∎ Because 𝑏0 = 0, we can start numbering such a sequence 𝑚 at 𝑚1
and we have ⋃︀𝑚⋃︀ ≤ ∑𝑗 𝑗𝑚𝑗 = 𝑖.

∎ Therefore, only finitely many coefficients of 𝑎 and 𝑏 contribute to
each coefficient of 𝑎⋃︀𝑋=𝑏.

∎ In a sum, this process is continuous in the Krull topology.
Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 29 / 49



Substituting units into power series

∎ Consider 𝑎 = 𝑏 = ∑∞
𝑖=0

𝑋𝑖

𝑖! , which we traditionally view as 𝑒𝑋 .

∎ We expect that 𝑎⋃︀𝑋=𝑏 evaluates to the power series for 𝑒𝑒𝑋 , which is
∞
∑
𝑖=0

𝑒𝐵𝑛

𝑛!
𝑋𝑛

= 𝑒 + 𝑒𝑋 + 𝑒𝑋2
+ 5⇑6𝑒𝑋3

+⋯ ,

∎ Because of the factor of 𝑒, substituting units into power series cannot
be continuous in the Krull topology.

∎ There is a work-around, however. Do you guess which one?
∎ If two multivariate power series 𝑎, 𝑏 have closed form expressions
𝑓𝑎, 𝑓𝑏 and we want 𝑎⋃︀𝑋𝑛=𝑏, then:

1 we compute 𝑓 ∶= 𝑓𝑎⋃︀𝑋𝑛=𝑓𝑏
, and

2 we obtain the coefficient of 𝑋𝑚1
1 ⋯𝑋𝑚𝑛

𝑛 as
1

𝑚1!⋯𝑚𝑛!
B⋃︀𝑚⋃︀𝑓

B𝑋1
𝑚1⋯B𝑋𝑛

𝑚𝑛
⋁︀
𝑋1=⋯=𝑋𝑛=0

∎ To obtain an efficient implementation, see the details in [13].

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 30 / 49



Substituting units into power series

∎ Consider 𝑎 = 𝑏 = ∑∞
𝑖=0

𝑋𝑖

𝑖! , which we traditionally view as 𝑒𝑋 .
∎ We expect that 𝑎⋃︀𝑋=𝑏 evaluates to the power series for 𝑒𝑒𝑋 , which is

∞
∑
𝑖=0

𝑒𝐵𝑛

𝑛!
𝑋𝑛

= 𝑒 + 𝑒𝑋 + 𝑒𝑋2
+ 5⇑6𝑒𝑋3

+⋯ ,

∎ Because of the factor of 𝑒, substituting units into power series cannot
be continuous in the Krull topology.

∎ There is a work-around, however. Do you guess which one?
∎ If two multivariate power series 𝑎, 𝑏 have closed form expressions
𝑓𝑎, 𝑓𝑏 and we want 𝑎⋃︀𝑋𝑛=𝑏, then:

1 we compute 𝑓 ∶= 𝑓𝑎⋃︀𝑋𝑛=𝑓𝑏
, and

2 we obtain the coefficient of 𝑋𝑚1
1 ⋯𝑋𝑚𝑛

𝑛 as
1

𝑚1!⋯𝑚𝑛!
B⋃︀𝑚⋃︀𝑓

B𝑋1
𝑚1⋯B𝑋𝑛

𝑚𝑛
⋁︀
𝑋1=⋯=𝑋𝑛=0

∎ To obtain an efficient implementation, see the details in [13].

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 30 / 49



Substituting units into power series

∎ Consider 𝑎 = 𝑏 = ∑∞
𝑖=0

𝑋𝑖

𝑖! , which we traditionally view as 𝑒𝑋 .
∎ We expect that 𝑎⋃︀𝑋=𝑏 evaluates to the power series for 𝑒𝑒𝑋 , which is

∞
∑
𝑖=0

𝑒𝐵𝑛

𝑛!
𝑋𝑛

= 𝑒 + 𝑒𝑋 + 𝑒𝑋2
+ 5⇑6𝑒𝑋3

+⋯ ,

∎ Because of the factor of 𝑒, substituting units into power series cannot
be continuous in the Krull topology.

∎ There is a work-around, however. Do you guess which one?
∎ If two multivariate power series 𝑎, 𝑏 have closed form expressions
𝑓𝑎, 𝑓𝑏 and we want 𝑎⋃︀𝑋𝑛=𝑏, then:

1 we compute 𝑓 ∶= 𝑓𝑎⋃︀𝑋𝑛=𝑓𝑏
, and

2 we obtain the coefficient of 𝑋𝑚1
1 ⋯𝑋𝑚𝑛

𝑛 as
1

𝑚1!⋯𝑚𝑛!
B⋃︀𝑚⋃︀𝑓

B𝑋1
𝑚1⋯B𝑋𝑛

𝑚𝑛
⋁︀
𝑋1=⋯=𝑋𝑛=0

∎ To obtain an efficient implementation, see the details in [13].

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 30 / 49



Substituting units into power series

∎ Consider 𝑎 = 𝑏 = ∑∞
𝑖=0

𝑋𝑖

𝑖! , which we traditionally view as 𝑒𝑋 .
∎ We expect that 𝑎⋃︀𝑋=𝑏 evaluates to the power series for 𝑒𝑒𝑋 , which is

∞
∑
𝑖=0

𝑒𝐵𝑛

𝑛!
𝑋𝑛

= 𝑒 + 𝑒𝑋 + 𝑒𝑋2
+ 5⇑6𝑒𝑋3

+⋯ ,

∎ Because of the factor of 𝑒, substituting units into power series cannot
be continuous in the Krull topology.

∎ There is a work-around, however. Do you guess which one?

∎ If two multivariate power series 𝑎, 𝑏 have closed form expressions
𝑓𝑎, 𝑓𝑏 and we want 𝑎⋃︀𝑋𝑛=𝑏, then:

1 we compute 𝑓 ∶= 𝑓𝑎⋃︀𝑋𝑛=𝑓𝑏
, and

2 we obtain the coefficient of 𝑋𝑚1
1 ⋯𝑋𝑚𝑛

𝑛 as
1

𝑚1!⋯𝑚𝑛!
B⋃︀𝑚⋃︀𝑓

B𝑋1
𝑚1⋯B𝑋𝑛

𝑚𝑛
⋁︀
𝑋1=⋯=𝑋𝑛=0

∎ To obtain an efficient implementation, see the details in [13].

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 30 / 49



Substituting units into power series

∎ Consider 𝑎 = 𝑏 = ∑∞
𝑖=0

𝑋𝑖

𝑖! , which we traditionally view as 𝑒𝑋 .
∎ We expect that 𝑎⋃︀𝑋=𝑏 evaluates to the power series for 𝑒𝑒𝑋 , which is

∞
∑
𝑖=0

𝑒𝐵𝑛

𝑛!
𝑋𝑛

= 𝑒 + 𝑒𝑋 + 𝑒𝑋2
+ 5⇑6𝑒𝑋3

+⋯ ,

∎ Because of the factor of 𝑒, substituting units into power series cannot
be continuous in the Krull topology.

