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Quantifier Elimination

Input: a prenex formula PF := (Qk+1xk+1 · · ·Qnxn)F (x1, . . . , xn)
• F (x1, . . . , xn) : a quantifier free formula over R
• each Qi is either ∃ or ∀.

Output : a quantifier free formula SF (x1, . . . , xk) such that
SF ⇔ PF holds for all x1, . . . , xk ∈ R.

Quantifier Elimination (QE)

(∃x)(∀y) (ax2 + bx+ c)− (ay2 + by + c) ≥ 0, where a, b, c, x, y ∈ R,

for which QE yields

(a < 0) ∨ (a = b = 0).

Quantifier Free Formula (QFF)

¬(y − x2 > 0 ∧ z3 − x = 0) ∨ (z + xy ≥ 0 ∧ x2 + y3 6= 0)



Cylindrical Algebraic Decomposition (CAD) of Rn

A CAD of Rn is a partition of Rn such that each cell in the partition is a
connected semi-algebraic subset of Rn and all the cells are cylindrically
arranged.
Two subsets A and B of Rn are called cylindrically arranged if for any
1 ≤ k < n, the projections of A and B on Rk are either equal or disjoint.



Why CAD supports QE : The main idea
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CAD based on regular chains (RC-CAD)

Motivation: potential drawback of Collins’ projection-lifting scheme

The projection operator is a function defined independently of the
input system.

As a result, a strong projection operator (Collins-Hong operator)
usually produces much more polynomials than needed.

A weak projection operator (McCallum-Brown operator) may fail for
non-generic cases.

Solution: make case discussion during projection

Case discussion is common for algorithms computing triangular
decomposition.

At ISSAC’09, we (with B. Xia and L. Yang) introduced case
discussion into CAD computation.

The new method consists of two phases. The first phase computes a
complex cylindrical tree (CCT). The second phase decomposes each
cell of CCT into its real connected components.



Illustrate PL-CAD and RC-CAD by parametric parabola example

Let f := ax2 + bx+ c. Suppose we’d like to compute f -sign invariant
CAD. The projection factors are a, b, c, 4ac− b2, ax2 + bx+ c. Let’s
rethink PL-CAD in terms of a complex cylindrical tree, see left tree.

any x

ax2 + bx+ c 6= 0

ax2 + bx+ c = 0

ax2 + bx+ c = 0
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c 6= 0
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c = 0
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b 6= 0
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2ax+ b 6= 0

4ac− b2 = 0
2ax+ b = 0
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any x
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Clearly, RC-CAD (see right tree) computes a smaller tree by avoiding
useless case distinction.



QE by RC-CAD

Challenges for doing QE by RC-CAD

RC-CAD has no global projection factor set associated to it.

Instead, it is associated with a complex cylindrical tree. The
polynomials in one path of a tree may not be sign invariant above
cells derived from a different path of a tree.

There is no universal projection operator for RC-CAD.

Refining an existing CAD is not straightforward comparing to
PL-CAD.

The solution

Uses an operation introduced in ASCM 2012 (C. Chen, M. Moreno
Maza) for refining a complex cylindrical tree and,

Adapts C. W. Brown’s incremental method for creating
projection-definable PL-CAD to RC-CAD;

The approach works with truth-invariant CAD produced in ASCM
2012 and CASC 2014 (with R. Bradford, J. H. Davenport, M.
England and D. J. Wilson) for making use of equational constraints.



QE by RC-CAD : The big picture

Algorithm: QuantifierElimination

Input: A prenex formula
PF := (Qk+1xk+1 · · ·Qnxn)FF (x1, . . . , xn).

Ouput: A solution formula of PF .

Description

1 Let F be the set of polynomials appearing in FF

2 T := CylindricalDecompose(F )//computes a complex cylindrical tree

3 RT := MakeSemiAlgebraic(T )//computes a CAD tree

4 AttachTruthValue(FF,RT )//evaluate the truth values of FF at each cell

5 PropagateTruthValue(PF,RT )//get the true values of PF

6 MakeProjectionDefinable(PF,RT)//refine RT until projection definable

7 SF := GenerateSolutionFormulak(RT )//generate QFF describing true cells
in free space
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The first example

Let Dattel := z2 + 3y2 + 3x2 − 1.

http://www1-c703.uibk.ac.at/mathematik/project/bildergalerie/gallery/dattel.jpg

Let f := (∃z) Dattel = 0 be the input existential formula.



