
Modular Methods for Solving Nonlinear Polynomial Systems

(Thesis format: Monograph)

by

Raqeeb Rasheed

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

Faculty of Graduate Studies
University of Western Ontario

London, Ontario, Canada

© Raqeeb Rasheed 2007

THE UNIVERSITY OF WESTERN ONTARIO
FACULTY OF GRADUATE STUDIES

CERTIFICATE OF EXAMINATION

Supervisor Examiners

Prof. Dr. Marc Moreno Maza Prof. Robert Corless

Prof. Mark Daley
Supervisory Committee

Prof. Robert Mercer

The thesis by
Raqeeb Rasheed

entitled:

Modular Methods for Solving Nonlinear Polynomial Systems

is accepted in partial fulfillment of the
requirements for the degree of

Master of Science

Date Prof. Jamie Andrews
Chair of Examining Board

ii

Abstract

Solving polynomial systems is a problem frequently encountered in many areas of math-

ematical sciences and engineering. In this thesis we discuss how well-known algebraic

tools and techniques can be combined in order to design new efficient algorithms for

solving systems of non-linear equations symbolically.

G. Collins (1971) invented a method to compute resultants bymeans of theChinese

Remainder Algorithm(CRA). In addition, M. van Hoeij and M. Monagan (2002) de-

scribed a modular method for computing polynomial greatestcommon divisors over al-

gebraic number fields, also via CRA. We observe that merging these two algorithms pro-

duces a modular method for solving bivariate polynomial systems. Then, we generalize

this method for solving trivariate polynomial systems. We report on an implementation of

this approach in the computer algebra systemMaple. Our experimental results illustrate

the efficiency of this new method.

Keywords: Symbolic Computation, Modular Method, Nonlinear Polynomial Sys-

tems, Resultant, GCD, Subresultant Theory, Triangular Set, Regular Chain.

iii

Acknowledgments

I am grateful to my supervisor, Prof. Marc Moreno Maza for hisexcellent help, guidance,

support with funding and encouragement throughout the research and writing of this the-

sis.

I am also grateful to all the members of the ORCCA Lab for theirassistance and friend-

ship throughout my studies. This work is dedicated to my parents and my wife.

iv

Contents

Certificate of Examination ii

Abstract iii

Acknowledgments iv

1 Introduction 1

2 Background 6

2.1 Univariate polynomials .7

2.2 The Euclidean Algorithm . 8

2.3 Resultant of univariate polynomials 11

2.4 Pseudo-division of univariate polynomials 14

2.5 The Subresultant PRS Algorithm .. 15

2.6 Subresultants . 19

2.7 Specialization property of subresultants 22

2.8 Subresultant degree bounds .. 24

2.9 Modular methods . 24

2.10 Lagrange interpolation .. 26

2.11 Rational function reconstruction 27

2.12 Ideal, radical ideal and squarefree-ness 28

2.13 Triangular set and regular chain 30

v

2.14 Lifting . 34

2.15 Fast polynomial arithmetic over a field 35

3 A Modular Method for Bivariate Systems 37

3.1 Problem statement . 37

3.2 A direct method . 41

3.3 Euclidean modular method . 54

3.4 The complexity analysis . 60

3.5 Subresultant modular method .. 61

3.6 Implementation of our modular method 64

3.6.1 Maple representation . 64

3.6.2 Recden representation . 65

3.6.3 modp1/modp2 representation 66

3.6.4 Benchmarks . 66

3.7 Experimental comparison .68

4 A Modular Method for Trivariate Systems 73

4.1 Problem statement . 73

4.2 A direct method . 76

4.3 A modular method . 80

4.4 Experimental results . 84

5 Conclusions and Work in Progress 88

5.1 Non-ModularSolveN . 89

5.2 ModularSolveN . 91

Curriculum Vitae 98

vi

List of Figures

2.1 i-th subresultant off1 andf2 . 20

2.2 Block structure of a chain withm = 12. 22

2.3 Modular computation of the determinant of an integer matrix 25

3.1 Each of setsA andB satisfy(H2), but their union does not. 39

3.2 Modular solving of2× 2 polynomial system. 54

3.3 Computing Euclidean remainder sequience of system (3.17) through spe-

cializations mod 17 . 60

3.4 Maple expression tree for(x− 1)2y2 + x+ 3 65

3.5 Recden representation of(x− 1)2y2 + x+ 3 65

3.6 Running Euclidean modular algorithms withmodp1/modp2 representa-

tion form. 67

3.7 Euclidean modular method using bothRecden andmodp1/modp2 li-

braries. 68

3.8 Timings for the Subresultant approach withMaple representation form . 69

3.9 Comparison between Subresultant vs. Euclidean approaches, both are in

Maple representation forms . 70

3.10 Subresultant vs. Triangularize approaches, both are in Maple represen-

tation forms . 71

3.11 Comparison between Subresultant approach inmodp1/modp2 represen-

tation vs. Triangularize inMaple representation forms 72

vii

viii

4.1 Equiprojectable variety .. 79

4.2 Generic Assumptions vs. Main Conclusions 83

Chapter 1

Introduction

Solving systems of linear or non-linear, algebraic or differential equations, is a fundamen-

tal problem in mathematical sciences and engineering, which is hard for both numerical

and symbolic approaches. Symbolic solving provides powerful tools in scientific com-

puting and is used in an increasing number of applications such as cryptology, robotics,

geometric modeling, dynamical systems in biology, etc.

For systems of linear equations, symbolic methods can compete today with numerical

ones in terms of running times [15]; moreover there are inputsystems for which numer-

ical methods fail to provide accurate solutions while symbolic methods always do. For

systems of non-linear equations, when both symbolic and numerical methods can be ap-

plied, the latter ones have the advantage of speed for most problems whereas the former

ones have that of exactness.

The ultimate goal in this work is to develop and implement newsymbolic algorithms

for solving non-linear systems that could compete with numerical methods when the com-

parison makes sense, that is, for systems that have finitely many solutions, with exact

input coefficients and with symbolic output of moderate size. Under these hypotheses,

we anticipate that the successful methods of symbolic linear algebra could be extended

to the non-linear case. In fact, a first step in this directionhas already been made in [12]

where solving polynomial systems with rational number coefficients is reduced to solving

1

Chapter 1. Introduction 2

polynomial systems with coefficients modulo a prime number.Therefore, the algorithms

discussed in this thesis are meant to help with this latter case. As in [12] we restrict to

systems with finitely many solutions.

We aim at using specialization and lifting techniques for speeding up computations,

see [17] for a comprehensive discussion of these techniques. In our case, this leads us

to interpolate multivariate polynomials and reconstruct multivariate rational functions.

These operations are still research questions, for both symbolic and numerical methods.

Hence, we know that every progress there, will probably benefit our work.

We also rely on the software tools developed at the Ontario Research Center for Com-

puter Algebra (ORCCA) such as theRegularChains library [23] in Maple. In the

near future, we aim at integrating in ourMaple packages the fast algorithms and the high

performance C code developed at ORCCA [16, 26, 25] too. One driving idea in the design

of our algorithm is the ability to take advantage of highly efficient low-level routines such

as FFT-based univariate and multivariate polynomial arithmetic.

Other driving ideas aremodular methods, recycling intermediate computationsand

genericity assumptions. Modular methods are well-developed techniques since the early

days of symbolic computations. A celebrated example is the modular computation of

the determinant of an integer matrix, sketched in Section 2.9. Recycling intermediate

computations is another way to say avoiding unnecessary computations, which is also a

major issue in symbolic computations. Lastly, by genericity assumptions, we mean that

our algorithm should be able to take advantage of the shape ofthe targeted solution set.

Among the works which have inspired this thesis are the modular algorithms of Collins

[6, 7, 8, 9] van Hoeij with Monagan [19], Kaltofen and Monagan[20], Schost [29],

Boulier, Moreno Maza and Oancea [4] Dahan, Jin, Moreno Maza and Schost [11].

Let us sketch the ideas developed in this thesis on a bivariate system of two non-linear

Chapter 1. Introduction 3

equations 





f1(X1, X2) = 0

f2(X1, X2) = 0
(1.1)

We assume that the solution set of this input system can be given by a single system with

a triangular shape 





t1(X1) = 0

t2(X1, X2) = 0
(1.2)

We can choose fort1 the square-free part of the resultant off1 andf2 w.r.t. X2, and, we

choose fort2 the GCD off1 andf2 w.r.t. t1.

The first key observation is that one can deducet2 from the intermediate computations

of t1. This is mainly due to the fact that a single triangular set issufficient to describe the

solution set of this input system. Full details with proofs are given in Chapter 3. The

second key observation is thatt1, and thust2 can be computed by a modular algorithm,

for instance the one of Collins [6, 7, 8, 9]. Thus, we have replaced the computation oft2

(which was a priori a polynomial GCD over a number field) by univariate operations over

the base field. Therefore, we have replaced a non-trivial operation by a much simpler one,

which, in addition, can use fast arithmetic, such as FFT-based univariate multiplication.

When moving to the case of three variables, we manage to manipulate some inter-

mediate polynomials by modular images without reconstructing them on their monomial

basis. Of course, some technical difficulties need to be resolved such as the problem of

bad specializations. Let us describe this problem in broad terms. It follows from resultant

theory [18] that specializations ofX1, to successive valuesv0, v1, . . ., in the input system

can be used to computet1 by interpolation. However, not all specializations can be used

for computing the GCDt2. Let us consider for instance







f1(X1, X2) = (X2 +X1)(X2 +X1 + 2)

f2(X1, X2) = (X2 +X1)(X2 + 2).
(1.3)

Chapter 1. Introduction 4

Observe thatgcd(f1, f2) = X2 +X1 holds. Moreover, for allv 6= 0, we have

gcd(f1(X1 = v,X2), f2(X1 = v,X2) = X2 + v

However, forv = 0, we have

gcd(f1(X1 = v,X2), f2(X1 = v,X2) = X2(X2 + 2)

Hence, the degree ofgcd(f1(X1 = v,X2), f2(X1 = v,X2) depends onv. Therefore, we

cannot constructgcd(f1, f2) from anygcd(f1(X1 = v,X2), f2(X1 = v,X2)).

A second series of obstacles depend on the kind of variant of the Euclidean algo-

rithm which is used to compute the imagest1 andt2 . If we use the standard Euclidean

algorithm, the bound on the number of specializations needed for t2 can be essentially

twice the bound on the number of specializations needed fort1 If we use the subresultant

algorithm, these two numbers can be the same.

In chapter 3 we describe modular algorithms for bivariate polynomial systems and

give detailed experimental results. In chapter 4 we extend our work to trivariate systems.

This adaptation is not straightforward and additional tricks, such as lifting techniques, are

needed. Moreover, identifying the appropriate genericityconditions is much harder than

in the bivariate case. However, these conditions can be checked easily during the solving

process. We anticipate that these algorithms could be integrated into a general solver (not

relying on any genericity conditions) and provide a substantial speed-up to it.

We have realized a preliminary implementation inMaple. To evaluate the quality

of our algorithms, their implementation is parametrized byan implementation of mul-

tivariate polynomials; this can be the defaultMaple polynomial arithmetic based on

DAGs or multivariate polynomials provided byMaple libraries such asmodp1/modp2

or Recden. We also have implemented a verifier to check and compare our results with

Maple’s andRegularChains’ built-in equivalent functions.

Chapter 1. Introduction 5

Our experimental results show that these new modular methods for solving bivariate

and trivariate polynomial systems outperform solvers withsimilar specialization, such as

theTriangularize command of theRegularChains library in Maple. In Chap-

ter 5, we sketch what could be the adaptation of these modularmethods ton-variate

polynomial systems.

Chapter 2

Background

The aim of this chapter is to provide a background review of the basic notions and tech-

niques used in the remaining chapters. Computing polynomial resultants and GCDs is

the core operation in this thesis and most all sections of this chapter are dedicated to this

topic, directly or indirectly.

Sections 2.1, 2.2 and 2.3 are devoted to the celebratedEuclidean Algorithmfor com-

puting polynomial resultants and GCDs.

Sections 2.4, 2.5 2.6 present theSubresultant PRS Algorithmfor computing polyno-

mial resultants and GCDs. This latter has very important properties that are described in

Sections 2.7, 2.8.

Finally, Sections 2.9, 2.10, 2.11, 2.12, 2.13, 2.14 and 2.15present techniques either

for performing the Subresultant PRS Algorithm in some efficient manner or for applying

it to more general contexts.

We would like to stress the fact that Remark 8 is essential to Chapter 3 of this thesis.

Note also that Specifications 1, 2, 3, 4 define operations thatused in the algorithms of the

remaining chapters.

6

2.1. Univariate polynomials 7

2.1 Univariate polynomials

In this thesis,A is always a commutative ring with unity andK is always a field. Some-

timesA has additional properties.

Definition 1 A polynomialf ∈ A[X] is squarefree if it is not divisible by the square of

any non-constant polynomial.

Definition 2 A fieldK is algebraically closed if every polynomial inK[X] has a root in

K; or equivalently: every polynomial inK[X] is a product of linear factors. The smallest

algebraically closed field containingK is called algebraic closure ofK.

Definition 3 We sayK is perfect field if for any algebraic extension fieldL of K we have:

for all f ∈ K[X], if f is squarfree inK[X] thenf is squarfree inL[X].

Proposition 1 Letf1, f2 be two polynomials inK[X] such thatf2 is a non-constant poly-

nomial whose leading coefficient is a unit. Then, there exists a unique couple(q, r) of

polynomials inK[X] such that

f1 = qf2 + r and (r = 0 or deg(r) < deg(f2)). (2.1)

The polynomialsq and r are called thequotientand theremainderin the division with

remainder(or simplydivision) of f1 byf2. Moreover, the couple(q, r) is computed by the

following algorithm:

2.2. The Euclidean Algorithm 8

Algorithm 1

Input: univariate polynomialsf1 = Σn
i=0 aiX

i andf2 = Σm
i=0 biX

i in A[X] with

respective degreesn andm such thatbm is a unit.

Output: the quotientq and the remainderr of f1 w.r.t. f2.

divide(f1, f2) ==

n < m⇒ return (0, f1)

r := f1

for i = n−m,n−m− 1, . . . , 0 repeat

if deg r = m+ i then

qi := lc(r) / bm

r := r − qiX
if2

elseqi := 0

q := Σn−m
j=0 qjX

j

return (q, r)

Definition 4 Letf ∈ A[X] with A a UFD (Unique Factorization Domain), we say thatf

is primitive if a GCD of its coefficients is a unit inA.

Definition 5 LetA be a UFD, we say thatf1, f2 ∈ A[X] are similar if there existc1, c2 ∈

A such that

c1f1 = c2f2

2.2 The Euclidean Algorithm

Definition 6 An integral domainA endowed with a functiond : A 7−→ N ∪ {−∞} is a

Euclidean domainif the following two conditions hold

2.2. The Euclidean Algorithm 9

• for all f1, f2 ∈ A with f1 6= 0 andf2 6= 0 we haved(f1 f2) ≥ d(f1),

• for all f1, f2 ∈ A with f2 6= 0 there existq, r ∈ A such that

f1 = q f2 + r and d(r) < d(f2). (2.2)

The elementsq andr are called thequotientand theremainderof f1 w.r.t. f2 (although

q andr may not be unique). The functiond is called theEuclidean size.

Example 1 Let A = K[X] whereK is a field withd(f1) = deg(f1) the degree off1 for

f1 ∈ A, f1 6= 0 andd(0) = −∞. Uniqueness of the quotient and the remainder is given

by Proposition 1. They are denoted respectivelyquo(f1, f2) andrem(f1, f2).

Definition 7 The GCD of any two polynomialsf1, f2 in K[X] is the polynomial g inK[X]

of greatest degree which divides bothf1 andf2. We denote the GCD of two polynomials

f1, f2 by gcd(f1, f2). Clearly gcd(f1, f2) is uniquely defined up to multiplication by a

non-zero scalar.

Proposition 2 For the Euclidean domainA, and allf1, f2 ∈ A Algorithm 2 computes a

GCD off1 andf2. This means that the following properties hold

(i) g dividesf1 andf2, that is, there existf1
′, f2

′ ∈ A such thatf1 = f1
′g andf2 =

f2
′g,

(ii) there existu, v ∈ A such thatuf1 + vf2 = g holds.

2.2. The Euclidean Algorithm 10

Algorithm 2

Input: f1, f2 ∈ A.

Output: g ∈ A a GCD off1 andf2.

r0 := f1

r1 := f2

i := 2

while ri−1 6= 0 repeat

ri := ri−2 rem ri−1

i := i+ 1

return ri−2

Remark 1 Algorithm 2 is known as theEuclidean Algorithm. This algorithm can be

modified in order to computeu, v ∈ A such thatuf1 + f2v = g. This enhanced version,

Algorithm 3 below, is called theExtended Euclidean Algorithm(EEA). Proposition 3

gives an important application of the EEA.

2.3. Resultant of univariate polynomials 11

Algorithm 3

Input: f1, f2 ∈ A.

Output: g ∈ A a GCD off1 andf2 together withs, t ∈ A such thatg = s f1+t f2.

r0 := f1; s0 := 1; t0 := 0

r1 := f2; s1 := 0; t1 := 1

i := 2

while ri−1 6= 0 repeat

qi := ri−2 quo ri−1

ri := ri−2 rem ri−1

si := si−2 − qi si−1

ti := ti−2 − qi ti−1

i := i+ 1

return (ri−2, si−2, ti−2)

Proposition 3 Let A be an Euclidean domain and letf1, m be inA. Thenf1 modm is

a unit ofA/m iff gcd(f1, m) = 1. In this case the Extended Euclidean Algorithm can be

used to compute the inverse off1 modm.

