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Duval defined and studied rational Puiseux expansions. In
this paper we first prove that the existence of rational Puiseux
expansions follows from the structure of algebraic extensions
of a completion of the rational function field. We then
describe a canonical system of rational Puiseux expansions,
which are constructed in terms of the coefficients of classical
Puiseux expansions. Using recent effective results on alge-
braic functions, we use this construction to prove that a sys-
tem of rational Puiseux expansions exists whose height can be
bounded in terms of the degrees and height of the polynomial
determining the rational Puiseux expansions.

1. Introduction.

The layout of the paper is as follows. In Section 2 we make some definitions
and state the main results of the paper. In Section 3 we discuss some of
the theory of algebraic extensions of complete fields. In Section 4 some
preliminary results are proved. In Section 5 the main theorems on the
existence of rational Puiseux expansions are proved. Finally, in Section 6 we
present an explicit construction of a system of rational Puiseux expansions,
and thereby provide an effective version of the existence theorem.

2. Statement of main results.

Throughout this paper F ∈ Q[x, y] will denote a polynomial of degree n > 0
in y and of degree m in x. We will assume that discyF 6= 0, where discyF
is the discriminant of F , and F is regarded as a polynomial in y. Puiseux’s
theorem (see for example p. 118 of [7]) asserts the existence of n distinct
formal series

yi(x) =
∞∑

k=fi

ak,i

(
x1/ei

)k
(i = 1, ..., n)
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such that

(2.1) F (x, y) = v(x)
n∏

i=1

(y − yi(x)),

where v(x) is the leading coefficient of F when F is regarded as a polyno-
mial in y, the ak,i are complex numbers, and fi are integers defined by the
condition afi,i 6= 0. These are the n Puiseux expansions at x = 0 of the
algebraic function y defined by F (x, y) = 0. For i = 1, ..., n, the integer ei is
the ramification index of the series yi, and is minimal in the sense that if d
is any positive divisor of ei, then there is an index k not divisible by d such
that ak,i 6= 0. Throughout this paper we will make reference to

(2.2) y(x) =
∞∑

k=f

ak

(
x1/e

)k
,

which is one of the n series given above.
Let ζe denote a primitive e-th root of unity. The branch of the series y(x)

is the set of series

B(y(x)) =


∞∑

k=f

ak

(
ζj
ex

1/e
)k

; j = 0, . . . , e− 1

 .

Note that B(y(x)) contains precisely e distinct series. Let L = Q(af ,
af+1, . . . ), s = [L : Q], and σ1, σ2, ..., σs be the s embeddings of L into
Q, where Q is an algebraic closure of Q. The conjugacy class of y(x) is

C(y(x)) =


∞∑

k=f

σi(ak)
(
ζj
ex

1/e
)k

; i = 1, . . . , s , j = 0, . . . , e− 1

 .

Note that C(y(x)), and hence B(y(x)), consist entirely of Puiseux expan-
sions at x = 0 of the algebraic function y defined by F (x, y) = 0.

In what follows, for any field E, E((x)) = {
∑∞

k=l ckx
k ; l ∈ Z , ck ∈

E for k ≥ l} is the field of Laurent series in x with coefficients in E. The
following is a consequence of the fact that the n Puiseux expansions of y are
distinct. The details can be found in Lemma 1 and Lemma 2 of [16].

Proposition 2.1.
1. The product

∏
B(y(x))(y − yi(x)) is irreducible in Q((x))[y], of degree e

in y.
2. The product

∏
C(y(x))(y − yi(x)) is irreducible in Q((x))[y] of degree

e(s/s0) in y, where
s0 = #

{
σ : L ↪→ Q; ∃ t ∈ Z such that σ(ak) = akζ

tk
e for all k ≥ f

}
.

The above result illustrates that the classical Puiseux expansions of y de-
termine information about the factorization of F in Q((x))[y], but fail to
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exhibit explicit information about the factorization of F in Q((x))[y]. We
will see that a rational Puiseux expansion associated to y(x) has coefficients
in a subfield of L = Q(af , af+1, . . . ) which is of degree precisely s/s0 over
Q. In this way, the rational Puiseux expansions not only contain all of the
information of the classical Puiseux expansions, but also give information
about the factorization of F in Q((x))[y] (see Theorem 2 of [4]).

We now proceed to define rational Puiseux expansions. A parametriza-
tion of the branch B(y(x)), determined by y(x), with y(x) as in (2.2),
is the pair (x, y) = (Ze,

∑∞
k=f akZ

k). Parametrizations of B(y(x)) deter-
mined by two different elements in B(y(x)) are equivalent parametrizations.
A generalized parametrization of B(y(x)), determined by y(x), is (x, y) =
(λZe,

∑∞
k=f αkZ

k), where λ ∈ Q, αk = ak(λ1/e)k for k ≥ f , and λ1/e is a
fixed e-th root of λ. Two generalized parametrizations of B(y(x)) are equiv-
alent if they are determined by two elements of B(y(x)). If σ ∈ Gal(Q/Q),
then σ acts on a generalized parametrization by σ(λZe,

∑∞
k=f αkZ

k) =
(σ(λ)Ze,

∑∞
k=f σ(αk)Zk).

