
Parallel Univariate Real Root Isolation on Multicores

Changbo Chen, Marc Moreno Maza and Yuzhen Xie

ORCCA, University of Western Ontario, Canada

AMMCS 2011, Waterloo
June 29, 2011



Introduction

Solving for the Real Solutions of Polynomial Systems

Practical importance

Most applications of polynomial system solving require real solving
• equilibria (and their stability analysis) of dynamical systems,

• motion planning, such as the piano mover problem,

• loop invariants, reachable states in program verification,

• inverse kinematics problem in robotics, etc.

Need of a symbolic approach

In each of the above problems certifying the number of real solutions
or avoiding errors due to approximation may be necessary.

Moreover, the above problems are often parametric.

Therefore, symbolic (thus exact) computation is often the way to go.



Introduction

Solving for the Real Solutions of Polynomial Systems

Practical importance

Most applications of polynomial system solving require real solving
• equilibria (and their stability analysis) of dynamical systems,

• motion planning, such as the piano mover problem,

• loop invariants, reachable states in program verification,

• inverse kinematics problem in robotics, etc.

Need of a symbolic approach

In each of the above problems certifying the number of real solutions
or avoiding errors due to approximation may be necessary.

Moreover, the above problems are often parametric.

Therefore, symbolic (thus exact) computation is often the way to go.



Introduction

Solving Symbolically for the Real Solutions

Symbolic representation of real numbers

A real number that is a solution of a (univar.) polynomial is said
algebraic. For instance

√
2 and −

√
2 are algebraic, but π is not.

Let α ∈ R be algebraic as solution of f (x) = 0, for some f ∈ R[x ].

We represent α by a pair (f , (a, b)) with a, b ∈ Q such that
• either a = b = α
• or α is the only real root x0 of f satisfying a < x0 < b.

Usage

Most algorithms manipulating the real solutions of polynomial
systems (cylindrical algebraic decomposition, real root classification,
semi-algebraic system decomposition) rely on this representation
although others are available (continued fractions, Thom’s encoding)

In fact, these algorithms rely on a core routine: real root isolation.



Introduction

Solving Symbolically for the Real Solutions

Symbolic representation of real numbers

A real number that is a solution of a (univar.) polynomial is said
algebraic. For instance

√
2 and −

√
2 are algebraic, but π is not.

Let α ∈ R be algebraic as solution of f (x) = 0, for some f ∈ R[x ].

We represent α by a pair (f , (a, b)) with a, b ∈ Q such that
• either a = b = α
• or α is the only real root x0 of f satisfying a < x0 < b.

Usage

Most algorithms manipulating the real solutions of polynomial
systems (cylindrical algebraic decomposition, real root classification,
semi-algebraic system decomposition) rely on this representation
although others are available (continued fractions, Thom’s encoding)

In fact, these algorithms rely on a core routine: real root isolation.



Introduction

Real Root Isolation

Input: A univariate polynomial f (x) := adx
d + · · ·+ a1x + a0 with

rational number coefficients

Output: A list of pairwise disjoint intervals [α1, β1], . . . , [αe , βe ] with
rational endpoints such that

each real zero of f (x) belongs to some interval [αi , βi ]
each [αi , βi ] contains one and only one real root of f (x)

Example: useless
Input: f (x) := x6 − 3x4 + 2x3 − 1

Output: [−5
2 ,−2], [1, 32 ]



Introduction

Real Root Isolation

Input: A univariate polynomial f (x) := adx
d + · · ·+ a1x + a0 with

rational number coefficients

Output: A list of pairwise disjoint intervals [α1, β1], . . . , [αe , βe ] with
rational endpoints such that

each real zero of f (x) belongs to some interval [αi , βi ]
each [αi , βi ] contains one and only one real root of f (x)

Example: useless
Input: f (x) := x6 − 3x4 + 2x3 − 1

Output: [−5
2 ,−2], [1, 32 ]



Introduction

Computational Challenges of Real Root Isolation

Complexity issues

Let f ∈ Z[x ] be a polynomial with integer coefficients. Let d be its
degree and δ be the maximum bit size of a coefficient.

Isolating the real roots of f requires O(d6 + d4δ2) bit operations.

Implementation issues

Solvers (like RegularChains:-Triangularize) in Maple can
compute the complex solutions of fairly large systems.

Often the output is of the following triangle form

f (x1) = 0, x2 = R2(x1), . . . , xm = Rm(x1),

where f is a polynomial and R2, . . . ,Rm are rational functions.

