Modular Methods for Solving Nonlinear Polynomial Systems

(Thesis format: Monograph)

by

Rageeb Rasheed

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of
Master of Science

Faculty of Graduate Studies
University of Western Ontario
London, Ontario, Canada

© Raqeeb Rasheed 2007

THE UNIVERSITY OF WESTERN ONTARIO
FACULTY OF GRADUATE STUDIES

CERTIFICATE OF EXAMINATION

Supervisor Examiners

Prof. Dr. Marc Moreno Maza Prof. Robert Corless

Prof. Mark Daley
Supervisory Committee

Prof. Robert Mercer

The thesis by
Raqgeeb Rasheed
entitled:

Modular Methods for Solving Nonlinear Polynomial Systems

is accepted in partial fulfilment of the
requirements for the degree of
Master of Science

Date Prof. Jamie Andrews
Chair of Examining Board

Abstract

Solving polynomial systems is a problem frequently encerett in many areas of math-
ematical sciences and engineering. In this thesis we didoow well-known algebraic
tools and techniques can be combined in order to design nigvieat algorithms for
solving systems of non-linear equations symbolically.

G. Collins (1971) invented a method to compute resultantmbgns of theChinese
Remainder Algorithn{CRA). In addition, M. van Hoeij and M. Monagan (2002) de-
scribed a modular method for computing polynomial greatestmon divisors over al-
gebraic number fields, also via CRA. We observe that merdiage two algorithms pro-
duces a modular method for solving bivariate polynomiatays. Then, we generalize
this method for solving trivariate polynomial systems. \&part on an implementation of
this approach in the computer algebra syshapl e. Our experimental results illustrate

the efficiency of this new method.

Keywords: Symbolic Computation, Modular Method, Nonlinear Polynahtys-

tems, Resultant, GCD, Subresultant Theory, Triangularf&gular Chain.

Acknowledgments

| am grateful to my supervisor, Prof. Marc Moreno Maza foréusellent help, guidance,
support with funding and encouragement throughout theareeeand writing of this the-
sis.

| am also grateful to all the members of the ORCCA Lab for thssistance and friend-

ship throughout my studies. This work is dedicated to my pgrand my wife.

Contents

Certificate of Examination
Abstract
Acknowledgments

1 Introduction

2 Background
2.1 Univariate polynomials

2.2 The Euclidean Algorithm

2.3 Resultant of univariate polynomials
2.4 Pseudo-division of univariate polynomials

2.5 The Subresultant PRS Algorithm

2.6 Subresultants

2.7 Specialization property of subresultants

2.8 Subresultant degree bounds

2.9 Modular methods

2.10 Lagrange interpolation

2.11 Rational function reconstruction

2.12 Ideal, radical ideal and squarefree-ness

2.13 Triangular set and regular chain

\Y

2.4 LiftiNG .« o o ot e 34

2.15 Fast polynomial arithmeticoverafield 35
3 A Modular Method for Bivariate Systems 37
3.1 Problemstatement 37
3.2 Adirectmethod 41
3.3 Euclidean modularmethod 4 5
3.4 Thecomplexityanalysis 06
3.5 Subresultant modularmethod 61
3.6 Implementation of our modular method 64
3.6.1 Mapl erepresentation 64
3.6.2 Recdenrepresentation 65
3.6.3 nodpl/ nodp2representation 66
3.6.4 Benchmarks 66
3.7 Experimentalcomparison o 63
4 A Modular Method for Trivariate Systems 73
4.1 Problemstatement 73
4.2 Adirectmethod 76
4.3 Amodularmethod 80
4.4 Experimentalresults 4 8
5 Conclusions and Work in Progress 88
5.1 Non-ModularSolveN 89
5.2 ModularSolveN 91
Curriculum Vitae 98

Vi

List of Figures

2.1 i-thsubresultantof,andf, 20
2.2 Block structure of a chainwithh =12. 22
2.3 Modular computation of the determinant of an integerixat 25
3.1 Each of setsl and B satisfy(Hs), but their uniondoesnnot. 39
3.2 Modular solving o2 x 2 polynomial system. 54
3.3 Computing Euclidean remainder sequience of systeri)&iough spe-

cializationsmod 17 60
3.4 Mapl e expressiontree farr — 1)%*y2 +x+3 65
3.5 Recdenrepresentationofr — 1)*y*+z+3. 65
3.6 Running Euclidean modular algorithms withdp1/ nodp2 representa-

tionform. 67
3.7 Euclidean modular method using b&bcden andnodpl/ nodp?2 li-

braries. 68
3.8 Timings for the Subresultant approach w#pl e representation form . 69
3.9 Comparison between Subresultant vs. Euclidean apgmpesaboth are in

Mapl e representationforms oL L 70
3.10 Subresultant vs. Triangularize approaches, bothndvapl e represen-

tationforms 71
3.11 Comparison between Subresultant approacbhdpl/ nmodp?2 represen-

tation vs. Triangularize ivapl e representationforms 72

Vii

viii

4.1 Equiprojectablevariety 79

4.2 Generic Assumptions vs. Main Conclusions 83

Chapter 1
Introduction

Solving systems of linear or non-linear, algebraic or défdial equations, is a fundamen-
tal problem in mathematical sciences and engineering,wisibard for both numerical
and symbolic approaches. Symbolic solving provides paweobls in scientific com-
puting and is used in an increasing number of applicatiooh as cryptology, robotics,
geometric modeling, dynamical systems in biology, etc.

For systems of linear equations, symbolic methods can ctanipéay with numerical
ones in terms of running times [15]; moreover there are iiggatems for which numer-
ical methods fail to provide accurate solutions while sytdomethods always do. For
systems of non-linear equations, when both symbolic andemigcal methods can be ap-
plied, the latter ones have the advantage of speed for moslgons whereas the former
ones have that of exactness.

The ultimate goal in this work is to develop and implement sgmwbolic algorithms
for solving non-linear systems that could compete with nucaémethods when the com-
parison makes sense, that is, for systems that have finitalyyeolutions, with exact
input coefficients and with symbolic output of moderate sikmder these hypotheses,
we anticipate that the successful methods of symbolic tiakgebra could be extended
to the non-linear case. In fact, a first step in this directias already been made in [12]
where solving polynomial systems with rational number fioieints is reduced to solving

1

Chapter 1. Introduction 2

polynomial systems with coefficients modulo a prime numfbéerefore, the algorithms
discussed in this thesis are meant to help with this lattee.cés in [12] we restrict to
systems with finitely many solutions.

We aim at using specialization and lifting techniques fogexing up computations,
see [17] for a comprehensive discussion of these techniguesur case, this leads us
to interpolate multivariate polynomials and reconstructitivariate rational functions.
These operations are still research questions, for bottbslfonand numerical methods.
Hence, we know that every progress there, will probably beoer work.

We also rely on the software tools developed at the Ontarse&eh Center for Com-
puter Algebra (ORCCA) such as tiRegul ar Chai ns library [23] in Mapl e. In the
near future, we aim at integrating in oMapl e packages the fast algorithms and the high
performance C code developed at ORCCA [16, 26, 25] too. Guimdiidea in the design
of our algorithm is the ability to take advantage of highlffeént low-level routines such
as FFT-based univariate and multivariate polynomial arétic.

Other driving ideas arenodular methodsrecycling intermediate computatioasd
genericity assumptiongviodular methods are well-developed techniques sincedHhg e
days of symbolic computations. A celebrated example is tbdutar computation of
the determinant of an integer matrix, sketched in Secti® Recycling intermediate
computations is another way to say avoiding unnecessarpgtations, which is also a
major issue in symbolic computations. Lastly, by gengriagsumptions, we mean that
our algorithm should be able to take advantage of the shatie dérgeted solution set.

Among the works which have inspired this thesis are the nardudjorithms of Collins
[6, 7, 8, 9] van Hoeij with Monagan [19], Kaltofen and Monag&®], Schost [29],
Boulier, Moreno Maza and Oancea [4] Dahan, Jin, Moreno MarsSzhost [11].

Let us sketch the ideas developed in this thesis on a bieasyetem of two non-linear

Chapter 1. Introduction 3

equations
fl(XluXQ) = 0
fo(X1, X)) = 0

(1.1)

We assume that the solution set of this input system can le@ diiy a single system with

a triangular shape

B(#) =0 (1.2)

tQ(Xl,XQ) — 0

We can choose far, the square-free part of the resultantfefand f; w.r.t. X,, and, we
choose fott, the GCD of f; and f; w.r.t. ¢;.

The first key observation is that one can dedydeom the intermediate computations
of t;. This is mainly due to the fact that a single triangular sstiicient to describe the
solution set of this input system. Full details with proofe given in Chapter 3. The
second key observation is that and thust, can be computed by a modular algorithm,
for instance the one of Collins [6, 7, 8, 9]. Thus, we haveaeptl the computation of
(which was a priori a polynomial GCD over a number field) byvamiate operations over
the base field. Therefore, we have replaced a non-triviaiioe by a much simpler one,
which, in addition, can use fast arithmetic, such as FFEdamivariate multiplication.

When moving to the case of three variables, we manage to miateépsome inter-
mediate polynomials by modular images without reconsimgdhem on their monomial
basis. Of course, some technical difficulties need to bevedsuch as the problem of
bad specializations. Let us describe this problem in breads. It follows from resultant
theory [18] that specializations of;, to successive valueg, vy, . . ., in the input system
can be used to compute by interpolation. However, not all specializations can bedi

for computing the GCD,. Let us consider for instance

fl(Xl,XQ) — (X2+X1)(X2+X1+2)
fo(X1, Xo) = (Xo+ X1)(X2+2).

(1.3)

Chapter 1. Introduction 4

Observe thaged(f1, f2) = X2 + X; holds. Moreover, for all # 0, we have

ng(fl(Xl = 'UaXQ)v fQ(Xl = U,Xg) = X2 + v

However, forv = 0, we have

ng(fl(Xl =, XQ), fg(Xl =, XQ) = XQ(XQ + 2)

Hence, the degree @bd(f1 (X1 = v, X3), fo(X; = v, X») depends om. Therefore, we
cannot construgted(f1, f2) from anyged(f1 (X1 = v, Xs), f2(X7 = v, X3)).

A second series of obstacles depend on the kind of variarteoEuclidean algo-
rithm which is used to compute the imagesandt, . If we use the standard Euclidean
algorithm, the bound on the number of specializations ne¢ddet, can be essentially
twice the bound on the number of specializations needed bwe use the subresultant
algorithm, these two numbers can be the same.

In chapter 3 we describe modular algorithms for bivariatlympamial systems and
give detailed experimental results. In chapter 4 we extemdvork to trivariate systems.
This adaptation is not straightforward and additionaksicsuch as lifting techniques, are
needed. Moreover, identifying the appropriate generioigditions is much harder than
in the bivariate case. However, these conditions can bekedezasily during the solving
process. We anticipate that these algorithms could beretieg)into a general solver (not
relying on any genericity conditions) and provide a suliséhapeed-up to it.

We have realized a preliminary implementationMapl e. To evaluate the quality
of our algorithms, their implementation is parametrizedaoyimplementation of mul-
tivariate polynomials; this can be the defaiipl e polynomial arithmetic based on
DAGs or multivariate polynomials provided bapl e libraries such asodpl/ nodp2
or Recden. We also have implemented a verifier to check and compareesuits with

Mapl e’s andRegul ar Chai ns’ built-in equivalent functions.

Chapter 1. Introduction 5

Our experimental results show that these new modular mstfavdolving bivariate
and trivariate polynomial systems outperform solvers withilar specialization, such as
theTr i angul ari ze command of th&kegul ar Chai ns library in Mapl e. In Chap-
ter 5, we sketch what could be the adaptation of these modudinods ton-variate

polynomial systems.

Chapter 2

Background

The aim of this chapter is to provide a background review efliasic notions and tech-
niques used in the remaining chapters. Computing polynomesaltants and GCDs is
the core operation in this thesis and most all sections efdhapter are dedicated to this
topic, directly or indirectly.

Sections 2.1, 2.2 and 2.3 are devoted to the celebiatetidean Algorithnfor com-
puting polynomial resultants and GCDs.

Sections 2.4, 2.5 2.6 present tBabresultant PRS Algorithfor computing polyno-
mial resultants and GCDs. This latter has very importanperiies that are described in
Sections 2.7, 2.8.

Finally, Sections 2.9, 2.10, 2.11, 2.12, 2.13, 2.14 and pr&Sent techniques either
for performing the Subresultant PRS Algorithm in some edffitimanner or for applying
it to more general contexts.

We would like to stress the fact that Remark 8 is essentiah@per 3 of this thesis.
Note also that Specifications 1, 2, 3, 4 define operationaued in the algorithms of the

remaining chapters.

2.1. Univariate polynomials 7

2.1 Univariate polynomials

In this thesis A is always a commutative ring with unity aridlis always a field. Some-

timesA has additional properties.

Definition 1 A polynomialf € A[X] is squarefree if it is not divisible by the square of

any non-constant polynomial.

Definition 2 A fieldK is algebraically closed if every polynomial K[X'| has a root in
K; or equivalently: every polynomial iK[X] is a product of linear factors. The smallest

algebraically closed field containing is called algebraic closure df.

Definition 3 We sayK is perfect field if for any algebraic extension fiéldf K we have:

forall f € K[X], if f is squarfree inK[X] thenf is squarfree inL[X].

Proposition 1 Let f;, f> be two polynomials ifK[X] such thatf, is a non-constant poly-
nomial whose leading coefficient is a unit. Then, there gxstinique coupléq,) of

polynomials inK[.X] such that
fi=qfe+r and (r =0 or deg(r) < deg(fs)). (2.2)

The polynomialg andr are called thequotientand theremainderin the division with
remaindexor simplydivision) of f; by f,. Moreover, the coupléy, r) is computed by the

following algorithm:

2.2. The Euclidean Algorithm 8

Algorithm 1

Input: univariate polynomials; = X, a; X" and fo = X" b; X" in A[X] with

respective degreesandm such thab,, is a unit.

Output: the quotient; and the remainder of f; w.r.t. f5.

divide(f1, f2) ==
n < m = return (0, f1)
ri=
fori=n—m,n—m—1,...,0repeat

if degr = m + i then

q; = lc(r) /by,
ri=r—qX'f
elseg; ;= 0

q:= X q; X’

return (¢,)

Definition 4 Let f € A[X]| with A a UFD (Unique Factorization Domain), we say that

is primitive if a GCD of its coefficients is a unit #.

Definition 5 LetA be a UFD, we say thaf;, f> € A[X] are similar if there existy, c; €

A such that
lel = C2f2

2.2 The Euclidean Algorithm

Definition 6 An integral domairdA endowed with a functiod : A — N U {—oc} is a

Euclidean domaiif the following two conditions hold

2.2. The Euclidean Algorithm 9

« forall f1, fo € Awith f; # 0and f, # 0 we havel(f f2) > d(f1),

 forall fi, fo € A with f; # 0 there existy, r € A such that

fi =qfotr and d(r) <d(fs). (2.2)

The elementg andr are called thequotientand theremainderof f; w.r.t. f, (although

g andr may not be unique). The functidns called theEuclidean size

Example 1 Let A = K[X] whereK is a field withd(f,) = deg(f1) the degree of; for
fi € A, fi #0andd(0) = —oco. Unigueness of the quotient and the remainder is given

by Proposition 1. They are denoted respectively(f1, fo) andrem(fi, fs).

Definition 7 The GCD of any two polynomials, f» in K[X] is the polynomial g ifkK [X]
of greatest degree which divides bgthand f,. We denote the GCD of two polynomials
f1, f2 by ged(f1, f2). Clearly ged(f1, f2) is uniquely defined up to multiplication by a

non-zero scalar.

Proposition 2 For the Euclidean domaia, and all f1, fo € A Algorithm 2 computes a

GCD of f; and f,. This means that the following properties hold

(i) g dividesf; and f,, that is, there exist,’, fo' € A such thatf, = f,'g and f, =

f2,9,

(71) there existi,v € A such that.f; + vf, = g holds.

2.2. The Euclidean Algorithm 10

Algorithm 2

Input: fi, fo € A.