2.3 Resultant of univariate polynomials

Let f1, f2 ∈ A[X] be two non-zero polynomials of respective degreesm andn such that

n+m > 0. Suppose

f1 = amX
m+am−1X

m−1+ · · ·+a1X+a0 and f2 = bnX
n+bn−1X

n−1+ · · ·+b1X+b0

2.3. Resultant of univariate polynomials 12

Definition 8 The Sylvester matrix off1 andf2 is the square matrix of ordern + m with

coefficients inA, denoted bysylv(f1,f2) and defined by





























am 0 · · · 0 bn 0 · · · 0

am−1 am
. . .

... bn−1 bn
. . .

...

am−2 am−1
. . . 0 bn−2 bn−1

. . . 0

...
. . . am

...
. . . bn

... am−1
... bn−1

a0 b0

0 a0
... 0 b0

...
...

.
...

.

0 · · · 0 a0 0 · · · 0 b0





























Its determinant is denoted byres(f1, f2) and called the resultant off1 andf2.

WhenA is a fieldK, the Euclidean Algorithm can be enhanced as follows in orderto

computegcd(f1, f2) whenres(f1, f2) = 0, or res(f1, f2) otherwise.

2.3. Resultant of univariate polynomials 13

Algorithm 4

Input: f1, f2 ∈ K[X] with f1 6= 0, f2 6= 0 anddeg(f1) + deg(f2) > 0.

Output: if res(f1, f2) = 0 then monicgcd(f1, f2) elseres(f1, f2).

m := deg(f1)

n := deg(f2)

if m < n then

r := (−1)nm

(f1, f2, m, n) := (f2, f1, n,m)

else

r := 1

repeat

bn := lc(f2)

if n = 0 then return r bmn

h := f1 rem f2

if h = 0 then return (1/bn)f2

p := deg(h)

r := r (−1)nmbm−p
n

(f1, f2, m, n) := (f2, h, n, p)

Algorithm 4 applies in particular when trying to compute theGCD of two polynomials

in (K[X1]/〈R1〉)[X2] whereR1 is an irreducible polynomial ofK[X1]. Indeed, in this

case the residue class ringf2[X1]/〈R1〉 is a field, for instance withR1 = X2
1 + 1. When

R1 is a square-free polynomial ofK[X1] (but not necessarily an irreducible polynomial)

then Algorithm 4 can be adapted using theD5 Principle [14]. This will be explained in

Remark 8. The resultant off1 andf2 has the following fundamental property.

2.4. Pseudo-division of univariate polynomials 14

Proposition 4 Assume thatA is a unique factorization domain (UFD). Then, the poly-

nomialsf1, f2 have a common factor of positive degree if and only ifres(f1, f2) = 0

holds.

2.4 Pseudo-division of univariate polynomials

The Euclidean Algorithm has several drawbacks. In particular, it suffers from intermedi-

ate expression swell. TheSubresultant PRS Algorithm(Algorithm 6) described in Sec-

tion 2.5 provides a way to better control intermediate expression sizes. One step toward

this algorithm is the notion ofpseudo-division, which allows one toemulatepolynomial

division over rings that are not necessarily fields.

Proposition 5 Let f1, f2 ∈ A[X] be univariate polynomials such thatf2 has a positive

degree w.r.t.X and the leading coefficient off2 is not a zero-divisor. We define

e = min(0, deg(f1)− deg(f2) + 1)

Then there exists a unique couple(q, r) of polynomials inA[x] such that we have:

(lc(f2)
ef1 = qf2 + r) and (r = 0 or deg(r) < deg(f2)). (2.3)

The polynomialq (resp.r) is called thethe pseudo-quotient(the pseudo-remainder) of f1

by f2 and denoted bypquo(a, b) (prem(a, b)). The map(f1, f2) 7−→ (q, r) is called the

pseudo-divisionof f1 byf2. In addition, Algorithm 5 computes this couple.

2.5. The Subresultant PRS Algorithm 15

Algorithm 5

Input: f1, f2 ∈ A[X] with f2 6∈ A.

Output: q, r ∈ A[X] satisfying Relation (2.3) withe =

min(0, deg(f1)− deg(f2) + 1).

prem(f1, f2) ==

r := f1

q := 0

e := max(0, deg(f1)− deg(f2) + 1)

while r 6= 0 or deg(r) ≥ deg(f2) repeat

d := deg(r)− deg(f2)

t := lc(r)yd

q := lc(f2)q + t

r := lc(f2)r − tf2

e := e− 1

r := lc(f2)
er

q := lc(f2)
eq

return (q, r)

2.5 The Subresultant PRS Algorithm

We now reviewCollins’s PRS Algorithm, also called theSubresultant PRS Algorithmof

Brown and Collins [7, 5]. On inputf1, f2 ∈ A[X] Algorithm 6 produces a sequence

(f1, f2, . . . , fk) of polynomials inA[X] defined by the following relations

fi+1 = prem(fi−1, fi)/βi for (i = 1, . . . , k − 1) (2.4)

2.5. The Subresultant PRS Algorithm 16

whereβ1, β2, . . . , βk−1 forms a sequence of elements ofA such that the division shown in

Equation (2.4) is exact. We define

δi := deg(fi)− deg(fi+1), and ai := lc(fi). (2.5)

Then, the sequenceβ1, β2, . . . , βk−1 is given by

βi+1 :=







(−1)δ0+1 if i = 0

(−1)δi+1(ψi)
δiai if i = 1, . . . , k− 2

(2.6)

where(ψ0, . . . , ψk−1) is an auxiliary sequence given by

ψ0 := 1, and ψi+1 := ψi(ai+1/ψi)
δi = ((ai+1)

δi)/(ψi)
δi−1 fori = 0, . . . , k − 2. (2.7)

2.5. The Subresultant PRS Algorithm 17

Algorithm 6 Subresultant PRS Algorithm

Input : f1, f2 ∈ A[X]

Output : prs: a list of polynomials inSubresultantPRS(f1, f2) overA[X].

(P1, P2) := (f1, f2)

prs := [P1, P2]

(m1, m2):=(deg(P1, X),deg(P2, X))

d1 := m1 −m2

b = (−1)d1+1

P3 := prem(P1, P2, X)/b

m3 := deg(P3, X)

g1 := −1

while P3 6= 0 do

addP3 into the listprs

d2 := m2 −m3

a := lc(P2, X)

g2 := (−a)d1 / gd1−1
1

b := −a gd2

2

(P1, P2, m2, g1, d1):=(P2, P3, m3, g2, d2)

P3 := prem(P1, P2, X)

m3 := deg(P3, X)

P3 := P3/b

return prs

Example 2 Consider the two polynomials

f1 = X8+X6−3X4−3X3+8X2+2X−5 and f2 = 3X6+5X4−4X2−9X+21.

2.5. The Subresultant PRS Algorithm 18

originally used as an example by Knuth in [21] and also in [3].The Euclidean Algorithm

in following intermediate remainders

R2(X) = −5
9
X4 + 1

9
X2 − 1

3

R3(X) = −117
25
X2 − 9X + 441

25

R4(X) = 233150
19773

X − 102500
6591

R5(X) = −1288744821
543589225

The Subresultant PRS Algorithm performed inZ[X] produces the following sequence of

intermediate pseudo-remainders:

P2(X) = 15X4 − 3X2 + 9

P3(X) = 65X2 + 125X − 245

P4(X) = 9326X − 12300

P5(X) = 260708

It is easy to check thatR2,R3,R4,R5 are proportional toP2,P3,P4,P5 respectively.

Therefore, we see that Subresultant PRS Algorithm providesa way to access to the poly-

nomials computed by the Euclidean Algorithm (up to multiplicative factors) while con-

trolling better the size of the coefficients.

Let us stress the two following points

• The Euclidean Algorithm works over a field and hence uses rational arithmetic,

something which one usually wants to avoid.

• The Subresultant PRS Algorithm uses only polynomial operations and has moder-

ate coefficient growth. While the coefficient growth is not minimal it does have the

advantage that the cost to reduce coefficient growth is minimal, namely a simple

division by a known divisor, exactly the process followed infraction free Gaussian

2.6. Subresultants 19

elimination.

2.6 Subresultants

In this section, we review briefly the concept ofsubresultantsand then state a few im-

portant theorems that are related to the algorithms presented in this thesis. We follow the

presentation of Yap’s book [32]. In particular, we interpret the intermediate polynomials

computed by the Subresultant PRS Algorithm.

Definition 9 LetM be ak × ℓ matrix,k ≤ ℓ, over an integral domainA. Thedetermi-

nantal polynomialofM is

dpol(M) =|Mk | X
ℓ−k + · · ·+ |Mℓ |,

whereMi denotes the sub-matrix ofM consisting of the firstk − 1 columns followed by

thejth column fork ≤ j ≤ ℓ.

Definition 10 Letf1 =
∑m

j=0 ajX
j, f2 =

∑n

j=0 bjX
j ∈ A[X] with deg(f1) = m ≥ n =

deg(f2) ≥ 0. For i = 0, 1, · · · , n− 1, thei−th subresultantof f1 andf2 is defined as

sresi(f1, f2) = dpol(mat(Xn−i−1f1, X
n−i−2f1, · · · , X

1f1, f1, X
m−i−1f2, X

m−i−2f2, · · · , f2))

Observe that the defining matrix

mat(Xn−i−1f1, X
n−i−2f1, · · · , X

1f1, f1, X
m−i−1f2, X

m−i−2f2, · · · , f2)

hasm + n − 2 i rows andm + n − i columns (see Figure 2.1 fori-th subresultant of

f1, f2). If n = 0, theni = 0 andf1 does not appear in the matrix and the matrix ism×m.

Thenominal degreeof sresi(f1, f2) is i. Note that the zero-th subresultant is in fact the

resultant,

sres0(f1, f2) = res(f1, f2).

2.6. Subresultants 20

dpol

m+1
︷ ︸︸ ︷

n−i−1
︷ ︸︸ ︷


























am am−1 · · · · · · a0

am am−1 · · · · · ·
. . . · · · · · ·

. . . · · ·
am

bn bn−1 · · · b0
bn bn−1 · · · b0

. . . · · · · · ·
. . . · · ·

a0

. . .

· · ·
. . .

am−1 · · · · · · a0

. . .

· · ·
. . .

bn bn−1 · · · b0


























Figure 2.1:i-th subresultant off1 andf2

It is convenient to extend the above definitions to cover the casesi = n+ 1, · · · , m:

sresi(f1, f2):=







0 if i = n+ 1, n+ 2, ..., m− 2

f2 if i = m− 1

f1 if i = m

Definition 11 The sequence(Sm, Sm−1, · · · , S1, S0) whereSi = sresi(f1, f2) is called

thesubresultant chainof f1 andf2. A membersresi(f1, f2) in the chain is regular if its

degree is equal to the nominal degreei; otherwise it is irregular.

Example 3 The subresultant chain off1 = X4
2 + X1X2 + 1 andf2 = 4X3

2 + X1 over

2.6. Subresultants 21

(Q[X1])[X2] produces the followingsequence of polynomials:

S4 = X4
2 +X1X2 + 1

S3 = 4X3
2 +X1

S2 = −4(3X1X2 + 4)

S1 = −12X1(3X1X2 + 4)

S0 = −27X4
1 + 256

Definition 12 We define a block to be a sequence

B = (P1, P2, · · · , Pk), k ≥ 1. (2.8)

of polynomials whereP1 ∼ Pk and0 = P2 = P3 = · · · = Pk−1. We callP1 andPk

(respectively) thetop andbaseof the block. Two special cases arise: In casek = 1, we

call B a regular block; in caseP1 = 0, we callB a zero block. Thus the top and the base

of a regular block coincide.

Theorem 1 (Block Structure Theorem) The subresultant chain(Sm, Sm−1, ..., S0) is uniquely

partitioned into a sequenceB0, B1, ..., Bk, (k > 1) of blocks such that

(i) B0 is a regular block.

(ii) If Ui is the base polynomial of blockBi thenUi is regular andUi+1∼prem(Ui−1 ,

Ui) (0 < i < k).

(iii) There is at most one zero block; if there is one, it must beBk.

In the following we relate thesubresultant PRS algorithm sequence, that is, the se-

quence of polynomials

(f0, f1, . . . , fk)

defined by Equation (2.4) in Section 2.5 to the subresultant chain

2.7. Specialization property of subresultants 22

0

0

0

0

0

0

0
U1

U2

U3

T3

U0

T1

Figure 2.2: Block structure of a chain withm = 12.

(Sm, Sm−1, . . . , S0).

whereSm = f1 andSm−1 = f2. The basic connection, up to similarity, is established

by theBlock Structure Theorem. The real task is to determine the coefficients of simi-

larity between the top ofBi andfi. This is done in the following result, known as the

Subresultant PRS Correctness Theorem.

Theorem 2 LetTi, Ui be the top and base polynomials of blockBi, where (B0, ..., Bk) are

the non-zero blocks of our subresultant chain then the sequence(T0, ..., Tk) is precisely

(P0, ..., Pk), computed by Algorithm 6.

2.7 Specialization property of subresultants

Let A andA∗ be commutative rings with identities, andΦ : A→ A∗ be a ring homomor-

phism ofA into A∗. Note thatΦ induces a ring homomorphism ofA[X] into A∗[X], also

denoted byΦ, as follows:

2.7. Specialization property of subresultants 23

Φ :
A[X] → A∗[X]

amX
m + · · ·+ a0 7→ Φ(am)Xm + · · ·+ Φ(a0).

Theorem 3 Letf1, f2 ∈ A[X] of respective positive degreesm andn:

f1(X) = amX
m + am−1X

m−1 + . . .+ a0

f2(X) = bnX
n + bn−1X

n−1 + . . .+ b0

Assume thatdeg(Φ(f1)) = m holds and definek := deg(Φ(f2)), thus0 ≤ k ≤ n. Then,

for all 0 ≤ i < max(m, k)− 1, we have

Φ(sresi(f1, f2)) = Φ(am)n−ksresi(Φ(f1),Φ(f2)) (2.9)

Remark 2 The combination of Theorem 3 and Theorem 1 is extremely useful for us and

we give here a fundamental application. LetT1 ∈ K[X1] be a non-constant univari-

ate polynomial and defineL = K[X1]/〈T1〉. Let Φ be the natural homomorphism from

K[X1][X2] to L[X2] that reduces polynomials ofK[X1] moduloT1.

Theorem 3 tells us how to deduce the subresultant chain ofΦ(f1) andΦ(f2) from that

of f1 andf2. Assume that eitherΦ(lc(f1)) 6= 0 or Φ(lc(f2)) 6= 0 holds.

WhenL is a field, one can compute a GCD ofΦ(f1) andΦ(f2) in L[y] as follows:

(1) Consider all regular subresultants off1, f2 by increasing index.

(2) Let j be the smallest indexi such thatsresi(f1, f2) is a regular subresultant whose

leading coefficient is not mapped to zero byΦ.

(3) ThenΦ(Sj) is a GCD ofΦ(f1) andΦ(f2) in L[y].

Indeed if for an indexi, the subresultantsresi(f1, f2) is regular and its leading coefficient

is mapped to zero byΦ, then in factΦ(sresi(f1, f2)) = 0. This follows from theBlock

Structure Theorem(Theorem 1).

2.8. Subresultant degree bounds 24

2.8 Subresultant degree bounds

Another important ingredient for the algorithms discussedin Chapters 3 and 4 is the fact

that subresultants of polynomialsf1, f2 in K[X1][X2] or K[X1, X2][X3] are essentially

determinants and thus can be computed by modular methods, see Section 2.9. In this

section, we restrict for simplicity to the case of bivariatepolynomialsf1, f2 in K[X1][X2].

The following result gathers the bounds that we use in Chapters 3. See [17] for details

Theorem 4 Assume thatf1 andf2 have respectiveX2-degreesm andn, withm ≥ n > 0.

LetR1 be res(f1, f2, X2), that is the resultant off1 andf2 w.r.t. X2. Let tdeg(f1) and

tdeg(f2) be the total degree off1 andf2 respectively. LetSd be thed-th subresultant of

f1 andf2. Then we have:

• deg(R1) ≤ degX1
(f1) degX2

(f2) + degX2
(f1) degX1

(f2),

• deg(R1) ≤ tdeg(f1)tdeg(f2),

• deg(Sd) ≤ (m− d)(tdeg(f1) + tdeg(f2)).

2.9 Modular methods

Modular methods in symbolic computations aim at providing two benefits: controlling

the swell of intermediate expressions and offering opportunities to use fast arithmetic,

such as FFT-based arithmetic.

A first typical example is the computation of polynomial GCDsin Z[X] via computa-

tions inZ/pZ[X] for one or several prime numbersp. Computing with integers modulo

a prime numberp allows one to limit the size of the coefficients top. It also permits the

use of FFT-based multiplication inZ/pZ[X].