∎ There is a work-around, however. Do you guess which one?
∎ If two multivariate power series 𝑎, 𝑏 have closed form expressions
𝑓𝑎, 𝑓𝑏 and we want 𝑎⋃︀𝑋𝑛=𝑏, then:

1 we compute 𝑓 ∶= 𝑓𝑎⋃︀𝑋𝑛=𝑓𝑏
, and

2 we obtain the coefficient of 𝑋𝑚1
1 ⋯𝑋𝑚𝑛

𝑛 as
1

𝑚1!⋯𝑚𝑛!
B⋃︀𝑚⋃︀𝑓

B𝑋1
𝑚1⋯B𝑋𝑛

𝑚𝑛
⋁︀
𝑋1=⋯=𝑋𝑛=0

∎ To obtain an efficient implementation, see the details in [13].

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 30 / 49



Substituting units into power series

∎ Consider 𝑎 = 𝑏 = ∑∞
𝑖=0

𝑋𝑖

𝑖! , which we traditionally view as 𝑒𝑋 .
∎ We expect that 𝑎⋃︀𝑋=𝑏 evaluates to the power series for 𝑒𝑒𝑋 , which is

∞
∑
𝑖=0

𝑒𝐵𝑛

𝑛!
𝑋𝑛

= 𝑒 + 𝑒𝑋 + 𝑒𝑋2
+ 5⇑6𝑒𝑋3

+⋯ ,

∎ Because of the factor of 𝑒, substituting units into power series cannot
be continuous in the Krull topology.

∎ There is a work-around, however. Do you guess which one?
∎ If two multivariate power series 𝑎, 𝑏 have closed form expressions
𝑓𝑎, 𝑓𝑏 and we want 𝑎⋃︀𝑋𝑛=𝑏, then:

1 we compute 𝑓 ∶= 𝑓𝑎⋃︀𝑋𝑛=𝑓𝑏
, and

2 we obtain the coefficient of 𝑋𝑚1
1 ⋯𝑋𝑚𝑛

𝑛 as
1

𝑚1!⋯𝑚𝑛!
B⋃︀𝑚⋃︀𝑓

B𝑋1
𝑚1⋯B𝑋𝑛

𝑚𝑛
⋁︀
𝑋1=⋯=𝑋𝑛=0

∎ To obtain an efficient implementation, see the details in [13].
Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 30 / 49



Outline

1. Motivations
1.1 Computation of Zariski closures
1.2 Puiseux series

2. Power series
2.1 Lazy evaluation scheme
2.2 Weierstrass preparation
2.3 Hensel lifting
2.4 Composition of power series

3. Laurent series
3.1 Mathematical construction
3.2 Encoding
3.3 Addition and multiplication
3.4 Inversion

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 31 / 49



Outline

1. Motivations
1.1 Computation of Zariski closures
1.2 Puiseux series

2. Power series
2.1 Lazy evaluation scheme
2.2 Weierstrass preparation
2.3 Hensel lifting
2.4 Composition of power series

3. Laurent series
3.1 Mathematical construction
3.2 Encoding
3.3 Addition and multiplication
3.4 Inversion

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 32 / 49



The domain K𝐶(︀(︀x⌋︀⌋︀

∎ In this sub-section, we follow Monforte and Kauers, see [12].
∎ Let K be a field, x = 𝑥1, . . . , 𝑥𝑝 and u = 𝑢1, . . . , 𝑢𝑚 be ordered

indeterminates with 𝑚 ≥ 𝑝.

∎ The elements of the field K((x)) of multivariate formal Laurent
series look like:

𝑓(x) ∶= Σk∈Z𝑝 𝑎kxk,

where the 𝑎k are elements of K, and uk is a notation for 𝑢𝑘1
1 ⋯𝑢

𝑘𝑝
𝑝

where 𝑘1, . . . , 𝑘𝑝 are non-negative integers.
∎ Let 𝐶 ⊆ R𝑝 be a cone. All cones here are line-free, polyhedral and

generated by integer vectors.
∎ The set of the Laurent series 𝑓(x) ∈ K((x)) with supp(𝑓(x)) ⊆ 𝐶 is

an integral domain denoted by K𝐶(︀(︀x⌋︀⌋︀, where:
supp(𝑓(x)) ∶= {k ∈ Z𝑝

⋃︀ 𝑎k ≠ 0}.
∎ Note that, there exists 𝑔(x) ∈ K𝐶(︀(︀x⌋︀⌋︀ with 𝑓(x)𝑔(x) = 1, if and

only if 𝑎0 ≠ 0.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 33 / 49



The domain K𝐶(︀(︀x⌋︀⌋︀

∎ In this sub-section, we follow Monforte and Kauers, see [12].
∎ Let K be a field, x = 𝑥1, . . . , 𝑥𝑝 and u = 𝑢1, . . . , 𝑢𝑚 be ordered

indeterminates with 𝑚 ≥ 𝑝.
∎ The elements of the field K((x)) of multivariate formal Laurent

series look like:
𝑓(x) ∶= Σk∈Z𝑝 𝑎kxk,

where the 𝑎k are elements of K, and uk is a notation for 𝑢𝑘1
1 ⋯𝑢

𝑘𝑝
𝑝

where 𝑘1, . . . , 𝑘𝑝 are non-negative integers.

∎ Let 𝐶 ⊆ R𝑝 be a cone. All cones here are line-free, polyhedral and
generated by integer vectors.

∎ The set of the Laurent series 𝑓(x) ∈ K((x)) with supp(𝑓(x)) ⊆ 𝐶 is
an integral domain denoted by K𝐶(︀(︀x⌋︀⌋︀, where:

supp(𝑓(x)) ∶= {k ∈ Z𝑝
⋃︀ 𝑎k ≠ 0}.

∎ Note that, there exists 𝑔(x) ∈ K𝐶(︀(︀x⌋︀⌋︀ with 𝑓(x)𝑔(x) = 1, if and
only if 𝑎0 ≠ 0.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 33 / 49



The domain K𝐶(︀(︀x⌋︀⌋︀

∎ In this sub-section, we follow Monforte and Kauers, see [12].
∎ Let K be a field, x = 𝑥1, . . . , 𝑥𝑝 and u = 𝑢1, . . . , 𝑢𝑚 be ordered

indeterminates with 𝑚 ≥ 𝑝.
∎ The elements of the field K((x)) of multivariate formal Laurent

series look like:
𝑓(x) ∶= Σk∈Z𝑝 𝑎kxk,

where the 𝑎k are elements of K, and uk is a notation for 𝑢𝑘1
1 ⋯𝑢

𝑘𝑝
𝑝

where 𝑘1, . . . , 𝑘𝑝 are non-negative integers.
∎ Let 𝐶 ⊆ R𝑝 be a cone. All cones here are line-free, polyhedral and

generated by integer vectors.