Output: g € A a GCD off; and f5.

ro == fi
r1:= fo
7= 2

while r;_; # 0 repeat
T, = Tij_oTemrur,_1
1=+ 1

return r;_,

Remark 1 Algorithm 2 is known as th&uclidean Algorithm This algorithm can be
modified in order to compute, v € A such thatuf; + fov = ¢g. This enhanced version,
Algorithm 3 below, is called th&xtended Euclidean Algorithr(EEA). Proposition 3

gives an important application of the EEA.

2.3. Resultant of univariate polynomials 11

Algorithm 3

Input: fi, fo € A.

Output: g € A aGCD off; and f, together withs, ¢t € A suchthaly = s f; +1 f5.

o= f1; 8 = 1;t5:=0
1= fo;s1:= 05t = 1
1= 2

while r;_; # 0 repeat

q; == Ti—2quo T;_1

T3 i= Ty_g T T5_1
Si = Si—2 — (; Si—1
ti = tico —qitiz
1=9+1

return (r;—o, si—2, t;—2)

Proposition 3 Let A be an Euclidean domain and I¢f, m be inA. Thenf; modm is
a unit of A/m iff ged(f1, m) = 1. In this case the Extended Euclidean Algorithm can be

used to compute the inverse afmodm.

2.3 Resultant of univariate polynomials

Let f1, fo € A[X] be two non-zero polynomials of respective degreeandn such that

n +m > 0. Suppose

f1 = ame+am_1Xm_1+~ . ~+a1X+a0 and f2 = ann+bn_1Xn_1+' . —|—b1X—|—b0

2.3. Resultant of univariate polynomials 12

Definition 8 The Sylvester matrix of, and f; is the square matrix of ordet + m with

coefficients im\, denoted bwylv(f1,f>) and defined by

A 0 0 by 0 0
Um—1 Qm b1 b,
Um—2 Am_1 0 bn_o bn_1 0
Um bn
A1 bn-1
agp bo
0 ag 0 bo
0 o0 ag 0 - 0 b

Its determinant is denoted bgs(f1, f2) and called the resultant of, and f5.

WhenA is a fieldK, the Euclidean Algorithm can be enhanced as follows in aiaer

computeged(fi, fo) whenres(fi, f2) = 0, orres(fi, f») otherwise.

2.3. Resultant of univariate polynomials 13

Algorithm 4

Input: f1, fo € K[X] with f; # 0, fo # 0 anddeg(f;) + deg(f2) > 0.

Output: if res(f1, f) = 0 then moniged(f1, f2) elseres(f1, f2).

m = deg(f1)
n = deg(f2)
if m < nthen
ri= (=1)mm
(f1, f2sm,m) = (f2, fi,n,m)
else
ri=1
repeat
b, == 1c(fo)
if n = 0then return b
h:= firem f
if h =0thenreturn (1/b,)fo
p:= deg(h)
ri= o (—1)mmpmer

(f17f27m7n) = (fg,h,ﬂ,p)

Algorithm 4 applies in particular when trying to compute tBED of two polynomials
in (K[X;]/(R:1))[X2] where R, is an irreducible polynomial oK[X;]. Indeed, in this
case the residue class rirfg X]/(R,) is a field, for instance witi?;, = X7 + 1. When
R, is a square-free polynomial &[X;] (but not necessarily an irreducible polynomial)
then Algorithm 4 can be adapted using & Principle[14]. This will be explained in

Remark 8. The resultant gf and /> has the following fundamental property.

2.4. Pseudo-division of univariate polynomials 14

Proposition 4 Assume thaf\ is a unique factorization domain (UFD). Then, the poly-
nomials f1, fo have a common factor of positive degree if and onlsed(f, fo) = 0

holds.

2.4 Pseudo-division of univariate polynomials

The Euclidean Algorithm has several drawbacks. In pawicut suffers from intermedi-
ate expression swell. ThHeubresultant PRS Algorithiilgorithm 6) described in Sec-
tion 2.5 provides a way to better control intermediate esgien sizes. One step toward
this algorithm is the notion gbseudo-divisionwhich allows one t@mulatepolynomial

division over rings that are not necessarily fields.

Proposition 5 Let f1, fo» € A[X] be univariate polynomials such th#t has a positive

degree w.r.t.X and the leading coefficient g is not a zero-divisor. We define
e = min(0, deg(f1) — deg(f2) +1)
Then there exists a unique coupler) of polynomials inA[z] such that we have:
(Ic(f2)fi=qfe+7)and (r =0 or deg(r) < deg(fs)). (2.3)

The polynomial (resp.r) is called thethe pseudo-quotierithe pseudo-remaindeof f;
by f, and denoted bpquda, b) (prem(a,b)). The map(fi, f2) — (g, r) is called the

pseudo-divisiorf f; by f,. In addition, Algorithm 5 computes this couple.

2.5. The Subresultant PRS Algorithm 15

Algorithm 5
Input: f1, fo € A[X] with fo & A.

Output: ¢,» € A[X] satisfying Relation (2.3) withe =
min(0, deg(f1) — deg(f2) + 1).

prem(fy, fo) ==
ri=
q:=0

e := max(0,deg(f1) — deg(f2) + 1)
while r # 0 or deg(r) > deg(f2) repeat

t = lc(r)y?
q:=lc(f2)g+1t
ri=lc(fo)r — tfs
e=e—1
r=le(fy)r
q:=lc(f2)"q

return (¢,)

2.5 The Subresultant PRS Algorithm

We now reviewCollins’s PRS Algorithmalso called th&ubresultant PRS Algorithof
Brown and Collins [7, 5]. On inpuf, fo € A[X] Algorithm 6 produces a sequence
(f1, fo, ..., fx) Of polynomials inA[X] defined by the following relations

fz'—i—l = prer’r(fi_l, fz)/ﬁz for (Z = 1, RN k — 1) (24)

2.5. The Subresultant PRS Algorithm 16

wheres,, 02, . . ., Br_1 forms a sequence of elementsfoguch that the division shown in

Equation (2.4) is exact. We define

0; := deg(f;) — deg(fix1), and a; :=le(f;). (2.5)

Then, the sequengs, /3, . . ., Br_1 IS given by

(—1)d0+1 if i =0
Biv1 = (2.6)
(=19 ()% ifi=1,...,k—2

where(vy, . .., 1¥x_1) is an auxiliary sequence given by

Yo =1, and ¢ = Yi(a /)" = ((air1)%)/(3)" " fori=0,... .k —2. (2.7)

2.5. The Subresultant PRS Algorithm 17

Algorithm 6 Subresultant PRS Algorithm
Input : fi, fo € A[X]
Output: prs: a list of polynomials inSubresultant PRS(f1, f») overA[X].

(P, P2) == (f1, f2)

prs = [Py, Py

(m1, ma):=(deg(Pr, X),deg(F, X))

dy == my — my

b= (—1)h+!

Py :=prem(Py, P, X)/b

mg = deg(P3, X)

g1:=—1

while P; # 0 do

add P; into the listprs

d2 = TMMgo — M3

a:=lc(Py, X)
g2 = (=a) /g
b:= —agg2

(P1, Py, ma, gu, d1):=(Ps, Py, m3, g2, d2)
Py :=prem(Py, Py, X)

ms = deg(P3, X)

Py :=P3/b

return prs

Example 2 Consider the two polynomials

=X+ X0 -3X*-3X3+8X*+2X -5 and fo=3X°4+5X*"—4X?-9X+21.

2.5. The Subresultant PRS Algorithm 18

originally used as an example by Knuth in [21] and also in [Bhe Euclidean Algorithm

in following intermediate remainders

Ry(X) = —3X441x2 1

R3(X) = —5F X?—9X + 3¢

25

_ 233150 v _ 102500
R4(X) — 19773 X 6591

R,5 (X) — _ 1288744821

543589225

The Subresultant PRS Algorithm performedZiX’| produces the following sequence of

intermediate pseudo-remainders:

Py(X)=15X*—3X2%2+49

(X)
P3(X) = 65 X2 + 125X — 245
(X)
(X)

P4(X) =9326 X — 12300
P5(X) = 260708

It is easy to check thaRs,, Rs, R4, R5 are proportional toP,, P, P4, P5 respectively.
Therefore, we see that Subresultant PRS Algorithm prowdeay to access to the poly-
nomials computed by the Euclidean Algorithm (up to multgtive factors) while con-

trolling better the size of the coefficients.
Let us stress the two following points

» The Euclidean Algorithm works over a field and hence usdasmal arithmetic,

something which one usually wants to avoid.

* The Subresultant PRS Algorithm uses only polynomial ofp@na and has moder-
ate coefficient growth. While the coefficient growth is nohimal it does have the
advantage that the cost to reduce coefficient growth is nahimamely a simple

division by a known divisor, exactly the process followedraction free Gaussian

2.6. Subresultants 19

elimination.

2.6 Subresultants

In this section, we review briefly the concept safbresultant@and then state a few im-
portant theorems that are related to the algorithms predenthis thesis. We follow the
presentation of Yap’s book [32]. In particular, we intergiee intermediate polynomials

computed by the Subresultant PRS Algorithm.

Definition 9 Let M be ak x ¢ matrix, k < ¢, over an integral domaid.. Thedetermi-

nantal polynomiabf M is
dpol(M) =| My | X* %+ -+ | M, |,

where M; denotes the sub-matrix @f consisting of the first — 1 columns followed by

the ;" column fork < j < /.

Definition 10 Letf, = 7" a; X7, fo =377 (0;X7 € A[X]withdeg(f,) =m >n =
deg(f2) > 0.Fori=0,1,--- ,n — 1, thei—th subresultanof f; and f, is defined as

sresi(fi, f2) = dpol(mat(X™ " fy, X" 2 o XU f, X, XTI Ry e)

Observe that the defining matrix
mat(Xn_i_lfb Xn_i_2f17) leh f17 Xm—i—lf% Xm—i—2f2’ Ty f2)

hasm + n — 24 rows andm + n — i columns (see Figure 2.1 faerth subresultant of
f1, f2). If n =0, theni = 0 and f; does not appear in the matrix and the matrixis m.
Thenominal degreef sres;(f1, f2) isi. Note that the zero-th subresultant is in fact the

resultant,

sreso(fi, f2) = res(fi, fa).

2.6. Subresultants 20

m+41 n—i—1
N\ N\
l N
am a’m—l o« .. “ .. a/O
A, Am—1 Qo
d | A, Am—1 Qo
po b, b1 . b

bn bn—l T bO

bn bn—l e bO

Figure 2.1:-th subresultant of; and f,

It is convenient to extend the above definitions to cover teeg = n +1,--- , m:

p

0 if i=n+1n+2,...m—2

sresi(fi, 224 f, if i=m—1

\

Definition 11 The sequencéS,,, S,,—1,- - ,S1,50) WhereS; = sres;(fi1, f2) is called
the subresultant chaiof f; and f,. A membesres;(fi, f2) in the chain is regular if its

degree is equal to the nominal degre®therwise it is irregular.

Example 3 The subresultant chain ¢f = X3 + X, X, + 1 and f, = 4X3 + X, over

2.6. Subresultants 21

(Q[X1])[X2] produces the followingequence of polynomials:

Si=X3+X1Xo+1

Ss = 4X3 + X,

Sy = —4(3X, Xy +4)

Sp = —12X,(3X, X, + 4)
Sp = —27X} + 256

Definition 12 We define a block to be a sequence

B=(P,Ps-,B), k>1 (2.8)

of polynomials wheré’, ~ P, and0 = P, = P3 = --- = P,_;. We callP, and P,
(respectively) théop and baseof the block. Two special cases arise: In cése 1, we
call B aregular blockin caseP; = 0, we call B azero block Thus the top and the base

of a regular block coincide.

Theorem 1 (Block Structure Theorem) The subresultant cl&in, S,,._1, ..., So) is uniquely

partitioned into a sequencB,, By, ..., By, (k > 1) of blocks such that
() By is aregular block.

(ii) If U; is the base polynomial of blodk; thenU; is regular andU; . ,~prem{;_; ,

U;) (0 <i<k).
(i) There is at most one zero block; if there is one, it musHy.

In the following we relate thsubresultant PRS algorithm sequent®at is, the se-

guence of polynomials

(fos froe s i)

defined by Equation (2.4) in Section 2.5 to the subresultaainc

2.7. Specialization property of subresultants 22

o O

O O o o

Figure 2.2: Block structure of a chain with = 12.
(Sims Sm—1, -+ -550)-

whereS,, = f; andS,,_1 = f>. The basic connection, up to similarity, is established
by theBlock Structure TheoremThe real task is to determine the coefficients of simi-
larity between the top oB; and f;. This is done in the following result, known as the

Subresultant PRS Correctness Thearem

Theorem 2 LetT;, U; be the top and base polynomials of bld¢k where B,, ..., By) are
the non-zero blocks of our subresultant chain then the serpidy, ..., 7) is precisely

(P, ..., Pr), computed by Algorithm 6.

2.7 Specialization property of subresultants

Let A andA* be commutative rings with identities, add: A — A* be a ring homomor-
phism ofA into A*. Note that® induces a ring homomorphism &f X] into A*[X], also

denoted byd, as follows:

2.7. Specialization property of subresultants 23

o A[X] — A*[X]
A X™ 4+ +ag — Play) X™+ -+ Pag).

Theorem 3 Let f, f> € A[X] of respective positive degregsandn:

fl(X) = ap X"+ am_le_l + ...+ ag

(X)) = b X"+ b X"+ 4 by

Assume thadleg(®(f;)) = m holds and definé := deg(®(fs)), thusO < k& < n. Then,

forall 0 < i < max(m, k) — 1, we have

O(sresi(f1, f2)) = Plam)" "sres;(D(f1), D(f2)) (2.9)

Remark 2 The combination of Theorem 3 and Theorem 1 is extremelyldsefus and
we give here a fundamental application. LBt € K[X;] be a non-constant univari-
ate polynomial and define = K[X;]/(7}). Let® be the natural homomorphism from
K[X1][X3] to L[X,] that reduces polynomials &f[.X; | moduloT;.

Theorem 3 tells us how to deduce the subresultant chabt Af) and ®(f5) from that
of f; and f,. Assume that eitheb(Ic(f,)) # 0 or ®(Ic(f2)) # 0 holds.

WhenL is a field, one can compute a GCD®ff,) and®(f») in L[y] as follows:

(1) Consider all regular subresultants ¢f, f, by increasing index.

(2) Letj be the smallest indexsuch thatsres;(f1, f2) is a regular subresultant whose

leading coefficient is not mapped to zerodby
(3) Then®(S;) is a GCD ofd(f;) and®(f2) in Ly].

Indeed if for an index, the subresultandres;(f1, f2) is regular and its leading coefficient
is mapped to zero b, then in fact®(sres;(f1, f2)) = 0. This follows from thdlock

Structure Theorer(iTheorem 1).

2.8. Subresultant degree bounds 24

2.8 Subresultant degree bounds

Another important ingredient for the algorithms discusse@hapters 3 and 4 is the fact
that subresultants of polynomiafs, f> in K[X;][X5] or K[X;, X5][X3] are essentially
determinants and thus can be computed by modular methoelSesgion 2.9. In this
section, we restrict for simplicity to the case of bivariptdynomialsf;, f» in K[X][X5].

The following result gathers the bounds that we use in Chg@teSee [17] for details

Theorem 4 Assume thaf; and f, have respectiv&,-degreesn andn, withm > n > 0.
Let R, beres(f1, f2, X2), that is the resultant of; and f, w.r.t. X,. Lettdeg(f;) and
tdeg(f2) be the total degree of, and f, respectively. Let, be thed-th subresultant of

f1 and f,. Then we have:

e deg(R;) < degy, (f1)degx,(f2) + degx, (f1) degx, (f2),
* deg(R;) < tdeg(f1)tdeg(f2),

* deg(Sa) < (m — d)(tdeg(f1) + tdeg(f2)).

2.9 Modular methods

Modular methods in symbolic computations aim at providiwg benefits: controlling
the swell of intermediate expressions and offering opputites to use fast arithmetic,
such as FFT-based arithmetic.

A first typical example is the computation of polynomial GABZ.[X | via computa-
tions inZ/pZ[X] for one or several prime numbess Computing with integers modulo
a prime numbep allows one to limit the size of the coefficientsjolt also permits the
use of FFT-based multiplication i/ pZ[X].