A second example, which is closely related to our work, is thecomputation of the

determinant of a matrixM with integer coefficients. One can compute this determinant

2.9. Modular methods 25

using a direct method such as Gaussian elimination. Anotherapproach is via the com-

putation of this determinant modulo several prime numbers and then recombining these

results by means of the Chinese Remaindering Algorithm. Letus review more precisely

how this can be done.

Consider pairwise distinct prime numbersp1, . . . , pe such that their productm exceeds

2B, whereB is the Hadamard bound for the determinant ofM . Let Zn×n andZ/piZ
n×n

be the ring of square matrices overZ andZ/piZ respectively. For all1 ≤ i ≤ e, let Φpi

be the reduction map fromZn×n to (Z/piZ)n×n that reduces all coefficients modulopi.

One can compute the determinant ofM using the following strategy. For each1 ≤

i ≤ e, consider the determinantdi of the modular imageΦpi
(M) of M . Then, using the

Chinese Remaindering Algorithm, one computes the integerd modulom which is equal

todi modulopi for all 1 ≤ i ≤ e. Due to the fact thatm > 2B holds, the integerdmodulo

m is actually equal to the determinant ofM . As shown in [17] this approach performs

much better than the direct approach. Figure 2.9 sketches this modular computation.

M ∈ Zn×n For primesp0, p1, . . . , pe

−−−−−−−−−−−−→ Φpi
(M) ∈ Zn×n/piZ

det




y




y
det

|M |
Chinese Reminder (CRA)
←−−−−−−−−−−−−− Φpi

(M)

Figure 2.3: Modular computation of the determinant of an integer matrix

2.10. Lagrange interpolation 26

2.10 Lagrange interpolation

Modular computations usually go through a step of “reconstruction” where the modular

results are combined to produce the desired result. In the case of the modular computation

of the determinant of an integer matrix, the reconstructionstep was achieved by means of

the Chinese Remaindering Algorithm. A special case of this process isLagrange Inter-

polation, of which we will make intensive use in Chapters 3 and 4.

Definition 13 Letu = (u0, . . . , un−1) be a sequence of pairwise distinct elements of the

fieldK. For i = 0 · · ·n− 1 thei-th Lagrange interpolantis the polynomial

Li(x) =
∏

0 ≤ j < n

j 6= i

x− uj

ui − uj

(2.10)

with the property that

Li(uj) =







0 if i 6= j

1 otherwise
(2.11)

Proposition 6 Let v0, . . . , vn−1 be inK. There is aunique polynomialf1 ∈ K[X] with

degree less thann and such that

f(ui) = vi for i = 0 · · ·n− 1. (2.12)

Moreover this polynomial is given by

f =
∑

0≤i<n

vi Li(x). (2.13)

Proposition 6 leads to Specification 1 where we introduce a crucial operation in our

algorithms. It is important to observe that this operation “reconstructs” one variable,

namelyX1, for multivariate polynomials inK[X1, . . . , Xn]. Hence, this is an application

2.11. Rational function reconstruction 27

of Proposition 6 to a more general context. However, this operation does not deal with

the simultaneous reconstruction of several variables. This is a much more difficult task,

which is not used in this thesis.

Specification 1 Let n and d be positive integers. Letf0, . . . , fd ∈ K[X2, . . . , Xn] be

polynomials. By convention, we haveK[X2, . . . , Xn] = K. For all i = 0, . . . , d, we

define:

fi =
∑

m∈S

Cm,i m

whereS is the set of all monomials appearing inf0, . . . , fd. Let v0, . . . , vd ∈ K be

pairwise different. By definition, the function call

Interpolate(n, d, [v0, . . . , , vd], [f0, . . . , fd])

returns the unique polynomial

F =
∑

m∈S

Cm m

such that for eachm ∈ S we have:

(i) Cm ∈ K[X1] and deg(Cm) ≤ d,

(ii) Cm(vi) = Cm,i, for all i = 0, . . . , d.

2.11 Rational function reconstruction

Lagrange interpolation reconstructs a polynomialF of K[X1, . . . , Xn] from homomor-

phic images ofF in K[X2, . . . , Xn]. Another important reconstruction process isRatio-

nal Function Reconstructionwhere one aims at reconstructing rational functions from

polynomials.

Let p ∈ K[X] be a univariate polynomial of degreen > 0 with coefficients in the field

K. Given a polynomialf ∈ K[X] of degree less thann and an integerd ∈ {1, . . . , n},

2.12. Ideal, radical ideal and squarefree-ness 28

we want to find a rational functionr/t ∈ K(X) with r, t ∈ K[X] satisfying

gcd(r, t) = 1 and rt−1 ≡ f mod p, deg r < d, deg t ≤ n− d. (2.14)

Let us denote this problem byRFR(p, n, f, d). A solution to it is given by the following.

Proposition 7 Letrj, sj , tj ∈ K[X] be thej-th row of the Extended Euclidean Algorithm

applied to(p, f) wherej is minimal such thatdeg rj < d. Then we have:

(i) ProblemRFR(p, n, f, d) admits a solution if and only ifgcd(rj, tj) = 1,

(i) if gcd(rj , tj) = 1 holds, then a solution is(r, t) = (w−1
j rj , w

−1
j tj) wherewj =

lc(tj).

Specification 2 Let n and b be positive integers. Letp ∈ K[X1] of degreeb > 0. Let

F ∈ K[X1, . . . , Xn]. We write:

F =
∑

m∈S

Cm m

whereS is the set of all monomials appearing inF . By definition, the function call

RatRec(n, b, p, F) returns a polynomialR ∈ K(X1)[X2, . . . , Xn] where

R =
∑

m∈S

RatRec(p, b, Cm, b quo 2) m

whereRatRec(p, b, Cm, b quo 2) returns a solution toRFR(p, b, Cm, b quo 2) if any,

otherwise returns failure.

2.12 Ideal, radical ideal and squarefree-ness

When solving systems of polynomial equations, two notions play a central role: theideal

and theradical idealgenerated by a polynomial set. The second one is a generalization

of the notion ofsquarefree-ness. We review these concepts in this section.

2.12. Ideal, radical ideal and squarefree-ness 29

Let X1, . . . , Xn ben variables ordered byX1 < · · · < Xn. Recall thatK is a field

and thatK[X1, . . . , Xn] denotes the ring of multivariate polynomials inX1, . . . , Xn with

coefficients inK.

Definition 14 LetF = {f1, . . . , fm} be a finite subset ofK[X1, . . . , Xn]. Theideal gener-

atedbyF in K[X1, . . . , Xn], denoted by〈F 〉 or 〈f1, . . . , fm〉, is the set of all polynomials

of the form

h1f1 + · · ·+ hmfm

whereh1, . . . , hm are in K[X1, . . . , Xn]. If the ideal〈F 〉 is not equal to the entire poly-

nomial ringK[X1, . . . , Xn], then〈F 〉 is said to be aproper ideal.

Definition 15 The radicalof the ideal generated byF , denoted by
√

〈F 〉, is the set of

polynomialsp ∈ K[X1, . . . , Xn] such that there exists a positive integere satisfyingpe ∈

〈F 〉. The ideal〈F 〉 is said to be radical if we have〈F 〉 =
√

〈F 〉.

Remark 3 Letf1, . . . , fm ∈ K[X1] be univariate polynomials. The Euclidean Algorithm

implies that the ideal〈f1, . . . , fm〉 is equal to〈g〉, whereg = gcd(f1, . . . , fm). This means

that there exists polynomialsa1, . . . , am, b1, . . . , bm ∈ K[X1] such that we have

a1f1 + · · ·+ amfm = g and fi = big for i = 1, . . . , e.

Therefore, every ideal ofK[X1] is generated by a single element.

Definition 16 A univariate polynomialf ∈ K[X1] is said to besquarefreeif for all non-

constant polynomialsg ∈ K[X1] the polynomialg2 does not dividef .

Remark 4 Let f ∈ K[X1] be non-constant. It is not hard to see that the ideal〈f〉 ⊆

K[X1] is radical if and only iff is squarefree.

2.13. Triangular set and regular chain 30

2.13 Triangular set and regular chain

As we shall observe in Chapters 3 and 4, a typical symbolic solution of a polynomial sys-

tem is a polynomial set with a triangular shape, that is, a so-called triangular set. Among

all triangular sets, the regular chains form a subclass withrich algorithmic properties. We

review these two notions in this section.

Definition 17 A family of non-constant polynomialsT1, . . . , Te in K[X1, . . . , Xn] is a

triangular setif their leading variables are pairwise distinct. The triangular setT1, . . . , Te

is a Lazard triangular setif e = n and if for all 1 ≤ i ≤ e the leading coefficient ofTi

w.r.t.Xi is equal to1.

Remark 5 HenceX2
1 +X2, X1X2 +1 is not a triangular set, whereasX2

1 +1, X1X2 +1

is a triangular set but not a Lazard triangular set. FinallyX2
1 + 1, X2 − 1 is a Lazard

triangular set.

Definition 18 Let T = T1, . . . , Te be a triangular set inK[X1, . . . , Xn] such that the

leading variable ofTi isXi for all 1 ≤ i ≤ e. The setT is a regular chainif for all 1 ≤

i ≤ e the leading coefficient ofTi w.r.t. Xi is invertible modulo the ideal〈T1, . . . , Ti−1〉.

Note that any Lazard triangular set is in particular a regular chain.

Proposition 8 Let T = T1, . . . , Tn be a regular chain inK[X1, . . . , Xn]. If the ideal

〈T1, . . . , Tn〉 is radical then the residue class ringK[X1, . . . , Xn]/〈T1, . . . , Tn〉 is isomor-

phic with a direct product of fields (DPF).

Remark 6 The interest of DPFs lies in the celebratedD5 Principle(Della Dora, Di-

crescenzo & Duval, 1985). IfL is a DPF, then one can compute withL as if it was a field:

it suffices to split the computations into cases whenever a zero-divisor is met.

Example 4

2.13. Triangular set and regular chain 31

K[X1]/〈X1(X1 + 1)〉 can be represented with a DPFs as below:

K[X1]/〈X1(X1 + 1)〉 ≃ K[X1]/〈X1〉 ⊕K[X1]/〈X1 + 1〉 ≃ K⊕K.

Definition 19 Let T = T1, . . . , Tn be a regular chain inK[X1, . . . , Xn]. Assume that

〈T1, . . . , Tn〉 is radical. Denote byL the DPF given by

L = K[X1, . . . , Xn]/〈T1, . . . , Tn〉.

Let y be an extra variable. Letf1, f2, g be polynomials inK[X1, . . . , Xn, y] such thatf1

and f2 have positive degree w.r.t.y. We say thatg is a GCD of f1, f2 if the following

conditions hold

(G1) the leading coefficienth of g w.r.t. y is invertible inL,

(G2) there exist polynomialsA1, A2 ∈ K[X1, . . . , Xn, y] such thatg = A1f1 + A2f2 in

L[y], that is, there exist polynomialsQ1, . . . , Qn ∈ K[X1, . . . , Xn] such that we

have

g = A1f1 + A2f2 +Q1T1 + · · ·+QnTn.

(G3) if g has positive degree w.r.t.y theng pseudo-dividesf1 and f2 in L[y], that is,

there exist non-negative integersb, c and polynomialsC1, C2 ∈ K[X1, . . . , Xn, y]

and polynomialsQ1, . . . , Qn, S1, . . . , Sn ∈ K[X1, . . . , Xn] such that we have

hbf1 = C1g +Q1T1 + · · ·+QnTn and hcf2 = C2g + S1T1 + · · ·+ SnTn.

Remark 7 As we shall see in Chapters 3 and 4, GCDs of univariate polynomials over

DPFs are powerful tools for solving systems of polynomial equations. However, with the

notations of Definition 19, a GCD off1 and f2 need not exist. Proposition 9 and 10,

proved in [28], overcome this difficulty The first one is then = 1 case of the second one.

2.13. Triangular set and regular chain 32

For the purpose of Chapter 3 then = 1 case is sufficient.

Proposition 9 Let T1 ∈ K[X1] be a non-constant squarefree polynomial. Denote byL

the DPF given by

L = K[X1]/〈T1〉.

Lety be an extra variable. Letf1, f2 be polynomials inK[X1, y] such thatf1 andf2 have

positive degree w.r.t.y. Then, there exist univariate polynomialsB1, . . . , Be in K[X1] and

polynomialsA1, . . . , Ae in K[X1, y] such that the following properties hold

(G4) the productB1 · · ·Be equalsT1,

(G5) for all 1 ≤ i ≤ e, the polynomialAi is a GCD off1, f2 in (K[X1]〈Bi〉)[y].

The sequence(A1, {B1}), . . . , (Ae, {Be}) is called a GCD sequenceof f1 and f2 in

(K[X1]/〈T1〉)[y].

Example 5 Letf1 = X1X2 +(X1 +1)(X2 +1) andf2 = X1(X2+1)+(X1 +1)(X2 +1)

be polynomials overK[X1]/〈X1(X1 + 1)〉 then

GCD(f1, f2,L) =







X2 + 1 mod X1

1 mod X1 + 1

Remark 8 We explain two ways for computing GCD sequences in the context of Propo-

sition 9 and we refer to [28] for the context of Proposition 10.

First, one can adapt the Euclidean Algorithm (or its variant, Algorithm 4) as follows:

(1) Run the Euclidean Algorithm inL[y] as ifL were a field

(2) when a division by an elementa of L is required, then check whethera is invertible

or not (using Proposition 3).

2.13. Triangular set and regular chain 33

(3) If a is a zero-divisor, then split the computations into cases such that in each branch

a becomes either zero or invertible (such splitting is possible sinceL is a direct

product of fields). Then restart the GCD computation in each branch using the

same strategy.

Secondly, one can make use of the subresultant PRS algorithmand generalize the

approach developed in Remark 2. SinceL is now a DPF and not necessarily a field (as

it is the case in Remark 2) one needs to modify the procedure described in Remark 2 as

follows:

(1) Consider all regular subresultants off1, f2 by increasing index.

(2) Let j be the smallest indexi such thatsresi(f1, f2) is a regular subresultant whose

leading coefficient is not mapped to zero byΦ.

(3) If this leading coefficient is a zero-divisor then split the computations and restart

“from scratch” in each branch.

(4) If this leading coefficient is invertible thenΦ(Sj) is a GCD ofΦ(f1) andΦ(f2) in

L[y].

Proposition 10 LetT = {T1(X1), T2(X1, X2), . . . , Tn(X1, . . . , Xn)} be a regular chain

in K[X1, . . . , Xn]. Assume that〈T1, . . . , Tn〉 is radical. Denote byL the DPF given by

L = K[X1, . . . , Xn]/〈T1, . . . , Tn〉.

Let y be an extra variable. Letf1, f2, g be univariate polynomials inL[y] such thatf1

and f2 have positive degree w.r.t.y. Then, there exist regular chainsT1, . . . ,Te in

K[X1, . . . , Xn]. and polynomialsA1, . . . , Ae in K[X1, . . . , Xn, y] such that the follow-

ing properties hold

(G4) the ideals〈T1〉, . . . , 〈Te〉 are pairwise coprime and their intersection is equal〈T〉,

2.14. Lifting 34

(G5) for all 1 ≤ i ≤ e, the polynomialAi is a GCD off1, f2 in (K[X1, . . . , Xe]〈T
i〉)[y].

The sequence(A1,T
1), . . . , (Ae,T

e) is called aGCD sequenceof f1 andf2 in

(K[X1, . . . , Xe]/〈T〉)[y].

Specification 3 LetT = {T1(X1), T2(X1, X2), . . . , Tn(X1, . . . , Xn)} be a regular chain

in K[X1, . . . , Xn]. The function callNormalize(T) returns a regular chain

N = {N1(X1), N2(X1, X2), . . . , Nn(X1, . . . , Xn)}

such that〈T 〉 = 〈N〉 holds and for all1 ≤ i ≤ n the leading coefficient ofNi is 1.

2.14 Lifting

LetX1, X2, X3 be variables ordered byX1 < X2 < X3 and letf1, f2 be inK[X1, X2, X3].

Let K(X1) be the field of rational univariate functions with coefficients in K. We denote

by K(X1)[X2, X3] the ring of bivariate polynomials inX2 andX3 with coefficients in

K(X1). Let π be the projection on theX1-axis. ForX1 ∈ K, we denote byΦx1
the

evaluation map fromK[X1, X2, X3] to K[X2, X3] that replacesX1 with x1. We make the

following assumptions:

• the ideal〈f1, f2〉 (generated byf1 andf2 in K[X1, X2, X3]) is radical,

• there exists a triangular setT = {T2, T3} in K(X1)[X2, X3] such thatT andf1, f2

generate the same ideal inK(X1)[X2, X3].

Proposition 11 is proved in [11, Proposition 3] and an algorithm for Specification 4 ap-

pears in [29].

2.15. Fast polynomial arithmetic over a field 35

Proposition 11 Letx1 be inK. If x1 cancels no denominator inT, then the fiberV (f1, f2)∩

π−1(x1) satisfies

V (f1, f2) ∩ π
−1(x1) = V (Φx1

(T2),Φx1
(T3)).

Specification 4 Let x1 be inK. LetN2(X2), N3(X2, X3) be a Lazard triangular set in

K[X2, X3] such that we have

V (Φx1
(f1),Φx1

(f2)) = V (N2, N3).

We assume that the Jacobian matrix ofΦx1
(f1),Φx1

(f2) is invertible modulo the ideal

〈N2, N3〉. Then the function callLift(f1, f2, N2, N3, x1) returns the triangular setT.