∎ The set of the Laurent series 𝑓(x) ∈ K((x)) with supp(𝑓(x)) ⊆ 𝐶 is
an integral domain denoted by K𝐶(︀(︀x⌋︀⌋︀, where:

supp(𝑓(x)) ∶= {k ∈ Z𝑝
⋃︀ 𝑎k ≠ 0}.

∎ Note that, there exists 𝑔(x) ∈ K𝐶(︀(︀x⌋︀⌋︀ with 𝑓(x)𝑔(x) = 1, if and
only if 𝑎0 ≠ 0.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 33 / 49



The domain K𝐶(︀(︀x⌋︀⌋︀

∎ In this sub-section, we follow Monforte and Kauers, see [12].
∎ Let K be a field, x = 𝑥1, . . . , 𝑥𝑝 and u = 𝑢1, . . . , 𝑢𝑚 be ordered

indeterminates with 𝑚 ≥ 𝑝.
∎ The elements of the field K((x)) of multivariate formal Laurent

series look like:
𝑓(x) ∶= Σk∈Z𝑝 𝑎kxk,

where the 𝑎k are elements of K, and uk is a notation for 𝑢𝑘1
1 ⋯𝑢

𝑘𝑝
𝑝

where 𝑘1, . . . , 𝑘𝑝 are non-negative integers.
∎ Let 𝐶 ⊆ R𝑝 be a cone. All cones here are line-free, polyhedral and

generated by integer vectors.
∎ The set of the Laurent series 𝑓(x) ∈ K((x)) with supp(𝑓(x)) ⊆ 𝐶 is

an integral domain denoted by K𝐶(︀(︀x⌋︀⌋︀, where:
supp(𝑓(x)) ∶= {k ∈ Z𝑝

⋃︀ 𝑎k ≠ 0}.

∎ Note that, there exists 𝑔(x) ∈ K𝐶(︀(︀x⌋︀⌋︀ with 𝑓(x)𝑔(x) = 1, if and
only if 𝑎0 ≠ 0.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 33 / 49



The domain K𝐶(︀(︀x⌋︀⌋︀

∎ In this sub-section, we follow Monforte and Kauers, see [12].
∎ Let K be a field, x = 𝑥1, . . . , 𝑥𝑝 and u = 𝑢1, . . . , 𝑢𝑚 be ordered

indeterminates with 𝑚 ≥ 𝑝.
∎ The elements of the field K((x)) of multivariate formal Laurent

series look like:
𝑓(x) ∶= Σk∈Z𝑝 𝑎kxk,

where the 𝑎k are elements of K, and uk is a notation for 𝑢𝑘1
1 ⋯𝑢

𝑘𝑝
𝑝

where 𝑘1, . . . , 𝑘𝑝 are non-negative integers.
∎ Let 𝐶 ⊆ R𝑝 be a cone. All cones here are line-free, polyhedral and

generated by integer vectors.
∎ The set of the Laurent series 𝑓(x) ∈ K((x)) with supp(𝑓(x)) ⊆ 𝐶 is

an integral domain denoted by K𝐶(︀(︀x⌋︀⌋︀, where:
supp(𝑓(x)) ∶= {k ∈ Z𝑝

⋃︀ 𝑎k ≠ 0}.
∎ Note that, there exists 𝑔(x) ∈ K𝐶(︀(︀x⌋︀⌋︀ with 𝑓(x)𝑔(x) = 1, if and

only if 𝑎0 ≠ 0.
Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 33 / 49



The field K⪯((x))

∎ Let ⪯ be an additive order in Z𝑝. Thus, for all i, j,k ∈ Z𝑝, we have:

i ⪯ j Ô⇒ i + k ⪯ j + k.

∎ let 𝒞 be the set of all cones 𝐶 ⊆ R𝑝 which are compatible with ⪯.
Thus, for every 𝐶 ∈ 𝒞, if for all k ∈ 𝐶 ∩Z𝑝 we have 0 ⪯ k.

∎ Define:

K⪯(︀(︀x⌋︀⌋︀ ∶= ∪𝐶∈𝒞K𝐶(︀(︀x⌋︀⌋︀ and K⪯((x)) ∶= ∪e∈Z𝑝xeK⪯(︀(︀x⌋︀⌋︀

∎ If you are puzzled by the factor xe think that the inverse of
𝑥−1 + 1 + 𝑥 + 𝑥2 +⋯ is the inverse of 𝑥−1(1 + 𝑥 + 𝑥2 + 𝑥3 +⋯) that is

𝑥
1−𝑥 .

∎ Then, K⪯(︀(︀x⌋︀⌋︀ is a ring and K⪯((x)) is a field.
∎ Our goal is to implement K⪯((x)), where ⪯ is <𝑔𝑙𝑒𝑥.
∎ Recall that <𝑔𝑙𝑒𝑥 first compares total degrees before using reverse

lexicographic order as tie-breaker.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 34 / 49



The field K⪯((x))

∎ Let ⪯ be an additive order in Z𝑝. Thus, for all i, j,k ∈ Z𝑝, we have:

i ⪯ j Ô⇒ i + k ⪯ j + k.

∎ let 𝒞 be the set of all cones 𝐶 ⊆ R𝑝 which are compatible with ⪯.
Thus, for every 𝐶 ∈ 𝒞, if for all k ∈ 𝐶 ∩Z𝑝 we have 0 ⪯ k.

∎ Define:

K⪯(︀(︀x⌋︀⌋︀ ∶= ∪𝐶∈𝒞K𝐶(︀(︀x⌋︀⌋︀ and K⪯((x)) ∶= ∪e∈Z𝑝xeK⪯(︀(︀x⌋︀⌋︀

∎ If you are puzzled by the factor xe think that the inverse of
𝑥−1 + 1 + 𝑥 + 𝑥2 +⋯ is the inverse of 𝑥−1(1 + 𝑥 + 𝑥2 + 𝑥3 +⋯) that is

𝑥
1−𝑥 .

∎ Then, K⪯(︀(︀x⌋︀⌋︀ is a ring and K⪯((x)) is a field.
∎ Our goal is to implement K⪯((x)), where ⪯ is <𝑔𝑙𝑒𝑥.
∎ Recall that <𝑔𝑙𝑒𝑥 first compares total degrees before using reverse

lexicographic order as tie-breaker.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 34 / 49



The field K⪯((x))

∎ Let ⪯ be an additive order in Z𝑝. Thus, for all i, j,k ∈ Z𝑝, we have:

i ⪯ j Ô⇒ i + k ⪯ j + k.

∎ let 𝒞 be the set of all cones 𝐶 ⊆ R𝑝 which are compatible with ⪯.
Thus, for every 𝐶 ∈ 𝒞, if for all k ∈ 𝐶 ∩Z𝑝 we have 0 ⪯ k.

∎ Define:

K⪯(︀(︀x⌋︀⌋︀ ∶= ∪𝐶∈𝒞K𝐶(︀(︀x⌋︀⌋︀ and K⪯((x)) ∶= ∪e∈Z𝑝xeK⪯(︀(︀x⌋︀⌋︀

∎ If you are puzzled by the factor xe think that the inverse of
𝑥−1 + 1 + 𝑥 + 𝑥2 +⋯ is the inverse of 𝑥−1(1 + 𝑥 + 𝑥2 + 𝑥3 +⋯) that is

𝑥
1−𝑥 .

