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Abstract.

We propose a divide and conquer adaptation of the factor refinement algorithm of Bach,
Driscoll and Shallit. For an ideal cache of Z words, with L words per block, the original approach
suffers from O(n2/L) cache misses, meanwhile our adaptation incurs O(n2/ZL) cache misses
only. We have realized a multithreaded implementation of the latter using Cilk++ targeting
multicores. Our code achieves linear speedup on 16 cores for sufficiently large input data.

1. Introduction

The implementation of non-linear polynomial system solvers is a very active research area. It has
been stimulated during the past ten years by two main progresses. Firstly, methods for solving
such systems have been improved by the use of so-called modular techniques and asymptotically
fast polynomial arithmetic. See the landmark textbook [11] for this research area. Secondly, the
democratization of supercomputing, thanks to hardware acceleration technologies (multicores,
general purpose graphics processing units) creates the opportunity to tackle harder problems.

One central issue in the implementation of polynomial system solvers is the elimination
of redundant expressions that frequently occur during intermediate computations, with both
numerical methods and computer algebra methods. Factor refinement, also known as coprime
factorization, is a popular technique for removing repeated factors within a set of polynomials.
Coprime factorization has numerous applications in number theory and polynomial algebra, see
the papers [5, 6] and the web site http://cr.yp.to/coprimes.html by Bernstein.

Algorithms for coprime factorization have generally been designed with algebraic complexity
as the complexity measure to optimize. However, with the evolution of computer architecture,
parallelism and data locality are becoming major measures of performance, in addition to the
traditional ones, namely serial running time and allocated space.

In this paper, we revisit the factor refinement algorithms of Bach, Driscoll and Shallit [4]
based on quadratic arithmetic. We show that their augment refinement principle leads to a
highly efficient algorithm in terms of parallelism and data locality. Our approach is inspired by
the paper “Parallel Computation of the Minimal Elements of a Poset” [8]. Figure 1 illustrates
the divide and conquer scheme of our algorithm. Once the original problem has been divided into
sufficiently small sub-problems, those sub-problems are solved serially and then their solutions
are merged in parallel. Here’s the difficult point. As demonstrated in [3], a straightforward
implementation of the merge phase can bring a bottleneck in terms of cache complexity; see [9, 12]
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for this notion. The main contribution of this paper is to overcome this difficulty and exhibit a
factor refinement algorithm which is efficient in terms of cache complexity and parallelism.
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Figure 1. Example of algorithm execution.

On input data of size n, under the condition that each arithmetic operation (integer division
and integer GCD computation) has a unit cost, this parallel algorithm features O(n2) work,
O(Cn) span, and thus O(n/C) parallelism, where C is the size threshold below which serial
code is run. Other approaches [5, 7] have a better work, but as shown in [3] they are not
suitable for implementation on multicore architectures due to high parallelization overheads.
This motivates the work reported in this paper.

For an ideal cache of Z words, with L words per cache-line, with C small enough, for any
input of size n, the number of cache misses of our algorithm is

Q(n) = O(n2/ZL+ n2/Z2),

under the assumption that each input or output sequence is packed, and each sequence item is
stored in one machine word. Moreover, under the tall cache assumption, the above estimate
further simplifies to Q(n) = O(n2/ZL). All these assumptions hold in our implementation
for the case of univariate polynomials over a small prime field. Moreover, our code enforces
balancing of sub-problems for optimizing the share of computer resources among threads.

Our theoretical results are confirmed by an experimentation, based on a multicore
implementation in the Cilk++ concurrency platform [10, 13]. For problems on integers, we use
the GMP library [1] while for problems on polynomials, we use the “Basic Polynomial Algebra
Subroutines (BPAS)” library [14].

2. The Factor Refinement Principle

We review below the notions of factor refinement, coprime factorization and GCD-free basis.
Let n1, . . . , ns be all integers or all univariate polynomials over a field K. We say that n1, . . . , ns

form a GCD-free basis whenever gcd(ni, nj) = 1 for all 1 ≤ i < j ≤ s. Let m1, . . . ,mr be
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other elements of the same type as the ni’s and let m be the product of the mj’s. Let e1, . . . , es
be positive integers. We say that the pairs (n1, e1), . . . , (ns, es) form a factor refinement of
m1, . . . ,mr if the following conditions hold:

(i) n1, n2, . . . , ns form a GCD-free basis,

(ii) for every 1 ≤ i ≤ r there exists non-negative integers f1, . . . , fs such that we have
∏

1≤j≤s n
fj
j = mi,

(iii)
∏

1≤i≤s n
ei
i = m.