2.15 Fast polynomial arithmetic over a field

For univariate polynomial over a field, fast algorithms are available for computing prod-

ucts, quotients, remainders and GCDs. By fast, we mean algorithms whose running time

is “quasi-linear” in the size of their output. From these fundamental fast algorithms, such

as FFT-based univariate multiplication, one can derive fast interpolation and fast rational

function reconstruction. See Chapters 8 to 11 in [17] for details. We list below some of

the main complexity results in this area.

Proposition 12 Let f1, f2 in K[X] with degrees less thand. Then, one can compute

gcd(f1, f2) in O(d log2(d) log(log(d))) operations inK.

Proposition 13 Letd be a positive integer. Letv0, v1, . . . , vd be pairwise different values

in K and letu0, u1, . . . , ud be values inK. Then, one can compute the unique polynomial

f in K[X] of degreed such thatf(vi) = ui, i = 0, . . . , d in O(d log2(d) log(log(d)))

operations inK.

2.15. Fast polynomial arithmetic over a field 36

Proposition 14 Letm ∈ K[X] be of degreed > 0 and letf ∈ K[X] be of degree less

thand. There is an algorithm which decides whether there are two polynomialsr and t

in K[X] of degree less thand/2 in K[X] such that

gcd(r, t) = 1 and rt−1 = f mod m

and, if so, they can be computed inO(d log2(d) log(log(d))) operations inK.

Chapter 3

A Modular Method for Bivariate

Systems

In this chapter we discuss an algorithm and its implementation for solving systems of two

non-linear polynomial equations with two variables. This algorithm relies on well-known

algebraic tools and techniques: Lagrange interpolation and subresultants. The emphasis

is on designing an efficient implementation based on two ideas: modular arithmeticand

recycling intermediate computations. We also make an assumption on the solution set in

order to avoid technical difficulties, since they are irrelevant in most practical cases. We

report on an implementation in the computer algebra systemMaple and provide experi-

mental comparisons with another symbolic solver implemented in this system.

3.1 Problem statement

Let f1, f2 be two polynomials in the variablesX1, X2 and with coefficients in a fieldK.

Let K be the algebraic closure ofK. An important property ofK is thatK is infinite [31],

even ifK is a finite field such asZ/pZ, for a prime numberp. For most practical systems,

one can think ofK as being the fieldR of real numbers and ofK as the fieldC of complex

numbers. We assume thatK is a perfect field [31]. The fieldsK that we have in mind,

37

3.1. Problem statement 38

namelyR andZ/pZ for a prime numberp, are perfect fields. We are interested in solving

overK the system of equations







f1(X1, X2) = 0

f2(X1, X2) = 0
(3.1)

that is computing the set of all couples of numbers(z1, z2) ∈ K
2

such that:

f1(z1, z2) = f2(z1, z2) = 0.

This set is usually denoted byV (f1, f2) whereV stands forvariety. We denote byZ1 the

set of all the numbersz1 ∈ K such that there exists a numberz2 ∈ K such that

(z1, z2) ∈ V (f1, f2).

In other words, the setZ1 collects all the values for theX1-coordinate of a point in

V (f1, f2). Let h1 andh2 be the leading coefficients w.r.t.X2 of f1 andf2, respectively.

Note thath1 andh2 belong toK[X1]. We make here our assumptions regardingf1, f2 and

V (f1, f2):

(H1) the setV (f1, f2) is non-empty and finite, and thus the setZ1 is non-empty and finite

too,

(H2) there exists a constantd2 such that for everyz1 ∈ Z1 there exist exactlyd2 points

in V (f1, f2) whoseX1-coordinate isz1,

(H3) the polynomialsf1 andf2 have positive degree w.r.t.X2,

(H4) the resultant off1 andf2 w.r.t.X2 is squarefree,

(H5) the polynomialsh1 andh2 are relatively prime, that is, we havegcd(h1, h2) = 1.

3.1. Problem statement 39

Hypotheses(H1) and(H2) deal with the shape of the solution set ofV (f1, f2) These as-

sumptions are satisfied in most practical problems, see for instance the systems collected

by theSymbolicData project [30]. Moreover, we usually haved2 = 1. The celebrated

Shape Lemma[2] is a theoretical confirmation of this empirical observation.

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

B
A

Figure 3.1: Each of setsA andB satisfy(H2), but their union does not.

Hypotheses(H3) to (H5) will lead to a simple algorithm for computingV (f1, f2).

This will help in designing the modular methods presented inthis chapter. These hypothe-

ses are easy to relax without making the solving process asymptotically more expensive.

However, this does introduce a number of special cases whichmakes the solving process

quite technical.

Let d1 be the number of elements inZ1. The hypothesis(H1) and(H2) imply that

there exists a univariate polynomialt1 ∈ K[X1] of degreed1 and a bivariate polynomial

t2 ∈ K[X1, X2] with degreed2 w.r.t.X2, such that for all(z1, z2) ∈ K
2

we have







f1(z1, z2) = 0

f2(z1, z2) = 0
⇐⇒







t1(z1) = 0

t2(z1, z2) = 0

Moreover, we can require that the leading coefficient oft1 w.r.t.X1 and the leading coef-

ficient of t2 w.r.t.X2 are both equal to1. We summarize these statements in the following

proposition. This result also gives additional conditionsin order to make{t1, t2} unique.

A proof of Proposition 15 appears, for instance, in [1]. Moreover, we will prove it while

3.1. Problem statement 40

establishing Corollary 1.

Proposition 15 Under the assumptions(H1) and(H2), there exist non-constant polyno-

mialst1 ∈ K[X1] andt2 ∈ K[X1, X2] such that we have

V (f1, f2) = V (t1, t2).

Moreover, one can require

lc(t1, X1) = lc(t2, X2) = 1

With the additional conditions below, the triangular set{t1, t2} is uniquely determined:

• t1 is squarefree,

• t2 is squarefree as a univariate polynomial in(K[X1]/〈t1〉)[X2].

The triangular set{t1, t2} can be seen as asymbolicor formaldescription of the solu-

tion setV (f1, f2) of the input system (3.1). Consider for instance the system:







X2
1 +X2 + 1 = 0

X1 +X2
2 + 2 = 0

(3.2)

Then, after a substitution, one obtains the following triangular set







X4
1 + 2X2

1 +X1 + 3 = 0

X2 +X2
1 + 1 = 0

(3.3)

Therefore, we haved1 = 4 andd2 = 1.

The goal of this chapter is to compute the triangular set{t1, t2} efficiently. We start by

describing adirect methodin Section 3.2. Then, in Section 3.3, we describe a first and nat-

ural modular method, based on theEuclidean Algorithm, that we call theEuclidean mod-

3.2. A direct method 41

ular method. In Section 3.5, we present a second and more advanced modular method,

based onsubresultantsand that we call thesubresultant modular method.

In Section 3.6 we describe our implementation environment and in Section 3.7 we

report on our benchmark results for those three methods.

3.2 A direct method

From now on, based on our assumption(H3) we regard our input polynomialsf1 andf2

as univariate polynomials inX2 with coefficients inK[X1]. LetR1 be the resultant off1

andf2 in this context. The polynomialR1 is thus an element ofK[X1]. Proposition 16

makes a first observation.

Proposition 16 The polynomialR1 is non-zero and non-constant.

Proof. Assume first by contradiction thatR1 = 0 holds. SinceK[X1] is a UFD, one can

apply Proposition 4 page 13. Then, the assumptionR1 = 0 implies thatf1 andf2 have a

common factorg of positive degree in(K[X1])[X2]. Let h be the leading coefficient ofg

w.r.t.X2; henceh belongs toK[X1]. Observe that for allz1 ∈ K such thath(z1) 6= 0 there

existsz2 ∈ K such thatg(z1, z2) = 0. Sinceg dividesf1 andf2, every such pair(z1, z2)

belongs toV (f1, f2). SinceK is infinite and since the number of roots ofh is finite, we

have found infinitely many points inV (f1, f2), which contradicts our assumption(H1).

Therefore we have proved thatR1 6= 0 holds.

Assume now thatR1 is a non-zero constant. From the Extended Euclidean Algorithm

(see Algorithms 3 page 11 and 4 page 13) we know that there exist polynomialsa1 anda2

in (K[X1])[X2] such that we have:

a1f1 + a2f2 = R1.

3.2. A direct method 42

From assumption(H1) we haveV (f1, f2) 6= ∅. Thus, we can choose(z1, z2) ∈ V (f1, f2).

Let us evaluate each side of the above equality at this point.Clearly we have:

a1(z1, z2)f1(z1, z2) + a2(z1, z2)f2(z1, z2) = 0 and R1(z1, z2) 6= 0,

which is a contradiction. Therefore we have proved thatR1 has a positive degree w.r.t.

X1. �

Recall thatf1 andf2, regarded as univariate polynomials in(K[X1])[X2], have a non-

constant common factor if and only if their resultantR1 is null. Recall also that there exist

polynomialsA1, A2 ∈ (K[X1])[X2] such that we have

A1f1 + A2f2 = R1. (3.4)

Observe that if(z1, z2) ∈ V (f1, f2) then we haveR1(z1) = 0. However, not all roots of

R1 may extend to a common solution off1 andf2, as shown by the following example.

Example 6 Consider for instance the system:







X1X
2
2 +X1 + 1 = 0

X1X
2
2 +X2 + 1 = 0

The resultant of these polynomials w.r.t.X2 is

R1 = X4
1 +X2

1 +X1 = X1(X
3
1 +X1 + 1)

The solutions of the system are given by the following regular chain:







X2 −X1 = 0

X3
1 +X1 + 1 = 0

3.2. A direct method 43

which can be verified using theTriangularize function of theRegularChains

library in Maple. One can see that the rootX1 = 0 ofR1 does not extend to a solution

of the system. This is clear when replacingX1 by0 in the input system.

The following two propositions deal with the difficulty raised by the above example.

The first one handles the situations encountered in practice. The second one gives a

sufficient condition for any rootz1 of the resultantR1 to extend to a point(z1, z2) of

V (f1, f2). Both are particular instances of a general theorem in algebraic geometry, called

theExtension Theorem[10].

Proposition 17 Let t1 be a non-constant factor ofR1. Let h be the GCD ofh1 andh2.

(Recall thath1 andh2 are the leading coefficients w.r.t.X2 of f1 andf2 respectively.) We

assume thath andt1 are relatively prime. Then for every rootz1 of t1 there existsz2 ∈ K

such that(z1, z2) belongs toV (f1, f2).

Proof. Letz1 ∈ K be a root oft1. LetΦ be the evaluation map from(K[X1])[X2] to K[X2]

that replacesX1 by z1. This is a ring homomorphism. Recall that we denote byh1 and

h2 the leading coefficients off1 andf2 w.r.t.X2. Sinceh andt1 are relatively prime, and

sincez1 is a root oft1, eitherΦ(h1) 6= 0 or Φ(h2) 6= 0 holds. (IndeedΦ(h1) = Φ(h2) = 0

would imply Φ(h) = 0 contradicting the fact thath andt1 are relatively prime.) Hence,

we can assumeΦ(h1) 6= 0. Let n andm be the degrees w.r.t.X2 of f2 and Φ(f2),

respectively. By virtue of theSpecialization property of the subresultants(Theorem 3

page 23) we have

Φ(R1) = Φ(h1)
n−mres(Φ(f1),Φ(f2)).

Sincet1 dividesR1 andΦ(t1) = 0 we haveΦ(R1) = 0. SinceΦ(h1)
n−m 6= 0, we have

res(Φ(f1),Φ(f2)) = 0.

3.2. A direct method 44

This implies thatΦ(f1) andΦ(f2) have a non-trivial common factor inK[X2] and thus a

common rootz2 in K. Hence we haveΦ(f1)(z2) = Φ(f2)(z2) = 0, that is,f1(z1, z2) =

f2(z1, z2) = 0. �

Proposition 18 Assumption(H5) implies that for any rootz1 of R1, there existsz2 ∈ K

such that(z1, z2) belongs toV (f1, f2),

Proof. Let z1 be a root ofR1. Let Φ be the evaluation map from(K[X1])[X2] to K[X2]

that replacesX1 by z1. Since the leading coefficients off1 andf2 w.r.t. X2 are relatively

prime, at least one of them does not map to zero byΦ. Then one can proceed similarly to

the proof of Proposition 18. Let us sketch this briefly.

Recall that we denote byh1 andh2 the leading coefficients off1 andf2 w.r.t.X2. We

can assumeΦ(h1) 6= 0. By virtue of theSpecialization property of the subresultantswe

have

Φ(R1) = Φ(h1)
n−mres(Φ(f1),Φ(f2)).

Sincez1 is a root ofR1 we haveΦ(R1) = 0. Hence, we haveres(Φ(f1),Φ(f2)) = 0.

This implies thatΦ(f1) andΦ(f2) have a non-trivial common factor inK[X2] and thus a

common rootz2 in K, concluding the proof. �

We shall discuss now how to compute the solution setV (f1, f2). Proposition 19 serves

as a lemma for Theorem 5 and Corollary 1 which are themain resultsof this section.

Proposition 19 Lett1 be a non-constant factor ofR1. Lett2 be a polynomial inK[X1, X2]

such thatt2 is a GCD off1 andf2 in (K[X1]/〈t1〉)[X2]. The hypotheses(H1), (H3) and

(H4) imply the four following properties:

(i) if t2 has degree zero w.r.t.X2 then we haveV (t1, t2) = ∅,

(ii) if t2 has positive degree w.r.t.X2 then we have

V (t1, t2) 6= ∅ and V (t1, t2) ⊆ V (f1, f2),

3.2. A direct method 45

(iii) we haveV (t1, t2) = V (f1, f2, t1),

(iv) if we havet1 = R1 thenV (f1, f2) = V (t1, t2) holds.

Proof. Let h be the leading coefficient oft2 w.r.t. X2. Sincet2 is a GCD off1 andf2 in

(K[X1]/〈t1〉)[X2], we have the following three properties:

• h is invertible modulot1,

• there exist polynomialsA3, A4 ∈ K[X1, X2] such thatA3f1 + A4f2 = t2 holds in

(K[X1]/〈t1〉)[X2],

• if t2 has a positive degree w.r.t.X2, then the polynomialt2 pseudo-dividesf1 and

f2 in (K[X1]/〈t1〉)[X2].

Therefore, we have:

• there exist univariate polynomialsA10, A11 ∈ K[X1] such that we have

A10h+ A11t1 = 1. (3.5)

• there exists a polynomialA5 ∈ K[X1, X2]

A3f1 + A4f2 = t2 + A5t1. (3.6)

• if t2 has a positive degree w.r.t.X2, then there exist polynomialsA6, A7, A8, A9 ∈

K[X1, X2] and non-negative integersc, b such that we have

hbf1 = A6t2 + A7t1 and hcf2 = A8t2 + A9t1. (3.7)

Observe that Equation (3.5) implies that a root oft1 cannot cancelh. Recall also that

from Equation (3.4) there exist polynomialsA1, A2 ∈ (K[X1])[X2] such that we have

A1f1 + A2f2 = R1.

3.2. A direct method 46

We prove(i). We assume thatt2 has degree zero w.r.t.X2. Hence, we havet2 = h.

Sincet1 andh have no common root, it follows thatV (t1, t2) = ∅ holds.

We prove(ii). We assume thatt2 has a positive degree w.r.t.X2. Sincet1 andh

have no common root, every rootz1 of t1 extends to (at least) one rootz2 of t2 (where

t2 is specialized atX1 = z1). HenceV (t1, t2) 6= ∅ holds. Consider now(z1, z2) ∈

V (t1, t2). From Equations (3.5) and (3.7) we clearly havef1(z1, z2) = f2(z1, z2) = 0,

that is(z1, z2) ∈ V (f1, f2).

We prove(iii). From (i) and(ii), whether the degree oft2 w.r.t. X2 is positive or

not, we haveV (t1, t2) ⊆ V (f1, f2) which implies triviallyV (t1, t2) ⊆ V (f1, f2, t1). The

converse inclusion results immediately from Equation (3.6).

We prove(iv). Assume thatt1 = R1 holds. From(H1) we know thatV (f1, f2) is

not empty. Hence, thanks to(i) and (ii), we notice that the polynomialt2 must have

a positive degree w.r.t.X2. Let us consider(z1, z2) ∈ V (f1, f2). From Equation (3.4)

we deducet1(z1, z2) = 0. Then, with Equation (3.6) we obtaint2(z1, z2) = 0, that is,

(z1, z2) ∈ V (t1, t2). �

Theorem 5 Let h be the GCD ofh1 andh2. Let (A1, {B1}), . . . , (Ae, {Be}) be a GCD

sequence off1 andf2 in (K[X1]/〈R1 quo h〉)[X2]. The hypotheses(H1), (H3) and(H4)

imply

V (f1, f2) = V (A1, B1) ∪ · · · ∪ V (Ae, Be) ∪ V (h, f1, f2). (3.8)

Moreover, for all1 ≤ i ≤ e, the polynomialAi has a positive degree w.r.t.X2 and thus

V (Ai, Bi) 6= ∅.