Definition. Assume that the algebraic function y has g branches. A sys-
tem of rational Puiseux expansions of the algebraic function y is a set of g
pairwise inequivalent generalized parametrizations of the branches of y with
the property of being invariant under the action of Gal(Q/Q). Elements in
such a system are called rational Puiseux expansions.

By invariance under the Galois action, we mean that under the action of
any element in Gal(Q/Q), the images of two distinct generalized parametri-
zations are distinct.

For the sake of illustration we provide an example, given in [4]. Let

F (x, y) = (x2 + y2)3 − 4x2y2.

In this case the algebraic function y has the 6 Puiseux expansions

y1(x) = 1/2x2 + · · · , y2(x) = −1/2x2 + · · · ,

y3(x) =
√

2x1/2 + · · · , y4(x) = i
√

2x1/2 + · · · ,

y5(x) = −
√

2x1/2 · · · , y6(x) = −i
√

2x1/2 + · · · .

In this case the branches (and conjugacy classes) of the algebraic function
y are

{y1(x)}, {y2(x)}, {y3(x), y5(x)}, {y4(x), y6(x)},
and a corresponding set of rational Puiseux expansions is the set of pairs

{(T, 1/2T 2 + · · · ), (T,−1/2T 2 + · · · ), (1/2T 2, T + · · · ), (−1/2T 2, T + · · · )}.
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In this example we see that the coefficients of the rational Puiseux ex-
pansions all lie in Q. By Theorem 2.2 below this is not surprising since, for
example for y3(x), e = 2, s = 2, and s0 = 2, showing that the coefficients
of the corresponding rational Puiseux expansion lie in an extension of Q of
degree s/s0 = 2/2 = 1. To see that s0 = 2, we use the fact that all 6 of
the Puiseux expansions have different leading terms, which, by the proof of
Theorem 2.2, implies that the value l in Theorem 2.2 can be taken to be
f = 1.

Note that rational Puiseux expansions are in one to one correspondence
with the branches of the algebraic function y. Moreover, the classical
Puiseux expansions are easily recovered from a system of rational Puiseux
expansions. In particular, if (λZe,

∑∞
k=f αkZ

k) is a generalized parametriza-
tion representing a branch B, then B consists of the e series

∞∑
k=f

αk(λ−1/eζj)k(x1/e)k; j = 0, ..., e− 1

 ,

for some e-th root of unity ζ and some e-th root, λ−1/e, of λ−1.

The following result was proved in [4]. We provide an alternative proof
based on the structure of algebraic extensions of complete fields.

Theorem 2.1. Let F (x, y) ∈ Q[x, y] with discyF 6= 0, and let y denote the
algebraic function defined by F (x, y) = 0. Then there exists a system of
rational Puiseux expansions of y.

The following result shows how a rational Puiseux expansion gives explicit
information about the factorization of F in Q((x))[y].

Theorem 2.2. Let y(x) be as in (2.2), and let (λZe,
∑∞

k=f αkZ
k) be a ra-

tional Puiseux expansion parametrizing B(y(x)). Let L = Q(af , af+1, · · · ),
s = [L : Q], and

s0 = #
{

σ : L ↪→ Q; ∃ t ∈ Z such that σ(ak) = akζ
tk
e for all k ≥ f

}
.

Then Q(λ, αf , αf+1, · · · ) is a subfield of L of degree s/s0 over Q, and hence

#C(y(x)) = e · [Q(λ, αf , αf+1, . . . ) : Q].

Moreover, Q(λ, αf , αf+1, . . . ) = Q(λ, αf , αf+1, . . . , αl) for some l ≤ 4mn2.

It is noteworthy that these results can be extended to any base field K of
characteristic zero, although for the sake of simplicity we will consider only
the case that K = Q.
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By Proposition 2.1, #C(y(x)) is the degree of the irreducible factor of F
in Q((x))[y] with y − y(x) as a factor. Thus, F is irreducible in Q((x))[y]
precisely if #C(y(x)) = n. In this way, along with Theorem 2.2, a system
of rational Puiseux expansions gives information about the factorization of
F in Q((x))[y].

In the final section of this paper we will describe an explicit system of
rational Puiseux expansions. From this we deduce the following effective
version of Theorem 2.1. We first require some definitions.

If P 6= 0 is a (possibly multivariate) polynomial with integer coefficients,
the content of P is the greatest common divisor of the coefficients of P . If
P 6= 0 has rational coefficients, the denominator of P is the unique positive
integer denom(P ) such that denom(P ) · P has integer coefficients and con-
tent equal to one. If P has integer coefficients, then the height of P, denoted
ht(P ), is the maximum of the absolute values of the coefficients of P . More
generally, if P has rational coefficients, then the height of P is the maxi-
mum of denom(P ) and ht(denom(P ) · P ). Given an algebraic number α,
Pα will denote the defining polynomial of α, that is, the unique irreducible
univariate polynomial P (x), with integer coefficients and content equal to
one, such that P (α) = 0. The height of α, denoted ht(α), is defined to be
ht(Pα).