When this holds, we also say that (n1, e1), . . . , (ns, es) is a coprime factorization of m. For
instance, 51, 62, 71 is a refinement of 30 and 42 while 51, 62, 71 is a coprime factorization of 1260.

Given a partial factorization of an integer m, say m = m1m2, one can compute d =
gcd(m1,m2) and write

m = (m1/d)(d
2)(m2/d).

If this process is continued until all the factors of m are pairwise coprime, one obtains a coprime
factorization of m within O(size(m)3) bit operations. In their landmark 1988 paper [4], Bach,
Driscoll and Shallit observed that, by keeping track of the pairs (nj, nk) in an ordered pair

list such that only elements adjacent in the list can have a nontrivial GCD, one computes
a coprime factorization of m within O(size(m)2) bit operations. In their proof, they simply
rely on plain (or quadratic) arithmetic. Using asymptotically fast algorithms for the case of
univariate polynomials, D. Bernstein [5] on one hand and, Dahan, Moreno Maza, Schost, Xie [7]
on another, have obtained an estimate of O(d log42(d) log2(log2(d))), where d is the sum of the
degrees of the input polynomials. We note that none of these previous works has considered the
question of cache complexity for factor refinement or, equivalently for coprime factorization or
GCD-free basis computation.

In the sequel of this paper, we focus on the case of univariate polynomials, for which an
additional notion is essential. A univariate polynomial f with coefficients in a field K is said
squarefree if for every non-constant polynomial g ∈ K[x], the polynomial g2 does not divide f .
Note that it is possible to compute a factor refinement (f1, e1), . . . , (fs, es) of f such that the
f1, . . . , fs are pairwise coprime squarefree polynomials and ei < ej holds for all 1 ≤ i < j ≤ p.
This factor refinement is called a squarefree factorization of f ; see [11, 15] for details.

3. A Divide and Conquer Approach

Algorithm 5 presented in this section is an efficient algorithmic solution in terms of data locality
and parallelism for coprime factorization of integers or univariate polynomials. For an ideal cache
of Z words, with L words per cache-line, for an input data of size of n, under the assumptions
stated in the introduction, Algorithm 5 incurs O(n2/ZL) cache misses. In contrast, it is not
hard to check, see [3], that the original algorithm by Bach, Driscoll and Shallit (based on ordered
pair lists) suffers from O(n2/L) cache misses. Modern L1 caches typically match L = 29 and
Z = 216 while for L3 caches, one can have Z = 226 or more.

This substantial gain of Algorithm 5 is obtained thanks to a cache efficient procedure
(Algorithm 4) for merging two coprime factorizations. Before analyzing Algorithm 5, we describe
its specifications and those of its subroutines, namely Algorithms 1, 2, 3, and 4:

• Algorithm 1 receives two square-free polynomials a, b ∈ K[x] and two positive integers e, f .
Its output is a factor refinement of ae, bf .

• Algorithm 2 receives a square-free polynomial a ∈ K[x], a positive integer e, a sequence of
square-free pairwise coprime polynomials (b1, b2, . . . , bn) of K[x] and a sequence of positive
integers (f1, f2, . . . , fn). The output is a factor refinement of ae, b1

f1 , . . . , bn
fn .
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Algorithm 1: PolyRefine(a, e, b, f)

Input: a, b ∈ K[x] squarefree polynomials over a field K and e, f two positive integers.
Output: (c, u,G, V, d, w) where c, d ∈ K[x] and u,w ∈ N and G is a sequence (g1, . . . , gs)

of polynomials of K[x] and V is a sequence (v1, . . . , vs) of positive integers such
that (c, u), (g1, v1), . . . , (gs, vs), (d,w) is a factor refinement of (a, e), (b, f) .

g ← gcd(a, b); a′ ← a quotient g; b′ ← b quotient g;2:2:

if g = 1 then4:4:

return (a, e,∅,∅, b, f) ; // Here ∅ designates the empty sequence6:6:

else if a = b then8:8:

return (1, 1, (a), (e + f), 1, 1)10:10:

else12:12:

(ℓ1, e1, G1, V1, r1, f1)← PolyRefine(a′, e, g, e + f);14:14:

(ℓ2, e2, G2, V2, r2, f2)← PolyRefine(r1, f1, b
′, f);16:16:

if ℓ2 6= 1 then18:18:

G2 ← G2 + (ℓ2) ; // Here + designates sequence concatenation20:20:

V2 ← V2 + (e2);22:22:

return (ℓ1, e1, G1 + G2, V1 + V2, r2, f2) ;24:24:

Algorithm 2: MergeRefinePolySeq(a, e,B, F )

Input: A square-free polynomial a ∈ K[x], a positive integer e, a sequence of square-free
pairwise coprime polynomials (b1, b2, . . . , bn) of K[x] and a sequence of positive
integers (f1, f2, . . . , fn).