Thus, isolating the real roots of f computes the real solutions.

Unfortunately, d and δ (as above) grow exponentially with m.

Challenge: Isolating the real roots of f may require too much
resource for the desktop where the complex solutions were computed!



Introduction

Computational Challenges of Real Root Isolation

Complexity issues

Let f ∈ Z[x ] be a polynomial with integer coefficients. Let d be its
degree and δ be the maximum bit size of a coefficient.

Isolating the real roots of f requires O(d6 + d4δ2) bit operations.

Implementation issues

Solvers (like RegularChains:-Triangularize) in Maple can
compute the complex solutions of fairly large systems.

Often the output is of the following triangle form

f (x1) = 0, x2 = R2(x1), . . . , xm = Rm(x1),

where f is a polynomial and R2, . . . ,Rm are rational functions.

Thus, isolating the real roots of f computes the real solutions.

Unfortunately, d and δ (as above) grow exponentially with m.

Challenge: Isolating the real roots of f may require too much
resource for the desktop where the complex solutions were computed!



Introduction

A Driving Application: Limit Cycles of Dynamical Systems

Limit cycles

For ẋ = P(x , y), ẏ = Q(x , y), this is a
closed trajectory s.t. at least one other
trajectory spirals into it as t → +/−∞.

For P,Q polynomials of degree d ,
estimating the maximum number of
limit cycles is Hilbert’s 16th Problem.

Our challenge

Solving a certain polynomial system in (P. Yu and R. Corless, 2009)
estimates the number of limit cycles for d = 3 in a special case.

RegularChains:-Triangularize computes the 852 complex
roots of this system within 19 days and 9GB of RAM on a desktop
(Chen, Corless, Moreno Maza, Yu and Zhang).

However, isolating the real roots require far more resources.



Introduction

A Driving Application: Limit Cycles of Dynamical Systems

Limit cycles

For ẋ = P(x , y), ẏ = Q(x , y), this is a
closed trajectory s.t. at least one other
trajectory spirals into it as t → +/−∞.

For P,Q polynomials of degree d ,
estimating the maximum number of
limit cycles is Hilbert’s 16th Problem.

Our challenge

Solving a certain polynomial system in (P. Yu and R. Corless, 2009)
estimates the number of limit cycles for d = 3 in a special case.

RegularChains:-Triangularize computes the 852 complex
roots of this system within 19 days and 9GB of RAM on a desktop
(Chen, Corless, Moreno Maza, Yu and Zhang).

However, isolating the real roots require far more resources.



The Sequential Algorithms

Real Root Counting: Vincent-Collins-Akritas Algorithm

Algorithm 1: RealRoots(p)

Input: a univ. squarefree poly. p
Output: the num. of real roots of p
begin

Let k ≥ 0 be an int such that
the absolute value of all the real
roots of p is less than or equal
to 2k ;
if x | p then m := 1 else m := 0;

p1 := p(2kx);
p2 := p1(−x);
m′ := RootsInZeroOne(p1);
m := m + RootsInZeroOne(p2);
return m + m′;

end

Algorithm 2: RootsInZeroOne(p)

Input: a univ. squarefree poly. p
Output: the num. of real roots of p

in (0, 1)
begin

p1 := xdp(1/x);
p2 := p1(x + 1); //Taylor shift
Let v be the num. of sign
variations of the coeff. of p2;
if v ≤ 1 then return v ;
p1 := 2dp(x/2);
p2 := p1(x + 1); //Taylor shift
if x | p2 then m := 1 else m := 0;

m′ := RootsInZeroOne(p1);
m := m + RootsInZeroOne(p2);
return m + m′;

end



The Sequential Algorithms

Taylor Shift and Pascal’s Triangle

Example: For f (x) = a3x
3 + a2x

2 + a1x + a0, we have, in Horner’s rule,
f (x + 1) = a3x

3 + (a2 + 3a3)x2 + (a1 + 2a2 + 3a3)x + (a0 + a1 + a2 + a3)

This is a Pascal’s triangle:

0 0 0 0
↓ ↓ ↓ ↓

a3 → + → + → + → + → c3
↓ ↓ ↓

a2 → + → + → + → c2
↓ ↓

a1 → + → + → c1
↓

a0 → + → c0



The Sequential Algorithms

Key Observations

There is certain parallelism in the recursive calls to RootsInZeroOne.
However, the work among the recursive calls to RootsInZeroOne may
not be balanced.

The most costly operation is the Taylor shift.

We should put effort in parallelizing Taylor shift.