Definition. Let S =
{

(λiZ
e,
∑∞

k=fi
αi,kZ

k); i = 1, · · · , r
}

be a system of
rational Puiseux expansions. The height of S, denoted ht(S), is the maxi-
mum of ht(λ1), ..., ht(λr).

Because of the fact that the classical Puiseux expansions are canonical,
a system of rational Puiseux expansions is completely determined by the
choice of the parameters λ1, ..., λr. This remark not only provides justifica-
tion for the previous definition, but also motivates the problem of determin-
ing a system of rational Puiseux expansions of small height.

Theorem 2.3. Let F (x, y) ∈ Q[x, y] be of degree n in y, m in x, and
let h = ht(F ). Assume that discyF 6= 0, and let y denote the algebraic
function defined by F (x, y) = 0. Then there exists a positive constant C,
with C < 2500, and a system S of rational Puiseux expansions of y with

(2.3) ht(S) < (2nmnlog nh)Cm2n10
.

It seems difficult to prove such an effective result directly from the con-
struction described in [4]. From the point of view of a bit-complexity anal-
ysis, the system of rational Puiseux expansions in the proof of Theorem
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2.3 would be easier to compute than the one described in [4]. In fact, us-
ing the main result of either [2] or [15], it can be shown that the system
of rational Puiseux expansions described in this paper can be computed in
polynomial-time in the bit complexity of F , which does not seem to be the
case for the system described in [4]. More precisely, because of the poten-
tial for large coefficient growth, a theoretical bit-complexity analysis of the
construction of rational Puiseux expansions by the method in [4] yields an
exponential running time in the number of bit operations. On the other
hand, the computation described therein would probably be more practical
than computing the system described here because of the fact that all of the
computations in the algorithm of [4] are done in the inertial subfield instead
of the extension field generated by the coefficients of the classical Puiseux
expansions, as is done here. Therefore, the main purpose of our result is to
prove the existence of at least one parameter λ with ‘small’ height.

3. Algebraic extensions of Q((x)).

The purpose of this section is to present some of the basic theory of algebraic
extension of complete fields. No new results are presented here.

Throughout this section the field of Laurent series with rational coeffi-
cients

Q((x)) =


∞∑

k=f

akx
k; f ∈ Z, ak ∈ Q


will be the base field whose extensions we will be interested in studying.
Let v =| |x denote the valuation on Q(x) at x = 0, given by v(0) = 0 and
v(G/H) = 2−f , where G 6= 0 and G/H = xf (G1/H1) with G1(0) 6= 0,
H1(0) 6= 0. Then Q((x)) is the completion of Q(x) with respect to v,
and v(

∑∞
k=f akx

k) = 2−f , where af 6= 0. The integer f is the order of∑∞
k=f akx

k, written as f = ordx
∑∞

k=f akx
k.

Let E denote an algebraic extension of Q((x)) of degree n. Then (for
example, see Theorem 7 in Chapter 2 of [1]) there is precisely one extension
v1 of v to E, given by

v1(α) = v(N (α))1/n,

where N is the norm from E to Q((x)). The function ordx is similarly
extended to E by

ordx(α) = (1/n)ordx(N (α)),
for α ∈ E. The ring of integers of E is the set

O = {α ∈ E; v1(α) ≤ 1},
and the unique maximal ideal consisting of the nonunits of O is

P = {α ∈ E; v1(α) < 1}.
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The field O/P is the residue class field of E. We remind the reader here of
some of the basic properties of the residue class field.

Let E1 ⊆ E2 be algebraic extensions of Q((x)), then (for example see
Theorem 3 in Chapter 3 of [1]) the residue class field of E1 is isomorphic to
a subfield of the residue class field of E2.

If K is an algebraic extension of Q, and e ≥ 1 is a positive integer, then
the residue class field of K((x1/e)) is K.

We now turn our attention to the structure of E. More precisely, by
Puiseux’s theorem, we may assume that E is of the form

E = Q((x))(y0),

where y0 = y(x) is given in (2.2).

Let K denote the residue class field of E, then δ = δ(E/Q((x))) = [K : Q]
is the inertia of E, and K((x)) is the inertial subfield of E (the inertia is
normally denoted by f which we reserve for the order of a Laurent series).
K((x)) is the maximal subfield of E of the form L((x)), with L an algebraic
number field. The ring of integers of K((x)) is denoted K[[x]]. Note that K
is the residue class field of K((x)).

An algebraic extension E of Q((x)) is called unramified if the inertia of
E over Q((x)) equals the degree of E over Q((x)), that is, δ(E/Q((x))) =
[E : Q((x))]. It is easy to see that such extensions are of the form L((x)) for
some algebraic number field L. Thus, in the notation of the preceding para-
graph, we have that K((x)) is the maximal unramified extension of Q((x))
in E.

Again let E denote an algebraic extension of Q((x)), and let ordx denote
the order function on E defined in Section 2. The set GE ={ordx(α); α ∈ E}
is called the value group of E, and it is easy to see that the index [GE : Z]
is an integer, called the ramification index of L over Q((x)), and denoted
e(E/Q((x))). By Theorem 10 in Chapter 3 of [1] we have the relation

[E : Q((x))] = e(E/Q((x))) · δ(E/Q((x))).