Output: (ℓ,m,Q,R, S, T ) where ℓ ∈ K[x], m ∈ N, Q = (q1, . . . , qs) and S = (s1, . . . , sp)
are 2 polynomial sequences of K[x], R = (r1, . . . , rs) and T = (t1, . . . , tp) are 2
positive integer sequences s. t. (ℓ,m), (q1, r1), . . . , (qs, rs), (s1, t1), . . . , (sp, tp) is a

factor refinement of ae, b1
f1 , . . . , bn

fn .

ℓ0 ← a; m0 ← e; Q← ∅; R← ∅; S ← ∅; T ← ∅;2:2:

for i from 1 to n do4:4:

(ℓi,mi, Gi, Vi, di, wi)← PolyRefine(ℓi−1,mi−1, bi, fi) ;6:6:

Q← Q + Gi ;8:8:

R← R + Vi ;10:10:

if di 6= 1 then12:12:

S ← S + (di) ;14:14:

T ← T + (wi) ;16:16:

return (ℓn,mn, Q,R, S, T );18:18:

• Algorithm 3 takes two sequences of square-free pairwise coprime polynomials (a1, . . . , an)
and (b1, b2, . . . , br) of K[x] together with two sequences of positive integers (e1, e2, . . . , en)
and (f1, f2, . . . , fr). The output is a factor refinement of a1

e1 , . . . , an
en , b1

f1 , . . . , br
fr .

• The specifications of Algorithm 4 are the same as those of Algorithm 3. The difference is
that Algorithm 4 runs in parallel and uses Algorithm 3 as serial base case.

• Finally,Algorithm 5 takes a sequence of square-free polynomials (m1,m2, . . . ,mk) ∈ K[x] as
input and generates as output a sequence of univariate polynomials (n1, n2, . . . , ns) ∈ K[x]

High Performance Computing Symposium 2012 (HPCS2012) IOP Publishing
Journal of Physics: Conference Series 385 (2012) 012015 doi:10.1088/1742-6596/385/1/012015

4



Algorithm 3: MergeRefineTwoSeq(A,E,B, F )

Input: Two sequences of square-free pairwise coprime polynomials A = (a1, . . . , an) and
B = (b1, b2, . . . , br) of K[x] together with two sequences of positive integers
E = (e1, e2, . . . , en) and F = (f1, f2, . . . , fr).

Output: (L,M,Q,R, S, T ) where L = (ℓ1, . . . , ℓh), Q = (q1, . . . , qs) and S = (s1, . . . , sp)
are three sequences of polynomials of K[x], M = (m1, . . . ,mh), R = (r1, . . . , rs)
and T = (t1, . . . , tp) are three sequences of positive integers such that
(ℓ1,m1), . . . , (ℓh,mh), (q1, r1), . . . , (qs, rs), (s1, t1), . . . , (sp, tp) is a factor
refinement of (a1, e1), . . . , (an, en), (b1, f1), . . . , (br, fr).

L← ∅; M ← ∅; Q← ∅; R← ∅; S0 ← B; T0 ← F ;2:2:

for i from 1 to n do4:4:

(ℓi,mi, Qi, Ri, Si, Ti)← MergeRefinePolySeq(ai, ei, Si−1, Ti−1) ;6:6:

Q← Q + Qi ;8:8:

R← R + Ri ;10:10:

if ℓi 6= 1 then12:12:

L← L + (ℓi) ;14:14:

M ←M + (mi) ;16:16:

return (L,M,Q,R, Sn, Tn);18:18:

Algorithm 4: MergeRefinementDNC(A,E,B, F )

Input: Two sequences A = (a1, . . . , an) and B = (b1, b2, . . . , br) of square-free pairwise
coprime polynomials in K[x] together with two sequences of positive integers
E = (e1, e2, . . . , en) and F = (f1, f2, . . . , fr).

