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Relax, but Don’t be Too Lazy

JORIS VAN DER HOEVEN†

Dept. de Mathématiques (bât. 425), Université Paris-Sud, 91405 Orsay Cedex, France

Assume that we wish to expand the product h = fg of two formal power series f and g.
Classically, there are two types of algorithms to do this: zealous algorithms first expand

f and g up to order n, multiply the results and truncate at order n. Lazy algorithms

on the contrary compute the coefficients of f, g and h gradually and they perform no
more computations than strictly necessary at each stage. In particular, at the moment

we compute the coefficient hi of zi in h, only f0, . . . , fi and g0, . . . , gi are known.

Lazy algorithms have the advantage that the coefficients of f and g may actually

depend on “previous” coefficients of h, as long as they are computed before they are
needed in the multiplication, i.e. the coefficients fi and gi may depend on h0, . . . , hi−1.
For this reason, lazy algorithms are extremely useful when solving functional equations
in rings of formal power series. However, lazy algorithms have the disadvantage that
the classical asymptotically fast multiplication algorithms on polynomials—such as the

divide and conquer algorithm and fast Fourier multiplication—cannot be used.

In a previous paper, we therefore introduced relaxed algorithms, which share the
property concerning the resolution of functional equations with lazy algorithms, but
perform slightly more computations than lazy algorithms during the computation of

a given coefficient of h. These extra computations anticipate the computations of the
next coefficients of h and dramatically improve the asymptotic time complexities of such
algorithms.

In this paper, we survey several classical and new zealous algorithms for manipulating

formal power series, including algorithms for multiplication, division, resolution of dif-
ferential equations, composition and reversion. Next, we give various relaxed algorithms
for these operations. All algorithms are specified in great detail and we prove theo-

retical time and space complexity bounds. Most algorithms have been experimentally
implemented in C++ and we provide benchmarks. We conclude by some suggestions for

future developments and a discussion of the fitness of the lazy and relaxed approaches

for specific applications.

This paper is intended both for those who are interested in the most recent algorithms
for the manipulation of formal power series and for those who want to actually implement

a power series library into a computer algebra system.

c© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Let C be an effective ring, which means that we have algorithms for addition, subtraction
and multiplication. In this paper, we describe several fast algorithms for manipulating
formal univariate power series in the ring C[[z]]. In principle, it is not necessary to assume
that C is commutative or an integral domain. Nevertheless, for certain algorithms we need
to assume that C contains the rational numbers, or more modestly, that C is divisible.
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Here C is said to be divisible, if we have a division algorithm for elements x in C by
integers n, which raises an exception if x is not divisible by n.

Because of the infinite nature of formal power series, we will always be concerned with
the computation of the first n coefficients of a given power series. The time and space
complexities of our algorithms will be measured in terms of the number of ring operations
in C and the number of elements in C stored in memory. Only in the case of finite rings
do these complexity measures coincide with bitwise complexities.

1.1. the different approaches

Assume that we want to compute the first n coefficients of the product h = fg of
two power series f and g. We will distinguish three approaches in order to do this; the
first and the second are classical, while the third one was (briefly) introduced in van der
Hoeven (1997b). For simplicity, we discuss the approaches in the case of multiplication,
but they apply to any operation on formal power series and, in this paper, we will also
consider composition, reversion, etc.

1.1.1. the zealous approach

This approach consists of expanding f and g up to order n, to multiply the results and
truncate the product

(f0 + · · ·+ fn−1z
n−1)(g0 + · · ·+ gn−1z

n−1)

at order n. This yields the first n coefficients of h.
The advantage of the zealous approach is that we may compute the coefficients h0, . . . ,

hn−1 together as a function of f0, . . . , fn−1 and g0, . . . , gn−1. Therefore, many fast algo-
rithms on (truncated) polynomials can be used, such as divide and conquer and fast
Fourier multiplication (shortly: DAC- and FFT-multiplication). In the cases of composi-
tion, reversion and resolution of differential equations, Brent and Kung’s algorithms may
be used. We will briefly recall some of these classical zealous algorithms in Section 3 and
a few new ones will be added.

1.1.2. the lazy approach

Another approach is to compute the coefficients of h one by one and to do no more work
than strictly necessary at each stage. In particular, at stage i (i.e. for the computation
of hi), we compute only those coefficients of f and g which are really needed—that is
f0, . . . , fi and g0, . . . , gi.