Thus, E is unramified precisely when e(E/Q((x))) = 1. On the other hand,
E is said to be totally ramified if e(E/Q((x))) = [E : Q((x))]. It is evident
from the definitions of ramification and inertia that if Q((x)) ⊆ E1 ⊆ E2

are algebraic extensions, then

e(E2/Q((x))) = e(E2/E1) · e(E1/Q((x))),

δ(E2/Q((x))) = δ(E2/E1) · δ(E1/Q((x))).
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Thus, E = Q((x))(y0) is a totally ramified extension of its inertial subfield
K((x)). It follows (for example see Proposition 3.4.3 of [18]) that

E = K((x))(w),

where w is a solution of
xe1 = α,

where α ∈ K((x)), and e1 = e(E/K((x))) = [E : K((x))]. It will be shown
that the integer e1 is equal to the ramification index e of the series y0 = y(x),
justifying the terminology.

4. Preliminary Results.

In this section we prove some results required for the proofs of the main
theorems. The following result is well known, the reader is referred to p. 70
of [1].

Lemma 4.1. Let L be an algebraic number field, and let

α = 1 + a1x + a2x
2 + . . .

be a nonzero element in 1 + xL[[x]]. If e ≥ 1 is a positive integer, then the
equation

(4.1) Ze = α

has a solution in L((x)).

We will assume henceforth that F is an irreducible element in Q((x))[y],
and y0 will denote a root of F , given by y0 = y(x) in (2.2). Let E =
Q((x))(y0), then by the remarks in the previous section,

E = K((x))(T ),

where K is the residue class field of E, and T e1 ∈ K((x)), with e1 = [E :
K((x))].

Lemma 4.2. Let e denote the ramification index of y0, then e = e1. More-
over, E = K((x))(T ) where T satisfies the relation T e = µx for some µ ∈ K.

Proof. Write T e1 ∈ K((x)) as

T e1 = αtx
t + αt+1x

t+1 + . . . = αtx
t(1 + P (x)),

where t ∈ Z, P (x) ∈ xK[[x]], and αi ∈ K for i ≥ t. By Lemma 4.1, it
follows that T can be chosen so that T e1 = βxt for some β ∈ K.

If d = gcd(t, e1), then E is a field extension of K(β1/d)((x)) of degree e1/d
for some d-th root of β. Thus, by the remarks in the previous section about
K((x)) being the maximal unramified extension of Q((x)) in E, it follows
that β1/d ∈ K, and hence that T e1/d ∈ K((x)). Thus, d = 1 since T is of
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degree e1 over K((x)), and there are integers r and s such that 1 = rt− e1s.
By replacing T by T r/xs, it follows that T e1 = µx, with µ = βr.

To see that e = e1, first notice that T = (µx)1/e1 ∈ E, while E =
Q((x))(y0) contains only elements which are a sum of terms involving the
formal variable x1/e. Therefore, e1 > e is impossible, and the result will
follow by proving that e divides e1. Let p be a prime dividing e, and let r be
the power of p which properly divides e. By the definition of the ramification
index of y0, there is a positive integer k, not divisible by p, such that the
coefficient ak of xk/e in y0 is nonzero. Since y0 can be written in the form∑

αk((µx)1/e1)k, it follows that pr must divide e1. Since this holds for any
prime dividing e, it follows that e divides e1. �

Let all notation be as above: y0 = y(x) is as in (2.2), e is the ramification
index of y0, f = ordxy0, E = Q((x))(y0), K is the residue class field of E,
and T is an element in E such that E = K((x))(T ) and T e = µx for some
µ ∈ K. Note that E = K((T )), a fact to be used later in this section. For
k ≥ f define αk by

αk = ak(µ−1/e)k,

where µ1/e is an e-th root of µ such that µ1/ex1/e ∈ E (µ1/ex1/e = T , and T
is defined by this). The author would like to express his gratitude to Profes-
sor Bernard Dwork for suggestions in [5] leading to the results of this section.

Lemma 4.3. Let L = Q(af , af+1, . . . ) and K0 = Q(µ, αf , αf+1, . . . ). Then
K = K0, L = K(µ1/e), and [K(µ1/e) : K] = s0.

Proof. For brevity let K0 = Q(µ, αf , αf+1, . . . ) and K1 = Q(af , af+1, . . . ).
Since y0 ∈ E = K((x))(T ), y0 can be written in the form

y0 =
∞∑

k=f1

βkT
k,

where βk ∈ K for k ≥ f1. But, as Lemma 4.2 shows, T = µ1/ex1/e, so that

y0 =
∞∑

k=f1

βk(µ1/e)k(x1/e)k =
∞∑

k=f

ak(x1/e)k.

Therefore f = f1 and βk = αk for k ≥ f . This shows that K0 ⊆ K, and
moreover that y0 ∈ K0((x))(T ), from which it follows that K((x))(T ) =
K0((x))(T ). Also, K0 ⊆ K forces [E : K0((x))] ≥ e. On the other hand,
T e ∈ K0((x)) and E = K0((x))(T ), so that [E : K0((x))] ≤ e, and hence
[E : K0((x))] = e. But now this and K0 ⊆ K imply that K((x)) = K0((x)),
from which it follows that K = K0.