Output: (L,M,Q,R, S, T ) where L = (ℓ1, . . . , ℓh), Q = (q1, . . . , qs) and S = (s1, . . . , sp)
are three sequences of polynomials of K[x], M = (m1, . . . ,mh), R = (r1, . . . , rs)
and T = (t1, . . . , tp) are three sequences of positive integers such that
(ℓ1,m1), . . . , (ℓh,mh), (q1, r1), . . . , (qs, rs), (s1, t1), . . . , (sp, tp) is a factor
refinement of (a1, e1), . . . , (an, en), (b1, f1), . . . , (br, fr).

if n ≤ BASESIZE or r ≤ BASESIZE then2:2:

return MergeRefineTwoSeq(A,E,B, F );4:4:

else6:6:

Divide A, E, B, and F into two halves called A1, A2, E1, E2, B1, B2, and F1, F2,8:8:

respectively ;
(L1,M1, Q1, R1, S1, T1)← spawn MergeRefinementDNC(A1, E1, B1, F1) ;10:10:

(L2,M2, Q2, R2, S2, T2)← spawn MergeRefinementDNC(A2, E2, B2, F2) ;12:12:

sync ;14:14:

(L3,M3, Q3, R3, S3, T3)← spawn MergeRefinementDNC(L1,M1, S2, T2) ;16:16:

(L4,M4, Q4, R4, S4, T4)← spawn MergeRefinementDNC(L2,M2, S1, T1) ;18:18:

sync ;20:20:

return {L3 +L4,M3 +M4, Q1 +Q2 +Q3 +Q4, R1 +R2 +R3 +R4, S3 + S4, T3 + T4} ;22:22:
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Algorithm 5: ParallelFactorRefinementDNC(A)

Input: A sequence A = (m1,m2, . . . ,mk) of square-free polynomials of K[x].
Output: A sequence of square-free pairwise coprime polynomials

N = (n1, n2, . . . , ns) ∈ K[x], and a sequence of positive integers
E = (e1, e2, . . . , es) such that (n1, e1), (n2, e2), . . . , (ns, es) is a factor refinement
of m1,m2, · · · ,mk.

if k < 2 then2:2:

return (m1), (1) ;4:4:

else6:6:

Divide A into two subsequences called A1 and A2;8:8:

(X1, Y1)← spawn ParallelFactorRefinementDNC(A1) ;10:10:

(X2, Y2)← spawn ParallelFactorRefinementDNC(A2) ;12:12:

sync;14:14:

return MergeRefinementDNC(X1, Y1,X2, Y2);16:16:

and a sequence of positive integers (e1, e2, . . . , es) such that ((n1, e1), (n2, e2), . . . , (ns, es))
is a refinement of (m1,m2, · · · ,mk). Moreover, n1, n2, . . . , ns are square-free.

Proposition 1 analyzes the parallelism of Algorithm 5 for the fork-join parallelism model [10]
under one simplification hypothesis, which we state below.

We assume that each polynomial operation (division or GCD computation) involved in
Algorithm 5 or its subroutines has a unit cost. Obviously, this assumption does not seem
realistic. However, if D is the maximum degree of an input polynomial and if each arithmetic
operation (addition, multiplication, inversion) in K has a constant bit cost, then each subsequent
polynomial operation performed by Algorithm 5 or its subroutines runs in O(D2) bit operations.
Therefore, this assumption can still be seen as a first approximation of what really happens.

In order to analyze Algorithm 5 and its subroutines, one needs to choose a measure of the
input data. Our assumption suggests the following choice. For each of Algorithms 1, 2, 3, 4 or
5, the input size is the total number of polynomials in the input.

Proposition 1 With the above hypotheses, for a size n input, the work, span, and parallelism

of Algorithm 5 are respectively O(n2), O(Cn) and O(n/C), where C is the threshold BASESIZE.

The proof of Proposition 1 can easily be made by adapting the proof techniques of [8], see [3].
We turn now our attention to cache complexity and analyze the cache complexity of the serial

versions of our algorithms. We start by specifying how data is layed out in memory. We assume
that each input or output sequence in Algorithms 1, 2, 3 or 4 is packed, that is, its successive
polynomials occupy consecutive memory slots. We also assume that each element of the field K

can be stored in one machine word.
We specify a few helpful notations for establishing our cache complexity results. We denote

by |p| the degree of a non-zero univariate polynomial p over K. For a finite polynomial sequence
P = (p1, . . . , pn), we denote by |P | the sum of the degrees of p1, . . . , pn.