A sign-invariant CCT defined by Dattel is described as below.

root

3x2 − 1 6= 0

3y2 + 3x2 − 1 6= 0

Dattel 6= 0Dattel = 0

3y2 + 3x2 − 1 = 0

z 6= 0z = 0

3x2 − 1 = 0

y 6= 0

Dattel 6= 0Dattel = 0

y = 0

z 6= 0z = 0



A sign-invariant CAD defined by Dattel is described as below. The “1” in
the picture is a placeholder.



The CAD cells describing the algebraic surface Dattel = 0.

The projection of Dattel = 0 on the (x, y)-space is equivalent to the
following quantifier free formula.

(3x2 < 1∧3y2+3x2 < 1)∨(3x2−1 = 0∧y = 0)∨(3x2 < 1∧3y2+3x2 = 1).

It can be further simplified as follows.

3y2 + 3x2 ≤ 1.

We say the CAD in this example is projection-definable since the
polynomials in the tree are enough to describe the solution set.
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The second example

This example illustrates the case that the polynomials in the initial CCT
are not enough to express the solution set.

Consider the following QE problem:

(∃y) (x2 + y2 − 1 = 0) ∧ (x+ y < 0) ∧ (x > −1) ∧ (x < 1).

CylindricalDecompose([x2 + y2 − 1 = 0, x+ y 6= 0, x 6= −1, x 6= 1])
computes the following CCT T :

root

2x4 − 3x2 + 1 6= 0

y2 + x2 − 1 6= 0y2 + x2 − 1 = 0

2x2 − 1 = 0

y − x 6= 0y − x = 0

x− 1 = 0

any y

x+ 1 = 0

any y



The CAD of R1 has the following cells, with blue ones being true cells.
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The true cells describe the projection of the blue region on the x-axis,
which cannot be expressed by the signs of polynomials in the CCT.

The cells −
√

2
2 and

√
2

2 is called a conflicting pair, since they have
opposite true values and all univariate polynomials in the tree have
the same signs at them.

They are derived from the path Γ := [root, 2x2
1 − 1 = 0] of T1. Refine

Γ w.r.t. diff(2x2
1 − 1, x) generates a projection definable CAD, from

where we deduce the solution
(x1 < 0 ∧ 0 < x1 + 1) ∨ x1 = 0 ∨ (0 < x1 ∧ 2x2

1 < 1).
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Complex cylindrical tree (CCT)

Let T be a rooted tree of height n where each node of depth i, for
i = 1, . . . , n, being labeled by a polynomial constraint of the type “any xi”
(with zero set defined as Cn), or p = 0, or p 6= 0, where p ∈ Q[x1, . . . , xi].
We say T is a complete CCT if it satisfies:

if n = 1, then either T has only one leaf labeled “any x1”, or it has
s+ 1 leaves labeled respectively p1 = 0, . . . , ps = 0,

∏s
i=1 pi 6= 0,

where p1, . . . , ps ∈ Q[x1] are squarefree and pairwise coprime;

if n > 1, then the induced subtree Tn−1 of T is a complete CCT and
for any given path Γ of Tn−1, either its leaf V has only one child in T
of type “any xn”, or, for some s ≥ 1, V has s+ 1 children labeled
p1 = 0, . . . , ps = 0,

∏s
i=1 pi 6= 0, where p1, . . . , ps ∈ Q[x] separate

above ZC(Γ) (that is for any α of ZC(Γ), lc(pi) 6= 0 and pi(α) are
squarefree and coprime).

We say T is sign-invariant w.r.t. F ⊂ Q[x] if for any p ∈ F and any path
Γ of T , either ZC(Γ) ⊂ ZC(p) or ZC(Γ) ∩ ZC(p) = ∅ holds.



Two previous examples

Sign-invariant CCT w.r.t. Dattel := z2 + 3y2 + 3x2 − 1

root

3x2 − 1 6= 0

3y2 + 3x2 − 1 6= 0

Dattel 6= 0Dattel = 0

3y2 + 3x2 − 1 = 0

z 6= 0z = 0

3x2 − 1 = 0

y 6= 0

Dattel 6= 0Dattel = 0

y = 0

z 6= 0z = 0

Truth-invariant CCT w.r.t. the conjunction of the constraints
{x2 + y2 − 1 = 0, x+ y 6= 0, x 6= −1, x 6= 1}

root

2x4 − 3x2 + 1 6= 0

y2 + x2 − 1 6= 0y2 + x2 − 1 = 0

2x2 − 1 = 0

y − x 6= 0y − x = 0

x− 1 = 0

any y

x+ 1 = 0

any y



Theorem

Let P = {p1, . . . , pr} be a finite set of polynomials in Q[x1 ≺ · · · ≺ xn]
with the same main variable xn. Let S be a connected semi-algebraic
subset of Rn−1. If P separates above S, then each pi is delineable on S.
Moreover, the product of the p1, . . . , pr is also delineable on S.