To show that K1 = K(µ1/e) it will be shown that they are both equal to
the residue class field, say K2, of the field E1 = E(x1/e). First observe that
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E1 = Q((x1/e))(y0), so that ak ∈ K2 for all k ≥ f , and hence K1 ⊆ K2.
Now y0 ∈ K1(x1/e), therefore E1 = Q((x1/e))(y0) ⊆ K1(x1/e). By the
remarks in the previous section it follows that K2 ⊆ K1, and hence K1

is the residue class field of E(x1/e). Now observe that T = µ1/ex1/e ∈
K(µ1/e)((x))(x1/e), so that E = K((x))(T ) ⊆ K(µ1/e)((x))(x1/e), and hence
E1 ⊆ K(µ1/e)((x1/e)). Since the residue class field of K(µ1/e)((x1/e)) is
K(µ1/e), we have that K2 ⊆ K(µ1/e). But T = µ1/ex1/e ∈ E, so that
µ1/e ∈ E1, and hence K(µ1/e)(x1/e) ⊆ E1. It follows that K(µ1/e) ⊆ K2,
and so K(µ1/e) is the residue class field of E1, which is the required result.

By part 2 of Proposition 2.1, we have that y0 is of degree es/s0 over
Q((x)), and so [E : Q((x))] = es/s0. By Lemma 4.2, [E : K((x))] = e, and
so [K((x)) : Q((x))] = [K : Q] = s/s0. The last statement now follows from
the fact that [K(µ1/e) : Q] = s. �

5. Proof of Theorem 2.1 and 2.2.

Proof of Theorem 2.1. Assume that F factors into irreducibles in Q((x))[y]
as F = F1F2 · · ·Fr, and that yi is an algebraic function defined by Fi(x, yi) =
0 for i = 1, . . . r. If Ui is a system of rational Puiseux expansions of yi for
i = 1, . . . r, then it follows that U =

⋃r
i=1 Ui is a system of rational Puiseux

expansions of the algebraic function y. Thus, it is sufficient to consider the
case that F is an irreducible element in Q((x))[y]. By Proposition 2.1, the
algebraic function y defined by F (x, y) = 0 has only one conjugacy class of
Puiseux expansions at x = 0. Let y0 = y(x), given in (2.2), be one these
expansions, and define E to be the algebraic extension E = Q((x))(y0)
of Q((x)). By Lemma 4.2 there is an element T ∈ Q((x))(y0) such that
E = K((x))(T ), where K is the residue class field of E, and such that
T e = µx for some µ ∈ K. It follows that there are αk ∈ K for k ≥ f such
that y0 =

∑∞
k=f αkT

k, and there is an e-th root, µ1/e of µ, and corresponding
e-th root, λ1/e of λ, such that αk = ak(λ1/e)k, for k ≥ f , where λ = µ−1.
Define

(x(T ), y(T )) =

λT e,
∞∑

k=f

αkT
k

 .

Then (x(T ), y(T )) is a generalized parametrization of the branch containing
y0. Let T denote the orbit of (x(T ), y(T )) under the action of Gal(Q/Q),
then T is a set of generalized parametrizations of the branches of Puiseux
expansions in the conjugacy class of y0, and is invariant under the action of
Gal(Q/Q). It suffices to prove that no two elements of T are equivalent.

If two elements of T are equivalent, then there are embeddings σ, γ ∈
Gal(Q/Q) and an integer i, with 0 ≤ i ≤ e− 1, such that

σ(αk)(σ(λ−1)1/e)k = γ(αk)(γ(λ−1)1/e)kζik
e
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for all k ≥ f , where ζe is an e-th root of unity.
Regard σ and γ as embeddings of K((x)) into an algebraic closure in the

obvious way. Recall that T is defined by T = (λ−1)1/ex1/e. Since e = [E :
K((x))], for each of σ and γ there are e distinct and unique embeddings
of E into this algebraic closure, defined by σj(T ) = σ(λ−1)1/ex1/eζj

e and
γj(T ) = γ(λ−1)1/ex1/eζj

e for j = 0, . . . , e−1. Consider the action of σe−i on
y0, where i is as above. Then

σe−i(y0) =
∞∑

k=f

σ(αk)σe−i(T )k =
∞∑

k=f

σ(αk)(σ(λ−1)1/e)kζ−ik
e xk/e

while

γ0(y0) =
∞∑

k=f

γ(αk)γ0(T )k =
∞∑

k=f

γ(αk)(γ(λ−1)1/e)kxk/e.