A second example, which is closely related to our work, isdbmputation of the

determinant of a matriX/ with integer coefficients. One can compute this determinant

2.9. Modular methods 25

using a direct method such as Gaussian elimination. An@pproach is via the com-
putation of this determinant modulo several prime numbadsthen recombining these
results by means of the Chinese Remaindering Algorithm.useaeview more precisely
how this can be done.

Consider pairwise distinct prime numbexs. . ., p. such that their product exceeds
2B, whereB is the Hadamard bound for the determinanf\f Let Z"*" andZ/p; Z" "
be the ring of square matrices overandZ/p;Z respectively. Forall < i < e, let®,,
be the reduction map frof"*" to (Z/p;Z)" " that reduces all coefficients modylp

One can compute the determinant/df using the following strategy. For ea¢h<
i < e, consider the determinant of the modular image,, (M) of M. Then, using the
Chinese Remaindering Algorithm, one computes the intégaodulom which is equal
to d; modulop; forall 1 < i < e. Due to the fact that, > 2B holds, the integed modulo
m IS actually equal to the determinant &f. As shown in [17] this approach performs

much better than the direct approach. Figure 2.9 sketclestbdular computation.

M e gnxn For primespg, p1, - - -, Pe (I)pi(M) c ann/piz

detl ldet

Chinese Reminder (CRA)

| M| ®,, (M)

Figure 2.3: Modular computation of the determinant of aeget matrix

2.10. Lagrange interpolation 26

2.10 Lagrange interpolation

Modular computations usually go through a step of “recartsion” where the modular
results are combined to produce the desired result. In geeaidhe modular computation
of the determinant of an integer matrix, the reconstrucsiep was achieved by means of
the Chinese Remaindering Algorithm. A special case of thiegss id_agrange Inter-

polation of which we will make intensive use in Chapters 3 and 4.

Definition 13 Letu = (uy,...,u,_1) be a sequence of pairwise distinct elements of the

field K. Fori = 0---n — 1 thei-th Lagrange interpolaris the polynomial

r — U;
Li(x) = J 2.10
@=11 = " (2.10)
0<j<n
j#i
with the property that
0 ifi#y

1 otherwise

Proposition 6 Letwvy,...,v,_; be inK. There is aunique polynomialf; € K[X] with

degree less than and such that
f(u;)) =v; for i=0---n—1. (2.12)
Moreover this polynomial is given by

f=> v L) (2.13)

0<i<n

Proposition 6 leads to Specification 1 where we introduceuaiar operation in our
algorithms. It is important to observe that this operatioacbnstructs” one variable,

namely X, for multivariate polynomials ifk [X1, . .., X,,]. Hence, this is an application

2.11. Rational function reconstruction 27

of Proposition 6 to a more general context. However, thigatpen does not deal with
the simultaneous reconstruction of several variabless iEh&t much more difficult task,

which is not used in this thesis.

Specification 1 Let n and d be positive integers. Lefy,..., fs € K[Xs,...,X,] be
polynomials. By convention, we ha#€X,,..., X,] = K. Foralli = 0,...,d, we

define:
fz' = Z Cm,i m
meS
where S is the set of all monomials appearing ifa, ..., f4. Letwvg,...,vy € K be

pairwise different. By definition, the function call

Interpolate(n, d, [vo, . . ., ,vdl, [fo,- -, fd])

returns the unique polynomial
F= Z C,m

such that for eachn € S we have:
(1) Cn € K[X;] and deg(C,,) < d,

(i7) C(v;) = Cpy, foralli =0,....d.

2.11 Rational function reconstruction

Lagrange interpolation reconstructs a polynonfiabf K[X1, ..., X,,] from homomor-
phic images off’ in K[X5, ..., X,]. Another important reconstruction procesistio-
nal Function Reconstructiowhere one aims at reconstructing rational functions from
polynomials.

Letp € K[X] be a univariate polynomial of degree> 0 with coefficients in the field

K. Given a polynomialf € K[X] of degree less tham and an integed € {1,...,n},

2.12. Ideal, radical ideal and squarefree-ness 28

we want to find a rational functioryt € K(X) with r, ¢ € K[X] satisfying
ged(r,t) =1 and vt ™' = f modp, degr <d, degt<n—d. (2.14)

Let us denote this problem bYF R(p, n, f, d). A solution to it is given by the following.

Proposition 7 Letr;, s;,t; € K[X] be thej-th row of the Extended Euclidean Algorithm

applied to(p, f) wherej is minimal such thatleg ; < d. Then we have:
(i) ProblemRFR(p,n, f,d) admits a solution if and only fcd(r;, ;) = 1,

(i) if ged(r;, t;) = 1 holds, then a solution i¢r, 1) = (w; 'r;, w;'t;) wherew; =

IC(tj).

Specification 2 Let n and b be positive integers. Let € K[X;] of degreeb > 0. Let
F e K[Xy,...,X,]. We write:

F:ZC’mm

where S is the set of all monomials appearing . By definition, the function call

RatRec(n, b, p, F') returns a polynomiak € K(X)[Xs,...,X,] where

R= RatRec(p,b,Cyn,bquo2) m

meS

where RatRec(p, b, C,,,, b quo 2) returns a solution toRF R(p, b, C,,,b quo 2) if any,

otherwise returns failure.

2.12 Ideal, radical ideal and squarefree-ness

When solving systems of polynomial equations, two notidag p central role: thedeal
and theradical idealgenerated by a polynomial set. The second one is a gendi@tiza

of the notion ofsquarefree-nesd\Ve review these concepts in this section.

2.12. Ideal, radical ideal and squarefree-ness 29

Let Xy,..., X, ben variables ordered by; < --- < X,,. Recall thatK is a field
and thatk[X1, ..., X,,] denotes the ring of multivariate polynomialsiq, ..., X,, with

coefficients ink.

Definition 14 LetF = {fi,..., [} be afinite subset &[X1, ..., X,]. Theideal gener-
atedby F' in K[X1, ..., X,,], denoted by F") or (fi, ..., fi.), IS the set of all polynomials

of the form

haifi+ -4 hpfm

whereh, ..., h,, are inK[X7, ..., X,]. If the ideal(F) is not equal to the entire poly-

nomial ringK[X1, ..., X,], then(F') is said to be groper ideal

Definition 15 Theradical of the ideal generated by, denoted by /(F'), is the set of
polynomialg € K[X1,..., X,] such that there exists a positive integesatisfyingp®
(F). The ideal(I) is said to be radical if we hav&) = \/(F).

Remark 3 Letfy, ..., f, € K[X;] be univariate polynomials. The Euclidean Algorithm
implies that the idea{f, . . ., f..) is equal to{g), whereg = ged(f1, . . ., fn). Thismeans

that there exists polynomials, . . ., a,, b1, . . ., b,, € K[X7] such that we have

arfi+ -+ amfm =9 and f; =big for i =1,... .

Therefore, every ideal &[X;] is generated by a single element.

Definition 16 A univariate polynomiaf € K[X,] is said to besquarefreéf for all non-

constant polynomialg € K[X] the polynomialy? does not dividef.

Remark 4 Let f € K[X;]| be non-constant. It is not hard to see that the idegl C

K[X/] is radical if and only iff is squarefree.

2.13. Triangular set and regular chain 30

2.13 Triangular set and regular chain

As we shall observe in Chapters 3 and 4, a typical symbolittiewni of a polynomial sys-
tem is a polynomial set with a triangular shape, that is, aaled triangular set. Among
all triangular sets, the regular chains form a subclassndgthalgorithmic properties. We

review these two notions in this section.

Definition 17 A family of non-constant polynomials, ..., 7, in K[X,..., X,] is a
triangular setf their leading variables are pairwise distinct. The trigmlar set7;, ..., T,
is a Lazard triangular sef e = n and if for all 1 < ¢ < e the leading coefficient df;

w.r.t. X; is equal tol.

Remark 5 HenceX? + X,, X; X, + 1 is not a triangular set, wherea&? + 1, X; X, + 1
is a triangular set but not a Lazard triangular set. Finally? + 1, X, — 1 is a Lazard

triangular set.

Definition 18 LetT" = T3,...,T, be a triangular set inK[X}, ..., X,] such that the
leading variable off; is X; forall 1 < i < e. The sefl’ is aregular chairif for all 1 <
i < e the leading coefficient ¢f; w.r.t. X; is invertible modulo the idedll}, ..., T;_1).

Note that any Lazard triangular set is in particular a regukzhain.

Proposition 8 Let T = Ti,...,T, be a regular chain inK[X1,..., X,]. If the ideal
(Ty,...,T,) is radical then the residue class rifg[X, . .., X,,|/(T1, ..., T,) isisomor-

phic with a direct product of fields (DPF).

Remark 6 The interest of DPFs lies in the celebrat®® Principle(Della Dora, Di-
crescenzo & Duval, 1985). If is a DPF, then one can compute withas if it was a field:

it suffices to split the computations into cases whenevercadigisor is met.

Example 4

2.13. Triangular set and regular chain 31

K[X1]/(X1(X; + 1)) can be represented with a DPFs as below:

KX]/(Xi(Xy +1)) ~ KX]/(X) @ KX]/(Xi1+1) =~ KoK

Definition 19 LetT = Ti,...,T, be a regular chain inK[X7,..., X,]. Assume that
(Ty,...,T,) is radical. Denote by the DPF given by

L =K[Xy,..., X /(Th,....T.).

Lety be an extra variable. Lefy, f>, g be polynomials ifiK[X7, ..., X, y] such thatf;
and f, have positive degree w.r.ty. We say thay is a GCD of f, f» if the following

conditions hold
(G;) the leading coefficient of g w.r.t. y is invertible inL,

(G3) there exist polynomiald;, A; € K[X7,..., X, y] such thaty = A; f; + Asfoin
L[y], that is, there exist polynomial3,, ..., Q, € K[Xi,...,X,] such that we
have

g=A1fi + A fo+ T+ -+ Q,T,.

(G3) if g has positive degree w.r.ty theng pseudo-divideg; and f, in L[y], that is,
there exist non-negative integdrs: and polynomials™;, Cy € K[X1,..., X,y

and polynomial®),, ..., Q,, S1,...,S, € K[Xy,..., X,] such that we have

hbfl =Cig+ QT+ -+ QT and hfy = Cog + SiT1 + - - - + S, T

Remark 7 As we shall see in Chapters 3 and 4, GCDs of univariate polyalsrover
DPFs are powerful tools for solving systems of polynomialagipns. However, with the
notations of Definition 19, a GCD of; and f; need not exist. Proposition 9 and 10,

proved in [28], overcome this difficulty The first one is the- 1 case of the second one.

2.13. Triangular set and regular chain 32

For the purpose of Chapter 3 the= 1 case is sufficient.

Proposition 9 Let 7} € K[X;] be a non-constant squarefree polynomial. Denoté.by
the DPF given by

Lety be an extra variable. Lef;, f> be polynomials ik [X}, y] such thatf; and f, have
positive degree w.r.ty. Then, there exist univariate polynomids, . . ., B. in K[X;] and

polynomialsA;, ..., A. in K[.X}, y] such that the following properties hold
(G4) the productB; - - - B, equalsTy,
(Gs) forall 1 <i < e, the polynomial4; is a GCD off;, fo in (K[X4](B;))[y]-

The sequencéA,, {B:}),...,(A.,{B.}) is called aGCD sequencef f; and f; in
(KX /(1)]

Example 5 Let f; = X; Xo+ (X7+1)(Xo+1)and fo = X3 (Xo+1)+ (X7 +1)(Xa+1)
be polynomials oveK[X;]/(X;(X; + 1)) then

Xo+1 mod X;
GCD(fy,f, L) =

1 modX1—|—1

Remark 8 We explain two ways for computing GCD sequences in the darft&opo-
sition 9 and we refer to [28] for the context of Proposition 10

First, one can adapt the Euclidean Algorithm (or its varig@stgorithm 4) as follows:
(1) Run the Euclidean Algorithm ih[y] as if L were a field

(2) when a division by an elemembf L is required, then check whetheiis invertible

or not (using Proposition 3).

2.13. Triangular set and regular chain 33

(3) If a is a zero-divisor, then split the computations into casefishat in each branch
a becomes either zero or invertible (such splitting is pdssincel. is a direct
product of fields). Then restart the GCD computation in eadnbh using the

same strategy.

Secondly, one can make use of the subresultant PRS algaaitdngeneralize the
approach developed in Remark 2. Sifices now a DPF and not necessarily a field (as
it is the case in Remark 2) one needs to modify the procedwailed in Remark 2 as

follows:
(1) Consider all regular subresultants ¢f, f, by increasing index.

(2) Letj be the smallest indexsuch thatsres;(f1, f2) is a regular subresultant whose

leading coefficient is not mapped to zerodby

(3) If this leading coefficient is a zero-divisor then split tremputations and restart

“from scratch” in each branch.

(4) If this leading coefficient is invertible theb(S;) is a GCD of®(f;) and ®(f3) in

L[y].
Proposition 10 LetT = {71 (X1), T2(X1, Xs), ..., T.(X4, ..., X,,)} be a regular chain
in K[Xy,...,X,]. Assume that7}, ..., T,) is radical. Denote by. the DPF given by

L=K[X1,...,X]/(Th,...,T,).

Let y be an extra variable. Lef, f2, g be univariate polynomials ifi.[y| such thatf,
and f, have positive degree w.r.ty. Then, there exist regular chairB', ..., T¢ in
K[Xy,...,X,]. and polynomialsd,, ..., A, in K[X},..., X,,y| such that the follow-

ing properties hold

(G4) theideals(T!), ..., (T¢) are pairwise coprime and their intersection is eqya),

2.14. Lifting 34

(Gs) forall 1 <i < e, the polynomiald; is a GCD off, fo in (K[X1, ..., X (T"))[y].

The sequenced;, T!), ..., (A., T¢) is called aGCD sequencef f; and f, in

(K[Xy, .., X /(T [yl

Specification 3 LetT = {T1(X;), To(X1, Xs), ..., To(X1,..., X,)} be aregular chain

in K[X4, ..., X,]. The function calNormalize(7") returns a regular chain
N - {Nl(X1>, Ng(Xl,XQ), ey Nn(Xb e 7Xn>}

such that{(7") = (N) holds and for alll < i < n the leading coefficient a¥; is 1.

2.14 Lifting

Let X, X5, X5 be variables ordered by, < X, < X3 and letf;, f> be inK[X;, X5, X3].
Let K(X;) be the field of rational univariate functions with coeffidieim K. We denote
by K(X7)[X2, X3] the ring of bivariate polynomials iX; and X3 with coefficients in
K(X,). Letr be the projection on thé&(;-axis. ForX; € K, we denote byp,, the
evaluation map fronK[X, X,, X;3] to K[X,, X3] that replaces\; with z;. We make the

following assumptions:
« theideal(f1, f2) (generated by; and f, in K[X7, X5, X3]) is radical,

* there exists a triangular s& = {75, 73} in K(X;)[X,, X3] such thatl' and f;, f,

generate the same ideallit{ X;)[X, X3].

Proposition 11 is proved in [11, Proposition 3] and an aloni for Specification 4 ap-

pears in [29].

2.15. Fast polynomial arithmetic over a field 35

Proposition 11 Letz; be inK. If z; cancels no denominator i, then the fibed/ (1, f2)N

7~1(z,) satisfies
V(f17 f2) N 71-_1('751) = v<(I)rl (T2>7 (I)rl <T3))

Specification 4 Let x; be inK. Let No(X5), N3(X», X3) be a Lazard triangular set in

K[X5, X;3] such that we have

V(®a,(f1), Pz (f2)) = V (N2, N3).

We assume that the Jacobian matrixdf (f1), ®.,(f2) is invertible modulo the ideal

(No, N3). Then the function callift(f;, f2, N2, N3, z1) returns the triangular seT.

2.15 Fast polynomial arithmetic over a field

For univariate polynomial over a field, fast algorithms arailable for computing prod-
ucts, quotients, remainders and GCDs. By fast, we meanitdge whose running time
is “quasi-linear” in the size of their output. From thesedamental fast algorithms, such
as FFT-based univariate multiplication, one can deriveifdsrpolation and fast rational
function reconstruction. See Chapters 8 to 11 in [17] foaidiet We list below some of

the main complexity results in this area.