The polynomials p := xy2 + y+ 1, q := y3 + xy2 + 1 and their product are
delineable on S.



Projection factor set

Let T be a complete CCT in Q[x].

Let V be a node in T , the projection factor set of V is the set of
polynomials appearing in its immediate equational siblings.

Let Γ be a path of T . The union of the projection factor sets of all
the nodes along Γ is called a projection factor set of Γ.

The projection factor set of T is defined as the union of projection
factor sets of all its paths.

Projection definable

Let RT be a CAD tree attached with truth values. We say RT is
projection definable if there exists a QFF formed by the signs of
polynomials in RT’s projection factor set such that the QFF defines the
same zero set as the union of true CAD cells of RT .

Remark. The concept of projection factor set has different meanings for PL-CAD

and RC-CAD. For the latter, the projection factor set of one path may not be

sign-invariant on another path (see example in next slides).



Example

Consider the following complex cylindrical tree T .

root

x1(x1 − 1) 6= 0

x22 + x1 − 1 6= 0x22 + x1 − 1 = 0

x1 = 0

any x2

x1 − 1 = 0

x2 6= 0x2 = 0

Let RT be a CAD tree derived from T .

Let Γ be the right most path of T .

The projection factor set of Γ is {x1, x1 − 1, x2
2 + x1 − 1}.

The projection factor set of T and RT is {x1, x1− 1, x2
2 +x1− 1, x2}.

We notice that neither x2 nor x2
2 + x1 − 1 is sign-invariant on the

path of T consisting of nodes {root, x1 = 0, any x2}.
It is easy to verify that RT is projection definable.



Definition

Let F be a set of non-constant univariate polynomials in R[x]. We say F is
derivative closed (w.r.t. factorization) if for any f ∈ F , where deg(f) > 1,
der(f) is a product of some polynomials in F and some constant c ∈ R.

Let F ⊂ R[x] be finite. Let σ be a map from F to {<,>,=}. Let
Fσ := ∧f∈F f σ(f) 0. Define ZR(Fσ) := ∩f∈FZR(f σ(f) 0).

Lemma (Thom’s Lemma Variant)

Assume that n = 1. If F is derivative closed (w.r.t. factorization), then
the set defined by Fσ is either an empty set, a point or an open interval.

Theorem

Let C be a region of Rn−1. let F be a set of polynomials in
Q[x1 ≺ · · · ≺ xn] with the same main variable xn. We assume that F
separates above C and that for each point α of C, the set of univariate
polynomials {p(α, xn) | p ∈ F} is derivative closed (w.r.t. factorization).
Then, the set C × R1 ∩ ZR(Fσ) is either empty, or a section, or a sector
above C.



Conflicting pair

Let RTk be a CAD tree of Rk attached with truth values.

Let Tk be the associated CCT of RTk.

For 1 ≤ i ≤ k, we call two distinct i-level cells Ci and Di in the same stack
an i-level conflicting pair if there exist k-level cells C and D such that

(CP1) Ci and Di are respectively the projections of C and D onto Ri,
(CP2) C and D are derived from the same path of Tk,

(CP3) above C and D, every polynomial in their common projection factor
set P has the same sign,

(CP4) C and D have opposite attached truth values.



The algorithm for creating projection definable CAD

Algorithm: MakeProjectionDefinablek(PF,RT, practical)

• let CPS be the set of all conflicting pairs of RTk
• while CPS 6= ∅ do

1 let CP be a pair in CPS of highest level, say i
2 let T be the associated CCT of RT
3 let Γ be the path of Ti, where CP is derived
4 call RefineNextChildi(Γi−1, T ) to refine T
5 RT := MakeSemiAlgebraic(T ); AttachTruthValue(FF,RT );

PropagateTruthValue(PF,RT )
6 let CPS be the set of all conflicting pairs of RT

Algorithm: RefineNextChildk(Γk−1, T )

• V := Γk−1.leaf

• S := {c|c ∈ children(V ), c is of the form f = 0, deg(f) >

1, c.derivative is undefined}
• if S = ∅ then return false

• let c ∈ S such that deg(f) is the smallest

• c.derivative := der(f, xk)

• let Γk be the subtree of Tk which induces Γk−1

• While C := NextPathToDok(Γk \ (Γk−1 ∪ c)) do IntersectPathk(der(f, xk), C, Tk)

• return true
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An advanced example

Let f := 2z4 + 2x3y − 1 and h = x+ y + z.
Consider the following quantifier elimination problem.