Since y0 is a primitive element of E, it follows that σe−i = γ0. But if σ
and γ are not equal, then the two sets of embeddings {σj ; j = 0, . . . , e− 1}
and {γj ; j = 0, . . . , e− 1} are disjoint. Therefore, σ = γ, and hence i = 0,
showing that no two elements of T are equivalent. �

Proof of Theorem 2.2. In order to prove the first part of the theorem, it
is enough to show that Q(λ, αf , . . . ) is the residue class field K of E =
Q((x))(y0). Since y0 ∈ Q(λ, αf , . . . )((x))(Z), it follows that E ⊂ Q(λ,
αf , . . . )((x))(Z). Recall that E is of degree e over K((x)), where e is
the ramification index of y0. As Q(λ, αf , . . . )((x))(Z) is of degree e over
Q(λ, αf , . . . )((x)), it follows that K ⊂ Q(λ, αf , . . . ). Recall that the order of
the conjugacy class C(y0) of y0 is e(s/s0), and so because (λZe,

∑∞
k=f αkZ

k)
is a rational Puiseux expansion parametrizing B(y0), its orbit under
Gal(Q/Q) has s/s0 elements. Therefore, [Q(λ, αf , . . . ) : Q] = s/s0 = [K :
Q] and hence K = Q(λ, αf , . . . ).

The proof of the last statement in Theorem 2.2 is somewhat more involved.
Let y0 denote the singular part of y0, defined as the initial partial sum

(5.1) y0 =
l∑

k=f

ak(x1/e)k

of y0, where l is minimal with the property that y0 is not equal to an initial
partial sum of any other Puiseux expansion of the algebraic function y at
x = 0 defined by F (x, y) = 0. We will need an upper bound for l. Define
H(t, z) = trF (te, ztf ), where r is chosen so that H is a polynomial not
divisible by t. Then the series

z(t) =
∞∑

k=0

ak+f tk
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is a root of H(t, z). Moreover, it is easy to see that degz H = n and degt H ≤
2mn. Therefore, by Lemma 3 of [3], it follows that

(5.2) l ≤ 2mn(2n− 1),

and that
Q(af , af+1, · · · ) = Q(af , af+1, · · · , al).

It is now enough to prove that

Q((x))(y0) = Q((x))(y0),

for the result follows immediately from the fact, which is proved in a sim-
ilar manner as Lemma 4.3, that the residue class field of Q((x))(y0) is
Q(αf , αf+1, · · · , αl).

Let K ′ = Q(αf , αf+1, · · · , αl), then

Q((x))(y0) ⊆ K ′((x))(T ) ⊆ K((x))(T ) = Q((x))(y0),

so it is enough to prove that y0 is of degree at least es/s0 over Q((x)).
Let G(y) be the defining polynomial of y0 over Q((x)). For j = 0, 1, . . . ,

e− 1 and an embedding σ of L into Q, define the series

y0(x, σ, j) =
l∑

k=f

σ(ak)(ζj
ex

1/e)k.

Then it is easy to see that each y0(x, σ, j) is a root of G(y) = 0. By using
the exact argument given in the proof of Lemma 2 of [16], applied to y0,
it follows that the number of distinct y0(x, σ, j) is precisely es/s0, and the
result follows. �

6. Proof of the Theorem 2.3.

In this section we prove Theorem 2.3 by constructing an explicit system of
rational Puiseux expansions. The proof of the bound in (2.3) is enabled by
a recent effective result on algebraic functions proved in [6]. The author
would like to greatly thank Professor Hendrik Lenstra for his suggestions in
[11] on this work.

Let F (x, y) ∈ Q[x, y] be as in (2.1), with n = degy F , m = degx F , and
h = ht(F ), and let

(6.1) y(x) =
∞∑
i=1

Aix
fi/ei

be a Puiseux expansion at x = 0 of the algebraic function y defined by
F (x, y) = 0, where for each i ≥ 1, Ai 6= 0 and the greatest common divisor
of fi and ei is 1.
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In order to construct a system of rational Puiseux expansions of F , it
suffices to consider the case that F is irreducible in Q((x))[y], for in general
one would construct one system for each irreducible factor of F in Q((x))[y]
and then take the union of these as a system of rational Puiseux expan-
sions for F . We also make the assumption that F has integer coefficients,
for this causes no loss of generality since one may replace F by denom(F )·F .

Let

(6.2) yl(x) =
l∑

i=1

Aix
fi/ei

denote the singular part of y(x), as defined in the proof of Theorem 2.2.
Note that by (5.2),

l ≤ 4mn2,

and that Q(A1, A2, . . . ) = Q(A1, A2, . . . , Al). Let e = lcm(e1, . . . , el),
which by Theorem 6.1 of [9], is the ramification index of y(x). For i ≥ 1, let
ci = e/ei, then from the definition of e and the fact that gcd(ei, fi) = 1, it
follows that gcd(c1f1, . . . , clfl, e) = 1. Hence, there exist integers n1, . . . , nl

such that 0 ≤ ni ≤ e− 1 for each i ≥ 1 and
l∑

i=1

nicifi ≡ −1 (mod e).

Define algebraic numbers µ and λ by

µ =
l∏

i=1

Ani
i ,

λ = µe,(6.3)

and for i ≥ 1 put

βi = Aiµ
cifi .

Let K = Q(λ, β1, β2, . . . ), and r = [K : Q]. Let σ1, . . . , σr denote the
embeddings of K into Q. For 1 ≤ j ≤ r put

(xσj (T ), yσj (T )) =

(
σj(λ)T e,

∞∑
i=1

σj(βiT
cifi)

)
.