∎ Then, K⪯(︀(︀x⌋︀⌋︀ is a ring and K⪯((x)) is a field.
∎ Our goal is to implement K⪯((x)), where ⪯ is <𝑔𝑙𝑒𝑥.
∎ Recall that <𝑔𝑙𝑒𝑥 first compares total degrees before using reverse

lexicographic order as tie-breaker.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 34 / 49



The field K⪯((x))

∎ Let ⪯ be an additive order in Z𝑝. Thus, for all i, j,k ∈ Z𝑝, we have:

i ⪯ j Ô⇒ i + k ⪯ j + k.

∎ let 𝒞 be the set of all cones 𝐶 ⊆ R𝑝 which are compatible with ⪯.
Thus, for every 𝐶 ∈ 𝒞, if for all k ∈ 𝐶 ∩Z𝑝 we have 0 ⪯ k.

∎ Define:

K⪯(︀(︀x⌋︀⌋︀ ∶= ∪𝐶∈𝒞K𝐶(︀(︀x⌋︀⌋︀ and K⪯((x)) ∶= ∪e∈Z𝑝xeK⪯(︀(︀x⌋︀⌋︀

∎ If you are puzzled by the factor xe think that the inverse of
𝑥−1 + 1 + 𝑥 + 𝑥2 +⋯ is the inverse of 𝑥−1(1 + 𝑥 + 𝑥2 + 𝑥3 +⋯) that is

𝑥
1−𝑥 .

∎ Then, K⪯(︀(︀x⌋︀⌋︀ is a ring and K⪯((x)) is a field.
∎ Our goal is to implement K⪯((x)), where ⪯ is <𝑔𝑙𝑒𝑥.
∎ Recall that <𝑔𝑙𝑒𝑥 first compares total degrees before using reverse

lexicographic order as tie-breaker.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 34 / 49



The field K⪯((x))

∎ Let ⪯ be an additive order in Z𝑝. Thus, for all i, j,k ∈ Z𝑝, we have:

i ⪯ j Ô⇒ i + k ⪯ j + k.

∎ let 𝒞 be the set of all cones 𝐶 ⊆ R𝑝 which are compatible with ⪯.
Thus, for every 𝐶 ∈ 𝒞, if for all k ∈ 𝐶 ∩Z𝑝 we have 0 ⪯ k.

∎ Define:

K⪯(︀(︀x⌋︀⌋︀ ∶= ∪𝐶∈𝒞K𝐶(︀(︀x⌋︀⌋︀ and K⪯((x)) ∶= ∪e∈Z𝑝xeK⪯(︀(︀x⌋︀⌋︀

∎ If you are puzzled by the factor xe think that the inverse of
𝑥−1 + 1 + 𝑥 + 𝑥2 +⋯ is the inverse of 𝑥−1(1 + 𝑥 + 𝑥2 + 𝑥3 +⋯) that is

𝑥
1−𝑥 .

∎ Then, K⪯(︀(︀x⌋︀⌋︀ is a ring and K⪯((x)) is a field.

∎ Our goal is to implement K⪯((x)), where ⪯ is <𝑔𝑙𝑒𝑥.
∎ Recall that <𝑔𝑙𝑒𝑥 first compares total degrees before using reverse

lexicographic order as tie-breaker.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 34 / 49



The field K⪯((x))

∎ Let ⪯ be an additive order in Z𝑝. Thus, for all i, j,k ∈ Z𝑝, we have:

i ⪯ j Ô⇒ i + k ⪯ j + k.

∎ let 𝒞 be the set of all cones 𝐶 ⊆ R𝑝 which are compatible with ⪯.
Thus, for every 𝐶 ∈ 𝒞, if for all k ∈ 𝐶 ∩Z𝑝 we have 0 ⪯ k.

∎ Define:

K⪯(︀(︀x⌋︀⌋︀ ∶= ∪𝐶∈𝒞K𝐶(︀(︀x⌋︀⌋︀ and K⪯((x)) ∶= ∪e∈Z𝑝xeK⪯(︀(︀x⌋︀⌋︀

∎ If you are puzzled by the factor xe think that the inverse of
𝑥−1 + 1 + 𝑥 + 𝑥2 +⋯ is the inverse of 𝑥−1(1 + 𝑥 + 𝑥2 + 𝑥3 +⋯) that is

𝑥
1−𝑥 .

∎ Then, K⪯(︀(︀x⌋︀⌋︀ is a ring and K⪯((x)) is a field.
∎ Our goal is to implement K⪯((x)), where ⪯ is <𝑔𝑙𝑒𝑥.

∎ Recall that <𝑔𝑙𝑒𝑥 first compares total degrees before using reverse
lexicographic order as tie-breaker.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 34 / 49



The field K⪯((x))

∎ Let ⪯ be an additive order in Z𝑝. Thus, for all i, j,k ∈ Z𝑝, we have:

i ⪯ j Ô⇒ i + k ⪯ j + k.

∎ let 𝒞 be the set of all cones 𝐶 ⊆ R𝑝 which are compatible with ⪯.
Thus, for every 𝐶 ∈ 𝒞, if for all k ∈ 𝐶 ∩Z𝑝 we have 0 ⪯ k.

∎ Define:

K⪯(︀(︀x⌋︀⌋︀ ∶= ∪𝐶∈𝒞K𝐶(︀(︀x⌋︀⌋︀ and K⪯((x)) ∶= ∪e∈Z𝑝xeK⪯(︀(︀x⌋︀⌋︀

∎ If you are puzzled by the factor xe think that the inverse of
𝑥−1 + 1 + 𝑥 + 𝑥2 +⋯ is the inverse of 𝑥−1(1 + 𝑥 + 𝑥2 + 𝑥3 +⋯) that is

𝑥
1−𝑥 .

∎ Then, K⪯(︀(︀x⌋︀⌋︀ is a ring and K⪯((x)) is a field.
∎ Our goal is to implement K⪯((x)), where ⪯ is <𝑔𝑙𝑒𝑥.
∎ Recall that <𝑔𝑙𝑒𝑥 first compares total degrees before using reverse

lexicographic order as tie-breaker.
Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 34 / 49



Outline

1. Motivations
1.1 Computation of Zariski closures
1.2 Puiseux series

2. Power series
2.1 Lazy evaluation scheme
2.2 Weierstrass preparation
2.3 Hensel lifting
2.4 Composition of power series

3. Laurent series
3.1 Mathematical construction
3.2 Encoding
3.3 Addition and multiplication
3.4 Inversion

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 35 / 49



Data-structure

Lemma
Recall x = 𝑥1, . . . , 𝑥𝑝 and u = 𝑢1, . . . , 𝑢𝑚. Let 𝑔 ∈ K(︀(︀u⌋︀⌋︀, e ∈ Z𝑝 be a
point, and R ∶= {r1, . . . , r𝑚} ⊂ Z𝑝 be a set of grevlex non-negative rays.
Then,

𝑓 = xe𝑔(xr1 , . . . ,xr𝑚),

is a Laurent series in xeK𝐶(︀(︀x⌋︀⌋︀, where 𝐶 is the cone generated by R.