Lazy algorithms have the advantage that the coefficients f and g may actually depend
on “previous” coefficients of h, as long as they are computed before they are needed in the
multiplication algorithm. In other words, fi and gi may depend on h0, . . . , hi−1. For this
reason, lazy algorithms are extremely useful for the resolution of functional equations.
For instance, consider the formula

eϕ =
∫
ϕ′eϕ

for exponentiating a formal power series ϕ with ϕ0 = 0. When evaluating the product
fg lazily, where f = ϕ′ and g = eϕ, this formula yields a method to compute eϕ.
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A second advantage of the lazy approach is that the computation process can be
resumed in order to compute more than n coefficients of h. In the case of the zealous
approach all coefficients would have to be recomputed.

A third advantage of the lazy approach is that it naturally applies to the problems of
computing the valuation and the first non-zero coefficient of a power series.

1.1.3. the relaxed approach

Lazy algorithms have the disadvantage that the classical asymptotically fast algorithms
on polynomials, such as DAC- and FFT-multiplication, can no longer be used. This is
what motivated us in the introduction of a slightly different, relaxed approach (van der
Hoeven, 1997b).

Relaxed algorithms share with lazy algorithms the fact that the coefficients of h are
computed gradually and that at each stage we only compute those coefficients of f and g
which are needed for the computation of the next coefficient of h. In particular, relaxed
algorithms can be used in a similar manner as lazy algorithms in order to solve functional
equations.

The difference between the lazy and the relaxed approaches is that at the computation
of a given coefficient of h lazy algorithms only perform “the strictly necessary operations”,
while relaxed algorithms “anticipate the computation of the next coefficients”. Let us
illustrate this by an example.

Assume that we want to compute the first three coefficients of the product of two
power series f = f0 + f1z + f2z

2 + · · · and g = g0 + g1z + g2z
2 + · · ·. When using a lazy

algorithm, we do the following:

0. We compute f0, g0 and (fg)0 = f0g0.
1. We compute f1, g1 and (fg)1 = f0g1 + f1g0.
2. We compute f2, g2 and (fg)2 = f0g2 + f1g1 + f2g0.

Of course, the values of f0 and g0 are stored somewhere, so that they do not have to
be reevaluated at stage 1 and similarly for f1 and g1 at stage 2. When using a relaxed
algorithm, we would rather do the following:

0. We compute f0, g0 and (fg)0 = f0g0.
1. We compute f1, g1 and (fg)1 = (f0 + g0)(f1 + g1)− f0g0 − f1g1.
2. We compute f2, g2 and (fg)2 = f0g2 + f1g1 + f2g0.

Here we used a trick in order to evaluate (f0 + f1z)(g0 + g1z) using three multiplications
only. Indeed, the three multiplications f0g0, (f0 + g0)(f1 + g1), f1g1 yield (f0 + f1z)(g0 +
g1z) = f0g0+((f0+g0)(f1+g1)−f0g0−f1g1)z+f1g1z2. Although we perform some extra
additions at stage 1, we anticipate the computation of f1g1 at stage 2. Consequently, we
only perform five multiplications in total, against six for the lazy approach.

1.2. outline of the paper

In Section 3, we mainly recall classical zealous algorithms for manipulating formal
power series. The corresponding complexity results are summarized in Table 1. In the
table, M(n) denotes the time complexity for fast multiplication (see Section 3.1); basic
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Table 1. Time and space complexities of zealous algorithms.

Algorithm Time complexity Space complexity

DAC-multiplication M(n) = O(nlog 3/ log 2) O(n)
FFT-multiplication M(n) = O(n log n) O(n)
Division O(M(n)) O(n)
Solving implicit equations and o.d.e.’s O(M(n)) O(n)
Algebraic and holonomic functions O(n) O(n)
Right composition with polynomials O(M(n) log n) O(n)
Right composition with algebraic functions O(M(n) log n) O(n)
Composition and reversion (divisible ring C) O(M(n)

√
n log n) O(n log n)

Composition and reversion (finite ring C) O(M(n) log n) O(n)

references for fast integer and polynomial multiplication algorithms are Knuth (1997),
Nussbaumer (1981) and Karatsuba and Ofman (1962), Toom (1963b), Cooley and Tukey
(1965), Cook (1966), Schönhage and Strassen (1971), Cantor and Kaltofen (1991) and
Heideman et al. (1984). Most of the remaining results are due to Brent and Kung (1975,
1978). The result about general composition in finite characteristic is due to Bernstein
(1998).