Lemma 6.1. The set S =
{
(xσj (T ), yσj (T )); j = 1, . . . , r

}
is a system of

rational Puiseux expansions of the algebraic function y defined by F (x, y) =
0.

Proof. It is clear that S consists of generalized parametrizations of the
branches of the algebraic function y at x = 0, and that to each branch of y
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there is at least one parametrization of that branch in S. It suffices to show
that no two elements of S are equivalent, in other words, to show that no
two elements of S represent the same branch.

For a fixed embedding σj of K into Q let E(σj) denote the set of σk such
that (xσj (T ), yσj (T )) and (xσk

(T ), yσk
(T )) are equivalent. By an argument

identical to that given in the proof of Lemma 2 of [16], it can be seen that
there is an extension σ′j of σj to K(µ) such that

E(σj) =
{
σ′j ◦ θ; θ ∈ E(1K)

}
.

Thus, it suffices to prove that E(1K) = {1K}. Assume that without loss of
generality that σ1 ∈ E(1K), and let σ′1 denote an extension of σ1 to K(µ).
The result will follow by showing that σ′1 is the identity map on K.

We are assuming that (λT e,
∑∞

i=1 βiT
cifi) and (σ1(λ)T e,

∑∞
i=1 σ1(βi)T cifi)

represent the same branch. This implies that there is an integer j with
0 ≤ j ≤ e− 1 such that for all i ≥ 1

σ1(βi)σ′1(µ)−cifi = βiµ
−cifiζjcifi

e .

From the definition of βi we deduce that for all i ≥ 1

σ′1(Ai) = Aiζ
jcifi
e .

It follows from the choice of the integers n1, . . . , nl that

σ′1(µ) =
l∏

i=1

σ′1(Ai)ni =
l∏

i=1

Ani
i ζjnicifi

e = µζ−j
e ,

and hence also that σ1(λ) = λ. Moreover, for i ≥ 1,

σ′1(βi) = σ′1(Ai)σ′1(µ)cifi = Aiζ
jcifi
e µcifiζ−jcifi

e = βi.

Recall that K = Q(λ, β1, β2, . . . ), and so σ′1 is the identity on K, which is
what we needed to prove. �

To complete the proof of Theorem 2.3 we need to estimate the height of
λ, where λ is given in (6.3). This is accomplished by proving a series of
preliminary results.

We define quantities A and B which will be used frequently in what
follows. Let

A = max
1≤i≤l

‖Ai‖,

where for an algebraic number α with algebraic conjugates α = α(1), . . . ,
α(q), the house of α is

‖α‖ = max
1≤j≤q

|α(j)|.
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Also, let
B = max

1≤i≤l
denom(Ai),

where for an algebraic number α, denom(α) is the denominator of α, and
is defined as the least positive integer v such that vα is an algebraic integer.

Lemma 6.2. There is an algebraic integer α such that Q(α) = Q(A1,
A2, . . . , Al) and

ht(α) ≤ (8mn4AB)n.

Proof. Let B1, . . . , Bl be positive integers no larger than B such that for
each i = 1, . . . , l, BiAi is an algebraic integer. Since deg(Ai) ≤ n for each
1 ≤ i ≤ l, the proof on p. 139 of [14] shows that there are positive integers
t1, . . . , tl−1, with 1 ≤ ti ≤ n2 for each i, such that

α = B1A1 + t1B2A2 + · · ·+ tl−1BlAl

is a primitive element of Q(A1, . . . , Al). Moreover, α defined this way is an
algebraic integer. We have then that

‖α‖ = ‖B1A1 + t1B2A2 + · · ·+ tl−1BlAl‖ ≤ ln2BA ≤ 4mn4AB.

But since α is an algebraic integer, Lemma A.2 of [13] shows that

ht(α) ≤ (2‖α‖)n,

from which the result follows. �

Lemma 6.3. Let α be as in the previous result. For each i with 1 ≤ i ≤ l
there exists a polynomial Pi(x) ∈ Q[x] of degree at most n − 1 such that
Ai = Pi(α) and

ht(Pi) ≤ (8mn4AB)2n2
.

Proof. Fix i in the range 1 ≤ i ≤ l. Define

A∗
i = denom(Ai) ·Ai.

Then because A∗
i is an algebraic integer,

ht(PA∗
i
) ≤ ht

 n∏
j=1

(x + denom(Ai) · ‖Ai‖)

 ≤ (2BA)n.

Also, because A∗
i ∈ Q(α), we have that A∗

i = pi(α), where pi(x) ∈ Q[x] is
some polynomial of degree no greater than n− 1.

Let D denote a positive integer and let β denote an algebraic integer. For
a polynomial P ∈ (1/D)Z[β][x], we define its height to be the largest of the
absolute values of the rational integers appearing in D ·Q, and denote this
height by Pmax, where it is understood that this height is dependent upon
the fixed values D and β.
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In the proof of Proposition 3.11 of [10], it was shown that a monic factor
of degree m of a polynomial Q in (1/D)Z[β][x] has height bounded by

Qmax

(
2(deg(Q) + 1)(c3)(c− 1)(c−1)

((
2m

m

)))1/2

ht(Pβ)2(c−1),

where c is the degree of β over Q.
Using this together with the result of Lemma 6.2, it follows that x−pi(α)

is a factor of PA∗
i
(x) in Q[α][x] such that

ht(pi(x)) ≤ ht(PA∗
i
)[2(n + 1)2n3nn · 2]1/2(n + 1)n−1ht(Pα)2n−2

≤ (2BA)n(2n)
n+5

2 (n + 1)n−1(8mn4AB)2n2−2n ·B
≤ (8mn4AB)2n2−n.