Proposition 12 Let f, f> in K[X] with degrees less tha#. Then, one can compute

ged(fy, f2) in O(dlog?(d) log(log(d))) operations ink.

Proposition 13 Letd be a positive integer. Let, vy, .. ., v, be pairwise different values
in K and letug, u, . .., uqy be values irkK. Then, one can compute the unique polynomial
f in K[X] of degreed such thatf(v;) = u;,i = 0,...,d in O(dlog*(d)log(log(d)))

operations ink.

2.15. Fast polynomial arithmetic over a field 36

Proposition 14 Letm € K[X] be of degreel > 0 and letf € K[X] be of degree less
thand. There is an algorithm which decides whether there are twigrmomialsr and¢

in K[X] of degree less thad/2 in K[.X] such that

ged(r,t) =1 and 7t = f mod m

and, if so, they can be computedirid log®(d) log(log(d))) operations irkK.

Chapter 3

A Modular Method for Bivariate

Systems

In this chapter we discuss an algorithm and its implemesndtr solving systems of two
non-linear polynomial equations with two variables. THgogithm relies on well-known
algebraic tools and techniques: Lagrange interpolatiehsabresultants. The emphasis
is on designing an efficient implementation based on twosdemdular arithmeticand
recycling intermediate computationg/e also make an assumption on the solution set in
order to avoid technical difficulties, since they are irvelet in most practical cases. We
report on an implementation in the computer algebra systgshe and provide experi-

mental comparisons with another symbolic solver implemeim this system.

3.1 Problem statement

Let f1, f> be two polynomials in the variables;, X, and with coefficients in a fiel&.
LetK be the algebraic closure &. An important property oK is thatK is infinite [31],
even ifK is a finite field such a& /pZ, for a prime numbep. For most practical systems,
one can think oK as being the fiel@ of real numbers and & as the fieldC of complex

numbers. We assume thitis a perfect field [31]. The fieldK that we have in mind,
37

3.1. Problem statement 38

namelyR andZ/pZ for a prime numbep, are perfect fields. We are interested in solving

overK the system of equations

filXe, Xo) = 0
fo(X1,Xe) = 0

(3.1)

that is computing the set of all couples of numbers z;) € K’ such that:

fi(z1, 22) = fo(21, 22) = 0.

This set is usually denoted By(f1, f2) wherel stands fowvariety. We denote by7; the

set of all the numbers, € K such that there exists a numhgre K such that

(21, 22) € V(f1, f2)-

In other words, the sef; collects all the values for th&';-coordinate of a point in
V(f1, fo). Leth; andh, be the leading coefficients w.r.&, of f; and f,, respectively.

Note thath, andh, belong toK[X;]. We make here our assumptions regardingf, and

V(fi, f2):

(H,) the set/(f, f2) is non-empty and finite, and thus the >is non-empty and finite

too,

(H,) there exists a constatit such that for every;, € Z; there exist exactlyl, points

in V(f1, f-) whoseX,-coordinate is,
(H3) the polynomialsf; and f, have positive degree w.rXs,
(H,) the resultant off; and f; w.r.t. X, is squarefree,

(Hs) the polynomialsi; andh, are relatively prime, that is, we haged(hq, he) = 1.

3.1. Problem statement 39

Hypotheseg H,) and(H,) deal with the shape of the solution setloff,, f») These as-
sumptions are satisfied in most practical problems, see$bance the systems collected
by theSynbol i cDat a project [30]. Moreover, we usually havg = 1. The celebrated

Shape Lemmg2] is a theoretical confirmation of this empirical obseroat

A A
B.
[)
[J
° [)
k'J. -

Figure 3.1: Each of setd and B satisfy(H,), but their union does not.

Hypotheseg H;) to (H5) will lead to a simple algorithm for computing (f1, fa).
This will help in designing the modular methods presentdtimchapter. These hypothe-
ses are easy to relax without making the solving process gteyitally more expensive.
However, this does introduce a number of special cases whiadtes the solving process
quite technical.

Let d; be the number of elements ity. The hypothesi$H;) and (H,) imply that
there exists a univariate polynomial € K[X;] of degreed; and a bivariate polynomial

to € K[X1, X5] with degreed, w.r.t. X5, such that for allzy, 25) € K we have

I
o

fl(zlsz)
f2<217Z2) = 0 tQ(Zl,ZQ) = 0

t1(21) = 0

Moreover, we can require that the leading coefficient;af.r.t. X; and the leading coef-
ficient oft, w.r.t. X, are both equal td. We summarize these statements in the following
proposition. This result also gives additional conditiomsrder to makgt;, ¢, } unique.

A proof of Proposition 15 appears, for instance, in [1]. Morer, we will prove it while

3.1. Problem statement 40

establishing Corollary 1.

Proposition 15 Under the assumption(d7,) and (H,), there exist non-constant polyno-

mialst; € K[X;] andt, € K[X}, X5] such that we have

V(fi, fa) = V(t1, ta).

Moreover, one can require

1C(t1,X1) = 1C(t2,X2) =1

With the additional conditions below, the triangular gef, ¢»} is uniquely determined:
* t; is squarefree,
* t, is squarefree as a univariate polynomial ([X]/ (t1))[X5].

The triangular seft,, t,} can be seen assymbolicor formal description of the solu-

tion setV (f1, f2) of the input system (3.1). Consider for instance the system:

X2+Xo+1 = 0

(3.2)
Xi+X24+2 =0
Then, after a substitution, one obtains the following tyialar set
X{+2X7+X,+3 = 0
(3.3)

Xo+X24+1 =0

Therefore, we havé, = 4 andd, = 1.
The goal of this chapter is to compute the triangulaf sgtt, } efficiently. We start by
describing alirect methodn Section 3.2. Then, in Section 3.3, we describe a first aiid na

ural modular method, based on tBaclidean Algorithmthat we call theeuclidean mod-

3.2. A direct method 41

ular method In Section 3.5, we present a second and more advanced madetiaod,
based orsubresultantand that we call theubresultant modular method
In Section 3.6 we describe our implementation environmentia Section 3.7 we

report on our benchmark results for those three methods.

3.2 A direct method

From now on, based on our assumptidfy) we regard our input polynomial§ and f,
as univariate polynomials ifX, with coefficients inK[.X,]. Let R, be the resultant of;
and f» in this context. The polynomiak; is thus an element d&[X;]. Proposition 16

makes a first observation.

Proposition 16 The polynomialR; is non-zero and non-constant.

Proof. Assume first by contradiction th&t; = 0 holds. SincéK[X;] is a UFD, one can
apply Proposition 4 page 13. Then, the assumpkipr= 0 implies thatf; and f, have a
common factow of positive degree ifiK[X])[X3]. Let k be the leading coefficient of
w.r.t. X,; henceh belongs tdk[X;]. Observe that for alt; € K such that(z;) # 0 there
existsz, € K such thaty(z;, z;) = 0. Sinceg divides f; and f,, every such paifz;, z;)
belongs toV/ (f1, f2). SinceK is infinite and since the number of roots/ofs finite, we
have found infinitely many points iiv (f1, f2), which contradicts our assumptid#/,).
Therefore we have proved th&f # 0 holds.

Assume now thaR; is a non-zero constant. From the Extended Euclidean Alguorit
(see Algorithms 3 page 11 and 4 page 13) we know that therepotis;momialsa; andas
in (K[X4])[X2] such that we have:

ar fi +asfo = Ry.

3.2. A direct method 42

From assumptio(H;) we haveV/(f1, f2) # (). Thus, we can choose;, z,) € V(f1, f2).

Let us evaluate each side of the above equality at this pGlearly we have:

ai(z1, z2) fi(z1, 22) + az(z1, 22) fa(z1, 22) = 0 and Ry (21, 22) # 0,

which is a contradiction. Therefore we have proved thahas a positive degree w.r.t.

X. 0
Recall thatf; and f,, regarded as univariate polynomialg K[X])[X;], have a non-

constant common factor if and only if their resultdtitis null. Recall also that there exist

polynomialsA,, A; € (K[X;])[X;] such that we have

Aifi +Asfo = Ry. (3.4)

Observe that if 21, z3) € V(f1, f2) then we haveR;(z;) = 0. However, not all roots of

R, may extend to a common solution fif and f», as shown by the following example.

Example 6 Consider for instance the system:

X X2+ X1 +1 =0

The resultant of these polynomials w.Af; is

Ri=X'+ X+ X=X (X} +X,+1)

The solutions of the system are given by the following regtilain:

XQ—Xl == 0
X3+X1+1 =0

3.2. A direct method 43

which can be verified using thEr i angul ar i ze function of theRegul ar Chai ns
library in Mapl e. One can see that the rodf; = 0 of R; does not extend to a solution

of the system. This is clear when replacikig by 0 in the input system.

The following two propositions deal with the difficulty raid by the above example.
The first one handles the situations encountered in pracfidee second one gives a
sufficient condition for any root; of the resultant?; to extend to a pointz, z») of
V(f1, f2). Both are particular instances of a general theorem in adgeeometry, called

the Extension Theoreifi0].

Proposition 17 Let¢; be a non-constant factor dt;. Leth be the GCD of:; and hs.
(Recall thath, and h, are the leading coefficients w.rX, of f; and f, respectively.) We
assume that andt, are relatively prime. Then for every roet of t; there exists, € K

such that(z, z;) belongs toV (f1, f2).

Proof. Letz; € K be arootot,. Let® be the evaluation map frofi[X])[X] to K[X,)]
that replacesX; by z;. This is a ring homomorphism. Recall that we denote:pyand
hs the leading coefficients of, and f; w.r.t. X,. Sinceh andt; are relatively prime, and
sincez; is a root ofty, either®(hy) # 0 or ®(hy) # 0 holds. (Indeed(h,) = $(hy) =0
would imply ®(h) = 0 contradicting the fact thdt and¢; are relatively prime.) Hence,
we can assumeé(h;) # 0. Letn andm be the degrees w.r.tX, of f, and ®(f,),
respectively. By virtue of th&pecialization property of the subresultafi$ ieorem 3
page 23) we have

O(Ry) = ®(h1)" "res(®(f1), (f2)).

Sincet; dividesR; and®(¢;) = 0 we have®(R;) = 0. Since®(h,)" ™ # 0, we have

res(®(f1), ®(f2)) = 0.

3.2. A direct method 44

This implies thatb(f,) and®(f») have a non-trivial common factor ig[X,] and thus a
common root, in K. Hence we have(f,)(z) = ®(f2)(z2) = 0, thatis, fi(z1, 22) =

fa(21, 22) = 0. O

Proposition 18 Assumptior{ /) implies that for any root, of R,, there exists, € K

such that(z, z5) belongs toV (f1, f2),

Proof. Let 2, be a root ofR,;. Let ® be the evaluation map froiK[X;])[X>] to K[X;)]
that replaces\; by z;. Since the leading coefficients ¢f and f; w.r.t. X, are relatively
prime, at least one of them does not map to zer@byhen one can proceed similarly to
the proof of Proposition 18. Let us sketch this briefly.

Recall that we denote by, andh, the leading coefficients of, and f; w.r.t. X,. We
can assumeé(h,) # 0. By virtue of theSpecialization property of the subresultants

have

O(Ry) = O(hy)" "res(®(f1), @(f2)).

Sincez, is a root of R; we have®(R;) = 0. Hence, we havees(®(f1), ®(f2)) = 0.

This implies thatb(;) and®(f,) have a non-trivial common factor iK[.X,] and thus a

common root, in K, concluding the proof. O
We shall discuss now how to compute the solutiori&gf;, f>). Proposition 19 serves

as a lemma for Theorem 5 and Corollary 1 which arentiaén resultf this section.

Proposition 19 Lett¢; be a non-constant factor @, . Lett, be a polynomial irk[X, X5]
such that; is a GCD off; and f» in (K[X;]/(t1))[X2]. The hypothesedd,), (H3) and

(H,) imply the four following properties:
(i) if t2 has degree zero w.r.X, then we havé’ (¢, ;) = 0,

(17) if to has positive degree w.rK, then we have

V(ty,t) #0 and V(t,t2) C V(f1, f2),

3.2. A direct method 45

(ZZZ) we have‘/@l, tg) = V(fl, fg, tl),
() if we havet; = Ry thenV' (f1, f2) = V (¢4, t2) holds.

Proof. Let h be the leading coefficient @t w.r.t. X,. Sincet, is a GCD of f; and f; in

(K[X1]/(t1))[X2], we have the following three properties:

* hisinvertible modula,,

» there exist polynomialsl;, Ay € K[X;, X5 such thatd;f; + Asfs = ¢ holds in

(K[X4]/{t1))[Xa],

* if £, has a positive degree w.rX,, then the polynomial, pseudo-divideg; and
foin (K[Xq]/ (1)) [Xo].
Therefore, we have:

* there exist univariate polynomials,y, A;; € K[X;] such that we have

Aloh -+ Alltl - 1 (35)

» there exists a polynomial; € K[X7, X5

Asfi + Asfo = to + Asty. (3.6)

* if ¢, has a positive degree w.rXs, then there exist polynomialds, A;, Ag, Ag €

K[X{, X5] and non-negative integersb such that we have

hbfl = A6t2 + A7t1 and hcfg = Ath + Agtl. (37)

Observe that Equation (3.5) implies that a roottptannot canceh. Recall also that
from Equation (3.4) there exist polynomials, A, € (K[X;])[X:] such that we have
Aifi + Aafo = Ry.

3.2. A direct method 46

We prove(i). We assume that has degree zero w.r.,. Hence, we have, = h.
Sincet; andh have no common root, it follows th&t(,, t5) = () holds.

We prove(ii). We assume that, has a positive degree w.r.fX,. Sincet; andh
have no common root, every roet of t; extends to (at least) one roet of ¢, (where
to is specialized atX; = z;). HenceV (t1,t,) # () holds. Consider nowzi, z5) €
V(t1,t2). From Equations (3.5) and (3.7) we clearly hgéz,, z5) = fa(21,22) = 0,
thatis(z1, z2) € V(f1, f2)-

We prove(iii). From (i) and(ii), whether the degree @f w.r.t. X, is positive or
not, we havé/ (t1, ty) C V(f1, f2) which implies trivially V' (¢1,t2) C V(f1, f2,t1). The
converse inclusion results immediately from Equation)3.6

We prove(iv). Assume that, = R; holds. From(H;) we know thatV(f,, f>) is
not empty. Hence, thanks @) and (ii), we notice that the polynomial must have
a positive degree w.r.tX,. Let us considefz, z3) € V(fi, f2). From Equation (3.4)
we deducéd;(z,22) = 0. Then, with Equation (3.6) we obtatn(z, zo) = 0, that is,
(21, 22) € V(t1,12). O

Theorem 5 Let h be the GCD of; andh,y. Let (A, {B1}),..., (A {B.}) be a GCD
sequence of; and f> in (K[X]/(R; quo h))[Xs]. The hypothesed,), (H;) and (H,)
imply

V(f1, f2) = V(A1, B) U -+ UV(A, Be) UV (h, f1, fa). (3.8)

Moreover, for alll < ¢ < e, the polynomiald; has a positive degree w.r.fX, and thus

V(A;, B;) # 0.

Proof. SinceV (f1, f2) C V(R,) andV(R,) = V(Ry quo h) U V(h) we deduce

V(fl, fg) = V(Rl quo h, fl; fg) U V(h, fl; fg) (39)

3.2. A direct method 47

From HypothesigH,) the polynomialR, is squarefree and thus;, quo h is squarefree
too. Hence, the residue class ri(i§[X:]|/ (R quo h)) is a direct product of fields and
computing polynomial GCDs iflK[X}]/(R; quo h))[X,] make clear sense and can be
achieved by adapting either the Euclidean Algorithm or thbr8sultant Algorithm, as
explained in Remark 8 page 32. The polynomials. . ., B, are non-constant polynomi-

als inK[.X;] and their product is equal t8; quo h. Hence, we have

V(Riquo h, fi, fo) = V(By, f1, fa) U --- U V(Be, f1, f2). (3.10)

The polynomialsdy, . . ., A. are polynomials ifK[.X;][X,] and for alll < i < e the poly-
nomial A; is a GCD of f; and f, in (K[X;]/(B;))[X2]. Property(iii) of Proposition 19

implies for all1 < ¢ < e we have:

V(Bi, fi, [2) = V(B 4). (3.11)

Equations (3.9), (3.10) and (3.11) imply Equation (3.8)wNibserve that for all < i <

e the polynomialB; is a factor ofR; quo h which is relatively prime witth. (Indeed, since
R is squarefree, the polynomi&l; quo h is relatively prime withh.) Hence, by virtue
of Proposition 17 we know that (B;, f1, f2) # 0 holds. Therefore, with Proposition 19
we deduce thatl; has a positive degree w.rX, and thatV’(4;, B;) # () holds. O

Corollary 1 The hypothesegH;) to (Hs) imply the existence of a polynomiél, €

K[X7, X5] with the following properties:

(1) G4 has a positive degree w.r.&, and its leading coefficient w.r.tY, is invertible

moduloR;,
(”) V(fl; fz) = V(R17G2).