Our implementation encodes every multivariate Laurent series as a
Laurent series object, LSO for short, that is, a quintuple (x,u,e,R, 𝑔).

Example
Consider 𝑓 ∶= 𝑥−4𝑦5

∑
∞
𝑖=0 𝑥

2𝑖𝑦−𝑖. To encode 𝑓 as an LSO, one can choose:

x = (︀𝑥, 𝑦⌋︀,u = (︀𝑢, 𝑣⌋︀,R = (︀(︀1,0⌋︀, (︀1,−1⌋︀⌋︀,e = (︀𝑥 = −4, 𝑦 = 5⌋︀

and 𝑔 = Inverse(PowerSeries(1+uv)).
Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 36 / 49



Outline

1. Motivations
1.1 Computation of Zariski closures
1.2 Puiseux series

2. Power series
2.1 Lazy evaluation scheme
2.2 Weierstrass preparation
2.3 Hensel lifting
2.4 Composition of power series

3. Laurent series
3.1 Mathematical construction
3.2 Encoding
3.3 Addition and multiplication
3.4 Inversion

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 37 / 49



Addition and multiplication

∎ Let 𝐶1,𝐶2 ⊆ Z𝑝 be generated by grevlex non-negative rays,
R1 ∶= {r′1, . . . , r′𝑚} ⊂ Z𝑝 and R2 ∶= {r′′1 , . . . , r′′𝑚} ⊂ Z𝑝, with 𝑚 ≥ 𝑝.

∎ Consider two Laurent series in K⪯((x)), namely:
𝑓1 = xe1𝑔1(xR1) and 𝑓2 = xe2𝑔2(xR2),

with 𝑔1, 𝑔2 ∈ K(︀(︀u⌋︀⌋︀ and e1,e2 ∈ Z𝑝.
∎ Then, we have:

𝑓1𝑓2 = xe1+e2 (𝑔1(xR1)𝑔2(xR2)) .

∎ Assume e = e1 is the grevlex-minimum of e1 and e2. Then, we have:
𝑓1 + 𝑓2 = xe (𝑔1(xR1) + xe2−e𝑔2(xR2)) .

∎ To make 𝑓1𝑓2 (resp. 𝑓1 + 𝑓2) an LSO object, we need to find a cone
containing supp(𝑓1𝑓2) (resp. supp(𝑓1 + 𝑓2)).

∎ We developed an algorithm which takes several cones 𝐶𝑖’s all
generated by grevlex non-negative rays (g.n.r.) and returns a cone 𝐶
generated by 𝑝 g.n.r. and containing ⋃𝑖𝐶𝑖’s, see [8].

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 38 / 49



Addition and multiplication

∎ Let 𝐶1,𝐶2 ⊆ Z𝑝 be generated by grevlex non-negative rays,
R1 ∶= {r′1, . . . , r′𝑚} ⊂ Z𝑝 and R2 ∶= {r′′1 , . . . , r′′𝑚} ⊂ Z𝑝, with 𝑚 ≥ 𝑝.

∎ Consider two Laurent series in K⪯((x)), namely:
𝑓1 = xe1𝑔1(xR1) and 𝑓2 = xe2𝑔2(xR2),

with 𝑔1, 𝑔2 ∈ K(︀(︀u⌋︀⌋︀ and e1,e2 ∈ Z𝑝.

∎ Then, we have:
𝑓1𝑓2 = xe1+e2 (𝑔1(xR1)𝑔2(xR2)) .

∎ Assume e = e1 is the grevlex-minimum of e1 and e2. Then, we have:
𝑓1 + 𝑓2 = xe (𝑔1(xR1) + xe2−e𝑔2(xR2)) .

∎ To make 𝑓1𝑓2 (resp. 𝑓1 + 𝑓2) an LSO object, we need to find a cone
containing supp(𝑓1𝑓2) (resp. supp(𝑓1 + 𝑓2)).

∎ We developed an algorithm which takes several cones 𝐶𝑖’s all
generated by grevlex non-negative rays (g.n.r.) and returns a cone 𝐶
generated by 𝑝 g.n.r. and containing ⋃𝑖𝐶𝑖’s, see [8].

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 38 / 49



Addition and multiplication

∎ Let 𝐶1,𝐶2 ⊆ Z𝑝 be generated by grevlex non-negative rays,
R1 ∶= {r′1, . . . , r′𝑚} ⊂ Z𝑝 and R2 ∶= {r′′1 , . . . , r′′𝑚} ⊂ Z𝑝, with 𝑚 ≥ 𝑝.

∎ Consider two Laurent series in K⪯((x)), namely:
𝑓1 = xe1𝑔1(xR1) and 𝑓2 = xe2𝑔2(xR2),

with 𝑔1, 𝑔2 ∈ K(︀(︀u⌋︀⌋︀ and e1,e2 ∈ Z𝑝.
∎ Then, we have:

𝑓1𝑓2 = xe1+e2 (𝑔1(xR1)𝑔2(xR2)) .

∎ Assume e = e1 is the grevlex-minimum of e1 and e2. Then, we have:
𝑓1 + 𝑓2 = xe (𝑔1(xR1) + xe2−e𝑔2(xR2)) .

∎ To make 𝑓1𝑓2 (resp. 𝑓1 + 𝑓2) an LSO object, we need to find a cone
containing supp(𝑓1𝑓2) (resp. supp(𝑓1 + 𝑓2)).

∎ We developed an algorithm which takes several cones 𝐶𝑖’s all
generated by grevlex non-negative rays (g.n.r.) and returns a cone 𝐶
generated by 𝑝 g.n.r. and containing ⋃𝑖𝐶𝑖’s, see [8].

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 38 / 49



Addition and multiplication

∎ Let 𝐶1,𝐶2 ⊆ Z𝑝 be generated by grevlex non-negative rays,
R1 ∶= {r′1, . . . , r′𝑚} ⊂ Z𝑝 and R2 ∶= {r′′1 , . . . , r′′𝑚} ⊂ Z𝑝, with 𝑚 ≥ 𝑝.

∎ Consider two Laurent series in K⪯((x)), namely:
𝑓1 = xe1𝑔1(xR1) and 𝑓2 = xe2𝑔2(xR2),

with 𝑔1, 𝑔2 ∈ K(︀(︀u⌋︀⌋︀ and e1,e2 ∈ Z𝑝.
∎ Then, we have:

𝑓1𝑓2 = xe1+e2 (𝑔1(xR1)𝑔2(xR2)) .

∎ Assume e = e1 is the grevlex-minimum of e1 and e2. Then, we have:
𝑓1 + 𝑓2 = xe (𝑔1(xR1) + xe2−e𝑔2(xR2)) .