Nest, we make a second assumption: each integer in any input or output sequence of positive
integers is stored in one machine word; moreover, any polynomial in any input or output sequence
of Algorithms 1, 2, 3 or 4 is non-constant and monic1. Consequently, any polynomial p in any
input or output sequence of Algorithms 1, 2, 3 or 4 can be stored within |p| machine words.

1 As they are currently stated, Algorithms 1, 2, 3 or 4 do not meet this latter assumption However, enforcing this
assumption only requires simple transformations that we do not reproduce to keep pseudo-code easier to read.
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Lemma 1 Under the above assumptions, with the notations of Algorithm 1, we have

|c|+ |G| ≤ |a| and |G|+ |d| ≤ |b|. (1)

Proof ⊲ We proceed by induction on the sum of the degrees of the input polynomials of
Algorithm 1, that is, |a| + |b|. First, we observe that, at Line 4, if g = 1 holds, then the
conclusion trivially holds. Indeed, in this case, we have c = a, G = ∅ and d = b. Similarly, at
Line 8, if a = b holds, the conclusion also holds. These two cases cover, in particular, the base
case of the induction, that is, |a|+ |b| = 2. Now, we assume that g has a positive degree. Thus,
we can apply the induction hypothesis to the two recursive calls at Lines 14 and 16, since we
have |a′|+ |g| < |a|+ |b| and thus |r1|+ |b

′| ≤ |g|+ |b′| < |a|+ |b|.
Next, we shall estimate |ℓ1|, |G1 +G2| and |r2| at the last return point of Algorithm 1, that

is, at Line 24. We designate by G0
2
the value of G2 after executing Line 16 and before executing

Line 18. Then we have:

|ℓ1|+ |G1 +G2| ≤ |ℓ1|+ |G1|+ |G2| by definition
≤ |ℓ1|+ |G1|+ |G

0
2
|+ |ℓ2| by definition

≤ |a′|+ |g| by induction
≤ |a| since a = a′g.

Similarly, we have

|G1 +G2|+ |r2| ≤ |G1|+ |G2|+ |r2| by definition
≤ |G1|+ |ℓ2|+ (|G0

2
|+ |r2|) by definition

≤ |G1|+ |r1|+ |b
′| by induction

≤ |g|+ |b′| by induction
≤ |b| since b = b′g.

This completes the proof. ⊳

Lemma 2 Under the above assumptions, with the notations of Algorithm 2, we have

|ℓ|+ |Q| ≤ |a| and |Q|+ |S| ≤ |B|. (2)

Proof ⊲ We use the notations of the pseudo-code of Algorithm 2. We have the following
inequalities:

|ℓn|+ |Q| ≤ |ℓn|+ |Gn|+ |Gn−1|+ · · · + |G1| by definition
≤ |ℓn−1|+ |Gn−1|+ · · ·+ |G1| by Lemma 1
...

...
≤ |ℓ1|+ |G1| by Lemma 1
≤ |l0| by Lemma 1
≤ |a| by definition.

With Lemma 1, we also have:

|Q|+ |S| ≤
∑i=n

i=1
(|Gi|+ |di|) ≤

∑i=n

i=1
|bi| ≤ |B|.

This completes the proof. ⊳

Lemma 3 Under the above assumptions, with the notations of Algorithm 3, we have

|L|+ |Q| ≤ |A| and |Q|+ |Sn| ≤ |B|. (3)
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The proof technique is similar to that of the previous two lemmas, so we skip it here.

Proposition 2 Under the above assumptions, for an input of size n, each of the Algorithms 1,

2 and 3 can be run in space Θ(n) bits.

Proof ⊲ Lemmas 1, 2 and 3 imply that for an input of size n, the output size is at most n.
Recall that by input size or output size, we mean the total number of polynomial coefficients
(except the leading coefficients since they are all set to 1). The output contains also sequences
of positive integers, the number of those being at most n. Finally, we observe that each of the
Algorithms 1, 2 and 3 does not require extra memory space other than: the space for the input
and output data, and a constant number of pointers and index variables. ⊳

Lemma 4 Under the above assumptions, for an ideal cache of Z words, with L words per cache-

line, there exists a positive constant α such that for an input of size n, satisfying n < αZ, the

number of cache misses of Algorithm 3 is O(n/L+ 1).

