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@ Statement of the problem and previous works



Problem

For a multivariate rational function ¢ € Q(X1, ..., X,), we want to decide
whether
lim T1,...,X
(acl,..A,xn>ﬁ(0,...,0>Q( -2 %n)

exists, and if it does, whether it is finite.



Previous works: part |

Univariate functions (including transcendental ones)
D. Gruntz (1993, 1996), B. Salvy and J. Shackell (1999)

— Corresponding algorithms are available in popular computer algebra
systems

Multivariate rational functions
S.J. Xiao and G.X. Zeng (2014)

— Given g € Q(X4,..

., X,,), they proposed an algorithm deciding
whether or not:

limg, . 2.)—(0,...,0) ¢ €xists and is zero.
— No assumptions on the input multivariate rational function
— Techniques used:

e triangular decomposition of algebraic systems,

e rational univariate representation,

e adjoining infinitesimal elements to the base field.




Lagrange multipliers (1/2)

Let ¢ and t be real bivariate functions of class C* .

Problem

optimize ¢(z,y)
subject to t(z,y) =0

Solution

@ Assuming Vi(z,y) does not vanish on t(x,y) = 0, solve the following
system of equations:

Vg(z,y) = AVi(z,y)
tz,y) = 0
@ Plug in all (z,y) solutions obtained at Step (1) into ¢(x,y) and
identify the minimum and maximum values, provided that they exist.

v




Lagrange multipliers (2/2)

q(x.y)

=

Figure: Optimizing q(z,y) under t(z,y) = ¢



Previous works: bivariate rational functions

C. Cadavid, S. Molina, and J. D. Vélez (2013):

@ Assumes that the origin is an isolated zero of the denominator
@ Maple built-in command 1limit/multi

Discriminant variety

9 i)
(@) = {(@y) R | 4% — a2~ 0},

Key observation

For determining the existence and possible value of

lim z,Y),
(z,y)—(0,0) a(.v)
it is sufficient to compute
lim q(z,y)
(z,y) — (0,0)
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Example
2

Let ¢ € Q(x,y) be a rational function defined by ¢(z,y) = %.

4 2,2 3
= 4 2z%y“ 4+ 3 =
X(Q)_{ vy U{z =0

0
y < 0




Previous works: trivariate rational functions

J.D. Vélez, J.P. Herndndez, and C.A Cadavid (2015).
@ Assumes that the origin is an isolated zero of the denominator
@ Ad-hoc method reducing to the case of bivariate rational functions

Similar key observation

For determining the existence and possible value of

lim T,Y, %),
(z,y,2)—(0,0,0) Q( Y )
it is sufficient to compute
lim q(z,y, 2).
($7 y’ Z) % (07 O’ O)
(z,y,2) € x(q)

Techniques used
e Computation of singular loci

@ Variety decomposition into irreducible components




Outline

© Overview



Our contributions

Sub-routines for computing limits of real rational functions

x Determination of the real branches of a space curve
How?

O Hensel-Sasaki construction

Limit computation at an isolated zero of the denominator

x Generalize the trivariate algorithm of J.D. Vélez, J.P. Hernandez, and
C.A Cadavid to arbitrary number of variables

* Avoiding the computation of singular loci and irreducible
decompositions

How?

@ Triangular decomposition of - algebraic systems
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© Triangular decomposition of semi-algebraic systems



Regular semi-algebraic system

Notation
o Let T'C QX1 <...< X,] be a regular chain with
y:={mvar(t) | teT}tand U:=z\y=Uy,...,Uq.
o Let P be a finite set of polynomials, s.t. every f € P is regular
modulo sat (7).

o Let Q be a quantifier-free formula of Q[U].




Regular semi-algebraic system

Notation

o Let T C Q[X; < ...< X,] be a regular chain with
y:={mvar(t) | t€T}and U:=z\y="U1,...,Uz

o Let P be a finite set of polynomials, s.t. every f € P is regular
modulo sat (7).

o Let Q be a quantifier-free formula of Q[U].