∎ To make 𝑓1𝑓2 (resp. 𝑓1 + 𝑓2) an LSO object, we need to find a cone
containing supp(𝑓1𝑓2) (resp. supp(𝑓1 + 𝑓2)).

∎ We developed an algorithm which takes several cones 𝐶𝑖’s all
generated by grevlex non-negative rays (g.n.r.) and returns a cone 𝐶
generated by 𝑝 g.n.r. and containing ⋃𝑖𝐶𝑖’s, see [8].

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 38 / 49



Addition and multiplication

∎ Let 𝐶1,𝐶2 ⊆ Z𝑝 be generated by grevlex non-negative rays,
R1 ∶= {r′1, . . . , r′𝑚} ⊂ Z𝑝 and R2 ∶= {r′′1 , . . . , r′′𝑚} ⊂ Z𝑝, with 𝑚 ≥ 𝑝.

∎ Consider two Laurent series in K⪯((x)), namely:
𝑓1 = xe1𝑔1(xR1) and 𝑓2 = xe2𝑔2(xR2),

with 𝑔1, 𝑔2 ∈ K(︀(︀u⌋︀⌋︀ and e1,e2 ∈ Z𝑝.
∎ Then, we have:

𝑓1𝑓2 = xe1+e2 (𝑔1(xR1)𝑔2(xR2)) .

∎ Assume e = e1 is the grevlex-minimum of e1 and e2. Then, we have:
𝑓1 + 𝑓2 = xe (𝑔1(xR1) + xe2−e𝑔2(xR2)) .

∎ To make 𝑓1𝑓2 (resp. 𝑓1 + 𝑓2) an LSO object, we need to find a cone
containing supp(𝑓1𝑓2) (resp. supp(𝑓1 + 𝑓2)).

∎ We developed an algorithm which takes several cones 𝐶𝑖’s all
generated by grevlex non-negative rays (g.n.r.) and returns a cone 𝐶
generated by 𝑝 g.n.r. and containing ⋃𝑖𝐶𝑖’s, see [8].

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 38 / 49



Addition and multiplication

∎ Let 𝐶1,𝐶2 ⊆ Z𝑝 be generated by grevlex non-negative rays,
R1 ∶= {r′1, . . . , r′𝑚} ⊂ Z𝑝 and R2 ∶= {r′′1 , . . . , r′′𝑚} ⊂ Z𝑝, with 𝑚 ≥ 𝑝.

∎ Consider two Laurent series in K⪯((x)), namely:
𝑓1 = xe1𝑔1(xR1) and 𝑓2 = xe2𝑔2(xR2),

with 𝑔1, 𝑔2 ∈ K(︀(︀u⌋︀⌋︀ and e1,e2 ∈ Z𝑝.
∎ Then, we have:

𝑓1𝑓2 = xe1+e2 (𝑔1(xR1)𝑔2(xR2)) .

∎ Assume e = e1 is the grevlex-minimum of e1 and e2. Then, we have:
𝑓1 + 𝑓2 = xe (𝑔1(xR1) + xe2−e𝑔2(xR2)) .

∎ To make 𝑓1𝑓2 (resp. 𝑓1 + 𝑓2) an LSO object, we need to find a cone
containing supp(𝑓1𝑓2) (resp. supp(𝑓1 + 𝑓2)).

∎ We developed an algorithm which takes several cones 𝐶𝑖’s all
generated by grevlex non-negative rays (g.n.r.) and returns a cone 𝐶
generated by 𝑝 g.n.r. and containing ⋃𝑖𝐶𝑖’s, see [8].

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 38 / 49



Outline

1. Motivations
1.1 Computation of Zariski closures
1.2 Puiseux series

2. Power series
2.1 Lazy evaluation scheme
2.2 Weierstrass preparation
2.3 Hensel lifting
2.4 Composition of power series

3. Laurent series
3.1 Mathematical construction
3.2 Encoding
3.3 Addition and multiplication
3.4 Inversion

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 39 / 49



Inversion: understanding the challenge

Let 𝐶 ⊆ Z𝑝 be a line-free cone described by a set of grevlex non-negative
rays, R ∶= {r1, . . . , r𝑚} ⊂ Z𝑝, and let e ∈ Z𝑝 be a point. Now, consider

0 ≠ 𝑓 = xe𝑔(xR
) ∈ xeK𝐶(︀(︀x⌋︀⌋︀,

with 𝑔 ∈ K(︀(︀u⌋︀⌋︀.
We have:

supp(𝑔(xR)) = {(r𝑇
1 , . . . , r𝑇

𝑚) ⋅ k𝑇
⋃︀ k ∈ supp(𝑔)} ⊆ Z𝑝.

Finding the smallest element of the support of the power series 𝑔 does
not guarantee that we can find the grevlex-minimum element of the
support of he Laurent series 𝑓 . Let us see an example.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 40 / 49



Inversion: illustrating the challenge
Consider a power series 𝑔 ∈ K(︀(︀𝑢, 𝑣⌋︀⌋︀
with support equal to

{(0,0), (1,1), (1,2), (1,4), (2,2),
(2,3), (3,2), (3,3), (3,4), (4,0),
(4,1), (4,2), (4,4), (5,2), . . .},

a random infinite set.

Figure: Support of 𝑔(𝑢, 𝑣)

Then, the support of 𝑔(𝑥𝑦, 𝑥𝑦−1) is
going to be equal to

{(0,0), (2,0), (3,−1), (5,−3), (4,0),
(5,−1), (5,1), (6,0), (7,−1), (4,4),
(5,3), (6,2), (8,0), (7,3), . . .}.

Figure: Support of 𝑔(𝑥𝑦, 𝑥𝑦−1)Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 41 / 49



Inversion: our solutions

∎ As just illustrated, knowing min(supp(g)) would not guarantee
finding the grevlex-minimum element of supp(𝑓), if R has rays with
null total degree.

∎ However, if R is a set of grevlex-positive rays, then

min(supp(𝑔(xR))) = min({R ⋅ k𝑇 ⋃︀ k ∈ supp(𝑔) with ⋂︀R ⋅ k𝑇 ⋂︀ ≤ ⨄︀R ⋅ k𝑇
⨄︀}),

where k = min(supp(g)) and R = (r𝑇
1 , . . . , r𝑇

𝑚).

∎ When R has rays with null total degree, we replace ⨄︀R ⋅ k𝑇
⨄︀ by a guess

bound 𝐵 and carry computations until the guess is proved to be
wrong, in which case 𝐵 is increased.

∎ As an optimization, if 𝑔 has a closed-form expression 𝐺, and if 𝐺 is a
rational function, then min(supp())𝑔(xR) is always computable, even
if R has rays with null total degree.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 42 / 49



Inversion: our solutions

∎ As just illustrated, knowing min(supp(g)) would not guarantee
finding the grevlex-minimum element of supp(𝑓), if R has rays with
null total degree.

∎ However, if R is a set of grevlex-positive rays, then

min(supp(𝑔(xR))) = min({R ⋅ k𝑇 ⋃︀ k ∈ supp(𝑔) with ⋂︀R ⋅ k𝑇 ⋂︀ ≤ ⨄︀R ⋅ k𝑇
⨄︀}),

where k = min(supp(g)) and R = (r𝑇
1 , . . . , r𝑇

𝑚).