Although most algorithms from Section 3 are classical, we have given several variants
which we could not find in the standard literature:

— In Section 3.1.2 we give a simple fast multiplication algorithm for polynomials
using the FFT-transform. This algorithm is an analogue of Schönhage–Strassen’s
algorithm and simplifies Cantor and Kaltofen’s algorithm for the frequent case when
2 does not divide zero in C.

— In Section 3.2.5, we specify and prove Brent and Kung’s algorithm for the resolution
of o.d.e.’s for general orders. In the original papers, only first and second order
equations were considered and the latter only by means of examples.

— In Section 3.4.2, we observe that Brent and Kung’s method for right composition
with polynomials generalizes to right composition with rational and algebraic func-
tions; in the relaxed case, this observation will be useful for solving certain difference
equations.

In Section 4, we propose several relaxed multiplication algorithms. We first observe that
the DAC algorithm can easily be transformed into a relaxed algorithm with the same
time complexity but a logarithmic space overhead. We next give an asymptotically better
algorithm, which also has the best possible space complexity. However, this algorithm
may be slower for small input sizes, which makes it difficult to choose a best overall
strategy (see Section 4.4). Some examples of problems to which relaxed multiplication
can be applied are given in Section 4.5.

In Section 5, we give algorithms for relaxed composition. Actually, Brent and Kung’s
and Bernstein’s algorithms can easily be adapted to this case, while preserving the same
time complexity (modulo replacing a zealous multiplication algorithm by a relaxed one).

An overview of our complexity results for relaxed algorithms is given in Table 2, where
M∗(n) stands for the time complexity of relaxed multiplication. The space complexities
assume that we use a relaxed multiplication with linear time complexity; when using
relaxed DAC-multiplication, these complexities should be multiplied by log n (except in
algebraic and holonomic cases).
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Table 2. Time and space complexities of relaxed algorithms.

Algorithm Time complexity Space complexity

Relaxed DAC-multiplication M∗(n) = O(nlog 3/ log 2) O(n log n)
Fast relaxed multiplication M∗(n) = O(M(n) log n) O(n)
Division O(M∗(n)) O(n)
Algebraic and holonomic functions O(n) O(n)
Right composition with rational functions O(M∗(n) log n) O(n)
Right composition with algebraic functions O(M∗(n) log n) O(n)
Composition and reversion (divisible ring C) O(M∗(n)

√
n log n) O(n

√
n log n)

Composition and reversion (finite ring C) O(M∗(n) log n) O(n log n)

In Section 6 we suggest how to improve the performance of the algorithms for par-
ticular coefficient rings. In Section 6.1, we outline how to take more advantage of the
FFT-transform. In Section 6.2, we study the numerical stability of our algorithms. In
Section 6.3, we discuss the issue of multivariate power series. Several approaches will be
proposed in an informal style and the development of a more detailed theory remains a
challenge.

Most of the algorithms in this paper have been implemented in an experimental C++-
package and we have included several tables with benchmarks. Finally, in Section 7, we
draw some final conclusions and discuss the relevance of the different algorithms presented
in this paper for specific applications such as symbolic computation, combinatorics, the
analysis of algorithms and numerical analysis. We also give some suggestions for those
who want to implement a power series library in a computer algebra system and for those
who want to “upgrade” an existing lazy power series implementation.

2. Implementation Conventions

We have presented most of the algorithms in this paper in detail in the hope that
this will be helpful for actual implementations. For our specifications, we have chosen
an object oriented pseudo-language (see Stroustrup, 1995 for some basic terminology for
such languages), with explicit memory control for the user (this will allow us to study in
detail the space and time complexities of the relaxed algorithms). Below, we will discuss
some general implementation issues and fix some notational conventions.

2.1. zealous algorithms

Truncated power series will be represented by elements of the class TPS(C). An instance
of this class consists of a pointer to an array of elements in C and the length n of the array;
it represents a truncated power series at order n, i.e. an element of C[[z]]/(zn) ∼= C[z]/(zn).
For notational convenience, we will also denote by TPS(C, n) the “subclass” of instances
in TPS(C) with truncation order n.