Related work:
Collins and Akritas (1972),
Collins, Johnson and Küchlin (1992),
Gathen and Gerhard (1997),
Decker and Krandick (1999),
Johnson, Krandick and Ruslanov (2005),
Boulier, Chen, Lemaire and Moreno Maza (2009), etc.



Parallel Strategies and Complexity Analysis

Our Two Strategies for Parallelizing Taylor Shift

“divide-and-conquer” in (a) and (b), and “blocking” in (c)

B

B

I

II

II

II

III

III

2

2

1

3

3

3

4

4

4

4

(a) (b) (c)



Parallel Strategies and Complexity Analysis

Divide-and-conquer: Work, Span and Parallelism

II

III

III

(b)

I

II

II

(a)

Let n = d + 1. For 2-way tableau, we have

work: U1(n) = 4U1(n/2) + Θ(1), so U1(n) = Θ(n2).

span: U∞(n) = 3U∞(n/2) + Θ(1), so U∞(n) = Θ(nlog2 3).

For Pascal’s triangle, we have

work: T1(n) = 2T1(n/2) + U1(n/2), so T1(n) = Θ(n2).

span: T∞(n) = T∞(n/2) + U∞(n/2), so T∞(n) = Θ(nlog2 3).

The parallelism for both is Θ(n0.45).



Parallel Strategies and Complexity Analysis

Divide-and-conquer: Space Complexity

II

III

III

(b)

I

II

II

(a)

Assuming each integer fits within a constant number C of bits, then
relying on the fact that, when executed sequentially the whole algorithm
can be done in-place within the space allocated to 2n integers, by
induction we can deduce that the space needed in the divide-and-conquer
scheme is 2nC .



Parallel Strategies and Complexity Analysis

Divide-and-conquer: Cache Complexity

II

III

III

(b)

I

II

II

(a)

Use the ideal cache model (Frigo et al, 1999).
Z : cache size; L: cache line size.
For 2-way tableau, we have

Q(n) =

{
2n/L + 2 n ≤ αZ
4Q(n/2) + 1 otherwise

thus Q(n) = Θ(n2/ZL)

For Pascal’s triangle:

Q(n) =

{
2n/L + 2 n ≤ αZ
2Q(n/2) + Θ(n2/ZL) otherwise

thus Q(n) = Θ(n2/ZL)

Using the Hong-Kung lower bound one can prove that this is optimal.



Parallel Strategies and Complexity Analysis

“blocking”: Increase the Parallelism

B

B

I

II

II

II

III

III

2

2

1

3

3

3

4

4

4

4

(a) (b) (c)

(c) Partition the entire Pascal’s triangle into B ×B blocks. A block should
fit in cache.

Work is still Θ(n2). Span is Θ(B2)× n/B = Θ(Bn)

Parallelism is now Θ(n/B).

Computation can be done again using 2nC space.



Parallel Strategies and Complexity Analysis

“blocking”: Cache Complexity

B

B

I

II

II

II

III

III

2

2

1

3

3

3

4

4

4

4

(a) (b) (c)

Assuming B = αZ .

The number of cache misses for each block is 2B/L + 1.

The total number of cache misses is

Q(n) = Θ((n/B)2(2B/L + 1)) = Θ(n2/(BL)) = Θ(n2/(ZL)).

Therefore, provided that B = αZ holds, we retrieve the optimal cache
complexity result established for the divide-and-conquer approach.



Multicore Implementation

Optimizing the Multicore Implementation

Illustration for the “blocking” scheme:
n = 9 and B = 3 for Example (a); n = 10 and B = 3 for Example (b).

a1

a0

a2

a3

a4

a5

a6

a7

a8

0 0 0 0 0 0 00 0

11 12 13 14 15 1610 17

L2,1

L1,1

L2,2

A3,1 A3,2 A3,3

a1

a0

a2

a3

a4

a5

a6

a7

a8

a9

10 11 12 13 14 15 16 17 18 19

0 0 0 0 0 0 00 0 0

0

1

2

3

4

5

6

7

8

9

L1,1

L2,1

P3,1

A4,1

L2,2

P3,2

P3,3

A4,2

A4,3

A4,4

S

A3,3

L1,1 L2,2

L2,1

A3,1

A3,2

0

1

2

3

4

5

6

7

8

9

S DAG representation

(b) Irregular case: B - n(a) Regular case: B | n



Multicore Implementation

Optimizing the Multicore Implementation

Illustration for the “d-n-c” scheme:
n = 8 and B = 3 for Example (a); n = 9 and B = 3 for Example (b).