Proof ⊲ By Proposition 2, there exists a positive constant β such that for an input of size n,
the memory requirement for running Algorithm 3 is at most βn bits. And those βn bits, up to
a constant number of them, are used for storing a number (independent of n) of sequences of
polynomials and positive integers. Now recall that each sequence of polynomials (resp. positive
integers) is stored in an array. Recall also that loading to cache (resp. writing back to main
memory) an array of length ℓ requires O(ℓ/L+ 1) cache misses. This conclusion follows. ⊳

Theorem 1 Under the above assumptions, for an ideal cache of Z words, with L words per

cache-line, for C small enough, for a size n input, the number of cache misses of Algorithm 4

is Q(n) = O(n2/ZL+ n2/Z2), which becomes Q(n) ∈ O(n2/ZL) with tall cache assumption.

Proof ⊲ It follows from Lemma 4 and the recursive structure of Algorithm 4 that there exists
a positive constant α such that Q(n) satisfies the following relation:

Q(n) ≤

{

O(n/L+ 1) for n < αZ

4Q(n/2) + Θ(1) otherwise,

provided that C < αZ holds. Strictly speaking the above recurrence assumes that each of the
input polynomial sequences A and B can be split into two sequences of approximately the same
size. When the total number of polynomials in A and B is large, this is likely. When it is small,
the condition n < αZ is likely to hold and we are “out of the woods”. A more formal treatment
can be done using standard (but quite involved) proof techniques, as for the parallelization of
quick-sort algorithm2. The above recurrence leads to the following inequality for all n ≥ 2:

Q(n) ≤ 4Q(n/2) + Θ(1)

≤ 4[4Q(n/4) + Θ(1)] + Θ(1)

...

≤ 4kQ(n/2k) +

k−1
∑

j=0

4jΘ(1)

where k = ⌈log2(n/αZ)⌉. Since we have n/2k ≤ αZ, we deduce:

Q(n) ≤ (n/αZ)2(αZ/L+ 1) + Θ((n/αZ)2)

= O(n2/ZL+ n2/Z2).

This completes the proof. ⊳

2 For details, see the slides of the lecture Analysis of Multithreaded Algorithms available at
http://www.csd.uwo.ca/∼moreno/CS9624-4435-1011.html

High Performance Computing Symposium 2012 (HPCS2012) IOP Publishing
Journal of Physics: Conference Series 385 (2012) 012015 doi:10.1088/1742-6596/385/1/012015

8



 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  2  4  6  8  10  12  14  16

S
pe

ed
up

Cores

Parallelism = 136.931277, Ideal Speedup
Lower Performance Bound

Measured Speedup

Figure 2. Cilkview-based scalability analysis of our parallel factor refinement algorithm for as
a set of dense 5,000 univariate polynomials of degree up to 200 as input.

4. Experimentation

We have implemented our algorithm in Cilk++ and tested it successfully with both integers
and polynomials. Figure 2 generated with Cilkview, shows scalability results on an Intel(R)
Xeon(R) (64 bit) 16-core node, with CPU (E7340) Speed 2.40GHz, 128.0 GB of RAM for an
input data set of 5,000 polynomials of various degrees up to 200. Coefficients are taken modulo
a machine word prime. On 16 cores, a speedup factor of 14 is reached. Figure 3 shows that
similar performance results have been obtained with an input data set of 200,000 machine word
integers. See [3] for more experimental results. Within Maple [2], we have realized serial
implementations of both the original algorithm of Bach, Driscoll and Shallit [4] and our divide
and conquer adaptation. For sufficiently large input, the latter outperforms the former by a
factor ranging from 3 to 6.

5. Concluding remarks

We have presented a cache efficient algorithm for coprime factorization, based on the factor
refinement principle of Bach, Driscoll and Shallit [4]. The high ratio work to cache complexity of
our approach (namely O(ZL) for an ideal cache of Z words, with L words per block) suggests that
it is well suited for modern architectures, in particular multicores. Experimental comparison
between the serial implementations of the original algorithm of [4] and ours confirm the benefits
of the latter.

The divide and conquer structure of our approach leads to a multithreaded algorithm with a
parallelism of O(n) (in the fork-join model) for an input data of size n. Different optimization
techniques (work load balancing among sub-problems, data packing) are used in our our Cilk++
implementation which achieves linear speedup on 16 cores for sufficiently large input data.

We believe that this work illustrates the importance of cache complexity in the design of
efficient algorithm targeting multicore architectures. As shown in [3], alternative algorithmic
approaches for coprime factorization fail on these architectures either because they have a low
ratio work to cache complexity or because of parallelization overheads.
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Figure 3. Cilkview-based scalability analysis of our parallel factor refinement algorithm for a
set of 200,000 integers as input.
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