(Z'LZ) G2 isa GCD Offl andf2 in (K[Xl]/<R1>)[X2]

3.2. A direct method 48

Proof. With the notations and hypotheses of Theorem 5, Equatid@) (®lds. From
Hypothesis(H5) the polynomialsh; andh, are relatively prime and thus = 1, hence
we haveV (h, fi, fo) = 0, leading to

V(fi, f2) =V(A,B))U --- UV(A., Be). (3.12)

Since for alll < i < e the residue class ring[X;]/(B;) is a direct product of fields,
one can use GCD computations in order to compute the sqearetrtC; of A; in
(K[X1]/(B;))[X2]. Note that we hav& (A,, By) = V(C;, B;) forall 1 < i < e. We fix
an index: in the rangel . . .e and aroot; € K of B;. Let ® be the evaluation map from
K[X1][X.] to K[X,] that replacesX; by z;. Since the coefficient fieli is perfect, and
since(; is squarefree ifK|[X,]/(B;))[Xz], the polynomiald(C;) hase; distinct roots,
wheree; is the degree of(C;). Observe that from Hypothesi¢/,) we havee; = d».
Therefore all polynomialg’, . .., C. have the same degrel. Since the polynomials
By, ..., B, are pairwise coprime, by applying the Chinese RemaindeoiEme, one can

compute a polynomial’; € K[X;, X,] such that we have

V(Ga, By -+ B.) = V(Cy,B)) U -+~ UV(C., B.). (3.13)

Since the leading coefficients 61, . . ., C. are invertible moduld3, . . . , B. respectively,
the leading coefficient of7; is invertible moduloB; - - - B.. Recall thatR; = B; - -- B,
holds, hence we havé(fi, f-) = V(R1,G2). Finally, the fact thaty, is a GCD of f;
and f5 is routine manipulation of polynomials over direct produet fields. O

To conclude this long section, let us emphasize the restatedsin Theorem 5 and
Corollary 1.

First, it is important to observe that Theorem 5 remains éwen if HypothesigH,)
does not hold. This can be shown using the theory and algasittleveloped in [27].

Moreover, based on [27], relaxing Hypothe$ék) and(H3) is easy. Therefore, Theo-

3.2. A direct method 49

rem 5 “essentially” tells us how to solve any bivariate sgste
Secondly, it is important to observe that Corollary 1 regsitwo additional hypothe-
ses w.r.t. Theorem 5, namelyd,) and(H;). These latter hypotheses have the following

benefits. They allow us to replace Equation (3.8) simply by

V(f1,f2) = V(Ri,Ga) (3.14)

Hence, under the hypothesg;) to (Hs), solving the bivariate systerfy = f, = 0
reduces to one resultant and one GCD computation. This withb key for developing

an efficient modular method. Based on these observationsitmeeluce the following.

Specification 5 Let (again) f1, f> € K[X7, X5] be two non-constant polynomials.

* We denote bgolve2(f1, f») afunctionreturning pair$A;, B,), . .., (A, B.) where
By, ..., B, are univariate polynomials iik[X;] and 4, . . ., A, are bivariate poly-
nomials inK[X;, X,] such that A;, B;) is a regular chain for alll <: < eand we
have

V(fi, fo) =V(A1,By) U --- UV(A,, Be).

 Under the Hypothesgd{,) to (H5), we denote bysenericSolve2(f1, f») a func-
tion returning (G, R;) where R; is a univariate polynomial irK[X;] and Gs is
a bivariate polynomial inK[X, X] such that(G,, R,) is a regular chain and we
have

V(fl, fg) = V(Rl, Gg)

Under the Hypothes€gg7,) to (H;), Corollary 1 tells us that computing the targeted

triangular sef R, G»} reduces to
» computing the resultari®; = res(f1, f2, X2),

e computingG, as GCD off; and f, modulo{R; }.

3.2. A direct method 50

Thefirst key observation is that this GCD need not split the computations. Hence this
GCD can be computed asi[.X,|(R;) was a field. Thus, using Remark 8 page 32, one
can deduce this GCD from the subresultant chairf,oénd f, that we have computed
anyway in order to obtaires(f1, f2, Xs).

Thesecond key observations that these subresultant chains can be computed by a
modular method, using evaluation and interpolation.

In the following, we describe three strategies for impletmgnsolvers. In the first
one we are looking at an approach which identify generigsuanptions for the solving
of a system to be simple and efficient at the same time, thisléaGenericSolve2
that is a function which has a simple algorithm but it regsitifée genericity assumptions
Hi-Hs, this algorithm (see Algorithm 7) simply computes the rémtl R, of the input
polynomials and their GCD modull;, assuming we already have the necessary non-fast

(non-modular) techniques to find both the resultant and GG

Algorithm 7 GenericSolve2

Input: f1, f>» € K[X1, X5], under assumptions of
(H1) 0 < [V(f1, f2)| < o0

(Hy) V(f1, f2) equiprojectable
(H3) deg(fi, X;) >0

(H,) R, squarefree

(H5)

H5 ng(IC(fl,Xg),IC(fQ,X2)> =1

Output: {Rl, Gg}g K[Xl, XQ] S.t. V(Rl, Gg) = V(fl, fg)

GenericSolve2(f1, fo) ==
Ry :=res(f1, fa, X5)
G2 :==GCD(f1, f2. {F1})
return (R, Gs)

3.2. A direct method 51

In the second algorithm (Algorithm 8) we implemeaénericSolve2by way of fast
techniques using moular methods that is computing Battand G, by specializations

and interpolations hence we call this approbtddularGenericSolve2

Algorithm 8 ModularGenericSolve2
Input: f1, fo € K[Xy, Xo], under(H,) to (H;)

Output: {Rl, Gg}g K[Xl, XQ] S.t. V(Rl, Gg) = V(fl, fg)

(1) Compute Chain(f1, f>) by interpolation

(2) Let Ry =res(fi, f2, X2)

(3) LetL =K[X;1]/(R)

(4) Let ¥ :K[X;, Xo] — L[X)]

(5) i:=1

(6) Let S € Chain(fi, f2) non-zero, regular with minimum indgx> i
(7) if U(lc(S, X3)) #0

(7.1) then G, := ¥(95)

(7.2) elsej :=i + 1; goto(6)

(8) return {R;, Gy}

Now we can improve Algorithm 8 by relaxing all the assumpsi@xceptH1 and H;
where these two assumptions are very likely to hold in maasttpral cases provided that
we passh = ged(lc(f1, X)), Ic(f2, X2)) as an input in to the algorithm.

As we are removing the equiprojectablity property (Assuopfi,), we need to check
whether the computation splits, if so we have to continueaichebranch in the same

manner until we get the true GCD, Algorithm 9 describes tbpst

3.2. A direct method

52

(1)
(2)
3)
(4)
()

(6)

(7)

(8)

(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)

Algorithm 9 EnhancedModularGenericSolve2

Input: f1, fo, h, (Hy), (H3) only

Output: {Ry,G2}C KXy, Xo] s.t. V(Ry,Gs) = V(f1, f2) \ V(h)

Compute SubresultantPRS;, f2)
Let R, = sqfrPart(res(fi, f2, X2))
Ry :== Ry quo (sqfrPart(h))
Tasks := [[Ry, 1]]; Results := [|
while Tasks# [| repeat
A Task is a paire consisting of a polynomial and an index
(B, 1] := Tasksl[1]
Tasks := Tasks[2--- — 1]
Let S € Chain(fi, f2) non-zero regular with minimum indgx> i
c:=lc(S, Xy);c:=c rem B
if ¢ =0 then
Tasks = [[B,i+ 1], op(Tasks)]
else
By :=gcd(c, B)
if B; = 1then
Results := [[B, S], op(Results)]
else
By := B quo By
Tasks = [[By,i+ 1], op(Tasks)]
Results := [[Bs, S|, op(Results)]

return Results

3.2. A direct method 53

Finally we provide a general solvéodularSolve2 (see Algorithm 10) that does not
make any assumptions in which can easily detect when gépnassumptions hold and it
will also handle the cases where these assumptions do rebt hol

The idea is to take advantage of usiBghancedModularGenericSolve2whenh # 0
otherwise we can just take the tail of both of the input polpmads that isf; and f»
without the highest degree monomial term and then repegrtassor by callindylod-

ularSolve2recursively.

Algorithm 10 ModularGenericSolve2

Input: f1, fo € K[X;, X5], under assumptions of
(H1) 0 < |V(f1, f2)| < o0
(H3) deg(fi, X;) >0

Output: {Rl, Gg}g K[Xl, Xg] S.t. V(Rl, Gg) = V(fl, fg)

ModularSolve2(f1, f2) ==

h = ged(lc(f1, X2),lc(fa, X2))
R := EnhancedModularGenericSolve2(f1, fa, h)
if h=1return R
D := ModularSolve2(tail(f1), tail(f2))
for (A(X,), B(X1,X3)) € D repeat

g :=ged(A, h)

if deg g, X1) > 0 then

R:=RU{(g,B)}

return R

Sections 3.3 and 3.5 provides details about the computatiath both of the Euclidean

sequences and Subresultant chains, Figure 3.2 sketchgsrtbeal idea of computing by

3.3. Euclidean modular method 54

f1, fo € K[X1, X5] !

Chain(®;(f1), i(f2)) € K[Xs]
RegularChainsl l[nterp

Chain(¥(f1), ¥(f)) € L[Xy] B = E

Chain(fl, fg) S K[Xl, XQ]

L= K[Xl]/<R1>

Figure 3.2: Modular solving a x 2 polynomial system.

modular methods.

3.3 Euclidean modular method

In this section we propose a first modular approach basedeodBublidean Algorithm:

(1) Instead of computind?; directly from the input polynomialg; and f», we choose
enough valuesy, vy, ..., v, of x;, computeeval(Ry, X1 = vp),eval(Ry, X; =

v1),...,eval(Ry, X; = v,) with Algorithm 4 page 13, or equivalently Algorithm 11.

Then, we reconstrudk; from these modular images using Lagrange interpolation

(Section 2.10 page 26).

(2) Instead of computingr, directly from the input polynomialg;, f, modulo Ry,
using the Euclidean Algorithm ifK[X]/(R,))[X2] as if K[X,]/(R,) were a field,
we “recycle” the modular images of the subresultant chairf,oénd f,, which
were computed for obtaining; via Algorithm 6 page 17. Then, we reconstruct
G, from these modular images using Lagrange interpolatioati@e2.10 page 26)

and rational function reconstruction (Section 2.11 page 27

Let us give some details fdiz;). Let b be a degree bound foes(f1, fo, X2) given

by Theorem 4. Then, it suffices to chodse- 1 pairwise different values,, vy, ..., v,

3.3. Euclidean modular method 55

in K such that none of them cancel the leading coefficient§ @ind f. Then, for each
v; € {vo,v1,...,v,} applying Algorithm 11 toeval(fi, X7 = v;) andeval(fo, X1 = v;),
we obtaineval(Ry, X7 = v;).

For eachv; € {uvg,v1,...,u}, let us store all the intermediate remainders com-
puted by Algorithm 11 includingval(f,, X; = v;) andeval(f,, X; = v;). For each
v; € {vo,v1,...,v}, We store these remainders in artdy such that slot of index
gives the intermediate remainder of degrgef any, otherwise). In particular the slot
of A,, with index0 giveseval(R;, X; = v;). Combining all these resultants using La-
grange interpolation produces,, Algorithm 12 describes the way we used to compute

the resultant?;.

Algorithm 11 Euclidean Sequence Algorithm
Input : a,b € K[z], m := deg(a) > n := deg(b) > 0.
Output: prsfi]: polynomials of degreéin EuclideanSequen¢b), if any, other;

wiseO0.
EuclideanSequen¢e b) ==
r:=1
declareprs as a list of sizen.
repeat
by, := lcoeff(b, z)
if n =0 then
prs[0] :=r b return prs
h:=aremb
if A = 0then
prs[n] := (1/by,) * b; return prs
else
i:=dedgh, x);
prsli] := (1/lcoeff(h,x)) * h
ri=r(=1)mpm

(a,b,m,n) = (b, h,n,i)

3.3. Euclidean modular method 56

Algorithm 12
Input : fi, fo € K[X7, Xs], under assumptiond; to H.
Output:{t1 (X1>, t2<X1, Xg)}g K[Xl, Xg] S.t. V(fl, fg) = V(tl, tg)

let b be a degree bound foes(f1, f2, X2)
n:=>b+1
declarevprs as a list of sizen.
whilen > 0 do
v :=newValug)
if le(f1(X1 =wv)) =0o0rlc(fo(X; =v)) = 0then iterate

else
valln] ;== v
vprs[n| :=EuclideanSequenc¢é (X, = v), fo(X7 = v))
ni=n-—1
t, :=Interpolatéval, seq(vprs[i][0],i = 1..b + 1))
s=1
repeat {

d:=min{d > s| 3i € N, prs[i][d] # 0}
let c be a degree bound for the coefficients w.xt.
of a remainder irEuclideanSequencg, f2)
n =2c+1
m = #{i | prs[i][d] # 0}
Assumgprsfi][d] # 0,i = 1..m}
up to sorting prs, we can always make that assumption
whilen’ > m do
v :=newValug)
if le(f1(X1 =v)) =00rle(fo(Xy =v)) = 0 then iterate
a :=EuclideanSequencé (X; = v), fo(X1 =v))
if a[d] = 0 then iterate
prs[n’] := a;valn'] == v;
n=n -1
to:= InterpolateAndRationalReconstructienl, seq(prs[i][d],i = 1..2¢+ 1))
if ged(lc(te, X2),t1) € K then break
s:=s54+1
}

return { ¢y, }

3.3. Euclidean modular method 57

Let us now give details fof7;). The principle is similar tq77). However, three

particular points require special care.

* First, the degree of the gcd w.rXs is not known in advance, in contrast with the
resultant which is known to bew.r.t. X,. So, we first try to reconstruct from the
array A,,, ..., A,, a gcd of degread, if it fails, we try a gcd of degree, and so
on. We proceed in this order, because unlucky substitutioresrise to gcds with

degrees higher than the that of the desired gcd.

» Second, when trying to reconstruct a gcd of degteee interpolate together the
slots on indexi from 4,,, . .., A,, that do not contaif. If they all contain0, then
we know thatGG, has degree higher thah Indeed, according to Theorem 6.26 in
[17] the number of unlucky specializations is less than tbgreée ofR; and thus
less tharb. If at least one slot of index does not contaif, we need to make sure
that we have enough slots. Indeed, according to Theoremi® [3Z], the degree

in X; a denominator of a numerator @, can reach

c = (degx,(f1) + degy, (f2))max(degy, (f1), degy, (f2))- (3.15)

If we have less thaBc non-zero slots in degreé we need to compute more se-

guences of remainders for specializationsof

» Third, once we have interpolated enough specialized neteas of a given degree
d, we need to apply rational reconstruction to its coeffigemt.t. X;. Indeed, in
contrast to resultants, gcd computations involve not odhiteons and multiplica-

tions, but also inversions.