Definition

We say that R := [Q, T, P-] is a regular semi-algebraic system if:

(1) Q defines a _ semi-algebraic set O in RY,
(77) the regular system [T, P] _ at every point u of O

(771) at each point u of O, the specialized system [T'(u), P(u)s] has

Define

Zr(R) = {(u,y) | Q(u),t(u,y) = 0,p(u,y) > 0,Y(t,p) € T x P}.




Example
The system [Q, T, P~], where

2— =
Q::a>O,T::{ vma=0 1 p 0

is a regular semi-algebraic system.




Regular semi-algebraic system

Notations

Let R :=[Q, T, P-] be a regular semi-algebraic system. Recall that Q
defines a non-empty open semi-algebraic set @ in R? and

ZR(R) = {(u,y) | Q(u),t(u,y) = 0’p(uay) > O,V(t,p) €T x P}

Properties

@ Each connected component C of O in R% is a _

thus locally homeomorphic to the hyper-cube (0, 1)¢
@ Above each C, the set Zgr(R) consists of disjoint graphs of

semi-algebraic functions forming a _ of C.

@ There is at least one such graph.

Consequences

@ R can be understood as a parameterization of Zr(R)
o The Jacobian matrix [ Vt,t € T ] is -




Triangular decomposition of semi-algebraic sets

Proposition
Let S := [F_, N>, +, H.| be a semi-algebraic system. Then, there exists a
finite family of regular semi-algebraic systems Ry, ..., R, such that

ZR(S) = UlezR(Ri).

Triangular decomposition
@ In the above decomposition, Rj, ..., R is called a triangular
decomposition of S and we denote by RealTriangularize an
algorithm computing such a decomposition.
@ Moreover, such a decomposition can be computed in an
incremental manner with a function RealIntersect

e taking as input a regular semi-algebraic system R and a semi-algebraic
constraint f =0 (resp. f > 0) for f € Q[X1,...,X,]
e returning regular semi-algebraic system R1,..., R. such that

Zr(f =0)NZr(R) = Ui Zr(R:).
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@ Limits at an isolated zero of the denominator



Generalization of concepts and basic lemmas (1/3)

Discriminant variety (Cadavid, Molina, and Vélez, 2013)

Let ¢ : R™ — R be a rational function defined on a punctured ball Dj.

The discriminant variety x(q) of ¢ is the real zero-set of all 2-by-2 minors
of

X, - X,
9q¢ . O
0X1 0Xn

Limit along a semi-algebraic set

Let S be a semi-algebraic set of positive dimension (i. e. > 1) such that
0 € S in the Euclidean topology. Let L € R. We say

lim q(z1,...,xn) =L
..,0)

whenever
(Ve >0) (30 < 0) (V(x1,...,2p) € S N Dj) |q(x1,...,2n) —L| <€




Generalization of concepts and basic lemmas (2/3)

Lemma 1
For all L € R the following assertions are equivalent:

o lime,  2.)-(0,..0) 9(T1, .., T,) exists and equals L,
o lim .y, 0 4(1,...,2,) exists and equals L.
("El’ e 7wn) S X(q)

Lemma 2

Let Ry,..., R, be regular semi-algebraic systems forming a triangular
decomposition of x(q). Then, for all L € R the following are equivalent:
o lim (,  .)-(0,... 0) ¢existsandequals L.
(1, 2n) € x(q)
o forall i € {1,...,e} such that Zr(R;) has dimension at least 1 and
the origin belongs to Zg(R;), we have lim (,, . v, 0. o) ¢

(xl, e ,In) c Z]R(Ri)
exists and equals L.




Generalization of concepts and basic lemmas (3/3)

Lemma 3

e Assume n > 3. Let R = [Q, {t,}, P~] be a regular semi-algebraic
system of Q[X7, ..., X,] such that Zg(R) has dimension d :=n — 1,
and o € Zg(R). W.l.o.g. we assume that mvar(t,) = X,, holds.

X - X
] Let M = Oty 6t:
X, 1 9Xn

Then, there exists a non-empty set U C D N Zgr(R), which is open
relatively to Zg(R), such that M is full rank at any point of I/, and 0 € U.