Proof. SinceV (f1, f2) ⊆ V (R1) andV (R1) = V (R1 quo h) ∪ V (h) we deduce

V (f1, f2) = V (R1 quo h, f1, f2) ∪ V (h, f1, f2). (3.9)

3.2. A direct method 47

From Hypothesis(H4) the polynomialR1 is squarefree and thusR1 quo h is squarefree

too. Hence, the residue class ring(K[X1]/〈R1 quo h〉) is a direct product of fields and

computing polynomial GCDs in(K[X1]/〈R1 quo h〉)[X2] make clear sense and can be

achieved by adapting either the Euclidean Algorithm or the Subresultant Algorithm, as

explained in Remark 8 page 32. The polynomialsB1, . . . , Be are non-constant polynomi-

als inK[X1] and their product is equal toR1 quo h. Hence, we have

V (R1 quo h, f1, f2) = V (B1, f1, f2) ∪ · · · ∪ V (Be, f1, f2). (3.10)

The polynomialsA1, . . . , Ae are polynomials inK[X1][X2] and for all1 ≤ i ≤ e the poly-

nomialAi is a GCD off1 andf2 in (K[X1]/〈Bi〉)[X2]. Property(iii) of Proposition 19

implies for all1 ≤ i ≤ e we have:

V (Bi, f1, f2) = V (Bi, Ai). (3.11)

Equations (3.9), (3.10) and (3.11) imply Equation (3.8). Now observe that for all1 ≤ i ≤

e the polynomialBi is a factor ofR1 quo hwhich is relatively prime withh. (Indeed, since

R1 is squarefree, the polynomialR1 quo h is relatively prime withh.) Hence, by virtue

of Proposition 17 we know thatV (Bi, f1, f2) 6= ∅ holds. Therefore, with Proposition 19

we deduce thatAi has a positive degree w.r.t.X2 and thatV (Ai, Bi) 6= ∅ holds. �

Corollary 1 The hypotheses(H1) to (H5) imply the existence of a polynomialG2 ∈

K[X1, X2] with the following properties:

(i) G2 has a positive degree w.r.t.X2 and its leading coefficient w.r.t.X2 is invertible

moduloR1,

(ii) V (f1, f2) = V (R1, G2),

(iii) G2 is a GCD off1 andf2 in (K[X1]/〈R1〉)[X2].

3.2. A direct method 48

Proof. With the notations and hypotheses of Theorem 5, Equation (3.8) holds. From

Hypothesis(H5) the polynomialsh1 andh2 are relatively prime and thush = 1, hence

we haveV (h, f1, f2) = ∅, leading to

V (f1, f2) = V (A1, B1) ∪ · · · ∪ V (Ae, Be). (3.12)

Since for all1 ≤ i ≤ e the residue class ringK[X1]/〈Bi〉 is a direct product of fields,

one can use GCD computations in order to compute the squarefree partCi of Ai in

(K[X1]/〈Bi〉)[X2]. Note that we haveV (A1, B1) = V (Ci, Bi) for all 1 ≤ i ≤ e. We fix

an indexi in the range1 . . . e and a rootz1 ∈ K of Bi. Let Φ be the evaluation map from

K[X1][X2] to K[X2] that replacesX1 by z1. Since the coefficient fieldK is perfect, and

sinceCi is squarefree in(K[X1]/〈Bi〉)[X2], the polynomialΦ(Ci) hasei distinct roots,

whereei is the degree ofΦ(Ci). Observe that from Hypothesis(H2) we haveei = d2.

Therefore all polynomialsC1, . . . , Ce have the same degreed2. Since the polynomials

B1, . . . , Be are pairwise coprime, by applying the Chinese Remainder Theorem, one can

compute a polynomialG2 ∈ K[X1, X2] such that we have

V (G2, B1 · · ·Be) = V (C1, B1) ∪ · · · ∪ V (Ce, Be). (3.13)

Since the leading coefficients ofC1, . . . , Ce are invertible moduloB1, . . . , Be respectively,

the leading coefficient ofG2 is invertible moduloB1 · · ·Be. Recall thatR1 = B1 · · ·Be

holds, hence we haveV (f1, f2) = V (R1, G2). Finally, the fact thatG2 is a GCD off1

andf2 is routine manipulation of polynomials over direct products of fields. �

To conclude this long section, let us emphasize the results stated in Theorem 5 and

Corollary 1.

First, it is important to observe that Theorem 5 remains trueeven if Hypothesis(H4)

does not hold. This can be shown using the theory and algorithms developed in [27].

Moreover, based on [27], relaxing Hypotheses(H1) and(H3) is easy. Therefore, Theo-

3.2. A direct method 49

rem 5 “essentially” tells us how to solve any bivariate system.

Secondly, it is important to observe that Corollary 1 requires two additional hypothe-

ses w.r.t. Theorem 5, namely(H2) and(H5). These latter hypotheses have the following

benefits. They allow us to replace Equation (3.8) simply by

V (f1, f2) = V (R1, G2) (3.14)

Hence, under the hypotheses(H1) to (H5), solving the bivariate systemf1 = f2 = 0

reduces to one resultant and one GCD computation. This will be the key for developing

an efficient modular method. Based on these observations, weintroduce the following.

Specification 5 Let (again)f1, f2 ∈ K[X1, X2] be two non-constant polynomials.

• We denote bySolve2(f1, f2) a function returning pairs(A1, B1), . . . , (Ae, Be) where

B1, . . . , Be are univariate polynomials inK[X1] andA1, . . . , Ae are bivariate poly-

nomials inK[X1, X2] such that(Ai, Bi) is a regular chain for all1 ≤ i ≤ e and we

have

V (f1, f2) = V (A1, B1) ∪ · · · ∪ V (Ae, Be).

• Under the Hypotheses(H1) to (H5), we denote byGenericSolve2(f1, f2) a func-

tion returning(G2, R1) whereR1 is a univariate polynomial inK[X1] andG2 is

a bivariate polynomial inK[X1, X2] such that(G2, R1) is a regular chain and we

have

V (f1, f2) = V (R1, G2).

Under the Hypotheses(H1) to (H5), Corollary 1 tells us that computing the targeted

triangular set{R1, G2} reduces to

• computing the resultantR1 = res(f1, f2, X2),

• computingG2 as GCD off1 andf2 modulo{R1}.

3.2. A direct method 50

Thefirst key observation is that this GCD need not split the computations. Hence this

GCD can be computed as ifK[X1]〈R1〉 was a field. Thus, using Remark 8 page 32, one

can deduce this GCD from the subresultant chain off1 andf2 that we have computed

anyway in order to obtainres(f1, f2, X2).

Thesecond key observationis that these subresultant chains can be computed by a

modular method, using evaluation and interpolation.

In the following, we describe three strategies for implementing solvers. In the first

one we are looking at an approach which identify genericity assumptions for the solving

of a system to be simple and efficient at the same time, this leads to GenericSolve2

that is a function which has a simple algorithm but it requires the genericity assumptions

H1-H5, this algorithm (see Algorithm 7) simply computes the resultantR1 of the input

polynomials and their GCD moduloR1 assuming we already have the necessary non-fast

(non-modular) techniques to find both the resultant and the GCD.

Algorithm 7 GenericSolve2

Input: f1, f2 ∈ K[X1, X2], under assumptions of

(H1) 0 < |V (f1, f2)| <∞

(H2) V (f1, f2) equiprojectable

(H3) deg(fi, Xj) > 0

(H4) R1 squarefree

(H5) gcd(lc(f1, X2),lc(f2, X2)) = 1

Output: {R1, G2}⊆ K[X1, X2] s.t.V (R1, G2) = V (f1, f2).

GenericSolve2(f1, f2) ==

R1 := res(f1, f2, X2)

G2 :=GCD(f1, f2, {R1})

return (R1, G2)

3.2. A direct method 51

In the second algorithm (Algorithm 8) we implementGenericSolve2by way of fast

techniques using moular methods that is computing bothR1 andG2 by specializations

and interpolations hence we call this approachModularGenericSolve2.

Algorithm 8 ModularGenericSolve2

Input: f1, f2 ∈ K[X1, X2], under(H1) to (H5)

Output: {R1, G2}⊆ K[X1, X2] s.t.V (R1, G2) = V (f1, f2).

(1) Compute Chain(f1, f2) by interpolation

(2) Let R1 = res(f1, f2, X2)

(3) Let L = K[X1]/〈R1〉

(4) Let Ψ : K[X1, X2]→ L[X2]

(5) i := 1

(6) Let S ∈ Chain(f1, f2) non-zero, regular with minimum indexj ≥ i

(7) if Ψ(lc(S,X2)) 6= 0

(7.1) thenG2 := Ψ(S)

(7.2) elsej := i+ 1; goto (6)

(8) return {R1, G2}

Now we can improve Algorithm 8 by relaxing all the assumptions exceptH1 andH3

where these two assumptions are very likely to hold in most practical cases provided that

we passh = gcd(lc(f1, X2), lc(f2, X2)) as an input in to the algorithm.

As we are removing the equiprojectablity property (AssumptionH2), we need to check

whether the computation splits, if so we have to continue in each branch in the same

manner until we get the true GCD, Algorithm 9 describes the steps.

3.2. A direct method 52

Algorithm 9 EnhancedModularGenericSolve2

Input: f1, f2,h, (H1), (H3) only

Output: {R1, G2}⊆ K[X1, X2] s.t.V (R1, G2) = V (f1, f2) \ V (h)

(1) Compute SubresultantPRS(f1, f2)

(2) Let R1 = sqfrPart(res(f1, f2, X2))

(3) R1 := R1 quo (sqfrPart(h))

(4) Tasks := [[R1, 1]];Results := []

(5) while Tasks6= [] repeat

A Task is a paire consisting of a polynomial and an index

(6) [B, i] := Tasks[1]

(7) Tasks := Tasks[2 · · · − 1]

(8) Let S ∈ Chain(f1, f2) non-zero regular with minimum indexj ≥ i

(9) c := lc(S,X2); c := c rem B

(10) if c = 0 then

(11) Tasks := [[B, i+ 1], op(Tasks)]

(12) else

(13) B1 := gcd(c, B)

(14) if B1 = 1 then

(15) Results := [[B, S], op(Results)]

(16) else

(17) B2 := B quo B1

(18) Tasks := [[B1, i+ 1], op(Tasks)]

(19) Results := [[B2, S], op(Results)]

(20) return Results

3.2. A direct method 53

Finally we provide a general solverModularSolve2 (see Algorithm 10) that does not

make any assumptions in which can easily detect when genercity assumptions hold and it

will also handle the cases where these assumptions do not hold.

The idea is to take advantage of usingEnhancedModularGenericSolve2whenh 6= 0

otherwise we can just take the tail of both of the input polynomials that isf1 and f2

without the highest degree monomial term and then repeat theprocessor by callingMod-

ularSolve2recursively.

Algorithm 10 ModularGenericSolve2

Input: f1, f2 ∈ K[X1, X2], under assumptions of

(H1) 0 < |V (f1, f2)| <∞

(H3) deg(fi, Xj) > 0

Output: {R1, G2}⊆ K[X1, X2] s.t.V (R1, G2) = V (f1, f2).

ModularSolve2(f1, f2) ==

h := gcd(lc(f1, X2), lc(f2, X2))

R := EnhancedModularGenericSolve2(f1, f2, h) h 6= 0

if h = 1 return R

D := ModularSolve2(tail(f1), tail(f2)) h = 0

for (A(X1), B(X1, X2)) ∈ D repeat

g := gcd(A, h)

if deg(g,X1) > 0 then

R := R ∪ {(g, B)}

return R

Sections 3.3 and 3.5 provides details about the computations with both of the Euclidean

sequences and Subresultant chains, Figure 3.2 sketches thegeneral idea of computing by

3.3. Euclidean modular method 54

f1, f2 ∈ K[X1,X2]
Φi : X1 → xi, 0 ≤ i ≤ δ
−−−−−−−−−−−−−−−−−−→ Chain(Φi(f1),Φi(f2)) ∈ K[X2]

RegularChains




y




y

Interp

Chain(Ψ(f1),Ψ(f2)) ∈ L[X2]
Ψ : K[X1]→ L

←−−−−−−−−−−−−−−−− Chain(f1, f2) ∈ K[X1,X2]

L = K[X1]/〈R1〉

Figure 3.2: Modular solving of2× 2 polynomial system.

modular methods.

3.3 Euclidean modular method

In this section we propose a first modular approach based on the Euclidean Algorithm:

(1) Instead of computingR1 directly from the input polynomialsf1 andf2, we choose

enough valuesv0, v1, . . . , vb of x1, computeeval(R1, X1 = v0), eval(R1, X1 =

v1), . . . , eval(R1, X1 = vb) with Algorithm 4 page 13, or equivalently Algorithm 11.

Then, we reconstructR1 from these modular images using Lagrange interpolation

(Section 2.10 page 26).

(2) Instead of computingG2 directly from the input polynomialsf1, f2 moduloR1,

using the Euclidean Algorithm in(K[X1]/〈R1〉)[X2] as ifK[X1]/〈R1〉 were a field,

we “recycle” the modular images of the subresultant chain off1 and f2, which

were computed for obtainingR1 via Algorithm 6 page 17. Then, we reconstruct

G2 from these modular images using Lagrange interpolation (Section 2.10 page 26)

and rational function reconstruction (Section 2.11 page 27).

Let us give some details for(R1). Let b be a degree bound forres(f1, f2, X2) given

by Theorem 4. Then, it suffices to chooseb + 1 pairwise different valuesv0, v1, . . . , vb

3.3. Euclidean modular method 55

in K such that none of them cancel the leading coefficients off1 andf2. Then, for each

vi ∈ {v0, v1, . . . , vb} applying Algorithm 11 toeval(f1, X1 = vi) andeval(f2, X1 = vi),

we obtaineval(R1, X1 = vi).

For eachvi ∈ {v0, v1, . . . , vb}, let us store all the intermediate remainders com-

puted by Algorithm 11 includingeval(f1, X1 = vi) and eval(f2, X1 = vi). For each

vi ∈ {v0, v1, . . . , vb}, we store these remainders in arrayAvi
such that slot of indexd

gives the intermediate remainder of degreed, if any, otherwise0. In particular the slot

of Avi
with index0 giveseval(R1, X1 = vi). Combining all these resultants using La-

grange interpolation producesR1, Algorithm 12 describes the way we used to compute

the resultantR1.

Algorithm 11 Euclidean Sequence Algorithm

Input : a, b ∈ K[x], m := deg(a) ≥ n := deg(b) > 0.

Output : prs[i]: polynomials of degreei in EuclideanSequence(a,b), if any, other-

wise0.

EuclideanSequence(a, b) ==

r := 1

declareprs as a list of sizen.

repeat

bn := lcoeff(b, x)

if n = 0 then

prs[0] :=r bmn ; return prs

h := a rem b

if h = 0 then

prs[n] := (1/bn) ∗ b; return prs

else

i:= deg(h, x);

prs[i] := (1/lcoeff(h, x)) ∗ h

r := r (−1)nmbm−i
n

(a, b,m, n) := (b, h, n, i)

3.3. Euclidean modular method 56

Algorithm 12

Input : f1, f2 ∈ K[X1, X2], under assumptionsH1 toH5.

Output :{t1(X1), t2(X1, X2)}⊆K[X1, X2] s.t.V (f1, f2) = V (t1, t2).

let b be a degree bound forres(f1, f2, X2)

n := b+ 1

declarevprs as a list of sizen.

while n > 0 do

v :=newValue()

if lc(f1(X1 = v)) = 0 or lc(f2(X1 = v)) = 0 then iterate

else

val[n] := v

vprs[n] :=EuclideanSequence(f1(X1 = v), f2(X1 = v))

n := n− 1

t1 :=Interpolate(val, seq(vprs[i][0], i = 1..b + 1))

s = 1

repeat {

d := min { d > s | ∃i ∈ N , prs[i][d] 6= 0}

let c be a degree bound for the coefficients w.r.t.X2

of a remainder inEuclideanSequence(f1, f2)

n
′

:= 2c+ 1

m := #{i | prs[i][d] 6= 0}

Assume{prs[i][d] 6= 0, i = 1..m}

up to sorting prs, we can always make that assumption

while n
′

> m do

v :=newValue()

if lc(f1(X1 = v)) = 0 or lc(f2(X1 = v)) = 0 then iterate

a :=EuclideanSequence(f1(X1 = v), f2(X1 = v))

if a[d] = 0 then iterate

prs[n
′

] := a; val[n
′

] := v;

n
′

:= n
′

− 1

t2:= InterpolateAndRationalReconstruction(val, seq(prs[i][d], i = 1..2c + 1))

if gcd(lc(t2, X2), t1) ∈ K then break

s := s + 1

}

return { t1, t2 }

3.3. Euclidean modular method 57

Let us now give details for(T2). The principle is similar to(T1). However, three

particular points require special care.

• First, the degree of the gcd w.r.t.X2 is not known in advance, in contrast with the

resultant which is known to be0 w.r.t. X2. So, we first try to reconstruct from the

arrayAv0
, . . . , Avb

a gcd of degree1, if it fails, we try a gcd of degree2, and so

on. We proceed in this order, because unlucky substitutionsgive rise to gcds with

degrees higher than the that of the desired gcd.