Example 7 Let f; and f, be polynomials defined as

i = (X2 = XP)(X2+2)
fo = (Xo+1)(X2+3)

(3.16)

3.3. Euclidean modular method 58

Then the resultant intermediate remaindergpéind f, w.r.t X, are:

Ry = X7 +4Xy+3
R1 - —2X2—X12X2—2X12—3

Ry=—-X{—-4X7 -3

Letb be the bound

degy, (f1)degx, (f2) + degy, (fi)degx, (f2)

which is 4 in our example. For enough valuesuv,, ..., v, computeR;(X; = v;) for

¢+ =0..2andj = 0..b and store the computations into an array, say A.

Zzl,Xlzl Z:2,X1:2 123,X1:3 7,24,X1:4 Z:5,X1:5

Ro; X3+44Xo+43 X3+4Xo+3 X7+4Xo+3 Xi+4Xo+3 X7+4X5+3
Ri; —3Xy-5 —6X, —11 —11X,—-21 —18X,—35 —27X,—53
R -8 —35 —120 —323 —728

Recycle the intermediate computations above using Lagrarigrpolation to get

Gy=—X! —4X7? -3

Also to reconstruct the gcd from the above array, we can pukate together all the

slots that do not contain O, which leads to:

[—2X7 = 3, X7 — 2]

3.3. Euclidean modular method 59

At this point we have enough specialized remainders to apyilynal reconstruction

to the coefficients w.r.tX, to get

(=2 - X})X, —2X7 -3

Finally taking the primitive part we get

—2X, — XX, —2X7 -3

Hence our solution is

[—2X, — X7 X, —2X7 — 3, -3 —4X7 — X/

Example 8 Consider the system

fo= (X +1)(Xy*+3)
fo = (Xo+ X1)? (X2 +2)°

(3.17)

The Euclidean Sequence fand f, w.r.t. X, overZ;; can be given by:
Ry = X" +(44+2X) X0 +(4+8X, + X)) Xo> + (8 X1 +4X,%) X +4 X,

Ry = (15 X;4+13) X+ (16 X +9X) Xo> + 13 X2+ (13 X2+ 9X,) Xy + 3

R, — (13 X144-2 X134+12 X1 248 X1 +16) X2 4 (X14+8X13+12X12+10X1+3)X
2 = X12+4X1+4 2 X1 +4 X1 +4 2
+ X148 X13415 X312 46 X1 +12
X1?+4 X1 +4
R, — (12 X174+14 X1413 X1°416 X124 411 X134+3 X712 4+13 X1 +1) X
1 = 2

X1 7+7 X146 X1T+9 X 1348 X1 242 X1 +1

+ 11 X1 7+13 X104 X154+ X4 4+16 X1 3+3 X1 249 X1 +12
X1 7+7 X146 X157 +9 X348 X124+2 X1 +1

Ry = X®+8X°+5X1*4+7X.2+49

3.4. The complexity analysis 60

i=1,X1=1 i=2,X1=2 i=3,X1=3
Ry; X5+46X5+13X5+12Xo+4 X5 +8X3 +7X5 +15X2+16 X35 +10X35 + 3XZ +9Xp + 2
Rs; X3 +10X2 +2X2+3 X3+ 11X2+4X2+38 X3 +5X2+6X2+5
R 0 X2+ X2+3 X2+ 7X2+16
Ry 0 X2 + 10 Xo+5
Ro; 13 1 1
i=4,X1=4 i=5X1=5 i=6,X1=6
Ry X5+14X54+ X2 +4Xo+15 X5+ 16X5 +3X5 +5Xo+8 X3+ X5+7X5+14X2+9
R3; X3 + X2 +10X2 + 13 X3+ X2 +12X, +12 X3 +3X2+14X2 +6
Ro,; X2 +4Xo +7 X2 +10 X2 +15X, +13
Ry X2 Xo+1 Xo+7
Ro; 9 4 1
i=7,X1=17 i=8X1=38 i=9,X1=9
Ry; X3 +3X3+13X2+14Xo+1 X§+5X3 +4X3 +5Xo+1 X5 +7X5 +14X2 +4X2+9
Rs,; X3 +3X2416X2+5 X3+ X243 X3 +16X2 +3X2 +13
Ro; X2 +14X2 + 11 X2+ 16X+ 1 X2 4+9Xs +12
Ry X2 +4 X2 +2 X245
Ro 9 9 1

Figure 3.3: Computing Euclidean remainder sequience d@ésy$§3.17) through special-
izations mod 17

For this example each remaind& is of degree w.r.t. X,. Now instead of computing
directly overZ,;(X;) we can reduce the computation to univariate polynomials finite
field Z;7 by using specilizations. Figure (3.3) shows the detailsichscomputation over

Zy7 with specilizationsok; =1,--- , X; = 9.

3.4 The complexity analysis

Referring to propositions 12, 13, and 14; let us try to find¢bmplexity our algorithm.

Just forR; consider

n = max(degy,(f1),degy, (f2)) (3.18)

m = max(degy, (f1),degx, (f2)) (3.19)

For the direct approach, we run the Euclidean algorithmia@pb f; and f, regarded

as polynomials inX, so we payO(n?nm) operations inK (the factornm is for the

3.5. Subresultant modular method 61

maximum degree of a coefficient ii,, namely the resultant). For the modular approach,
we assume that we are lucky, that is the degree of the GCD i®1al¥é assume that we
have fast univariate polynomial arithmetic.X,| at our disposal. This is reasonable

assumption for today’s computer algebra systems [16].

* We nee2nm specialized computations. Each of these specialized ctanipus

are over a field, and allow the use of fast Euclidean Algorghm

O(nlog(n)*log(log(n)))

operations irkK. See [32] page 66.

* We need 3 interpolations in degr2em which can be done again with fast interpo-
lations inO((plog(p)*log(log(p))) operations ifK wherep = nm. See [17] page
284.

« We need 2 rational function reconstructions requiringra@é (p log(p)*log(log(p)))

operations irk.

Proposition 20 Using our modular algorithm, solving a bivariate systemsaad polyno-
mial equations takes aboUt(n?m) operations inkK versusO(n*m) for the non-modular

algorithms (provided that we neglect the logarithmic teyms

3.5 Subresultant modular method

Another way to implement the key observations stated ini@e&3 is to use th&ubre-

sultant PRS Algorithrmstead of thécuclidean AlgorithmThis has several advantages:

* First, the bound for reconstructirdg, is divided by 2. Indeed, in the case of the Eu-
clidean Algorithm, the coefficients @f, are rational functions ifK(.X;) whereas

in the case of the Subresultant PRS Algorithm they are jugtpmials inK[X}].

3.5. Subresultant modular method 62

» Second, rational reconstruction is not needed anymordtargithe algorithm be-

comes conceptually simpler.

Apart from that, the principle is similar. We start by spdiziag the input system at
sufficiently many values of; and for each specialization we compute the subresultant
chains of the two input polynomials. Then, we interpolate thsultant part of each

sequence to gef; .

3.5. Subresultant modular method

63

}

Algorithm 13
Input: fi, fo € K[X;, X5], under assumptions @f; to Hs.
Output: {t1(X1), 12(X1, X2)}C K[X1, Xo] S.LV(f1, f2) = V(t1, ta).

let b be a degree bound faes(f, f2, X3)
n:=>b+1
declarevprs as a list of sizen.
whilen > 0 do

v :=newValug)
if le(f1(X1 =w)) =0o0rlc(f2(X; =v)) = 0then iterate
else

valln] :=v

vprs[n| :=SubresultantPR$; (X = v), fo(Xy = v))

n:=n-—1

t1 :=Interpolatéval, seq(vprs[i][0],i = 1..b + 1))
s=1
repeat {

d:=min{d>s|3i € N, prs[i][d] # 0}
n =2b+1
m = #{i | prs[i][d] # 0}
Assumgprsfi][d] # 0,i = 1..m}
up to sorting prs, we can always make that assumption
whilen’ > m do
v :=newValug)
if le(fi(X1 =v)) =0o0rlc(fo(X, =v)) = 0theniterate
a :=SubresultantPRS; (X = v), fo(X; =v))
if a[d] = 0 then iterate
prs[n’] ;= a;valln'] := v;
n=n -1
to:= Interpolatéval, seq(prs[i][d],1 = 1..2c + 1)
if ged(Ic(te, X2),t1) € K then break
s:=s+1

return { ¢1,t5 }

3.6. Implementation of our modular method 64

3.6 Implementation of our modular method

As afirst step, one might wonder which kind of polynomial egantation among several
alternatives (e.g. distributive/recursive, sparse/dgins best suited for facilitating our
computations. Hence, we have developddpl e library where different polynomial

representations can be used.

3.6.1 Mapl e representation

GenerallyMapl e objects are represented by a data structure callegikpression tree
(also DAG, Directed Acyclic Graphs) such that eadpl e object is stored only once
in memory. In the example below we consider the expresgion 1)%y* + = + 3. The
Mapl e commanddi snant | e can be used to show the internal structure dfbapl e

expression.

Example 9
> = (X-1)"2*y+x+3;

> dismantle(f);

SUM(7)
PROD(5)

SUM(5)
NAME(4): x
INTPOS(2): 1
INTNEG(2): -1
INTPOS(2): 1

INTPOS(2): 2

NAME(4): y

INTPOS(2): 2

INTPOS(2): 1
NAME(4): x

INTPOS(2): 1
INTPOS(2): 3
INTPOS(2): 1

So the Maple’s internal representation of the above exme$3AG is shown in Fig-

ure 3.4.

3.6. Implementation of our modular method 65

+

SN
N
AL A

N N
+ 2 y 2

Figure 3.4: Mapl e expression tree fofr — 1)%y? +x + 3

3.6.2 Recden representation

The packag®ecden is a separate library which uses a recursive dense polyhospia

resentation, that is:

» a polynomial is regarded as a univariate polynomial wistlargest variable, say

and,

* is stored as the vector of its coefficients w.rt.which are themselves recursive

dense polynomials.

o [Na oo

Figure 3.5:Recden representation ofr — 1)%y? + z + 3

In Mapl e 11, most of the recden routines were integrated into Mapheis library

and some of them into internal built-in kernel functions.

3.6. Implementation of our modular method 66

3.6.3 nodpl/ nodp2 representation

Thenodpl/ nodp?2 library is a built-inMapl e library which uses its own data structure
to represent polynomialepdp1 is a data structure for dense univariate polynomials over
prime fields. If the characteristic is sufficiently small, @ymnomial is represented as an
array of machine integers, otherwise a¢gl e list of arbitrary precision integers. Simi-
larly modp2 implements dense bivariate polynomials over prime fieldgegd e lists of
nodpl polynomials, representing the univariate coefficientdefltivariate polynomials
in the main variable.

nodpl and nodp2 are mostly implemented in the C language rather than in the
Mapl e programming language. This generally yields better paréorce than both of

theMapl e andRecden representations.

3.6.4 Benchmarks

In this section, we report on comparison with the three potgial arithmetic representa-
tions provided byrodp1/ nodp2 andRecden. We compare them within Algorithm 12.
As input, we use random bivariate dense polynomfalsof various total degrees from
1 to 20 modulo the primg = 2147483659 = nextprime(23'). All the benchmarks in
this thesis are obtained on a Mandrake 10 Linux machine vétitim 2.8 GHz and 2Gb
memory, except for the Figure 3.11 which was done on a Fedarauk machine with
Pentium 3.2 GHz speed and 2Gb memory. Also all the timing&aseconds.

Figure 3.6 shows the running times for thedpl/ nodp2 polynomial arithmetic
only whereas Figure 3.7 show the running times for batkdp1/ nodp2 andRecden
polynomial arithmetics. The former library clearly outfmems the latter one for large
degrees. This was actually expected since most aftitip 1/ nodp2 code is written in

C whereas th&®ecden code is mostlyapl e interpreted code.

3.6. Implementation of our modular method 67

modpl/modp2 times

“modpl-modp2" ——

Time

N
ol
1

TN
e
e
7777 'I’I,’/’/
iy A)

= =)
o (331 S
T T T

Figure 3.6: Running Euclidean modular algorithms wittdp1/ nodp2 representation
form.

3.7. Experimental comparison 68

modpl/modp2 vs. recden times

‘modpl-modp2" ——
"recden” ——

Time

d=2 _I!.’”I
s
AT L 7 T
Y i 18 gy W o
AL AT L7 1]
PAF L AL T TIAAAAN Y
LA 77 7L AT] 7 '/”
Sl Z FH L LI AT
SEFAA LA A T 77T
AT F AT

7 7777

&y vy
T AL LT T
5 =z LT 7T
ey I AALY
0 s e ,—’(71‘75 15'
fL 7L [P, 7
LA e A E
G F e 20
W Wy
SIS 7 7 F

Figure 3.7: Euclidean modular method using b&#cden and nodpl/ nodp2 li-
braries.

3.7 Experimental comparison

In this section, we compare the implementations of the madalgorithms developed in
this chapter, namely Algorithms 12 and 13, based on the &t sequence and Subre-
sultant PRS sequence, respectively. We compare them alsdaheiTr i angul ari ze
command from th&egul ar Chai ns library in Mapl e since they all solve polynomial
systems by means of triangular sets.

As input, we use again random bivariate dense polynonfigjof various total de-
grees from 1 to 20 modulo the prime= 2147483659 = nextprime(23'). All these

implementations are using the defaMitpl e polynomial representation, except for Fig-

3.7. Experimental comparison 69

ure 3.11 which usesodpl1/ nodp2 representation.

We start with benchmarks illustrating the differences lesmwthe two modular meth-
ods developed in this chapter: Figure 3.8 shows the runimmgstfor Algorithm 13 only
whereas Figure 3.9 show the running times for both Algorghrd and 13. As expected,
the Subresultant-based modular algorithm clearly outper$ the Euclidean Algorithm-
based modular algorithm for large degrees. Recall thatdtierlone uses bounds that
are essentially twice larger than the former one; moredwefdtter one involves rational

function reconstruction.

Subresultant Approach

"SubresultantApproach" ——

Time

7/ / //
- Z
e iy
A T T]
A A T T T T

Figure 3.8: Timings for the Subresultant approach \Wiipl e representation form

3.7. Experimental comparison 70

EuclideanSolve vs. Triangularize

"SubresultantApproach” ——
"EuclideanApproach" ——

Time

1000
900
800
700
600
500
400
300
200
100

Figure 3.9: Comparison between Subresultant vs. Euclidggmoaches, both are in
Mapl e representation forms

Figure 3.10 shows the running times for Algorithm 13 and Tiné angul ari ze
command. As expected, the Subresultant-based modulaithlgcclearly outperforms

theTri angul ari ze command (which does use a modular algorithm).

3.7. Experimental comparison 71

EuclideanSolve vs. Triangularize

"SubresultantApproach” ——
"Triangularize" ——

Time

700
600
500 |
400
300

7 =7
2 T 7]

l’
< ." '.></(/"’#"' L7 -
o s ‘ 7y oo Vi 4

Figure 3.10: Subresultant vs. Triangularize approactah,dre inVapl e representation
forms

Finally, we compare thd@r i angul ari ze command (which uselsapl e polyno-
mial arithmetic) versus Algorithm 13, implementing our $#gultant-based Modular al-
gorithm, using therodp1/ nodp2 polynomial arithmetics. In this case, the gap between

becomes even larger.

3.7. Experimental comparison 72

SubresultantSolve vs. Triangularize

"SubresultantApproach” ——
"Triangularize" ——

Time

Figure 3.11: Comparison between Subresultant approachdpl/ nodp?2 representa-
tion vs. Triangularize ilvapl e representation forms

Chapter 4

A Modular Method for Trivariate

Systems

In this chapter we discuss an algorithm and its implememtditir solving systems of three
non-linear polynomial equations with three variables. Wieed to this context the ideas
introduced in Chapter 3. This leads to a modular method fimirsgpsuch systems under
some assumptions that are satisfied in most practical c&@simplementation in the

computer algebra systeMaple allows us to illustrate the effectiveness of our approach.

4.1 Problem statement

Let f1, f2, f3 be three polynomials in variables;, X,, X5 and with coefficients in a per-
fect field K. LetK be the algebraic closure &f. We are interested in solving ovErthe

system of equations
[ilX1, X2, X5) = 0

fo(X1, X0, X3) = 0 4.1)
f3(X1, X2, X3) = 0

73

4.1. Problem statement 74

that is computing the sét(f1, f», f5) of all tuples(zy, 23, 23) € K’ such we have:

f1(21, 22723) = f2(21, 22723) = f3(21722723) = 0.