Overview of RationalFunctionLimit

Input: a rational function ¢ € Q(X1, ..., X,) such that origin is an
isolated zero of the denominator.

Output: lim, . 2.)=(0,..0) 4(T1, -, Tn)

O Apply RealTriangularize on x(q), obtaining rsas Ry,..., R,

@ Discard R; if either dim(R;) =0 or o ¢ Zr(R;)

. _ checks whether 0 € Zg(R;) or not.

@ Apply [Limitinner|(R) on each regular semi algebraic system of
dimension higher than one.

] _: solving constrained optimization problems

@ Apply LimitAlongCurve on each one-dimensional regular semi
algebraic system resulting from Step 3

] _: Puiseux series expansions



Principles of Limitlnner

Input: a rational function ¢ and a regular semi algebraic system
R:=[Q,T, P-] with dim(Zg(R)) > 1 and 0 € Zr(R)
Output: limit of ¢ at the origin along Zg(R)

@ if dim(Zr(R)) = 1 then return [LimitAlongCurve (¢, R)

Xy e X,
@ otherwise build M := ViteT
@® For all m € Minors(M) such that Zg(R) € Zr(m) build
0B, OB
X, Xy
M = X1 - X, with B, := Y"1 A X2 —r?
Vt,teT
For all m’ € Minors(M’) C :=Reallntersect (R,m' =0,m # 0)

For all C' € C such that dim(Zg(C)) > 0 and o0 € Zg(C)
@ compute L = [Limitlnner (¢, C);
@ if L isno finite limit or L is finite but different from a previously
found finite L then return no_finite limit

@ If the search completes then a unique finite was found and is returned.



Principles of LimitAlongCurve

Input: a rational function ¢ and a curve C given by [Q, T, P-|
Output: limit of ¢ at the origin along C'

Let f, g be the numerator and denominator of ¢
Let 77 := {gX,+1 — f} U T with X,,1; a new variable

Compute the real branches of Wg(7T") := Zgr(T") \ Zg(hy') in R"
about the origin via Puiseux series expansions

©eee

@ If no branches escape to infinity and if Wg(7") has only one limit
point (x1,...,Tpn, Tpt1) With 1 = -+ =z, = 0, then x4 is the
desired limit of ¢

@ Otherwise return no_finite_limit



Example

_ zw+x2+y2
Let Q($7y> va) - 12+y2+z2+w2'

RealTriangularize (x(q)):

Zr(x(q)) = Zr(R1) U Zr(R2) U Zr(R3) U Zgr(Ry4),

where
mi =0
R1:: g: ,RQ:: y:O y
w=20 Frw=
=0
z=0
Rs:=4 y= ,R4.—{w 0



o dim(Zg(R;)) =0
o dim(Zr(Ry)) = 1 —> [LimitAlongCunve (¢, R2) = 3
o dim(Zg(R3)) = 1 = |LimitAlongCurve (¢, R3) = 3
o dim(Zr(Ry)) = 2 = [Limitlnner|(¢, R,)
z=0 z=0
y#0 r#0

o dim(Zx(Rs)) = 1 = |LimitAlongCurve|(q, Rs) = 1
LimitAlongCurve. L

o dlm(ZR(RG)) =1=

— the limit does not exists.
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@ Hensel-Sasaki Construction



Hensel-Sasaki construction: ultimate goal

Ideally:
For F € Q[z,y] (and in fact, even for F(z,y) € C(y)[r]) we aim at
factorizing F'(x,y) as
F(x7y) = Gl(x7y)GT<x7y)
where

@ this factorization holds in C((y*))[x], and
@ deg, (G;) =1holds foralli=1,...,r.

In practice:

@ We truncate the coefficients of G1(z,y),...,G.(x,y) (as polynomials
in y), that is, we factor F'(x,y) modulo an ideal.

@ The main algorithm (next slide) may not guarantee deg, (G;) = 1 for
alli=1,...,r. To overcome this difficulty, the main algorithm is
applied repeatedly on those factors G; for which deg, (G;) > 1 holds,
after a change of coordinates.