We will use the following shorthand for the most elementary operations on truncated
power series f = f0 + · · ·+ fn−1z

n−1:

— ]f : the order n of f .
— C, z: implicit conversion to instances of TPS(C, n).
— +,−: addition resp. subtraction.
— f ′: derivative f1 + · · ·+ (n− 1)fn−1z

n−2.
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—
∫
f : integral f0z + · · ·+ fn−1

n zn (for rings C which contain the rationals).
— f ◦ zp: right composition f0 + · · · + fn−1z

(n−1)p + 0z(n−1)p+1 + · · · + 0znp−1 with
power of z.

— f mul zk: multiplication f0zk + · · ·+ fn−1z
n+k−1 with zk.

— f div zk: division fk + · · ·+ fn−1z
n−k−1 by zk.

— fi···j(j 6 n): the truncated series fi + · · ·+ fj−1z
j−i.

— f0···m(m > n): the truncated series f0 + · · ·+ fn−1z
n−1 + 0zn + · · ·+ 0zm−1.

— fi···j += g: sets fi := fi + g0, . . . , fj−1 := fj−1 + gj−i−1.

We will not detail the implementation of these operations and assume that memory
management is taken care of. Notice that the operations all require linear time and
space.

In Section 3.1, we will recall algorithms for the fast multiplication of dense polynomi-
als. Modulo truncation, this also yields a multiplication algorithm in TPS(C, n), as well
as a binary powering algorithm. In Section 3.2.2, we give a fast division algorithm in
TPS(C, n). In the sequel we use the following abbreviations for these operations:

— ? : TPS(C, p)×TPS(C, q)→ TPS(C, p+q−1) stands for polynomial multiplication.
Notice that we exceptionally consider the elements of the TPS(C, n) as polynomials
in this case. Equivalently, one may think of the coefficients in zk with k > n as
being zero.

— ×: TPS(C, n)× TPS(C, n)→ TPS(C, n) stands for truncated multiplication. Notice
that f × g = (f ? g)0···n.

— / : TPS(C, n)× TPS(C, n)→ TPS(C, n) stands for truncated division.
— ·p : TPS(C, n)→ TPS(C, n) stands for truncated binary powering.

Remark. In low level languages, operations on truncated power series can be imple-
mented more efficiently by routines which directly take pointers to the destination and
argument segments on input as well as their lengths. This approach also avoids memory
allocations, except for temporary ones on the heap. Nevertheless, it should not be hard
to rewrite the algorithms from this paper in this style.

2.2. lazy and relaxed algorithms

From the point of view of the user a lazy or relaxed power series f should be some object
with a method which yields the coefficients of f one by one. In object oriented languages,
we may therefore implement a series as a pointer to an abstract “series representation
class” Series Rep, which is given by

Class. Series Rep(C)
ϕ : TPS(C)
n : Integer
virtual next : Void→ C

Here ϕ contains the already computed coefficients and n their number. The order of ϕ is
allowed to exceed n in order to anticipate future computations. The virtual method next
is private and should compute the next, nth, coefficient of the series. The public method
to compute any kth coefficient, which is detailed below, ensures that the coefficients
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ϕ0, . . . , ϕk−1 are already available before calling next and that ϕk is updated after
calling next.

All representation classes in this paper, like Series Rep will contain a reference counter,
which is increased each time an instance is copied and decreased each time a copy is
deleted. The instance is physically removed, only when the reference counter vanishes.
We will use p := new D Rep(a1, . . . , al) to create a pointer p to a concrete class D Rep and
to call the corresponding constructor with arguments a1, . . . , al. A member or member
function x of D Rep will be accessed through p.x. We denote by null the symbolic “null”
pointer.

Given a pointer f : Series(C) to an instance of Series Rep(C), let us now detail the
algorithm to compute the kth coefficient fk of f . We first look whether k < f.n. If
so, then we return f.ϕk. Otherwise, we increase the order of ϕ to k + 1 (if necessary),
compute the coefficients ff.n, . . . , fk by repeatedly calling f.next(), and return f.ϕk. We
also implement an algorithm to compute fi···j = fi + · · · + fj−1z

j−i−1 : TPS(C, j − i).
This algorithm first computes fj−1 and then returns f.ϕi···j .