We denote by7, the set all couplesz, z3) € K’ such that there exists € K satis-
fying (21, 22, 23) € V(f1, fo, f3). Hence, the sef; collects all the pairs oK -coordinate
and X,-coordinate of a point itV (f1, fo, f3).

We denote byZ; the set all the numbers, € K such that there exists a couple
(29, 23) € K satisfying(z1, 2, 23) € V(f1, f2, f3). In other words, the set; collects all
the values for theX;-coordinate of a point iV (f1, fs, f3).

We make below our assumptions regardfagfs, f3 and their zero-set’(f1, fa, f3):

(Hy) the setV(f1, fo, f3) is non-empty and finite, and thus the s&isand 7, are non-

empty and finite too,

(H») there exists a constadg such that for everyz, zo) € Z, there exist exactlyls
points inV(f1, f, f3) with X;-coordinate equal te; and X,-coordinate equal to

225

(H3) there exists a constart such that for every, € 7, there exist exactlyl; values

for the X,-coordinate of a point iV (f1, f, f3) whoseX;-coordinate is:;.
(H,) the polynomialsfi, fo, f3 have positive degree w.rX; and Xs.

(Hs) there exists a Lazard triangular &t= (T3, T3) in K(X;)[X2, X3] such thafl' and

f1, f2 generate the same ideallif{ X)[X2, X3]; moreover, this ideal is radical,

(Hg) lethy be the least common multiple of the denominator§'jrwe assume that none

of the roots ofh; belongs taZy, thatis,V (hy, f1, f2, f3) = 0.

(H;) We assume that (hy, Ty, T3, f3) = 0.

4.1. Problem statement 75

(Hsg) the polynomiald;, andres(T3, f3, X3) have positive degree w.cX, and their lead-

ing coefficients w.r.t.X, are relatively prime,

(Hy) the polynomialsT; and f; have positive degree w.t; and their leading coeffi-

cients w.r.t. X are relatively prime.

Similarly to the hypotheses of Chapter 3, these assumpdiensatisfied in most practical
problems, see for instance the systems collected bysyimbol i cDat a project [30].
Moreover, we usually havé, = 1 andds; = 1.

Let d; be the number of elements . The hypothese§H) to (Hs) imply that
there exists a univariate polynomigl € K[X;]| of degreed;, a bivariate polynomial
ty € K[X7, X5 with degreed, w.r.t. X5, and a trivariate polynomial € K[X;, X5, X3]

with degreeis w.r.t. X3, such that for all zq, 25, 23) € K’ we have

fi(z1,20,23) = 0 ti(z1) = 0
fa(z1,29,23) = 0 = ta(z1,22) = 0
f3(z1,22,23) = 0 ts(z1,22,23) = 0

Moreover, we can require that the leading coefficient9fty, 3 w.r.t. X;, X5, X3
respectively are all equal tb Similarly to Chapter 3, this fact follows from a theorem
of [1]. Figure 4.1 shows a variety (f1, f», f3) satisfying Hypothesed{,) to (H3); such
a variety is callecquiprojectable

The goal of this chapter is to compute the triangular{gett., t3} efficiently. Hy-
potheseg H,) to (Hy) serve that objective. In Section 4.2, we descrilmbract method
based on the principle éficremental Solvingsed in algorithms such as those of Lazard [22]
and Moreno Maza [27]. That is, we first solve the system ctingi®f f; and f, before
taking f5 into account. Then, in Section 4.3 we present our modulahoaakand in Sec-

tion 4.4 we report on our experimental results.

4.2. A direct method 76

4.2 A direct method

Recall thatT = (73, T3) is a Lazard triangular set IK(.X;)[X>, X3]. Hence, the polyno-
mialsT,, T3 are bivariate inX,, X3 and have coefficients in the field(X;) of univariate
rational functions oveK. Hypothesig H5) implies that for all(z;, 29, 23) € K’ such that

hi(z1) # 0 we have

|
o

— Blz,zm) = 0 4.2)

Tg(Zl, 29, 2’3) = 0

fi(21722723)

I
o

fé(21722723)

Sinceh; is the least common multiple of the denominatordinwe observve that, 75
andh, T3 are polynomials irk[X, X5, X3].

We definelV (T, T3) = V (hi T, hiT5)\V (hy), thatis, the set of the points,, 2, 23) €
K’ that cancel the polynomials, T, and h,73 without cancellingh;. Observe that we

have

V(fl,f2> - W(TQ,Tg) U V(hl,fl,fg). (43)

Two cases arise. Eithér is a non-zero constant and thush, f1, fo) = () holds. Or
hy is a non-constant polynomial. In this latter case computinig,, f1, f») reduces to
solving a bivariate system of two equations with coefficseimtK[X,]/(h;). One can
replaceh, by its squarefree part without changiigh, f1, f»). From there, we are led
to compute resultants and GCDs over a direct product of fielthech are well under-
stood tasks and for which highly efficient algorithms areilatde, see [13]. Computing
the Lazard triangular s&F = (7»,73) can be achieved withift operation described in

Specification 4. From Equation (4.3) we deduce

V(fi, fa, f3) = W (T2, T3) NV (f3)) U V(h, f1, f2, f3). (4.4)

4.2. A direct method 77

Hypothesig Hg) tells us none of the roots @&f; belongs taZ;. Hence, we have:

V(ha, fi, fo, f3) = 0. (4.5)

Therefore, we obtain

V(fi, fa, f3) = W(T, T3) NV (f3). (4.6)

Next, Hypothesig H-) tells us thatV (h, T5, T3, f3) = 0 holds. Hence Equation (4.6)

becomes simply:

V(fi, fo f3) = V(T2, T3, f3). (4.7)

It is natural to consider the resultanttf and f; w.r.t. X5, namely:
Ry =res(Ts, f3, X3). (4.8)
Hence, there exist polynomials, A, € K[X, X5, X3] such that we have
Ry = AT + Asfs. 4.9)

The polynomialsR, and T, are bivariate polynomials ifK[X;, X;| and it is natural to
relate their common roots with the sBf. Let (z1, 22, 23) € V(fi, f2, f3). From Equa-
tion (4.7) we havds (21, z2) = T3(z1, 29, z3) = 0. Hence, with Equation (4.9) we deduce

Ry(z1, z9) = 0. Therefore, we have established
(21, 22) €z, = TQ(Zl, 22) = RQ(Zl, 22) =0. (410)

The reverse implication may not hoédpriori. However, Hypothesi§H,), together with

the Extension Theoreifi0], implies that every fofz;, z3) € K satisfytingRa(z1, 22) =

4.2. A direct method 78

0 there exists; € K such that zy, 2y, 23) € V (T3, f3). Therefore, we have

Zy = V(Ty, Ry). (4.11)

Next, using Hypothesédd1,), (H3), (Hs), we can apply Corollary 1 to computg R», T).

Hence, we define
t1 = reS(RQ,TQ,X2> and t; = ng(RQ,TQ,{tl}), (412)
and we have:
V(ti,ta) = V(Ry, T3). (4.13)

As observed above, using titension Theorerfil0] (or a construction similar to the
proofs of Theorem 5 and Corollary 1), we see that every comsodution of7; and R;
extends to a common solution &f and f;. Hence, using Hypothesigi,), there exists a

trivariate polynomiat; of degreei; w.r.t. X3 such that we have

V(ti,ta,t3) = V(Ro, 1o, Ts, f3). (4.14)

Moreover, the polynomiak is a GCD of7; and f3 modulo{t;, t»}. Therefore, we have

proved the following.

Theorem 6 The hypothesdd{,) to (Hy) imply the existence of a regular chafiny, to, t3}

such that we have

V(ti,ta,ts) = V(f1, fa, [3). (4.15)

Moreover, these polynomials can be computed by Algorittam 4.

4.2. A direct method

79

Algorithm 14 GenericSolve3
Input: f1, f2, f3 € K[X1, Xo, X3] under the assumption$#,)-(Hy)}.

Output: {tl(Xl),tg(Xl,Xg),tg(Xl,XQ,Xg)} C K[Xl,XQ,Xg]
SV (f1, fa, f3) = V(t1, ta, t3).

GenericSolve3(f1, fo, f3)==
Letz; be a random value not cancelling any coefficient wXt.of f; and f3
us, uz := GenericSolve2(f1(X; = z1), f2(X1 = z1))
ug, ug := Normalize(usy, u3)
Ty, Ty := Lift(f1, fo, fs, ug, us, X1 — 21)
Ry :=res(T3, f3, X3)
t1 :=res(Ty, Rs, X5)
ty := GCD(Ty, Ro,{t1})
tz == GCD(T3, f3,{t1,t2})

return {ty, s, t3}

Figure 4.1: Equiprojectable variety

4.3. A modular method 80

4.3 A modular method

Under the Hypothesdd7,) to (Hy), Theorem 6 tells us that computing the regular chain

{t1, 2,13} reduces essentially to

calling the operation&enericSolve2, Normalize andLift,

computing the resultantes(75, f3, X3) andres(Rsy, Tz, X»),
» computing a GCD ofk, and7> modulo{t; },
» computing a GCD of’; and f; modulo{t, ¢ }.

Thefirst key observationis that these GCDs need not to split the computations. Hence,

similarly to our modular algorithm of Chapter 3:

» a GCD of R, andT, modulo{t; } can be obtained from the subresultant chain of

R, andT; in (K[X}])[X2] and theSpecification Property of Subresultants

» a GCD ofT3 and f; modulo{t;, ¢, } can be obtained from the subresultant chain of

Ts and f; in (K[X;, X3])[X3] and theSpecification Property of Subresultants

Therefore, computing the subresultant chairRgfand s in (K[X;])[X,] produces both
res(Ry, Tz, X5) and a GCD ofR, andT; modulo{t; }. Similarly, computing the subre-
sultant chain off3 and f5 in (K[X,, X5])[X3] produces bothes(73, f3, X3) and a GCD

of T3 and f3 modulo{t,, 2 }.

The second key observatioris that these two subresultant chains can be computed

by a modular method, using evaluation and interpolation.thig point it is important

to stress the fact that we have replaced the two GCD compuotathodulo a regular
chain by subresultant chain computationgk].X |)[X,] and(K[X}, X5])[X3]. In broad
terms, these replacements have “freed” the varialileand X, allowing specialization,
whereas in the context of GCD computations modulo a reghiaingthese variables were

algebraic numbers, which was preventing us from speangithem.

4.3. A modular method 81

These observations lead immediately to Algorithm 15. Alipon 16 is an improved
version, where we observe that the resultBntdoes not need to be constructed in the
monomial basis oK[X, X5]. Indeed, the modular images B8f computed bySubresul-
tantChain(Ts, f3, X3) can be recycled insid&lodularGenericSolve2 (T, Rs). How-
ever, one should make sure that all these images have hasartteedegree w.r.X5, that

is, deg(Ry, X5) which is easy to ensure, but not described in Algorithm 1&fomplicity.

Algorithm 15 ModularGenericSolve3
Input: f1, f2, f3 € K[X1, Xo, X;3] under the assumption$ &,)-(Hy)}.

Output: {t1(X1), ta(X7, Xo), t3(X1, Xa, X3)} € K[X7, Xs, Xj]
S.LV(fi1, fo, f3) = V(t1,ta, t3)

Let z; be a random value

ug, ug := Solve2(fi1(X1 = 21), fo(X1 = 21))
Ty, Ty :=Lift(f1, fo2, f3, uz, us, X1 — 21)

S := SubresultantChain (T3, f3, X3)

S is Computed by specialization and interpolation

Ry := S[0]| We haveR, = res(Ts, f3, X3)

t1,ty := ModularGenericSolve2(T3, Rs)
Lett; be the regular subresultafif], S with minimum index
i > 0s.t.lc(S[i], X3) # 0 mod(ty, t2)

return {t,ts,t3}

4.3. A modular method

Algorithm 16 EnhancedModularGenericSolve3

Input: f1, fo, fs € K[X;, Xy, X3] under the assumptions(4,)-
(Hy)}.

Output: {t:(X1),t2(X1, Xo2),t3(X1, Xo, X3)} st V(fi, fo, f3) =

V(ty,ta, t3).

Letz; be arandom value
ug, ug := Solve2(fi1(X1 = 21), fo(X1 = 21))
Ty, Ty :=Lift(f1, f2, f3, uz, us, X1 — 21)
0 := number of specializations for Chdif}, f3, X3) andChain(7T, Ry, X»)
for i = 1to ¢ repeat{
vl .= newGoodV alue(Ty, Ts, fs)
St = Chain(Ts | x,—v;s f3 | X120, X3)
Cll = Chain(T3 | x,~,, S7[0], X5)

}| R, is known only by values

t1,to := ModularGenericSolve2(C vl 0 < i < §)
Computets from (S0 < i < §), similarly tot,.

return {t,t,,t3}

4.3. A modular method

83

Generic Assumptions
(H1) 0 <[V (f1, f2, f3)| < o0.

(Hs) (f1,f2) N K[X1] =0
Assume there exists a triangular set T' =
{TQ(Xl, XQ), Tg(Xl, XQ, Xg)} which is a
regular chain in K(X;)[X., X3] s.t. T'and
{f1, f2} have the same solution set over
K(X71). Now, assume denoinators in T
have been cleared out.

(Hg) Define h1 = |C(T2,X1) |C(T3, Xg)
Assume V(h’la fla f27 .f3) = QZS

(H7) V(T2,Ts, f3) N V(h1) = ¢.
(Hg) (lc(T3, X3),lc(f3, X3)) = (1).

(Hg) LetIl; : Zg — K.
(21,22) = (21).
Define Zy =114 (Zg)
Assume each fiber of IT; has
the same cardinality.

(Hg) Define Ry = res(Ts, f3, X3)
Assume ged(Ic(Rg, X2),lc(Ts, X2) =1

(Hz) LetIly : V(f1, f2, f3) — K.
(21, 22, 23) = (21, 22).
Define Zy :=I12(V(f1, f2, f3)). Assume
each fiber of I1; has the same cardinality.

(Ha) VY(i,7) deg(fi, X;) > 0.

Main Conclusions

(H1) = V(f1,f2) isa pure curve

4

(Hs) = Xj can be seen as a parameter
V(fl, fg) = V(Tg, T3)\V(h1) U V(fl, fg, hl)
J

5:3 } = V(f1,f,f3) = V(T2, Ts, f3)

N3
(Hg) = 22 = V(TQ7 Rg)
I
(Hs) e :
(Hs) = There exists a regular chain
8
V(t1,t2) = V(T2,Ra)
N3
(H2) .
(Ho) = There exists t3 € K[X1, X3, X3]
9

s.t. t3 = GCD(T3, f3, {tl,tQ}) and
V(fl, fa, fg) = V(tl, ta, t3)

Figure 4.2: Generic Assumptions vs. Main Conclusions

4.4. Experimental results 84

4.4 Experimental results

In the following table, we show a performance benchmark of\aple implementation
of ModularSGenericolve3 (Algorithm 15) versus th@r i angul ari ze command of
theRegul ar Chai ns library in Mapl e. Both will compute the triangular sét;, ¢,, t3}.
However,ModularSGenericolve3 requires the Hypothesd$, to Hy to hold. whereas
Regul ar Chai ns does not make any assumptions on the input sys{eings, fs}.

Let d; be the total degree of;, for 1 < i < 3. We apply these two solvers to
input systems with a variety of degree pattefis d», d;). The coefficients are in the a
prime field of characteristip = 2147483659 = nextprime(23!) The computations are
performed on a Mandrake 10 Linux machine with Pentium 2.8 Ghtx2Gb memory.

In both tables below, running times are expressed in seconls first table com-
pares the running times for our implementationMddularGenericSolve3 versus the
Triangul ari ze command. The second table gives profiling information, abloe

three main function calls involved iModularGenericSolve3.