∃(z)(f < 0 ∧ h < 0).

The plots of f = 0 and h = 0 are depicted in the following figure.



The solution set is the blue region in the following picture, where the red
curve is the locus of p := 2x4 + 10x3y + 12x2y2 + 8xy3 + 2y4 − 1.
The solution set is exactly the set of (x, y) such that x > 0 and
y < RealRoot2(p, y). Apparently, this region cannot be described just by
the sign of p.



To describe the blue region by a QFF, the derivative of p, namely
q := 10x3 + 24x2y + 24xy2 + 8y3, is introduced. The locus of q is the
blue curve.
Note that the blue region is the union of the green region (x > 0 ∧ q < 0),
the blue curve (x > 0∧ q = 0) and the pink region (x > 0∧p < 0∧ q > 0).
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The user interface of the QE procedure

We have developed the interface of our QE procedure based on the Logic
package of Maple. The following Maple session shows how to use our
procedure.

Example (Davenport-Heintz)

The interface:

> f := &E([c]), &A([b, a]), ((a=d) &and (b=c))

&or ((a=c) &and (b=1)) &implies (a^2=b):

> QuantifierElimination(f);

(d - 1 = 0) &or (d + 1 = 0)



Benchmark examples

The efficiency of the QE procedure directly benefits that of RC-CAD.

It was shown in ASCM 12 that RC-CAD is competitive to the state of
art CAD implementations.

We illustrate the efficiency of the QE procedure by several examples.

Neither QEPCAD nor Mathematica can solve the examples
blood-coagulation-2 and MontesS10 within 1-hour time limit.

Example (blood-coagulation-2)

It takes about 6 seconds.

f := &E([x, y, z]), (1/200*x*s*(1 - 1/400*x)

+ y*s*(1 - 1/400*x) - 35/2*x=0)

&and (250*x*s*(1 - 1/600*y )*(z + 3/250) - 55/2*y=0)

&and (500*(y + 1/20*x)*(1 - 1/700*z) - 5*z=0);

QuantifierElimination(f);

true



Example (MontesS10)

It takes about 26 seconds.

f := &E([c2,s2,c1,s1]),

(r-c1+l*(s1*s2-c1*c2)=0) &and (z-s1-l*(s1*c2+s2*c1)=0)

&and (s1^2+c1^2-1=0) &and (s2^2+c2^2-1=0);

QuantifierElimination(f);

2 2 2

((((-r - z + l - 2 l + 1 = 0) &or

2 2 2 2 2 2

((l - r - z - 2 l < -1) &and (-r - z + l + 2 l + 1 = 0))) &or

2 2 2 2 2 2

((l - r - z - 2 l < -1) &and (0 < -r - z + l + 2 l + 1))) &or

2 2 2 2 2 2

((0 < -r - z + l - 2 l + 1) &and (l - r - z + 2 l < -1))) &or

2 2 2 2 2 2

((0 < -r - z + l - 2 l + 1) &and (-r - z + l + 2 l + 1 = 0))



Consider a new example on algebraic surfaces.

Example (Sattel-Dattel-Zitrus)

It takes about 3 seconds while QEPCAD cannot solve it in 30 minutes.

Sattel := x^2+y^2*z+z^3;

Dattel := 3*x^2+3*y^2+z^2-1;

Zitrus := x^2+z^2-y^3*(y-1)^3;

f := &E([y, z]), (Sattel=0) &and (Dattel=0) &and (Zitrus<0);

QuantifierElimination(f);

The output is the inequality:

387420489x36 + 473513931x34 + 1615049199x32

−5422961745x30 + 2179233963x28 − 14860773459x26

+43317737551x24 − 45925857657x22 + 60356422059x20

−126478283472x18 + 164389796305x16 − 121571730573x14

+54842719755x12 − 16059214980x10 + 3210573925x8

−446456947x6 + 43657673x4 − 1631864x2 < 40328.
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Conclusion and future work

We have proposed a complete algorithm for doing QE by RC-CAD.

The efficiency of the QE procedure is justified by examples.

The efficiency of the QE can benefit from that of RC-CAD and
related optimizations like RC-TTICAD.

Further work is required to get simpler output QFF.

Further work is required to support partial cylindrical algebraic
decompositions.
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