∎ When R has rays with null total degree, we replace ⨄︀R ⋅ k𝑇
⨄︀ by a guess

bound 𝐵 and carry computations until the guess is proved to be
wrong, in which case 𝐵 is increased.

∎ As an optimization, if 𝑔 has a closed-form expression 𝐺, and if 𝐺 is a
rational function, then min(supp())𝑔(xR) is always computable, even
if R has rays with null total degree.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 42 / 49



Inversion: our solutions

∎ As just illustrated, knowing min(supp(g)) would not guarantee
finding the grevlex-minimum element of supp(𝑓), if R has rays with
null total degree.

∎ However, if R is a set of grevlex-positive rays, then

min(supp(𝑔(xR))) = min({R ⋅ k𝑇 ⋃︀ k ∈ supp(𝑔) with ⋂︀R ⋅ k𝑇 ⋂︀ ≤ ⨄︀R ⋅ k𝑇
⨄︀}),

where k = min(supp(g)) and R = (r𝑇
1 , . . . , r𝑇

𝑚).

∎ When R has rays with null total degree, we replace ⨄︀R ⋅ k𝑇
⨄︀ by a guess

bound 𝐵 and carry computations until the guess is proved to be
wrong, in which case 𝐵 is increased.

∎ As an optimization, if 𝑔 has a closed-form expression 𝐺, and if 𝐺 is a
rational function, then min(supp())𝑔(xR) is always computable, even
if R has rays with null total degree.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 42 / 49



Inversion: our solutions

∎ As just illustrated, knowing min(supp(g)) would not guarantee
finding the grevlex-minimum element of supp(𝑓), if R has rays with
null total degree.

∎ However, if R is a set of grevlex-positive rays, then

min(supp(𝑔(xR))) = min({R ⋅ k𝑇 ⋃︀ k ∈ supp(𝑔) with ⋂︀R ⋅ k𝑇 ⋂︀ ≤ ⨄︀R ⋅ k𝑇
⨄︀}),

where k = min(supp(g)) and R = (r𝑇
1 , . . . , r𝑇

𝑚).

∎ When R has rays with null total degree, we replace ⨄︀R ⋅ k𝑇
⨄︀ by a guess

bound 𝐵 and carry computations until the guess is proved to be
wrong, in which case 𝐵 is increased.

∎ As an optimization, if 𝑔 has a closed-form expression 𝐺, and if 𝐺 is a
rational function, then min(supp())𝑔(xR) is always computable, even
if R has rays with null total degree.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 42 / 49



Concluding remarks

∎ Lazy evaluation is simply the implementation of continuity in the
Krull topology

∎ How many times have we been saved by the closed-form expression
trick?

∎ Three times: Hensel’s lemma, composition and Puiseux series
inversion.

∎ In the case of composition, it allowed us to go beyond the well-known
case of substituting non-units into power series.

∎ Our lazy scheme for Weierstrass Preparation and Hensel lifting can be
finely analyzed and provide interesting parallel patterns.

∎ The same is expected to be true for Nowak’s construction.
∎ Today, Maple’s language and Maple’s supporting kernel libraries allow

for very effective implementation: MultivariatePowerSeries is
only an an order of magnitude slower than its BPAS counterpart
(which is essentially pure C code) when both execute serially, see [5].

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 43 / 49



Concluding remarks

∎ Lazy evaluation is simply the implementation of continuity in the
Krull topology

∎ How many times have we been saved by the closed-form expression
trick?

∎ Three times: Hensel’s lemma, composition and Puiseux series
inversion.

∎ In the case of composition, it allowed us to go beyond the well-known
case of substituting non-units into power series.

∎ Our lazy scheme for Weierstrass Preparation and Hensel lifting can be
finely analyzed and provide interesting parallel patterns.

∎ The same is expected to be true for Nowak’s construction.
∎ Today, Maple’s language and Maple’s supporting kernel libraries allow

for very effective implementation: MultivariatePowerSeries is
only an an order of magnitude slower than its BPAS counterpart
(which is essentially pure C code) when both execute serially, see [5].

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 43 / 49



Concluding remarks

∎ Lazy evaluation is simply the implementation of continuity in the
Krull topology

∎ How many times have we been saved by the closed-form expression
trick?

∎ Three times: Hensel’s lemma, composition and Puiseux series
inversion.

∎ In the case of composition, it allowed us to go beyond the well-known
case of substituting non-units into power series.

∎ Our lazy scheme for Weierstrass Preparation and Hensel lifting can be
finely analyzed and provide interesting parallel patterns.

∎ The same is expected to be true for Nowak’s construction.
∎ Today, Maple’s language and Maple’s supporting kernel libraries allow

for very effective implementation: MultivariatePowerSeries is
only an an order of magnitude slower than its BPAS counterpart
(which is essentially pure C code) when both execute serially, see [5].

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 43 / 49



Concluding remarks

∎ Lazy evaluation is simply the implementation of continuity in the
Krull topology

∎ How many times have we been saved by the closed-form expression
trick?

∎ Three times: Hensel’s lemma, composition and Puiseux series
inversion.

∎ In the case of composition, it allowed us to go beyond the well-known
case of substituting non-units into power series.

∎ Our lazy scheme for Weierstrass Preparation and Hensel lifting can be
finely analyzed and provide interesting parallel patterns.

∎ The same is expected to be true for Nowak’s construction.
∎ Today, Maple’s language and Maple’s supporting kernel libraries allow

for very effective implementation: MultivariatePowerSeries is
only an an order of magnitude slower than its BPAS counterpart
(which is essentially pure C code) when both execute serially, see [5].

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 43 / 49



Concluding remarks

∎ Lazy evaluation is simply the implementation of continuity in the
Krull topology

∎ How many times have we been saved by the closed-form expression
trick?

∎ Three times: Hensel’s lemma, composition and Puiseux series
inversion.

∎ In the case of composition, it allowed us to go beyond the well-known
case of substituting non-units into power series.

∎ Our lazy scheme for Weierstrass Preparation and Hensel lifting can be
finely analyzed and provide interesting parallel patterns.

∎ The same is expected to be true for Nowak’s construction.
∎ Today, Maple’s language and Maple’s supporting kernel libraries allow

for very effective implementation: MultivariatePowerSeries is
only an an order of magnitude slower than its BPAS counterpart
(which is essentially pure C code) when both execute serially, see [5].

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 43 / 49



Concluding remarks

∎ Lazy evaluation is simply the implementation of continuity in the
Krull topology

∎ How many times have we been saved by the closed-form expression
trick?

∎ Three times: Hensel’s lemma, composition and Puiseux series
inversion.

∎ In the case of composition, it allowed us to go beyond the well-known
case of substituting non-units into power series.

∎ Our lazy scheme for Weierstrass Preparation and Hensel lifting can be
finely analyzed and provide interesting parallel patterns.