4.4. Experimental results

85

Pattern| Tdeg| ModularGenericSolve3 | Triangularize
2,2,2] 8 1.157 0.80
2,2,3] | 12 4.167 1.05
2,3,2] | 12 3.35 0.76
3,2,2] | 12 1.181 0.98
2,2,4] | 16 15.602 1.55
2,4,2] | 16 16.892 1.19
[4,2,2] | 16 1.691 1.12
3,2,3] | 18 3.68 2.16
3,3,2] | 18 4.280 2.15
2,3,3] | 18 33.872 3.54
[4,2,3] | 24 5.072 5.55
[4,3,2] | 24 4.685 4.79
3,2,4] | 24 16.284 4.55
3,4,2] | 24 16.599 2.84
2,4,3] | 24 225.168 4.69
2,3,4] | 24 232.113 2.98
3,3,3] | 27 34.195 69.60
[4,2,4] | 32 17.694 18.07
[4,4,2] | 32 17.601 20.08
2,4,4] | 32 1488.431 14.57
3,4,3] | 36 223.771 79.17
3,3,4] | 36 225.135 78.29
[4,3,3] | 36 36.494 91.55
[4,3,4] | 48 281.01 4052.53
[4,4,3) | 48 233.651 2651.55
3,4,4] | 48 1466.251 2869.68
4,4, 4] 64 1688.532 11561.30

4.4. Experimental results

86

Pattern| Tdeg| Solve2 Lift | ModularSolve3 | Total time
2,2,2] 8| 0.147 0.780 0.230 1.157
3,2, 2] 12| 0.301 0.607 0.273 1.181
2,3,2] | 12| 0.314 2.889 0.571 3.774
2,2,3] | 12| 0.319 3.277 0.571 4.167
4,2, 2] 16 | 0.469 0.854 0.368 1.691
2,2,4] 16 | 0.504 13.748 1.350 15.602
2,4, 2] 16 | 0.595 14.587 1.710 16.892
3,3, 2] 18 | 0.621 2.876 0.783 4.280
2,3, 3] 18| 0.703 30.739 2.430 33.872
[4,3,2] | 24| 1.100 2.588 0.997 4.685
[4,2,3] | 24| 1.066 2.954 1.052 5.072
3,2, 4] 24 1 1.100 13.438 1.746 16.284
3,4, 2] 24 1 1.105 13.751 1.743 16.599
2,4, 3] 24 | 1.213 | 216.284 7.671 225.168
2,3,4] 24 | 1.278 | 222.636 8.199 232.113
3,3, 3] 27 | 1.486 30.004 2.705 34.195
4,4, 2] 32 | 2.051 13.386 2.164 17.601
[4,2,4] 32| 2.015 13.521 2.158 17.694
2,4, 4] 32 | 2410 | 1443.684 42.337 | 1488.431
4,3, 3] 36 | 2.599 30.534 3.361 36.494
3,4, 3] 36 | 2.718 | 212.215 8.838 23.771
3, 3,4] 36 | 2.688 | 213.360 9.087 225.135
[4,3,4] 48 | 4.866 | 215.777 10.111 230.754
4,4, 3] 48 | 5.299 | 217.986 10.366 233.651
3,4, 4] 48 | 5.450 | 1416.251 44.550 | 1466.251
[4,4,4] 64 | 9.585 | 1425.074 253.873 | 1688.532

4.4. Experimental results 87

Observe that for the modular algorithm, the lifting domasathe running time. The
current implementation of thaft operation that we use is far from optimal. An optimized
implementation is work in progress. Despite this limitatidor large total degree the

implementation of our modular approach outperformsTitiengularize command.

Chapter 5

Conclusions and Work in Progress

We have developed a modular method for solving polynomistiesyis with finitely many
solutions. In this thesis, we have focussed on bivariate@vatiate systems.

The case of systems with more than 3 variables is work in pssyrAt the end of this
section, we propose an adpatation of the trivariate cadeetgeneral case af by n.

We have realized a preliminary implementationMapl e of this modular method.
Our experimental results suggest that for systems withcseffily large total degree our
modular method outperforms tAeiangularize command ofvapl e, which is a solver
with similar specifications. We are aware of some currenitditions due to the fact that
one of the routines upon which we rely on is far from being mpted. However, this
should be improved in the near future. Our modular methodeB #esigned for tak-
ing advantage of fast polynomial arithmetic. Indeed, santyi to the work of [24, 25]
it replaces computations in residue class rings, such astdaroduct of fields, simply
by computations with univariate or multivariate polynotaiaver a field. When the un-
derlying coefficient fieldK is a finite field, this offers opportunities to use FFT-based
multivariate polynomials. Our modular method is also a clament to the work of [12].

Indeed, the algorithm reported in [12] provides an efficisrddular algorithm for

solving polynomial systems with finitely many solutions amith coefficients in the field

88

5.1. Non-Modular SolveN

8

9

of rational numbers.

The algorithm of [12] assumes that an efficient method forieglpolynomial systems

over finite fields is available, that is, what we aim to prowd# our work.

5.1 Non-Modular SolveN

Here we describe our general approach for Non-Mod8t@veN where the input poly-

nomial system is of the caseby n. The steps are similar to ttby 3 case:

Algorithm 17 Non-ModularSolveN

S.t.V(fl, fg, ey fn) = V(tl,tg, C ,tn)

SolveN[fi1, fay - -+ ful, [X1, Xy ..., X])==
goodValue=false
while goodValue-falsedo
v :=randomValué
1:=1
while i < n do
if lc(f;(X1 = v)) = 0 then break
1:=1+1
goodValue= (i =n + 1)
S :=SolveN[seq(fi(X1 =v),i = 2..n)], [X2, X3,..., X,])
S :=Normalizé{S})
(U, Us ..., Uy,) =Lift([fa, f3,- - fuls Sy X1 —v)
return SpecialSolv@/s, Us, ..., U,, f1)

Output:{t,(X1), t2(X1, X2), ... 60(X1, Xo, ..., X3) }C K[Xy, X, ...

Input : f1, fo, ..., fn € K[X1, Xs, ..., X,], under assumptions to be identifieg

, X

1.

5.1. Non-Modular SolveN 90

We need to introduce a special routine (say SpecialSolveltee the intermediate
systems before passing it to the lifting code. We call thidire recursively until we get

to the true answer.

Algorithm 18 SpecialSolve

Input : polynomialslUs, Us, ... U,, f, as in SolveN

Output:{tl(Xl),tg(Xl,Xg), o ,tn(Xl,XQ, . ,Xn)}g K[Xl,Xg, .. ,Xn]
SLV(Us,Us, ... Un, f2) = Vi(tr,ta, - 1)

SpecialSolv@/,, Us, ..., Uy, f1) ==
if n = 2 then return Solve2Us,, f,)
R :=res(U,, f1,{Us,...,Up_1})
T :=SpecialSolv@/,, Us, ..., U,_1, R)
G :=GCDU,, f1,T)
return (T'U {G})

As above, the routine SpecialSolve calls Solve2 when itresathe case n=2, this Solve2

also can be defined in the form Non-Modular form as below:

Algorithm 19 Solve2
Input : polynomialsf; (X, Xs), f2(X1, X2) € K[X;, X, as in SolveN
Output:{t;(X1), t2(X1, X2)}C K[X;, Xy
StV (f1, fa) = V(ty,ta).

Solve?|fi, fo], [X1, Xo]) ==

R := Resultant(f1, f2, X2)

G :=GCOD(f, f2.{R})

return (RU{G})

5.2. Modular SolveN

91

5.2 Modular SolveN

In the following we sketch briefly the main steps for generaly the algorithms from

modularSolve3 to the modulaSolveN. Consider the following system:

fi(Xy, ..., X,)
fQ(Xla . 7Xn)

fao1(Xa, .o, X))
fu(Xq, . X))

(5.1)

First we temporarily forget one equation, sfy Then, we specializ&’; at random to a

valuewv. The specialized system

fg(’U,XQ Ce ,Xn)

fn—l(U7X27 CE 7Xn)
fn(U, XQ, P 7Xn)

(5.2)
0

0

is also square but has one variable less. The bivariate casdreated above, so we

assume that the — 1 variables case is solved too. We assume that both the ingheof

specialized: — 1 variable system and the inputvariable system can be solved by a single

triangular set. We denote as follows the solution of the isfieed system

SQ(XQ) =
53(X2,X3) =
Sn(XQ,...,Xn) =

(5.3)

Applying symbolic Newton iteration (or Hensel lifting) wétlthis specialized system

against

5.2. Modular SolveN 92

fl()(l,)fg7 . ,Xn) — 0

(5.4)
fn—l(X17X27"'7Xn) =0
L fn(Xl,Xg,...,Xn) - 0
Therefore, we obtain a solution for this system with shape
(
UQ(Xl, XQ) = 0
U3(X1, X27 XS) =0 (55)
L Un(Xl,XQ,...,Xn> = 0
Now we solve the "forgotten” equatiofi(X, Xs, ..., X,,) = 0 against the above trian-

gular system. This achieved by specializikigto sufficiently many values, g, v11,...,b

where we can choose the bountb be the product of the total degrees

b= tdeg(f1) tdeg(f2) ... tdeg(fs) (5.6)

then solving the system as

ug(v1;, X2) = 0
ug(vii, X2, X3) = 0

(5.7)
un—l(vli7X27"'7Xn—l) = 0
un<vli7X27"'7Xn) =0

fl(Uli, Xg, . 7Xn) = 0
This means "essentially” computing the resultant and "GQiDs

Un(’Uli, Xg, ,Xn) = 0, fl(Uli,XQ, R ,Xn) = 0 mod

5.2. Modular SolveN 93

Uz(Uu,Xz) =0

U3(U1i7X2,X3) = 0 (5.8)

Up—1(v15, Xoy ..., Xn1) = 0
followed by the recombination of these via the CRA in ordeolbtain finally a triangular

system

tl(Xl) — 0
tg(Xl,Xg) - 0
(5.9)

tp1 (X1, Xo, .., X)) = 0

tn(Xl, Xg, . ,Xn) - 0
This approach relies on assumptions regarding the shape @olution set that hold in

many practical cases. See the paper [12] for details.

Bibliography

[1]

[2]

[3]

[4]

P. Aubry and A. Valibouze. Using Galois ideals for compgtrelative resolvents.

J. Symb. Comp30(6):635-651, 2000.

E. Becker, T. Mora, M. G. Marinari, and C. Traverso. Thasé of the shape lemma.
In Proc. of the International Symposium on Symbolic and AlgiebComputation

pages 129-133, New York, NY, USA, 1994. ACM Press.

B. Beckermann and G. Labahn. Effective computation tbreal approximants and

interpolants.Reliable Computings:365—390(26), November 2000.

F. Boulier, M. Moreno Maza, and C. Oancea. A new Hensetianstruction and
its application to polynomial gcds over direct products efds. Inproceedings of

EACA'04 Universidad de Santander, Spain, 2004.

[5] W.S. Brown. The subresultant PRS algorithiiransaction on Mathematical Soft-

[6]

[7]

[8]

ware, 4:237-249, 1978.

G.E. Collins. Polynomial remainder sequences and detemts. American Math-

ematical Monthly73:708-712, 1966.

G.E. Collins. Subresultants and reduced polynomialaiewher sequencesournal

of the ACM 14:128-142, 1967.

G.E. Collins. Computer algebra of polynomials and naéibfunctions. American

Mathematical Monthly80:725—755, 1975.
94

BIBLIOGRAPHY 95

[9] George E. Collins. The calculation of multivariate potymial resultants. 18(4):515—
532.

[10] D. Cox, J. Little, and D. O’'Sheddeals, Varieties, and Algorithm&pinger-Verlag,
2nd edition, 1997.

[11] X. Dahan, X. Jin, M. Moreno Maza, and E. Schost. Changerdér for regular

chains in positive dimensio.heoretical Computer Sciencé&o appeatr.

[12] X. Dahan, M. Moreno Maza, E. Schost, W. Wu, and Y. Xie.tibi§ techniques for
triangular decompositions. I$SAC’05 pages 108-115. ACM Press, 2005.

[13] X. Dahan, M. Moreno Maza, E. Schost, and Y. Xie. On the phaxity of the D5

principle. InProc. of Transgressive Computing 2006, Granada, Spain, 2006.

[14] J. Della Dora, C. Dicrescenzo, and D. Duval. About a nesthad for computing in
algebraic number fields. IRroc. EUROCAL 85 Vol. 2rolume 204 ofLect. Notes

in Comp. Sci.pages 289-290. Springer-Verlag, 1985.

[15] Jean-Guillaume Dumas, Clément Pernet, and Jean-LRach. Adaptive tri-
angular system solving. In Wolfram Decker, Mike Dewar, BEriKaltofen,
and Stephen Watt, editor§hallenges in Symbolic Computation Softwanem-
ber 06271 in Dagstuhl Seminar Proceedings. InternatisnBiegegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dabgktuermany, 2006.
<http://drops.dagstuhl.de/opus/volltexte/2006/#{0@ate of citation: 2006-01-01].

[16] A. Filatei. Implementation of fast polynomial arithtiein Aldor, 2006. MSc The-

sis, Computer Department, University of Western Ontario.

[17] J.von zur Gathen and J. Gerhaktbdern Computer AlgebraCambridge University
Press, 1999.

BIBLIOGRAPHY 96

[18] K.O. Geddes, S.R. Czapor, and G. LabahAlgorithms for Computer Algebra

Kluwer Academic Publishers, 1992.

[19] M. van Hoeij and M. Monagan. A modular gcd algorithm oneimber fields pre-
sented with multiple extensions. In Teo Mora, editBrpc. ISSAC 2002pages
109-116. ACM Press, July 2002.

[20] E. Kaltofen and M. Monagan. On the genericity of the mladyolynomial gcd
algorithm. InProc. ISSAC 1999ACM Press, 1999.

[21] D. E. Knuth.The Art of Computer Programmingolume 2. Addison Wesley, 1999.

[22] D. Lazard. A new method for solving algebraic systemgaositive dimension.

Discr. App. Math 33:147-160, 1991.

[23] F. Lemaire, M. Moreno Maza, and Y. Xie. TiRegul ar Chai ns library. In llias
S. Kotsireas, editor, Maple Conference 2005, pages 355-2865.

[24] X. Li and M. Moreno Maza. Multithreaded parallel implemtation of arithmetic
operations modulo a triangular set. Pnoc. PASCO’07 pages 53-59, New York,
NY, USA, 2006. ACM Press.

[25] X. Li, M. Moreno Maza, and E Schost. Fast arithmetic foagular sets: From
theory to practice. IfProc. ISSAC’07New York, NY, USA, 2006. ACM Press.

[26] X. Li, M. Moreno Maza, and E Schost. On the virtues of gem@rogramming
for symbolic computation. Technical report, UniversityWestern Ontario, 2007.

Submitted to ISSAC-07.

[27] M. Moreno Maza. On triangular decompositions of algebwvarieties. Technical

Report TR 4/99, NAG Ltd, Oxford, UK, 1999. http://www.csdio.ca~moreno.

[28] M. Moreno Maza and R. Rioboo. Polynomial gcd computatio@ver towers of

algebraic extensions. lroc. AAECC-11pages 365—-382. Springer, 1995.

BIBLIOGRAPHY 97

[29] E. Schost. Complexity results for triangular setsSymb. Comp36(3-4):555-594,
2003.

[30] The SymbolicData Projechttp://www.SymbolicData.org, 2000—2006.
[31] B.L. van der WaerdenAlgebra Springer-Verlag, 1991. seventh edition.

[32] C.K. Yap. Fundamental Problems in Algorithmic Algebrdrinceton University
Press, 1993.

BIBLIOGRAPHY

98

Name:

Post Secondary Educat-
ion and Degrees:

Employment History:

Curriculum Vitae

Rageeb Sh. Rasheed

M.Sc. of Computer Science (2007)
Department of Computer Science
University of Western Ontario

M.Sc. of Mathematics (1994)
Faculity of Education (Mathematics Department)
University of Salahaddin

B.Sc. of Mathematics (1992)
Faculity of Science (Mathematics Department)
University of Salahaddin

2006-Present:
Teaching Assistant, University of Western Ontario,
Computer Department.

2000-2006:
Software Developer, Maplesoft Company, Mathematics
Department.

1999-2000:
QA Specialist, Maplesoft Company, QA Department.

1995-1999:
Lecturer/Programmer, University of Omar Al-Mukhtar,
Computer Department.

1994-1995:
Lecturer, University of Salahaddin, Mathematics Departtne

1992-1994:
Research Assistant (Graduate Student), University of
Salahaddin, Mathematics Department.