• Second, when trying to reconstruct a gcd of degreed we interpolate together the

slots on indexd fromAv0
, . . . , Avb

that do not contain0. If they all contain0, then

we know thatG2 has degree higher thand. Indeed, according to Theorem 6.26 in

[17] the number of unlucky specializations is less than the degree ofR1 and thus

less thanb. If at least one slot of indexd does not contain0, we need to make sure

that we have enough slots. Indeed, according to Theorem 6.54in [17], the degree

in X1 a denominator of a numerator inG2 can reach

c = (degX2
(f1) + degX2

(f2))max(degX1
(f1), degX1

(f2)). (3.15)

If we have less than2c non-zero slots in degreed, we need to compute more se-

quences of remainders for specializations ofX1.

• Third, once we have interpolated enough specialized remainders of a given degree

d, we need to apply rational reconstruction to its coefficients w.r.t.X2. Indeed, in

contrast to resultants, gcd computations involve not only additions and multiplica-

tions, but also inversions.

Example 7 Letf1 andf2 be polynomials defined as







f1 = (X2 −X
2
1)(X2 + 2)

f2 = (X2 + 1)(X2 + 3)
(3.16)

3.3. Euclidean modular method 58

Then the resultant intermediate remainders off1 andf2 w.r.tX2 are:

R2 = X2
2 + 4X2 + 3

R1 = −2X2 −X
2
1X2 − 2X2

1 − 3

R0 = −X4
1 − 4X2

1 − 3

Let b be the bound

degX1
(f1)degX2

(f2) + degX2
(f1)degX1

(f2)

which is 4 in our example. For enough valuesv0, v1, ..., vb computeRi(X1 = vj) for

i = 0..2 andj = 0..b and store the computations into an array, say A.

i = 1, X1 = 1 i = 2, X1 = 2 i = 3, X1 = 3 i = 4, X1 = 4 i = 5, X1 = 5

R2,i X2
2 + 4X2 + 3 X2

2 + 4X2 + 3 X2
2 + 4X2 + 3 X2

2 + 4X2 + 3 X2
2 + 4X2 + 3

R1,i −3X2 − 5 −6X2 − 11 −11X2 − 21 −18X2 − 35 −27X2 − 53

R0,i −8 −35 −120 −323 −728

Recycle the intermediate computations above using Lagrange interpolation to get

G2 = −X4
1 − 4X2

1 − 3

Also to reconstruct the gcd from the above array, we can interpolate together all the

slots that do not contain 0, which leads to:

[−2X2
1 − 3,−X2

1 − 2]

3.3. Euclidean modular method 59

At this point we have enough specialized remainders to applyrational reconstruction

to the coefficients w.r.t.X2 to get

(−2−X2
1)X2 − 2X2

1 − 3

Finally taking the primitive part we get

−2X2 −X
2
1X2 − 2X2

1 − 3

Hence our solution is

[−2X2 −X
2
1X2 − 2X2

1 − 3,−3− 4X2
1 −X

4
1]

Example 8 Consider the system







f1 = (X2
2 + 1) (X2

2 + 3)

f2 = (X2 +X1)
2 (X2 + 2)2

(3.17)

The Euclidean Sequence off1 andf2 w.r.t.X2 overZ17 can be given by:

R4 = X2
4 + (4 + 2X1)X2

3 + (4 + 8X1 +X1
2)X2

2 + (8X1 + 4X1
2)X2 + 4X1

2

R3 = (15X1 + 13)X2
3 + (16X1

2 + 9X1)X2
2 + 13X1

2 + (13X1
2 + 9X1)X2 + 3

R2 = (13 X1
4+2 X1

3+12 X1
2+8 X1+16)

X1
2+4 X1+4

X2
2 + (X1

4+8 X1
3+12 X1

2+10 X1+3)

X1
2+4 X1+4

X2

+ X1
4+8 X1

3+15 X1
2+6 X1+12

X1
2+4X1+4

R1 = (12 X1
7+14 X1

6+13 X1
5+16 X1

4+11 X1
3+3 X1

2+13 X1+1)

X1
7+7 X1

5+6 X1
4+9X1

3+8 X1
2+2 X1+1

X2

+ 11 X1
7+13 X1

6+X1
5+X1

4+16 X1
3+3X1

2+9 X1+12
X1

7+7 X1
5+6 X1

4+9 X1
3+8 X1

2+2 X1+1

R0 = X1
8 + 8X1

6 + 5X1
4 + 7X1

2 + 9

3.4. The complexity analysis 60

i = 1, X1 = 1 i = 2, X1 = 2 i = 3, X1 = 3
R4,i X4

2
+ 6X3

2
+ 13X2

2
+ 12X2 + 4 X4

2
+ 8X3

2
+ 7X2

2
+ 15X2 + 16 X4

2
+ 10X3

2
+ 3X2

2
+ 9X2 + 2

R3,i X3

2
+ 10X2

2
+ 2X2 + 3 X3

2
+ 11X2

2
+ 4X2 + 8 X3

2
+ 5X2

2
+ 6X2 + 5

R2,i 0 X2

2
+ X2 + 3 X2

2
+ 7X2 + 16

R1,i 0 X2 + 10 X2 + 5
R0,i 13 1 1

i = 4, X1 = 4 i = 5, X1 = 5 i = 6, X1 = 6

R4,i X4

2
+ 14X3

2
+ X2

2
+ 4X2 + 15 X4

2
+ 16X3

2
+ 3X2

2
+ 5X2 + 8 X4

2
+ X3

2
+ 7X2

2
+ 14X2 + 9

R3,i X3

2
+ X2

2
+ 10X2 + 13 X3

2
+ X2

2
+ 12X2 + 12 X3

2
+ 3X2

2
+ 14X2 + 6

R2,i X2

2
+ 4X2 + 7 X2

2
+ 10 X2

2
+ 15X2 + 13

R1,i X2 X2 + 1 X2 + 7
R0,i 9 4 1

i = 7, X1 = 7 i = 8, X1 = 8 i = 9, X1 = 9

R4,i X4

2
+ 3X3

2
+ 13X2

2
+ 14X2 + 1 X4

2
+ 5X3

2
+ 4X2

2
+ 5X2 + 1 X4

2
+ 7X3

2
+ 14X2

2
+ 4X2 + 9

R3,i X3

2
+ 3X2

2
+ 16X2 + 5 X3

2
+ X2 + 3 X3

2
+ 16X2

2
+ 3X2 + 13

R2,i X2

2
+ 14X2 + 11 X2

2
+ 16X2 + 1 X2

2
+ 9X2 + 12

R1,i X2 + 4 X2 + 2 X2 + 5
R0,i 9 9 1

Figure 3.3: Computing Euclidean remainder sequience of system (3.17) through special-
izations mod 17

For this example each remainderRi is of degreei w.r.t.X2. Now instead of computing

directly overZ17(X1) we can reduce the computation to univariate polynomials over finite

fieldZ17 by using specilizations. Figure (3.3) shows the details of such computation over

Z17 with specilizations ofX1 = 1, · · · , X1 = 9.

3.4 The complexity analysis

Referring to propositions 12, 13, and 14; let us try to find thecomplexity our algorithm.

Just forR1 consider

n = max(degX2
(f1), degX2

(f2)) (3.18)

m = max(degX1
(f1), degX1

(f2)) (3.19)

For the direct approach, we run the Euclidean algorithm applied tof1 andf2 regarded

as polynomials inX2 so we payO(n2nm) operations inK (the factornm is for the

3.5. Subresultant modular method 61

maximum degree of a coefficient inX2, namely the resultant). For the modular approach,

we assume that we are lucky, that is the degree of the GCD is 1. We also assume that we

have fast univariate polynomial arithmetic inK[X1] at our disposal. This is reasonable

assumption for today’s computer algebra systems [16].

• We need2nm specialized computations. Each of these specialized computations

are over a field, and allow the use of fast Euclidean Algorithms in

O(n log(n)2 log(log(n)))

operations inK. See [32] page 66.

• We need 3 interpolations in degree2nm which can be done again with fast interpo-

lations inO((p log(p)2log(log(p))) operations inK wherep = nm. See [17] page

284.

• We need 2 rational function reconstructions requiring againO((p log(p)2log(log(p)))

operations inK.

Proposition 20 Using our modular algorithm, solving a bivariate systems oftwo polyno-

mial equations takes aboutO(n2m) operations inK versusO(n3m) for the non-modular

algorithms (provided that we neglect the logarithmic terms).

3.5 Subresultant modular method

Another way to implement the key observations stated in Section 3.3 is to use theSubre-

sultant PRS Algorithminstead of theEuclidean Algorithm. This has several advantages:

• First, the bound for reconstructingG2 is divided by 2. Indeed, in the case of the Eu-

clidean Algorithm, the coefficients ofG2 are rational functions inK(X1) whereas

in the case of the Subresultant PRS Algorithm they are just polynomials inK[X1].

3.5. Subresultant modular method 62

• Second, rational reconstruction is not needed anymore andthus the algorithm be-

comes conceptually simpler.

Apart from that, the principle is similar. We start by specializing the input system at

sufficiently many values ofx1 and for each specialization we compute the subresultant

chains of the two input polynomials. Then, we interpolate the resultant part of each

sequence to getT1.

3.5. Subresultant modular method 63

Algorithm 13

Input : f1, f2 ∈ K[X1, X2], under assumptions ofH1 toH5.

Output:{t1(X1), t2(X1, X2)}⊆K[X1, X2] s.t.V (f1, f2) = V (t1, t2).

let b be a degree bound forres(f1, f2, X2)

n := b+ 1

declarevprs as a list of sizen.

while n > 0 do

v :=newValue()

if lc(f1(X1 = v)) = 0 or lc(f2(X1 = v)) = 0 then iterate

else

val[n] := v

vprs[n] :=SubresultantPRS(f1(X1 = v), f2(X1 = v))

n := n− 1

t1 :=Interpolate(val, seq(vprs[i][0], i = 1..b + 1))

s = 1

repeat {

d := min { d ≥ s | ∃i ∈ N , prs[i][d] 6= 0}

n
′

:= 2b+ 1

m := #{i | prs[i][d] 6= 0}

Assume{prs[i][d] 6= 0, i = 1..m}

up to sorting prs, we can always make that assumption

while n
′

> m do

v :=newValue()

if lc(f1(X1 = v)) = 0 or lc(f2(X1 = v)) = 0 then iterate

a :=SubresultantPRS(f1(X1 = v), f2(X1 = v))

if a[d] = 0 then iterate

prs[n
′

] := a; val[n
′

] := v;

n
′

:= n
′

− 1

t2:= Interpolate(val, seq(prs[i][d], i = 1..2c + 1)

if gcd(lc(t2, X2), t1) ∈ K then break

s := s+ 1

}

return { t1, t2 }

3.6. Implementation of our modular method 64

3.6 Implementation of our modular method

As a first step, one might wonder which kind of polynomial representation among several

alternatives (e.g. distributive/recursive, sparse/dense) is best suited for facilitating our

computations. Hence, we have developed aMaple library where different polynomial

representations can be used.

3.6.1 Maple representation

GenerallyMaple objects are represented by a data structure called anexpression tree

(also DAG, Directed Acyclic Graphs) such that eachMaple object is stored only once

in memory. In the example below we consider the expression(x − 1)2y2 + x + 3. The

Maple commanddismantle can be used to show the internal structure of aMaple

expression.

Example 9

> f := (x-1)^2*y+x+3;

> dismantle(f);

SUM(7)
PROD(5)

SUM(5)
NAME(4): x
INTPOS(2): 1
INTNEG(2): -1
INTPOS(2): 1

INTPOS(2): 2
NAME(4): y
INTPOS(2): 2

INTPOS(2): 1
NAME(4): x
INTPOS(2): 1
INTPOS(2): 3
INTPOS(2): 1

So the Maple’s internal representation of the above expression DAG is shown in Fig-

ure 3.4.

3.6. Implementation of our modular method 65

*

^

+

+

x

x −1

^

2y2

3

Figure 3.4: Maple expression tree for(x− 1)2y2 + x+ 3

3.6.2 Recden representation

The packageRecden is a separate library which uses a recursive dense polynomial rep-

resentation, that is:

• a polynomial is regarded as a univariate polynomial w.r.t.its largest variable, sayv

and,

• is stored as the vector of its coefficients w.r.t.v which are themselves recursive

dense polynomials.

Null

11

1

3−2

Figure 3.5:Recden representation of(x− 1)2y2 + x+ 3

In Maple 11, most of the recden routines were integrated into Maple’smain library

and some of them into internal built-in kernel functions.

3.6. Implementation of our modular method 66

3.6.3 modp1/modp2 representation

Themodp1/modp2 library is a built-inMaple library which uses its own data structure

to represent polynomials,modp1 is a data structure for dense univariate polynomials over

prime fields. If the characteristic is sufficiently small, a polynomial is represented as an

array of machine integers, otherwise as aMaple list of arbitrary precision integers. Simi-

larly modp2 implements dense bivariate polynomials over prime fields asMaple lists of

modp1 polynomials, representing the univariate coefficients of the bivariate polynomials

in the main variable.

modp1 andmodp2 are mostly implemented in the C language rather than in the

Maple programming language. This generally yields better performance than both of

theMaple andRecden representations.

3.6.4 Benchmarks

In this section, we report on comparison with the three polynomial arithmetic representa-

tions provided bymodp1/modp2 andRecden. We compare them within Algorithm 12.

As input, we use random bivariate dense polynomialsf, g of various total degrees from

1 to 20 modulo the primep = 2147483659 = nextprime(231). All the benchmarks in

this thesis are obtained on a Mandrake 10 Linux machine with Pentium 2.8 GHz and 2Gb

memory, except for the Figure 3.11 which was done on a Fedora 4Linux machine with

Pentium 3.2 GHz speed and 2Gb memory. Also all the timings arein seconds.

Figure 3.6 shows the running times for themodp1/modp2 polynomial arithmetic

only whereas Figure 3.7 show the running times for bothmodp1/modp2 andRecden

polynomial arithmetics. The former library clearly outperforms the latter one for large

degrees. This was actually expected since most of themodp1/modp2 code is written in

C whereas theRecden code is mostlyMaple interpreted code.

3.6. Implementation of our modular method 67

 2 4 6 8 10 12 14 16 18 20
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

 0

 5

 10

 15

 20

 25

Time

modp1/modp2 times

"modp1-modp2"

deg(f)

deg(g)

Time

Figure 3.6: Running Euclidean modular algorithms withmodp1/modp2 representation
form.

3.7. Experimental comparison 68

 2 4 6 8 10 12 14 16 18 20
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

Time

modp1/modp2 vs. recden times

"modp1-modp2"
"recden"

deg(f)

deg(g)

Time

Figure 3.7: Euclidean modular method using bothRecden and modp1/modp2 li-
braries.

3.7 Experimental comparison

In this section, we compare the implementations of the modular algorithms developed in

this chapter, namely Algorithms 12 and 13, based on the Euclidean sequence and Subre-

sultant PRS sequence, respectively. We compare them also with theTriangularize

command from theRegularChains library in Maple since they all solve polynomial

systems by means of triangular sets.

As input, we use again random bivariate dense polynomialsf, g of various total de-

grees from 1 to 20 modulo the primep = 2147483659 = nextprime(231). All these

implementations are using the defaultMaple polynomial representation, except for Fig-

3.7. Experimental comparison 69

ure 3.11 which usesmodp1/modp2 representation.

We start with benchmarks illustrating the differences between the two modular meth-

ods developed in this chapter: Figure 3.8 shows the running times for Algorithm 13 only

whereas Figure 3.9 show the running times for both Algorithms 12 and 13. As expected,

the Subresultant-based modular algorithm clearly outperforms the Euclidean Algorithm-

based modular algorithm for large degrees. Recall that the latter one uses bounds that

are essentially twice larger than the former one; moreover the latter one involves rational

function reconstruction.

 2 4 6 8 10 12 14 16 18 20 2
 4

 6
 8

 10
 12

 14
 16

 18
 20

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

Time

Subresultant Approach

"SubresultantApproach"

deg(f)

deg(g)

Time

Figure 3.8: Timings for the Subresultant approach withMaple representation form

3.7. Experimental comparison 70

 2 4 6 8 10 12 14 16 18 20 2
 4

 6
 8

 10
 12

 14
 16

 18
 20

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

Time

EuclideanSolve vs. Triangularize

"SubresultantApproach"
"EuclideanApproach"

deg(f)

deg(g)

Time

Figure 3.9: Comparison between Subresultant vs. Euclideanapproaches, both are in
Maple representation forms

Figure 3.10 shows the running times for Algorithm 13 and theTriangularize

command. As expected, the Subresultant-based modular algorithm clearly outperforms

theTriangularize command (which does use a modular algorithm).

3.7. Experimental comparison 71

 2 4 6 8 10 12 14 16 18 20 2
 4

 6
 8

 10
 12

 14
 16

 18
 20

 0

 100

 200

 300

 400

 500

 600

 700

Time

EuclideanSolve vs. Triangularize

"SubresultantApproach"
"Triangularize"

deg(f)

deg(g)

Time

Figure 3.10: Subresultant vs. Triangularize approaches, both are inMaple representation
forms

Finally, we compare theTriangularize command (which usesMaple polyno-

mial arithmetic) versus Algorithm 13, implementing our Subresultant-based Modular al-

gorithm, using themodp1/modp2 polynomial arithmetics. In this case, the gap between

becomes even larger.