Hensel-Sasaki construction: main algorithm

Initial phase

O Let F(z,y) € C[z,y] be square-free, monic in = and let d := deg,(F).

@ The “south-west-most” terms cx®>y® of F(x,y) satisfy an equation of
the form e;/d+ e, /0 = 1, with § € Q and form the Newton polynomial
FO(z ).

@ Let b,d € 270 such that: §/d = §/d, ged(3,d) =1 Choosing such
integers 8, d is possible since § € Q and d € N>,

@ Define S), = <$dy(k+0)/d7 Idfly(kJrS)/dA’xd—zy(lc+23)/d7 B .7on(k+d8>/d>
fork=1,2,....

@ FO(z,vy) is homogeneous (z,y%/%) of degree d and can be factorized
in C((y")) 2.

@ This yields a factorization of F(z,y) in C((y*))[z] modulo Sy, say:

FO(z,y) = G(IO)(a:, y)- Ggo)(x,y) mod S

Inductive phase
For any positive integer k, we can construct ng) (z,y) € (C(yl/cz> [x], for
i=1,...,r, satisfying

0 F(r.y) =G (@.y) - G (a.y) mod S,

o ng)(x, y) = GEO)(x,y) mod 5.




Hensel-Sasaki construction: The Yun-Moses polynomials

For simplicity, we write § = y%/%.
Lemma

Let Gi(x,9) € Clz,§], for i = 1,...,r, be homogeneous polynomials in
(x,9), that we regard in C(g)[x], such that

e r>2andd=deg, (G’l---ér),
o gcd, (Gy,Gj) =1 for any i # j.
Then, for each ¢ € {0,...,d — 1}, there exists only one set of polynomials
{Wi(g)(w,g)) € C(y)[z] | i=1,...,r} satisfying
0 W ((Gr--G) /Gr) o+ W (G- Gy ) /G ) =t
@ deg, (W) (2,9)) < deg, (Gi(z, 7)), fori=1,...,r.

Moreover, the polynomials Wi(o), ey Wi(d_l), fori=1,...,r are

homogeneous in (z,y) of degree deg, G;.




Hensel-Sasaki construction: the inductive phase

Main steps

© Compute AF®)(z,7) := F(z,y) — ng_l) — GFY mod Ski1-
@ From (T. Sasaki & F. Kako, 1999), we have

AF®) (z,y) = fgi)lfvd_lys/d%- et fék)$0yd<§/d
f = Pykid B ec o fore=0,...,d—1
® Fixie{l,...,r}. Construct ng) (x,y) by writing
GP(z,y) = G (2, )+ A6 (2,y), AGP(2,9) =0 mod S
@ From (T. Sasaki & F. Kako, 1999), we have

d—1

ACP (@, y) =S WO )Py i=1,. 0
=0




Hensel-Sasaki construction: an example

@ Flz,y)=2"+2ty—223y—2229° +2(° — %) + 93
(2] F(z) = 2P 702:c3y +rxyl=x (:U0+ y'/2)? (x — y'/?)?
0 G\ =,Gy) = (x 44?2, G = (a —y' )2
@ Yun-Moses polynomials:
W =gz W = eyt =y Wi = —fayl? 4 3y
Wl(l) =0 W2(1) =1ayt? 4+ 1y WB(I) = fix y? + 1y
w® =0 W=y Wi = 4y
W1(3) =0 W2(3) = —%x yl/? W(S) 4xy 1/2
W0 Wl —dey ety W= ey
@ From the computation of AF() = F — G( )G( )G(O) mod SQ
f(l) 1/2 f2(1 2y1/2 f(l) 1/2 f f(l)
o ¢’ =c" +W0)f(1)— z+y mod S
0 G = cl9 Wi D 4w
(z + 71”2) — (3& P2 39°)
0 GV = G 4 W@ ) 4 0 f 0 | @) (0
(o~ /2 +( 22— 1y?)