Example. In order to implement a constant series, we first define a concrete class

Class. Constant Series Rep(C) . Series Rep(C)
c : C

The symbol . stands for class inheritance. The constructor for Constant Series Rep(C)
takes a constant c′ : C on input and sets c := c′. The member function next returns c if
n = 0 and 0 otherwise. See Section 4.1 for another easy and detailed example.

The following easily implemented operations on series will not be specified in detail:

— Conversion from TPS(C) to Series(C), where we fill up with zero coefficients.
— Addition and subtraction +,−.
— Differentiation and integration ′,

∫
.

— f mul zk, f div zk multiplication and division by zk.

3. Zealous Algorithms

3.1. multiplication

There are several well-known algorithms to multiply two polynomials f = f0 + · · · +
fn−1z

n−1 and g = g0 + · · · + gn−1z
n−1 of degrees < n with coefficients in an effective

ring C. The naive algorithm, based on the formula (fg)k =
∑

i figk−i, has complexity
O(n2). Below, we recall DAC-, FFT- and truncated multiplication.

In the remainder of this paper, we assume that we have fixed once and for all a
multiplication method of time complexity M(n), such that M(n)/n is an increasing
function of n and M(O(n)) = O(M(n)).

3.1.1. dac-multiplication

Given polynomials f = f0 + · · · + fn−1z
n−1 and g = g0 + · · · + gn−1z

n−1, we define
their lower and higher parts by f∗ = f0 + · · ·+fdn/2e−1z

dn/2e−1 resp. f∗ = fdn/2ez
dn/2e+
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· · ·+ fn−1z
n−1 and similarly for g. Hence, f and g decompose as

f = f∗ + f∗zdn/2e;
g = g∗ + g∗zdn/2e.

The following identity is classical (a similar, but slightly more complicated identity was
first found by Karatsuba and Ofman (1962)):

fg = f∗g∗ + ((f∗ + f∗)(g∗ + g∗)− f∗g∗ − f∗g∗)zdn/2e + f∗g∗z2dn/2e. (1)

Applying this formula recursively, except for small n < ThresholdC (with ThresholdC >
2), we obtain the DAC-multiplication algorithm below. Since the multiplication of two
polynomials of degrees < n involves only three multiplications of polynomials of degrees
< dn/2e, the asymptotic time complexity of this algorithm is O(nlog 3/ log 2).

Algorithm DAC multiply(f, g)
Input: Polynomials f = f0 + · · ·+ fn−1z

n−1 and g = g0 + · · ·+ gn−1z
n−1 in C[z].

Output: Their product fg.

D1. [Base]
if n < ThresholdC then return

∑2n−2
i=0

(∑min(n−1,i)
j=max(0,i+1−n) fjgi−j

)
zi

D2. [DAC]
lo := DAC multiply(f∗, g∗)
mid := DAC multiply(f∗ + f∗, g∗ + g∗)
hi := DAC multiply(f∗, g∗)
return lo+mid× zdn/2e + hi× z2dn/2e

3.1.2. fft-multiplication

The fastest known multiplication algorithm is based on the discrete Fourier transform
(DFT). We recall that the DFT transforms a sequence of coefficients a0, . . . , an−1 in C and
an nth root of unity ω in C (which is assumed to exist) into the sequence of evaluations
of the polynomial a0 + a1z + · · · + an−1z

n−1 at the nth roots of unity 1, ω, . . . , ωn−1.
This transform has the important property that applying the DFT twice w.r.t. ω and
ω−1 = ωn−1, we obtain n times the original sequence a0, . . . , an−1. Moreover, if n is a
power of two, then the DFT can be performed in almost linear time O(n log n) by the
following recursive algorithm (in practice, when multiplication in C is fast, the recursion
should rather be transformed into a double loop):

Algorithm DFT(a, ω)
Input: An n-tuple (a0, . . . , an−1) and an nth root of unity in C, where n = 2p;
Output: The n-tuple (â0, . . . , ân−1) with âj =

∑n−1
i=0 aiω

ij .