3.7. Experimental comparison 72

 2 4 6 8 10 12 14 16 18 20
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

 0

 50

 100

 150

 200

 250

 300

Time

SubresultantSolve vs. Triangularize

"SubresultantApproach"
"Triangularize"

deg(f)

deg(g)

Time

Figure 3.11: Comparison between Subresultant approach inmodp1/modp2 representa-
tion vs. Triangularize inMaple representation forms

Chapter 4

A Modular Method for Trivariate

Systems

In this chapter we discuss an algorithm and its implementation for solving systems of three

non-linear polynomial equations with three variables. We extend to this context the ideas

introduced in Chapter 3. This leads to a modular method for solving such systems under

some assumptions that are satisfied in most practical cases.Our implementation in the

computer algebra systemMaple allows us to illustrate the effectiveness of our approach.

4.1 Problem statement

Let f1, f2, f3 be three polynomials in variablesX1, X2, X3 and with coefficients in a per-

fect fieldK. Let K be the algebraic closure ofK. We are interested in solving overK the

system of equations 





f1(X1, X2, X3) = 0

f2(X1, X2, X3) = 0

f3(X1, X2, X3) = 0

(4.1)

73

4.1. Problem statement 74

that is computing the setV (f1, f2, f3) of all tuples(z1, z2, z3) ∈ K
3

such we have:

f1(z1, z2, z3) = f2(z1, z2, z3) = f3(z1, z2, z3) = 0.

We denote byZ2 the set all couples(z1, z2) ∈ K
2

such that there existsz3 ∈ K satis-

fying (z1, z2, z3) ∈ V (f1, f2, f3). Hence, the setZ3 collects all the pairs ofX1-coordinate

andX2-coordinate of a point inV (f1, f2, f3).

We denote byZ1 the set all the numbersz1 ∈ K such that there exists a couple

(z2, z3) ∈ K satisfying(z1, z2, z3) ∈ V (f1, f2, f3). In other words, the setZ1 collects all

the values for theX1-coordinate of a point inV (f1, f2, f3).

We make below our assumptions regardingf1, f2, f3 and their zero-setV (f1, f2, f3):

(H1) the setV (f1, f2, f3) is non-empty and finite, and thus the setsZ1 andZ2 are non-

empty and finite too,

(H2) there exists a constantd3 such that for every(z1, z2) ∈ Z2 there exist exactlyd3

points inV (f1, f2, f3) with X1-coordinate equal toz1 andX2-coordinate equal to

z2,

(H3) there exists a constantd2 such that for everyz1 ∈ Z1 there exist exactlyd2 values

for theX2-coordinate of a point inV (f1, f2, f3) whoseX1-coordinate isz1.

(H4) the polynomialsf1, f2, f3 have positive degree w.r.t.X3 andX2.

(H5) there exists a Lazard triangular setT = (T2, T3) in K(X1)[X2, X3] such thatT and

f1, f2 generate the same ideal inK(X1)[X2, X3]; moreover, this ideal is radical,

(H6) leth1 be the least common multiple of the denominators inT; we assume that none

of the roots ofh1 belongs toZ1, that is,V (h1, f1, f2, f3) = ∅.

(H7) We assume thatV (h1, T2, T3, f3) = ∅.

4.1. Problem statement 75

(H8) the polynomialsT2 andres(T3, f3, X3) have positive degree w.r.t.X2 and their lead-

ing coefficients w.r.t.X2 are relatively prime,

(H9) the polynomialsT3 andf3 have positive degree w.r.t.X3 and their leading coeffi-

cients w.r.t.X3 are relatively prime.

Similarly to the hypotheses of Chapter 3, these assumptionsare satisfied in most practical

problems, see for instance the systems collected by theSymbolicData project [30].

Moreover, we usually haved2 = 1 andd3 = 1.

Let d1 be the number of elements inZ1. The hypotheses(H1) to (H3) imply that

there exists a univariate polynomialt1 ∈ K[X1] of degreed1, a bivariate polynomial

t2 ∈ K[X1, X2] with degreed2 w.r.t. X2, and a trivariate polynomialt3 ∈ K[X1, X2, X3]

with degreed3 w.r.t.X3, such that for all(z1, z2, z3) ∈ K
3

we have







f1(z1, z2, z3) = 0

f2(z1, z2, z3) = 0

f3(z1, z2, z3) = 0

⇐⇒







t1(z1) = 0

t2(z1, z2) = 0

t3(z1, z2, z3) = 0.

Moreover, we can require that the leading coefficient oft1, t2, t3 w.r.t. X1, X2, X3

respectively are all equal to1. Similarly to Chapter 3, this fact follows from a theorem

of [1]. Figure 4.1 shows a varietyV (f1, f2, f3) satisfying Hypotheses(H1) to (H3); such

a variety is calledequiprojectable.

The goal of this chapter is to compute the triangular set{t1, t2, t3} efficiently. Hy-

potheses(H4) to (H9) serve that objective. In Section 4.2, we describe adirect method

based on the principle ofIncremental Solvingused in algorithms such as those of Lazard [22]

and Moreno Maza [27]. That is, we first solve the system consisting of f1 andf2 before

takingf3 into account. Then, in Section 4.3 we present our modular method and in Sec-

tion 4.4 we report on our experimental results.

4.2. A direct method 76

4.2 A direct method

Recall thatT = (T2, T3) is a Lazard triangular set inK(X1)[X2, X3]. Hence, the polyno-

mialsT2, T3 are bivariate inX2, X3 and have coefficients in the fieldK(X1) of univariate

rational functions overK. Hypothesis(H5) implies that for all(z1, z2, z3) ∈ K
3

such that

h1(z1) 6= 0 we have







f1(z1, z2, z3) = 0

f2(z1, z2, z3) = 0
⇐⇒







T2(z1, z2) = 0

T3(z1, z2, z3) = 0.
(4.2)

Sinceh1 is the least common multiple of the denominators inT, we observve thath1T2

andh1T3 are polynomials inK[X1, X2, X3].

We defineW (T2, T3) = V (h1T2, h1T3)\V (h1), that is, the set of the points(z1, z2, z3) ∈

K
3

that cancel the polynomialsh1T2 andh1T3 without cancellingh1. Observe that we

have

V (f1, f2) = W (T2, T3) ∪ V (h1, f1, f2). (4.3)

Two cases arise. Eitherh1 is a non-zero constant and thusV (h1, f1, f2) = ∅ holds. Or

h1 is a non-constant polynomial. In this latter case computingV (h1, f1, f2) reduces to

solving a bivariate system of two equations with coefficients in K[X1]/〈h1〉. One can

replaceh1 by its squarefree part without changingV (h1, f1, f2). From there, we are led

to compute resultants and GCDs over a direct product of fields, which are well under-

stood tasks and for which highly efficient algorithms are available, see [13]. Computing

the Lazard triangular setT = (T2, T3) can be achieved withLift operation described in

Specification 4. From Equation (4.3) we deduce

V (f1, f2, f3) = (W (T2, T3) ∩ V (f3)) ∪ V (h1, f1, f2, f3). (4.4)

4.2. A direct method 77

Hypothesis(H6) tells us none of the roots ofh1 belongs toZ1. Hence, we have:

V (h1, f1, f2, f3) = ∅. (4.5)

Therefore, we obtain

V (f1, f2, f3) = W (T2, T3) ∩ V (f3). (4.6)

Next, Hypothesis(H7) tells us thatV (h1, T2, T3, f3) = ∅ holds. Hence Equation (4.6)

becomes simply:

V (f1, f2, f3) = V (T2, T3, f3). (4.7)

It is natural to consider the resultant ofT3 andf3 w.r.t.X3, namely:

R2 = res(T3, f3, X3). (4.8)

Hence, there exist polynomialsA1, A2 ∈ K[X1, X2, X3] such that we have

R2 = A1T3 + A2f3. (4.9)

The polynomialsR2 andT2 are bivariate polynomials inK[X1, X2] and it is natural to

relate their common roots with the setZ2. Let (z1, z2, z3) ∈ V (f1, f2, f3). From Equa-

tion (4.7) we haveT2(z1, z2) = T3(z1, z2, z3) = 0. Hence, with Equation (4.9) we deduce

R2(z1, z2) = 0. Therefore, we have established

(z1, z2) ∈ Z2 ⇒ T2(z1, z2) = R2(z1, z2) = 0. (4.10)

The reverse implication may not holda priori. However, Hypothesis(H9), together with

theExtension Theorem[10], implies that every for(z1, z2) ∈ K
2

satisfytingR2(z1, z2) =

4.2. A direct method 78

0 there existsz3 ∈ K such that(z1, z2, z3) ∈ V (T3, f3). Therefore, we have

Z2 = V (T2, R2). (4.11)

Next, using Hypotheses(H1), (H3), (H8), we can apply Corollary 1 to computeV (R2, T2).

Hence, we define

t1 = res(R2, T2, X2) and t2 = gcd(R2, T2, {t1}), (4.12)

and we have:

V (t1, t2) = V (R2, T2). (4.13)

As observed above, using theExtension Theorem[10] (or a construction similar to the

proofs of Theorem 5 and Corollary 1), we see that every commonsolution ofT2 andR2

extends to a common solution ofT3 andf3. Hence, using Hypothesis(H2), there exists a

trivariate polynomialt3 of degreed3 w.r.t.X3 such that we have

V (t1, t2, t3) = V (R2, T2, T3, f3). (4.14)

Moreover, the polynomialt3 is a GCD ofT3 andf3 modulo{t1, t2}. Therefore, we have

proved the following.

Theorem 6 The hypotheses(H1) to (H9) imply the existence of a regular chain{t1, t2, t3}

such that we have

V (t1, t2, t3) = V (f1, f2, f3). (4.15)

Moreover, these polynomials can be computed by Algorithm 4.3.

4.2. A direct method 79

Algorithm 14 GenericSolve3

Input: f1, f2, f3 ∈ K[X1, X2, X3] under the assumptions {(H1)-(H9)}.

Output: {t1(X1), t2(X1, X2), t3(X1, X2, X3)} ⊆ K[X1, X2, X3]

s.t.V (f1, f2, f3) = V (t1, t2, t3).

GenericSolve3(f1, f2, f3)==

Let z1 be a random value not cancelling any coefficient w.r.t.X1 of f2 andf3

u2, u3 := GenericSolve2(f1(X1 = z1), f2(X1 = z1))

u2, u3 := Normalize(u2, u3)

T2, T3 := Lift(f1, f2, f3, u2, u3, X1 − z1)

R2 := res(T3, f3, X3)

t1 := res(T2, R2, X2)

t2 := GCD(T2, R2, {t1})

t3 := GCD(T3, f3, {t1, t2})

return {t1, t2, t3}

X

 Y

 Z

0

Figure 4.1: Equiprojectable variety

4.3. A modular method 80

4.3 A modular method

Under the Hypotheses(H1) to (H9), Theorem 6 tells us that computing the regular chain

{t1, t2, t3} reduces essentially to

• calling the operationsGenericSolve2, Normalize andLift,

• computing the resultantsres(T3, f3, X3) andres(R2, T2, X2),

• computing a GCD ofR2 andT2 modulo{t1},

• computing a GCD ofT3 andf3 modulo{t1, t2}.

Thefirst key observation is that these GCDs need not to split the computations. Hence,

similarly to our modular algorithm of Chapter 3:

• a GCD ofR2 andT2 modulo{t1} can be obtained from the subresultant chain of

R2 andT2 in (K[X1])[X2] and theSpecification Property of Subresultants

• a GCD ofT3 andf3 modulo{t1, t2} can be obtained from the subresultant chain of

T3 andf3 in (K[X1, X2])[X3] and theSpecification Property of Subresultants.

Therefore, computing the subresultant chain ofR2 andT2 in (K[X1])[X2] produces both

res(R2, T2, X2) and a GCD ofR2 andT2 modulo{t1}. Similarly, computing the subre-

sultant chain ofT3 andf3 in (K[X1, X2])[X3] produces bothres(T3, f3, X3) and a GCD

of T3 andf3 modulo{t1, t2}.

The second key observationis that these two subresultant chains can be computed

by a modular method, using evaluation and interpolation. Atthis point it is important

to stress the fact that we have replaced the two GCD computations modulo a regular

chain by subresultant chain computations in(K[X1])[X2] and(K[X1, X2])[X3]. In broad

terms, these replacements have “freed” the variablesX1 andX2 allowing specialization,

whereas in the context of GCD computations modulo a regular chain, these variables were

algebraic numbers, which was preventing us from specializing them.

4.3. A modular method 81

These observations lead immediately to Algorithm 15. Algorithm 16 is an improved

version, where we observe that the resultantR2 does not need to be constructed in the

monomial basis ofK[X1, X2]. Indeed, the modular images ofR2 computed bySubresul-

tantChain(T3, f3, X3) can be recycled insideModularGenericSolve2(T2, R2). How-

ever, one should make sure that all these images have have thesame degree w.r.t.X2, that

is,deg(R2, X2) which is easy to ensure, but not described in Algorithm 16 forsimplicity.

Algorithm 15 ModularGenericSolve3

Input: f1, f2, f3 ∈ K[X1, X2, X3] under the assumptions {(H1)-(H9)}.

Output: {t1(X1), t2(X1, X2), t3(X1, X2, X3)} ⊆ K[X1, X2, X3]

s.t.V (f1, f2, f3) = V (t1, t2, t3)

Let z1 be a random value

u2, u3 := Solve2(f1(X1 = z1), f2(X1 = z1))

T2, T3 :=Lift(f1, f2, f3, u2, u3, X1 − z1)

S := SubresultantChain(T3, f3, X3)

S is Computed by specialization and interpolation

R2 := S[0] We haveR2 = res(T3, f3, X3)

t1, t2 := ModularGenericSolve2(T2, R2)

Let t3 be the regular subresultantS[i], S with minimum index

i > 0 s.t. lc(S[i], X3) 6= 0 mod〈t1, t2〉

return {t1, t2, t3}

4.3. A modular method 82

Algorithm 16 EnhancedModularGenericSolve3

Input: f1, f2, f3 ∈ K[X1, X2, X3] under the assumptions {(H1)-

(H9)}.

Output: {t1(X1), t2(X1, X2), t3(X1, X2, X3)} s.t. V (f1, f2, f3) =

V (t1, t2, t3).

Let z1 be a random value

u2, u3 := Solve2(f1(X1 = z1), f2(X1 = z1))

T2, T3 :=Lift(f1, f2, f3, u2, u3, X1 − z1)

δ := number of specializations for Chain(T3, f3, X3) andChain(T2, R2, X2)

for i = 1 to δ repeat{

v[i] := newGoodV alue(T2, T3, f3)

S [i] := Chain(T3 |X1=vi
, f3 |X1=vi

, X3)

C [i] := Chain(T2 |X1=vi
, S [i][0], X2)

} R2 is known only by values

t1, t2 := ModularGenericSolve2(C [i], v[i], 0 ≤ i ≤ δ)

Computet3 from (S [i], 0 ≤ i ≤ δ), similarly tot2.

return {t1, t2, t3}

4.3. A modular method 83

Generic Assumptions

(H1) 0 < |V (f1, f2, f3)| <∞.

(H5) 〈f1, f2〉 ∩ K[X1] = 0
Assume there exists a triangular set T =
{T2(X1, X2), T3(X1, X2, X3)} which is a
regular chain in K(X1)[X2, X3] s.t. T and
{f1, f2} have the same solution set over
K(X1). Now, assume denoinators in T

have been cleared out.

(H6) Define h1 = lc(T2, X1) lc(T3, X3).
Assume V (h1, f1, f2, f3) = φ.

(H7) V (T2, T3, f3) ∩ V (h1) = φ.

(H9) 〈lc(T3, X3), lc(f3, X3)〉 = 〈1〉.

(H3) Let Π1 : Z2 → K.
(z1, z2)→ (z1).

Define Z1 := Π1(Z2).
Assume each fiber of Π1 has
the same cardinality.

(H8) Define R2 = res(T3, f3, X3)
Assume gcd(lc(R2, X2), lc(T2, X2) = 1

(H2) Let Π2 : V (f1, f2, f3)→ K
2

.
(z1, z2, z3)→ (z1, z2).

Define Z2 := Π2(V (f1, f2, f3)). Assume
each fiber of Π2 has the same cardinality.

(H4) ∀(i, j) deg(fi, Xj) > 0.

Main Conclusions

(H1)⇒ V(f1, f2) is a pure curve
⇓

(H5)⇒ X1 can be seen as a parameter
V(f1, f2) = V(T2, T3)\V(h1) ∪ V(f1, f2, h1)

⇓
(H6)
(H7)

}

⇒ V(f1, f2, f3) = V(T2, T3, f3)

⇓
(H9)⇒ Z2 = V(T2, R2)

⇓
(H3)
(H8)

}

⇒ There exists a regular chain

V(t1, t2) = V(T2,R2)
⇓

(H2)
(H9)

}

⇒ There exists t3 ∈ K[X1, X2, X3]

s.t. t3 = GCD(T3, f3, {t1, t2}) and

V(f1, f2, f3) = V(t1, t2, t3)
⇓

(H9)⇒ 〈lc(T3, X3), lc(f3, X3)〉 = 〈1〉

Figure 4.2: Generic Assumptions vs. Main Conclusions

4.4. Experimental results 84

4.4 Experimental results

In the following table, we show a performance benchmark of our Maple implementation

of ModularSGenericolve3 (Algorithm 15) versus theTriangularize command of

theRegularChains library inMaple. Both will compute the triangular set{t1, t2, t3}.

However,ModularSGenericolve3 requires the HypothesesH1 to H9 to hold. whereas

RegularChains does not make any assumptions on the input systems{f1, f2, f3}.