Hensel-Sasaki construction: our observations

Inductive phase: recall
© Compute AF®) (z,y) := F(z,y) — ngil) G mod Sk+1-
@ From (T. Sasaki & F. Kako, 1999), we have
AF(k)(x’y) _ féli)lxdqu/JJr o +f(§k)x0yd3/d
fe(k) = cék)yk/cz, cék) eC fort=0,...,d—1
(8] AGEk)(ac,y) = ng)(x,y) — ngil)( Y), AG(k)(a:,y) =0 mod Sk
@ We have: AGEk)(x, y) = ;l éW( (x, y)fg ( )

Proposition 1
Q If F(z,y) € Q[z,y] holds then cg ) € Q holds for £ =0,...,d—1 and
all £ > 0.
@ If F(x,y) € Q[z,y] and FO)(z,y) factors in Q((y*))[z] as
(= Gy )™ - (& = Gy )™, then we have W) € Q(G)[g, 2],
where ;== y 8/d




Computing the W“)’s and proving Wi(é) € Q(G)[y, =]
Recall: 3>7_, W E Eﬂ; 2500 where W = S w0 (g)a.
e Take p-th derivative of first equation for 4y =0,1,--- ,m; — 1, and

evaluate x = §(; where (; is a root of F(O) (x,1)

o+ (W(f) F() O Lrd—L

e We have 9zr WV F(o))‘w G = ozm (z°9 )‘:r=§¢§/

()

e This is a system of linear equations in Q (¢;)[9] with unknowns w; ;

and coefficient matrix is a Wronskian matrix
: p(0)
W = | £ 09 £ ]

FO
Jp=0,1,--- ,m;—1
e A Wronskian matrix is invertible if the functions in first row of the

matrix are analytic and linearly independent (J. Bcher 1900).
det(W) = c(?o; )™ where ¢ = [[,2; (k — 1)! and the inverse of W is

i

1 _1)ymititk—1 gmi—1-k i—1—j F(0) i—1
W= = |- =1 O amn;-flfk (™ a © )™ ) |a=ci
=D mi=)! ()™ F;

where j, k = O, 1, <+« ,m; — 1. From there one derives the desired
properties: W ) ¢ Q¢ )( )[x] and W ) ¢ Q&) [z, 7).
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@ Computing real branches of space curves



Branches of Space Curves

Let
T::{ a:‘llxg—l—x%—x%

—x3 + 2% + 2}

Puiseux Parametrizations corresponding to T’

933— — 2t (=t + 6/—1t% +10¢10 +8)
¢1 = 1t5( 5 +2/=1)

T —t2

xg = t2 (120 + 6 /=1t'° — 10410 — 8)
g2 = w2 = —3°(t° +2/-1)

l’lztz

w3 =—t (10 +2¢° +1)
¢3 = x2:t5+1
l‘lzt




Branches of Space Curves

Let
T::{ x‘ll:cg—l—x%—x%

—x3 + 2% + 2}

Puiseux Parametrizations corresponding to T’

333— — 2t (=t + 6/—1t% +10¢10 +8)
¢1 = 1t5( 5 +2/=1)

T —t2

xg = t2 (120 + 6 /=1t'° — 10410 — 8)
¢2 = T = —%t5(t5 + 2\/—1)

1’1:t2

3= —t(t19+245 4+ 1)
o3 = $2:t5—|—1
l‘lzt




Real Puiseux Expansions

Proposition (Characterization of Puiseux Expansions)

Let f(U,Y) € Q(U)[Y] be square-free, monic w.r.t Y and of degree s > 0

in Y. Then, foreach / =1,...,s, we can compute a positive integer o,
and algebraic numbers @%, ..., 07" over Q such that
@ fori=1,...,0, the algebraic number @% has a minimal polynomial

of the form hi(Y) € Q[©},...,0i "[Y],

@ f(U,Y) factorizes as (Y — x1(U)) -+ (Y — xs(U)) where
xe(U) € Q((U*))[©},...,07"] holds.
Note that Q((U*)) stands for the field of Puiseux series over Q.

Remark

The Puiseux expansion x,(U) of f(U,Y) is real if O} is a real algebraic
number over Q[@}, . .,@;_1], fori=1,...,0.




Real Branches of Space Curves (Example)

Let
T::{ a:‘llx3+x§’—x§

—x% +x§ -I-as?