∎ The same is expected to be true for Nowak’s construction.

∎ Today, Maple’s language and Maple’s supporting kernel libraries allow
for very effective implementation: MultivariatePowerSeries is
only an an order of magnitude slower than its BPAS counterpart
(which is essentially pure C code) when both execute serially, see [5].

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 43 / 49



Concluding remarks

∎ Lazy evaluation is simply the implementation of continuity in the
Krull topology

∎ How many times have we been saved by the closed-form expression
trick?

∎ Three times: Hensel’s lemma, composition and Puiseux series
inversion.

∎ In the case of composition, it allowed us to go beyond the well-known
case of substituting non-units into power series.

∎ Our lazy scheme for Weierstrass Preparation and Hensel lifting can be
finely analyzed and provide interesting parallel patterns.

∎ The same is expected to be true for Nowak’s construction.
∎ Today, Maple’s language and Maple’s supporting kernel libraries allow

for very effective implementation: MultivariatePowerSeries is
only an an order of magnitude slower than its BPAS counterpart
(which is essentially pure C code) when both execute serially, see [5].

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 43 / 49



Work in progress

∎ In general, power series produced by Weierstrass Preparation and
Hensel’s lemma are not rational expressions in the input power series.
Hence, currently, their closed-forms are not computed.

∎ However, those (former) power series are algebraic in the input power
series. Hence, something can be done.

∎ Nowak’s construction is conceptually much simpler than the EHC but
the EHC avoids expanding expressions by introducing algebraic
functions. Who will win? Can we combine the best of both worlds?
We should know soon .

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 44 / 49



Work in progress

∎ In general, power series produced by Weierstrass Preparation and
Hensel’s lemma are not rational expressions in the input power series.
Hence, currently, their closed-forms are not computed.

∎ However, those (former) power series are algebraic in the input power
series. Hence, something can be done.

∎ Nowak’s construction is conceptually much simpler than the EHC but
the EHC avoids expanding expressions by introducing algebraic
functions. Who will win? Can we combine the best of both worlds?
We should know soon .

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 44 / 49



Work in progress

∎ In general, power series produced by Weierstrass Preparation and
Hensel’s lemma are not rational expressions in the input power series.
Hence, currently, their closed-forms are not computed.

∎ However, those (former) power series are algebraic in the input power
series. Hence, something can be done.

∎ Nowak’s construction is conceptually much simpler than the EHC but
the EHC avoids expanding expressions by introducing algebraic
functions. Who will win? Can we combine the best of both worlds?
We should know soon .

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 44 / 49



References

[1] P. Alvandi, M. Ataei, M. Kazemi, and M. Moreno Maza. “On the
Extended Hensel Construction and its application to the
computation of real limit points”. In: Journal of Symbolic
Computation 98 (2020), pp. 120–162.

[2] P. Alvandi, C. Chen, and M. M. Maza. “Computing the Limit Points
of the Quasi-component of a Regular Chain in Dimension One”. In:
Proc. of CASC 2013. Vol. 8136. Lecture Notes in Computer Science.
Springer, 2013, pp. 30–45.

[3] P. Alvandi, M. Kazemi, and M. Moreno Maza. “Computing limits
with the regularchains and powerseries libraries: from rational
functions to Zariski closure”. In: ACM Communications in Computer
Algebra 50.3 (2016), pp. 93–96.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 45 / 49



[4] M. Asadi, A. Brandt, C. Chen, S. Covanov, M. Kazemi, F. Mansouri,
D. Mohajerani, R. H. C. Moir, M. Moreno Maza, D. Talaashrafi,
L. Wang, N. Xie, and Y. Xie. Basic Polynomial Algebra
Subprograms (BPAS) v. 1.791. http://www.bpaslib.org. 2022.

[5] M. Asadi, A. Brandt, M. Kazemi, M. Moreno Maza, and E. Postma.
“Multivariate Power Series in Maple”. In: Proc. of MC 2020.
Vol. 1414. Communications in Computer Information Science. 2020,
pp. 48–66.

[6] A. Brandt, M. Kazemi, and M. Moreno Maza. “Power Series
Arithmetic with the BPAS Library”. In: Proc. of CASC 2020.
Vol. 12291. Lecture Notes in Computer Science. Springer, 2020,
pp. 108–128.

[7] A. Brandt and M. Moreno Maza. “On the Complexity and Parallel
Implementation of Hensel’s Lemma and Weierstrass Preparation”.
In: Proc. of CASC 2021. Vol. 12865. Lecture Notes in Computer
Science. Springer, 2021, pp. 78–99.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 46 / 49

http://www.bpaslib.org


[8] M. Calder, J. P. González Trochez, M. Moreno Maza, and
E. Postma. Algorithms for multivariate Laurent series. Chapter 4 in
the MSc Thesis of Juan Pablo González Trochez, submitted to MC
2022. 2022.

[9] D. V. Chudnovsky and G. V. Chudnovsky. “On expansion of
algebraic functions in power and Puiseux series I”. In: Journal of
Complexity 2.4 (1986), pp. 271–294.

[10] M. Kazemi and M. Moreno Maza. “Detecting Singularities Using the
PowerSeries Library”. In: Proc. of MC 2019. Springer, 2019,
pp. 145–155.

[11] H. T. Kung and J. F. Traub. “All Algebraic Functions Can Be
Computed Fast”. In: Journal of the ACM 25.2 (1978), pp. 245–260.

[12] A. A. Monforte and M. Kauers. “Formal Laurent series in several
variables”. In: Expositiones Mathematicae 31.4 (2013), pp. 350–367.

[13] M. Moreno Maza and E. Postma. “Substituting Units into
Multivariate Power Series”. In: Proc. of MC 2021. 2021.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 47 / 49



[14] D. Mumford. The red book of varieties and schemes. 2nd.
Vol. 1358. Lecture Notes in Mathematics. Springer, 1999.

[15] K. J. Nowak. “Some elementary proofs of Puiseux’s theorems”. In:
Univ. Iagel. Acta Math 38 (2000), pp. 279–282.

[16] T. Sasaki and F. Kako. “Solving multivariate algebraic equation by
Hensel construction”. In: Japan Journal of Industrial and Applied
Mathematics 16.2 (1999), pp. 257–285.

[17] T. Sasaki and D. Inaba. “Enhancing the Extended Hensel
Construction by Using Gröbner Bases”. In: Proc. of CASC 2016.
Vol. 9890. Lecture Notes in Computer Science. Springer, 2016,
pp. 457–472.

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 48 / 49



Thank You!

http://www.bpaslib.org/

Marc Moreno Maza Implementation Techniques for Power, Laurent, and Puiseux Series in Several VariablesCASC 2022 49 / 49

http://www.bpaslib.org/

	Acknowledgements
	Introduction
	Motivations
	Computation of Zariski closures
	Puiseux series

	Power series
	Lazy evaluation scheme
	Weierstrass preparation
	Hensel lifting
	Composition of power series

	Laurent series
	Mathematical construction
	Encoding
	Addition and multiplication
	Inversion

	Conclusion