The result now follows by defining Pi(x) = (1/denom(Ai))pi(x). �

Lemma 6.4. There is a polynomial P ∈ Q[x] with deg P ≤ n− 1 such that
λ = P (α) and

ht(P ) ≤ (8mn4AB)8mn6
.

Proof. From the definition of λ we have that

λ =
l∏

i=1

Pi(α)nie,

where the Pi are as in Lemma 6.3. Let P ∗(x) =
∏l

i=1 Pi(x)nie, then
λ = P ∗(α) and deg P ∗ ≤ 4mn3(n − 1)2. Since α is of degree at most n,
then reducing the higher powers of α appearing in P ∗(α) results in a repre-
sentation λ = P (α) for some polynomial P ∈ Q[x] of degree at most n− 1.
Using the estimates obtained so far, we can deduce an upper bound for
ht(P ). For an element β ∈ Q[α], with β = p(α) and p ∈ Q[x] of degree less
than n, let (β)max = ht(p). By an inductive argument it is easy to see that
(αt)max ≤ ht(α)(ht(α)+1)t−n for all t ≥ n. Therefore, since each ni ≤ n−1,
we have by Lemma 6.3 that

ht(P ) ≤ ht(P ∗)
deg P ∗∑

i=0

(αi)max

≤ (ht(P ∗))(deg P ∗ + 1) ·maxi ((αi)max)

≤ (4mn5)
(

max
1≤i≤l

ht(Pi)
)4mn3(n−1)

ht((1+ · · ·+xn−1)4mn5
)ht(Pα)4mn5

≤ (4mn5)(8mn4AB)8mn5(n−1)n4mn5
ht(Pα)4mn5

≤ (8mn4AB)8mn6
.
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Completion of the proof of Theorem 2.3. We begin by computing an
estimate for ‖λ‖. Let G = Gal(Q/Q). With P as in Lemma 6.4 we have

‖λ‖ = max
σ∈G

‖σ(P (α))‖

= max
σ∈G

‖P (σ(α))‖

≤ ht(P ) · n · ‖α‖n.

Let

λ∗ =
l∏

i=1

(BiAi)nie,

then λ∗ is an algebraic integer and

‖λ∗‖ =
l∏

i=1

Bnie
i ‖λ‖.

By Lemma A.2 of [13],
ht(λ∗) ≤ (2‖λ∗‖)n.

Therefore,
ht(λ∗) ≤ 2nB4mn5

ht(P )nnn‖α‖n.

We now remark that if β is an algebraic number and ν = denom(β), then β
is a root of the polynomial Pνβ(νx), which has integer coefficients, leading
coefficient equal to νdeg(β), and the same degree as Pβ. It follows that if
lc(Pβ) represents the leading coefficient of Pβ , then lc(Pβ) ≤ denom(β)deg(β).
Therefore,

ht(Pλ) ≤ lc(Pλ) · ht(Pλ∗)
≤ (denom(λ))n · ht(Pλ∗)

≤ B4mn5
2nB4mn5

ht(P )nnn‖α‖n

≤ B8mn5
(2n)n(8mn4AB)n2

(8mn4AB)8mn7

≤ (8mn4AB)9mn7
.

Regard y(x) as in (2.2), and let

yl1 =
l1∑

k=f

ak(x1/e)k

denote the singular part of y(x). Then by (5.2), l1 ≤ 4mn2. By Lemma 2.a
of [12], it follows that

‖ak‖ ≤ 2(h + 1)[(h(2mn + 1)(n + 1))2n]2mn2+k,

for k ≥ 0. Since A = maxf≤k≤l1 ‖ak‖, it follows that

A ≤ 2(h + 1)[(h(2mn + 1)(n + 1))]12mn3
.
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Since y(x) satisfies F (x, y(x)) = 0, it follows that for bk = ak+f , the series
z(t) =

∑∞
k=0 bkt

k, satisfies H(t, z(t)) = 0, where H(t, z) = trF (te, zt−f ),
and r is chosen to be the positive integer so that H(t, z) is a polynomial,
and H(0, z) 6= 0. Note that f ≤ m and r ≤ 2mn, from which it follows that
degt H ≤ 2mn, degz H ≤ n and ht(H) = ht(F ). Applying the main result
of [6] to the series z(t), we obtain

denom(bk) ≤ h(4.8n4+2.74 log n22nh2(2mn + 1)2)n(k+2nm),

for all k ≥ 0. We recall that B = maxf≤k≤l1 denom(ak), and so from the
definition of the bk and the bound l1 ≤ 4mn2, it follows that

B ≤ (4.8n4+2.74 log n22nh2(2mn + 1)2)6mn3
,

from which Theorem 2.3 follows.
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