Puiseux Parametrizations corresponding to 7’

xg = —2t? (=t 4+ 6 /=1t!° + 10410 + 8)
d1=1q 12 =5’ (£ +2/-1) € Qv=D
l’lzt

xg = $2 (10 + 6 /=1t — 10410 — 8)
$o =4 g =—L5(t5 +2/=1) € Q(V-1)[]

$1=t2

z3=—t(t0 + 2+ 1)
¢3 = 1‘2:t5+1 GQ[t]
$1=t




Splitting field representation in Maple
o Let h(Y) € Q[Y] be an irreducible and monic with degree s.
o Let g1 := h(Xl)

Then, there exists a positive integer s' < s and monic polynomials
gi € Q[X1,..., Xi—1]/{g1,- -, 9i-1)[Xi], for i = 2,..., s such that

Q[Xl] Q[Xla"'va’]
QY] c Y| C 1Y,
e Ty rrcmrg) O
where h(Y') admits at least one linear factor over %[Y] for each 1;
furthermore, %[Y] is the splitting field of A(Y).
Consequence
o Let © be a root of A(Y).
. . . Q[X1,...,.X;]
o Let j be the smallest integer for which © € o)
Then H :={g1,...,9;} is a zero-dimensional regular chain that we call

encoding of ©.




Overview of RealPuiseuxExpansions

Input: monic irreducible polynomial f(U,Y) € Q[U,Y] w.rtY;
Output: the real Puiseux expansions of f(U,Y) at origin

@ Compute Puiseux expansions of f(U,Y") at origin and obtaining
B:={x1(U),...,xs(U)}
O R:=0
@ for each x(U) € B do
0 let x(U) € QU*)[OY,...,0°]
@ let H' C Q[X;1,...,X; ;] be the zero-dimensional regular chain
encoding the algebraic number ©?
® F:=H'U- - UH,
@ if RealTriangularize(F) # () then
e R:=R U {x(U)}

@ return R



Example 1

[~ R = FolynomialRing([x ¥ z]):
ros= Chaml{[y*(3)-2% ¥ (3) + ¥4 (2) + 22 (5), A (4)" x+ pA(3)-pA(2)], Empty(R), R) Displav(rc R);

br = RegularChainBranches(rc R, |z)], coefficient = complex);
Aat y3 - yz =0
eyt er =0
T
% %Tz(-:rz%erls Rootof(_Z2+ 1) + 10 T10+8)‘,
- f% T (7% + 2 Roetof( 22+ 1)), 1= é T2 (1% 4+ 6 T Rootor( 28+ 1) — 10 T - 8)‘, [z

z=T% y== T (-T°+ 2 Rootof(_ 22+ 1)), x= -

:Ty:T5+1,x:—T(T10+2T5+1)|‘

=> br == RegularChaimBranches(rc R, | z|, coefficient = real);
pro=llz=Ty=T" 41 x=-T(r%+27° +1)]]

@ The PowerSeries library provides the Hensel-Sasaki construction.
e From there, the RegularChains library deduces the real branches of
the curve at the given point.



Example 2

[- R= Poivnomiairing([x ¥ z]);

o= Chaz’n([y3 + Zj/2 +3 z3 x+2 y2 +8 22] R),
Display(re R);
br = RegularChainBranches(rc R [z]);

R = polynowial_ring
rci= regular_chain

Ix+2y2+622=0
|y3+zyz+323=0
1 3 2 3 3 2 ) )
br =Ilz=7jy=§T[RaoIOf‘(_Z —3_2—83)+Raorof[_2 + _Z Rootof(_Z° =3 _2—83) + Rootof(_2" =3 _z—83) —3) 1) x=

PR
-% 72 (Rootof(_22 + 2 Rootof(_2° =3 2 3) + Reotof(_2°— 32— 83)" = 2) Rootof(_2°— 2 2 83) — 2 Rootof(_2°

2=T y= -1 7 ( Rooror(_2*

PR \
+ _ZRootof(_ 28— 2 _2—83) + Rootof(_2° — 22— 83)" — 3) — 2 Rootof(_Z* — 2 _z—83) + 1) 3