Let di be the total degree offi, for 1 ≤ i ≤ 3. We apply these two solvers to

input systems with a variety of degree patterns(d1, d2, d3). The coefficients are in the a

prime field of characteristicp = 2147483659 = nextprime(231) The computations are

performed on a Mandrake 10 Linux machine with Pentium 2.8 GHzand 2Gb memory.

In both tables below, running times are expressed in seconds. The first table com-

pares the running times for our implementation ofModularGenericSolve3 versus the

Triangularize command. The second table gives profiling information, about the

three main function calls involved inModularGenericSolve3.

4.4. Experimental results 85

Pattern Tdeg ModularGenericSolve3 Triangularize

[2, 2, 2] 8 1.157 0.80

[2, 2, 3] 12 4.167 1.05

[2, 3, 2] 12 3.35 0.76

[3, 2, 2] 12 1.181 0.98

[2, 2, 4] 16 15.602 1.55

[2, 4, 2] 16 16.892 1.19

[4, 2, 2] 16 1.691 1.12

[3, 2, 3] 18 3.68 2.16

[3, 3, 2] 18 4.280 2.15

[2, 3, 3] 18 33.872 3.54

[4, 2, 3] 24 5.072 5.55

[4, 3, 2] 24 4.685 4.79

[3, 2, 4] 24 16.284 4.55

[3, 4, 2] 24 16.599 2.84

[2, 4, 3] 24 225.168 4.69

[2, 3, 4] 24 232.113 2.98

[3, 3, 3] 27 34.195 69.60

[4, 2, 4] 32 17.694 18.07

[4, 4, 2] 32 17.601 20.08

[2, 4, 4] 32 1488.431 14.57

[3, 4, 3] 36 223.771 79.17

[3, 3, 4] 36 225.135 78.29

[4, 3, 3] 36 36.494 91.55

[4, 3, 4] 48 281.01 4052.53

[4, 4, 3] 48 233.651 2651.55

[3, 4, 4] 48 1466.251 2869.68

[4, 4, 4] 64 1688.532 11561.30

4.4. Experimental results 86

Pattern Tdeg Solve2 Lift ModularSolve3 Total time

[2, 2, 2] 8 0.147 0.780 0.230 1.157

[3, 2, 2] 12 0.301 0.607 0.273 1.181

[2, 3, 2] 12 0.314 2.889 0.571 3.774

[2, 2, 3] 12 0.319 3.277 0.571 4.167

[4, 2, 2] 16 0.469 0.854 0.368 1.691

[2, 2, 4] 16 0.504 13.748 1.350 15.602

[2, 4, 2] 16 0.595 14.587 1.710 16.892

[3, 3, 2] 18 0.621 2.876 0.783 4.280

[2, 3, 3] 18 0.703 30.739 2.430 33.872

[4, 3, 2] 24 1.100 2.588 0.997 4.685

[4, 2, 3] 24 1.066 2.954 1.052 5.072

[3, 2, 4] 24 1.100 13.438 1.746 16.284

[3, 4, 2] 24 1.105 13.751 1.743 16.599

[2, 4, 3] 24 1.213 216.284 7.671 225.168

[2, 3, 4] 24 1.278 222.636 8.199 232.113

[3, 3, 3] 27 1.486 30.004 2.705 34.195

[4, 4, 2] 32 2.051 13.386 2.164 17.601

[4, 2, 4] 32 2.015 13.521 2.158 17.694

[2, 4, 4] 32 2.410 1443.684 42.337 1488.431

[4, 3, 3] 36 2.599 30.534 3.361 36.494

[3, 4, 3] 36 2.718 212.215 8.838 23.771

[3, 3, 4] 36 2.688 213.360 9.087 225.135

[4, 3, 4] 48 4.866 215.777 10.111 230.754

[4, 4, 3] 48 5.299 217.986 10.366 233.651

[3, 4, 4] 48 5.450 1416.251 44.550 1466.251

[4, 4, 4] 64 9.585 1425.074 253.873 1688.532

4.4. Experimental results 87

Observe that for the modular algorithm, the lifting dominates the running time. The

current implementation of theLift operation that we use is far from optimal. An optimized

implementation is work in progress. Despite this limitation, for large total degree the

implementation of our modular approach outperforms theTriangularize command.

Chapter 5

Conclusions and Work in Progress

We have developed a modular method for solving polynomial systems with finitely many

solutions. In this thesis, we have focussed on bivariate andtrivariate systems.

The case of systems with more than 3 variables is work in progress. At the end of this

section, we propose an adpatation of the trivariate case to the general case ofn by n.

We have realized a preliminary implementation inMaple of this modular method.

Our experimental results suggest that for systems with sufficiently large total degree our

modular method outperforms theTriangularize command ofMaple, which is a solver

with similar specifications. We are aware of some current limitations due to the fact that

one of the routines upon which we rely on is far from being optimized. However, this

should be improved in the near future. Our modular method is well designed for tak-

ing advantage of fast polynomial arithmetic. Indeed, similarly to the work of [24, 25]

it replaces computations in residue class rings, such as direct product of fields, simply

by computations with univariate or multivariate polynomials over a field. When the un-

derlying coefficient fieldK is a finite field, this offers opportunities to use FFT-based

multivariate polynomials. Our modular method is also a complement to the work of [12].

Indeed, the algorithm reported in [12] provides an efficientmodular algorithm for

solving polynomial systems with finitely many solutions andwith coefficients in the field

88

5.1. Non-Modular SolveN 89

of rational numbers.

The algorithm of [12] assumes that an efficient method for solving polynomial systems

over finite fields is available, that is, what we aim to providewith our work.

5.1 Non-Modular SolveN

Here we describe our general approach for Non-ModularSolveN where the input poly-

nomial system is of the casen by n. The steps are similar to the3 by 3 case:

Algorithm 17 Non-ModularSolveN

Input : f1, f2, . . . , fn ∈ K[X1, X2, . . . , Xn], under assumptions to be identified.

Output :{t1(X1), t2(X1, X2), . . . , tn(X1, X2, . . . , Xn)}⊆K[X1, X2, . . . , Xn]

s.t.V (f1, f2, . . . , fn) = V (t1, t2, . . . , tn).

SolveN([f1, f2, . . . , fn], [X1, X2, . . . , Xn])==

goodValue:=false

while goodValue=falsedo

v :=randomValue()

i := 1

while i < n do

if lc(fi(X1 = v)) = 0 then break

i := i+ 1

goodValue:= (i = n + 1)

S :=SolveN([seq(fi(X1 = v), i = 2..n)], [X2, X3, . . . , Xn])

S :=Normalize({S})

(U2, U3 . . . , Un) :=Lift([f2, f3, . . . , fn], S,X1 − v)

return SpecialSolve(U2, U3, . . . , Un, f1)

5.1. Non-Modular SolveN 90

We need to introduce a special routine (say SpecialSolve) tosolve the intermediate

systems before passing it to the lifting code. We call this routine recursively until we get

to the true answer.

Algorithm 18 SpecialSolve

Input : polynomialsU2, U3, . . . Un, fn as in SolveN

Output :{t1(X1), t2(X1, X2), . . . , tn(X1, X2, . . . , Xn)}⊆ K[X1, X2, . . . , Xn]
. s.t.V (U2, U3, . . . Un, fn) = V (t1, t2, . . . , tn).

SpecialSolve(U2, U3, . . . , Un, f1) ==

if n = 2 then return Solve2(U2, f1)

R := res(Un, f1, {U2, . . . , Un−1})

T :=SpecialSolve(U2, U3, . . . , Un−1, R)

G := GCD(Un, f1, T)

return (T ∪ {G})

As above, the routine SpecialSolve calls Solve2 when it reaches the case n=2, this Solve2

also can be defined in the form Non-Modular form as below:

Algorithm 19 Solve2

Input : polynomialsf1(X1, X2), f2(X1, X2) ∈ K[X1, X2] as in SolveN

Output :{t1(X1), t2(X1, X2)}⊆K[X1, X2]
s.t.V (f1, f2) = V (t1, t2).

Solve2([f1, f2], [X1, X2]) ==

R := Resultant(f1, f2, X2)

G := GCD(f1, f2, {R})

return (R ∪ {G})

5.2. Modular SolveN 91

5.2 Modular SolveN

In the following we sketch briefly the main steps for generalizing the algorithms from

modularSolve3 to the modularSolveN. Consider the following system:







f1(X1, . . . , Xn) = 0

f2(X1, . . . , Xn) = 0

...

fn−1(X1, . . . , Xn) = 0

fn(X1, . . . , Xn) = 0

(5.1)

First we temporarily forget one equation, sayf1. Then, we specializeX1 at random to a

valuev. The specialized system







f2(v,X2 . . . , Xn) = 0

...

fn−1(v,X2, . . . , Xn) = 0

fn(v,X2, . . . , Xn) = 0

(5.2)

is also square but has one variable less. The bivariate case was treated above, so we

assume that then − 1 variables case is solved too. We assume that both the input ofthe

specializedn−1 variable system and the inputn variable system can be solved by a single

triangular set. We denote as follows the solution of the specialized system







s2(X2) = 0

...

s3(X2, X3) = 0

sn(X2, . . . , Xn) = 0

(5.3)

Applying symbolic Newton iteration (or Hensel lifting) we lift this specialized system

against

5.2. Modular SolveN 92







f1(X1, X2, . . . , Xn) = 0

...

fn−1(X1, X2, . . . , Xn) = 0

fn(X1, X2, . . . , Xn) = 0

(5.4)

Therefore, we obtain a solution for this system with shape







u2(X1, X2) = 0

u3(X1, X2, X3) = 0

...

un(X1, X2, . . . , Xn) = 0

(5.5)

Now we solve the "forgotten" equationf1(X1, X2, . . . , Xn) = 0 against the above trian-

gular system. This achieved by specializingX1 to sufficiently many valuesv10, v11, . . . , b

where we can choose the boundb to be the product of the total degrees

b = tdeg(f1) tdeg(f2) . . . tdeg(fn) (5.6)

then solving the system as







u2(v1i, X2) = 0

u3(v1i, X2, X3) = 0

...

un−1(v1i, X2, . . . , Xn−1) = 0

un(v1i, X2, . . ., Xn) = 0

f1(v1i, X2, . . . , Xn) = 0

(5.7)

This means "essentially" computing the resultant and "GCDs" of

un(v1i, X2, ..., Xn) = 0, f1(v1i, X2, . . . , Xn) = 0 mod

5.2. Modular SolveN 93







u2(v1i, X2) = 0

u3(v1i, X2, X3) = 0

...

un−1(v1i, X2, . . . , Xn−1) = 0

(5.8)

followed by the recombination of these via the CRA in order toobtain finally a triangular

system







t1(X1) = 0

t2(X1, X2) = 0

...

tn−1(X1, X2, . . . , Xn−1) = 0

tn(X1, X2, . . . , Xn) = 0

(5.9)

This approach relies on assumptions regarding the shape of the solution set that hold in

many practical cases. See the paper [12] for details.

Bibliography

[1] P. Aubry and A. Valibouze. Using Galois ideals for computing relative resolvents.

J. Symb. Comp., 30(6):635–651, 2000.

[2] E. Becker, T. Mora, M. G. Marinari, and C. Traverso. The shape of the shape lemma.

In Proc. of the International Symposium on Symbolic and Algebraic Computation,

pages 129–133, New York, NY, USA, 1994. ACM Press.

[3] B. Beckermann and G. Labahn. Effective computation of rational approximants and

interpolants.Reliable Computing, 6:365–390(26), November 2000.

[4] F. Boulier, M. Moreno Maza, and C. Oancea. A new Henselianconstruction and

its application to polynomial gcds over direct products of fields. Inproceedings of

EACA’04, Universidad de Santander, Spain, 2004.

[5] W.S. Brown. The subresultant PRS algorithm.Transaction on Mathematical Soft-

ware, 4:237–249, 1978.

[6] G.E. Collins. Polynomial remainder sequences and determinants.American Math-

ematical Monthly, 73:708–712, 1966.

[7] G.E. Collins. Subresultants and reduced polynomial remainder sequences.Journal

of the ACM, 14:128–142, 1967.

[8] G.E. Collins. Computer algebra of polynomials and rational functions. American

Mathematical Monthly, 80:725–755, 1975.

94

BIBLIOGRAPHY 95

[9] George E. Collins. The calculation of multivariate polynomial resultants. 18(4):515–

532.

[10] D. Cox, J. Little, and D. O’Shea.Ideals, Varieties, and Algorithms. Spinger-Verlag,

2nd edition, 1997.

[11] X. Dahan, X. Jin, M. Moreno Maza, and É. Schost. Change oforder for regular

chains in positive dimension.Theoretical Computer Science. To appear.

[12] X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and Y. Xie. Lifting techniques for

triangular decompositions. InISSAC’05, pages 108–115. ACM Press, 2005.

[13] X. Dahan, M. Moreno Maza, É. Schost, and Y. Xie. On the complexity of the D5

principle. InProc. ofTransgressive Computing 2006, Granada, Spain, 2006.

[14] J. Della Dora, C. Dicrescenzo, and D. Duval. About a new method for computing in

algebraic number fields. InProc. EUROCAL 85 Vol. 2, volume 204 ofLect. Notes

in Comp. Sci., pages 289–290. Springer-Verlag, 1985.

[15] Jean-Guillaume Dumas, Clément Pernet, and Jean-LouisRoch. Adaptive tri-

angular system solving. In Wolfram Decker, Mike Dewar, Erich Kaltofen,

and Stephen Watt, editors,Challenges in Symbolic Computation Software, num-

ber 06271 in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und

Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.

<http://drops.dagstuhl.de/opus/volltexte/2006/770> [date of citation: 2006-01-01].

[16] A. Filatei. Implementation of fast polynomial arithmetic in Aldor, 2006. MSc The-

sis, Computer Department, University of Western Ontario.

[17] J. von zur Gathen and J. Gerhard.Modern Computer Algebra. Cambridge University

Press, 1999.

BIBLIOGRAPHY 96

[18] K.O. Geddes, S.R. Czapor, and G. Labahn.Algorithms for Computer Algebra.

Kluwer Academic Publishers, 1992.

[19] M. van Hoeij and M. Monagan. A modular gcd algorithm overnumber fields pre-

sented with multiple extensions. In Teo Mora, editor,Proc. ISSAC 2002, pages

109–116. ACM Press, July 2002.

[20] E. Kaltofen and M. Monagan. On the genericity of the modular polynomial gcd

algorithm. InProc. ISSAC 1999. ACM Press, 1999.

[21] D. E. Knuth.The Art of Computer Programming, volume 2. Addison Wesley, 1999.

[22] D. Lazard. A new method for solving algebraic systems ofpositive dimension.

Discr. App. Math, 33:147–160, 1991.

[23] F. Lemaire, M. Moreno Maza, and Y. Xie. TheRegularChains library. In Ilias

S. Kotsireas, editor, Maple Conference 2005, pages 355–368, 2005.

[24] X. Li and M. Moreno Maza. Multithreaded parallel implementation of arithmetic

operations modulo a triangular set. InProc. PASCO’07, pages 53–59, New York,

NY, USA, 2006. ACM Press.

[25] X. Li, M. Moreno Maza, and É Schost. Fast arithmetic for triangular sets: From

theory to practice. InProc. ISSAC’07, New York, NY, USA, 2006. ACM Press.

[26] X. Li, M. Moreno Maza, and É Schost. On the virtues of generic programming

for symbolic computation. Technical report, University ofWestern Ontario, 2007.

Submitted to ISSAC-07.

[27] M. Moreno Maza. On triangular decompositions of algebraic varieties. Technical

Report TR 4/99, NAG Ltd, Oxford, UK, 1999. http://www.csd.uwo.ca/∼moreno.

[28] M. Moreno Maza and R. Rioboo. Polynomial gcd computations over towers of

algebraic extensions. InProc. AAECC-11, pages 365–382. Springer, 1995.

BIBLIOGRAPHY 97

[29] É. Schost. Complexity results for triangular sets.J. Symb. Comp., 36(3-4):555–594,

2003.

[30] The SymbolicData Project. http://www.SymbolicData.org, 2000–2006.

[31] B.L. van der Waerden.Algebra. Springer-Verlag, 1991. seventh edition.

[32] C.K. Yap. Fundamental Problems in Algorithmic Algebra. Princeton University

Press, 1993.

BIBLIOGRAPHY 98

Curriculum Vitae

Name: Raqeeb Sh. Rasheed

Post Secondary Educat-
ion and Degrees:

M.Sc. of Computer Science (2007)
Department of Computer Science
University of Western Ontario

M.Sc. of Mathematics (1994)
Faculity of Education (Mathematics Department)
University of Salahaddin

B.Sc. of Mathematics (1992)
Faculity of Science (Mathematics Department)
University of Salahaddin

Employment History:
2006-Present:
Teaching Assistant, University of Western Ontario,
Computer Department.

2000-2006:
Software Developer, Maplesoft Company, Mathematics
Department.

1999-2000:
QA Specialist, Maplesoft Company, QA Department.

1995-1999:
Lecturer/Programmer, University of Omar Al-Mukhtar,
Computer Department.

1994-1995:
Lecturer, University of Salahaddin, Mathematics Department.

1992-1994:
Research Assistant (Graduate Student), University of
Salahaddin, Mathematics Department.