a2

a1

a0

a3

a4

a5

a6

0 0 0 0 00 00 0 0 0 00 0

0 1 2 3 4 5 6

S1

S2
S1

S2

a2

a1

a0

a3

a4

a5

a6

4

7

6

5

3

2

8

a7

a8

0 0

0 1 2 3 4 5 6 7 8

0

7

a7
L1,1

L2,1

L2,2

L3,1

L4,1

L4,2

A5,1

A5,2

A5,3

A5,4

L2,1 L3,1

L4,1

L4,2

A5,1

A5,2

A5,3

A5,4

L1,1 L2,2

0

1

2

3

4

5

6

7

0

1

(a) Regular case: n is a power of 2 (b) Irregular case: n is not a power of 2



Multicore Implementation

In-place Operation and Good Data Locality

Illu. for the “blocking” regular case: example of n = 9 and B = 3.

3 4 5

2

0

1

2

1

0

3 4 5

0

1

2

3 4 5



Experimental Results

Experimental Results (I): Parallel Taylor Shift

Table 1. Timings for some benchmark polynomials (in seconds).

n k B Bnd Cnd Random
×103 ×103 method t1 t1/t8 t1 t1/t8 t1 t1/t8

5 5 50 blocking 6.5 4.9 2.3 2.5 6.5 4.9
5 5 8 d-n-c 6.6 4.6 2.3 2.5 6.63 4.6

10 10 50 blocking 50.8 6.6 17.5 4.0 50.78 6.5
10 10 8 d-n-c 51.7 6.0 17.6 4.2 51.65 6.1
25 25 50 blocking 779 7.5 261 6.1 778.7 7.5
25 25 8 d-n-c 790 7.2 262 6.3 789.7 7.2

The implementation is in Cilk++.

The machine has 8 cores, 8 GB memory and 6MB of L2 cache.

Each processor is Intel Xeon X5460 @3.16 GHz.

In the table, n and k denote the degree and coefficient size (number
of bits) of an input polynomial.



Experimental Results

Experimental Results (II): Parallel Real Root Isolation

Table 2. Timings for Chebychev and Mignotte polynomials (in seconds).
n B Chebychev polynomial Mignotte polynomial

method t1 t1/t8 t1 t1/t8
400 50 blocking 413.87 7.0 564.91 3.4
400 8 d-n-c 420.18 7.1 572.65 4.5
500 50 blocking 1269.61 7.3 not enough
500 8 d-n-c 1279.05 7.4 memory

Table 3. Timings for random polynomials (in seconds).
n k d-n-c blocking

B t1 t1/t8 B t1 t1/t8
1000 1000 8 3.26 3.5 50 3.21 3.7
2000 2000 8 18.84 5.4 50 18.58 5.7
3000 3000 8 23.33 5.7 50 22.89 6.0
4000 4000 8 246.34 6.4 50 243.82 6.8
5000 5000 8 1372.70 6.8 50 1340.95 7.3



Experimental Results

Experimental Results (III)

Parallel real root isolation of a large polynomial coming from the study of
limit cycles of dynamical systems, a simplified version of the Hilbert’s 16th
problem for the cubic case.

Table 4. Features of the polynomial.
degree coefficient size #real roots processing time

426 1900 78 15 minutes

*The simplified system has 9 limit cycles.

The 32-core machine consists of 8 Quad Core AMD Opteron 8354
@2.2 GHz connected by 8 sockets; each core has 64 KB L1 data
cache and 512 KB L2 cache; every four cores share 2 MB of L3
cache; the total memory is 126 GB.



Conclusion and Welcome for Comments and Suggestions

Concluding Remarks

We provide a software tool for parallel real root isolation on multicore
processors. The kernel routine, Taylor shift, is parallelized with two
schemes: “d-n-c” and “blocking”.

For benchmark examples of relatively large size, the speedup is close
to linear on 8-cores. For the large polynomial derived from a
simplified Hilbert’s 16th problem, we can quickly isolate its real roots
on a 32-core with 128 GB RAM.

We have shown an effective approach to empower real root isolation
on multicore processors.

Our software tool enlighten the potential of symbolic methods for
solving large real-world applications.

Work in progress: take into account the growth of the intermediate
data and use dynamically sized blocks to balance works; Study how to
adopt fast Taylor shift methods into this parallel framework.


	Introduction
	The Sequential Algorithms
	Parallel Strategies and Complexity Analysis
	Multicore Implementation
	Experimental Results
	Conclusion and Welcome for Comments and Suggestions