2y A
v _2Rootof( LB~ 3 _2-83) + Rootop( 2 — 3 _2—23)" —2) 4 1), = 2 12 (mootop(_22 4 _2 Rootop( 2 — 3 _2— 23)

2 3\ 2
+ Rootof(_2° =3 _2-83)° = 3) Rootof( 27— 3 _z—583) + Reotof( 2 —3 2 83)° = 2 Reotorl 22+ Z Reotof{ 2 =3 _z—83)

I N
+ Rootof( 27—z _z—83) —3) - 31)],

2
Z2=T y= —% T (Rootof( 2% — 3 _z—83) + 1), x= —% 12 (Rootof( 2% — 2 2 88)
N
+2 Rootof(_78 — 3 _7—83) + 28)”

[- reqi_br == RegularChainBranches(re R, | z|, coefficient = real);

s \
real_bri= Hz: T y= —% T (Rootof(_2° =3 _Zz—83) + 1), x= -% 72 (Rootof( 2 =3 z—83)° + 2 Roorof( 2= 3 z—583) + 28,‘”
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@ Limits at a non-isolated zero of the denominator



Notations and preliminaries

(5]

Let again f,g € Q[X},...,X,] such that the fraction ¢ := f/g is
irreducible and not constant.

Let Zr(f) :={(x1,...,2n) € R™ | f(z1,...,2,) = 0}. Similarly,
we define Zg(g).

We assume that o0 := (0,...,0) € Zgr(f) N Zr(g) holds.

Let Ct, and Cy, be the connected components of Zr(f) and Zgr(g)
to which o belongs.

Assume dim(Cy,) > 0.

What holds over C may break over R

Cy.0 = Cy, might occur with f, g different and irreducible; consider
f=(X =Y+ (X?+22T*% and g := (X = Y)? + (Y2 + Z2T?)?
Cy,0NCt, may consist of a single point; consider
f=X-Y)2+(Z-Y)?andg:=(X-Y)?+(Z-X)2




Computing rational function limits often reduces to path tracking

Curve selection lemmal[J. Milnor]

Let fi,..., fm.91,---,9p € Q[X1,..., X,] such that the origin o is in the
closure of the semi-algebraic set .S defined by:

fi==fm=0,91>0,...,9,>0.

Then, there exists a real analytic curve v :[0,¢) — R", with v(0) = o,
and y(t) € S for t > 0.

Remark

e Testing 0 € S can be phrased as a quantifier elimination problem and
thus solved by CAD:
0€S = (Ve>0)(FzeR) |z <e =2z €S.
e For n = 2, one can use "lighter” methods for this test. For instance,
computing the real branches (thus Puiseux series, which form an

ordered field ) of f(z1,x2) = 0 about (z1,22) = (0,0) and check
which ones satisfy g(x1, z2) > 0.




Condition for lim(,, . y-0,.0) ¢(1,...,2,) not to be finite

Proposition 1
Assume that o belongs to the closure of {g =0, f > 0}. Then,
limg, . 2.)-(0,..,0) 4(¥1, - - -, ) cannot be finite.

e Fix ¢ > 0. Assume by contradiction that the limit exists and equals
¢ € R. Then, there exists r > 0 such that for all z € B(o,r) we have
¢ —e<q(z) <l+e. Thus, q(z) is bounded on B(o,r).

e From the hypothesis, for all 7/ > 0, we can choose
y € B(o,r)N{g=0,f>0}.

e Using the continuity of f and making 7’ small enough, we have
B(y,m")NCyo =0 as well as B(y,r") C B(o,r).

e Observe that 1/(g(z)) is arbitrary large (in absolute value) on
B(y,r") while f(x) remains bounded on B(y,’).

e This contradicts the fact that ¢(z) is bounded on B(o,r).



Sufficient condition for lim(,, ., )-0,.0) ¢(1,...,2,) NOt to exist

Proposition 2

Assume that o belongs to the closure of {f = 0,9 > 0} as well as the
closure of {g =0, f > 0} Then, lim¢,  ..)-(,..0)4(T1,- -, %) does
not exist.

e From the first assumption and the curve selection lemma, there exists
a path to the origin along which ¢ is identically zero. Hence,
mg,  20)(0,...,0) 4(T1, - - -, T5) must be null, if it exists.

e From the second assumption and the previous proposition,
lim, . 2.)-(0,..,0) (71, - - -, T5) cannot be finite.



What to do in general?

O Let again f,g € Q[X1,...,X,] such that the fraction ¢ := f/g is
irreducible and not constant.

@ Compute Zg(g). If o is isolated in Zr(g) then use our ISSAC 2016
algorithm (recalled above).

@ Ifoe {g=0,f#0}, no finite limit exists

@ Assume from now on that Cy, € Uy, holds. Let £ be a connected
component of R™\ Cf,.

@ Apply a multivariate version of L'Hospital's Rule to compute

im @

- g9(z)

€

s

o
E

which might a recursive call to this procedure.

©® Note that multivariate versions of L'Hospital’s Rule have assumptions.
What to do when these assumptions are not met is work in progress.



L'Hospital’s Rule: a version for bivariate differentiable functions

A theorem of W.H. Young (1909)
o Let U C {(x,y) €R? | 0<x and 0 <y} be a neighbourhood of
o such that [0, ] x [0,¢] C U holds for € small enough.
o Let f,g:U — R such that the partial derivatives f,, and g,, exist
on 10, £]x]0, €]
o Assume (limy, fay, lim, gzy) € {(0,0), (00, £00)}, that is, no
indeterminate forms.

Then we have

. . . fay(@,y)

lim = lim —_—_ =
(@y) = 0,00  9(z,y) (@,9) = (0,00 Gay(T,Y)
(z,y) €U (z,y) €U




L’Hospital’s Rule: a version for bivariate differentiable functions

o Consider f(x,y) = zy? —y and g(z,y) = 2y — 23
o Zr(f) ={ay—1} U {y =0} and
Zr(g) ={2?>+y =0,y <0} U {x =0}

. faw) _ foul2)
o lim (), (0,0) W,yy) = lim () (0,0 ng( v
(x,y) €U , (@y)eU
lim (G4 5 00 T = O

(z,y) €U
@ 0 is the limit over the quadrant z > 0,y > 0 and the global limit.




L’Hospital’s Rule: a version for multivariate differentiable functions

A theorem of G.R. Lawlor (2012)
@ Let U C R™ be a neighbourhood of o.
@ Let f,g: U — R be differentiable on U and vanishing at o.

o Let C be the connected component of {x € R” | f(z)=g(z) =0}
through o; assume C is smooth at o.

e Let E be a connected component of R™ \ C (or a CAD cell of R™\ C
st. o€ E).

o Let ¥ € R™ be not tangent to C ar o s. t. the directional derivative
D3 g := Vg - U does not vanish on V := B(o,e) N E for some £ > 0.

Then we have




L'Hospital’s Rule: a version for multivariate differentiable functions

Example

o Consider f(x,y) = 2% —y* and g(z,y) = (v — y)? + 22

Zr(f) ={zr =y} U {z = -y} and Zr(g) = {z —y,z = 0}.
Within R3\ Zg(g) consider the CAD cell E := {z # y}.
Choose 7 = (—1,1,0) thus Dyg = Vg - ¥ = —4x + 4y

@ Observe that Dz g does not vanish within E.

@ Then we have

. f(z) .

1 — = 1m
o 9(x) z—
S S

[—
[—

Zz o
x eV

which does not exist.

—2x — 2y
—4dx + 4y




Conclusion and future works

B We presented an algorithm for determining the real branches of a
space curve about one of its point.

B This is a core routine for computing limits of real multivariate rational
functions as well as for addressing topological questions like whether a
point belongs to the closure of a CAD cell.

B To this end, we revisited the Hensel-Sasaki construction and
established properties of the Yun-Moses polynomials.

B We sketched a general algorithm for computing limits of real
multivariate rational functions, which is work in progress.
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