if n = 1 then return (a0)
(b̂0, . . . , b̂n/2−1) := DFT((a0, a2, . . . , an−2), ω2)
(ĉ0, . . . , ĉn/2−1) := DFT((a1, a3, . . . , an−1), ω2)
return (b̂0 + ĉ0, . . . , b̂n/2−1 + ĉn/2−1ω

n/2−1, b̂0 − ĉ0, . . . , b̂n/2−1 − ĉn/2−1ω
n/2−1)
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Now assume that we want to multiply two polynomials A = a0 + · · ·+ an−1z
n−1 and

B = b0 + · · · + bn−1z
n−1 with degAB < n = 2p. We first apply DFT to (a0, . . . , an−1)

resp. (b0, . . . , bn−1) and ω. Denoting by â0, . . . , ân−1 resp. b̂0, . . . , b̂n−1 the results, we
next apply DFT to (â0b̂0, . . . , ân−1b̂n−1) and ωn−1. This yields n times the sequence of
coefficients of AB. Assuming that C is 2-divisible (i.e. we have an algorithm to divide
the multiples of two in C by two), we can finally retrieve AB from this sequence, since n
is a power of two.

If C does not contain an nth root of unity, then it is still possible to use the fast Fourier
transform, using a trick due to Schönhage and Strassen (1971). Actually, assuming that
n > FFT ThresholdC is a sufficiently large power of two, we will show how to multiply
efficiently in the “cyclotomic polynomial ring” C[x]/(xn + 1); this method will then be
used to multiply polynomials A,B ∈ C[z] for which degAB < n. Notice that x is a 2nth
root of unity in C[x]/(xn + 1).

Let n = 2p = md with m = 2d(p+1)/2e. Then any polynomial
n−1∑
i=0

aix
i

in C[x]/(xn + 1) may be rewritten as a polynomial
d−1∑
j=0

(
m−1∑
i=0

adi+jy
i

)
xj

where y = xd is a 2mth root of unity. In other words, it suffices to show how to multiply
polynomials of degrees 6 d, whose coefficients lie in the smaller cyclotomic polynomial
ring C[y]/(ym +1). But we may use the DFT for this, since C[y]/(ym +1) contains 2mth
roots of unity and d 6 m. Notice that the DFT only involves additions and copying in C,
since the multiplications by powers of y in C[y]/(ym + 1) involve only copying, additions
and subtractions. Finally, we may apply the method recursively in order to multiply
elements of C[y]/(ym + 1). This gives us the following general multiplication algorithm:

Algorithm FFT multiply(A,B)
Input: Polynomials A = a0+· · ·+an−1x

n−1 and B = b0+· · ·+bn−1x
n−1 in C[x]/(xn+

1), where n = 2p.
Output: Their product AB.

F1. [Base]
if n > FFT ThresholdC then go to F2
C := DAC multiply(a0 + · · ·+ an−1z

n−1, b0 + · · ·+ bn−1z
n−1),

Denote C = c0 + · · ·+ c2n−1z
2n−1

return (c0 − cn) + · · ·+ (cn−1 − c2n−1)xn−1

F2. [Encode]
m := 2b(p+1)/2c, d := n/m, y := xd

for j := 0 to d− 1 do

Aj :=
∑m−1

i=0 adi+jy
i

Bj :=
∑m−1

i=0 bdi+jy
i

for j := d to 2d− 1 do Aj := Bj := 0
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F3. [FFT]
ω := ym/d, ω := ω2d−1

(Â0, . . . , Â2d−1) := DFT((A0, . . . , A2d−1), ω)
(B̂0, . . . , B̂2d−1) := DFT((B0, . . . , B2d−1), ω)
for j := 0 to 2d− 1 do Ĉj := FFT multiply(Âj , B̂j)
(C0, . . . , C2d−1) := DFT((Ĉ0, . . . , Ĉ2d−1), ω)

F4. [Decode]
return C0+Cdy

2d + C1+Cd+1y
2d x+ · · ·+ Cd−1+C2d−1y

2d xn−1

It can be shown that this algorithm has time complexity O(n log n log log n) and space
complexity O(n). The algorithm is a simplified version of the algorithm from Cantor and
Kaltofen (1991), which also works when C is not 2-divisible (in this case, one may, for
instance, compute both 2pAB and 3qAB, using a similar, ternary FFT-multiplication
algorithm, and then apply the Chinese remainder theorem). We also refer to this paper
for proofs of the complexity bounds.

3.1.3. truncated multiplication

When multiplying formal power series f and g up to order n, we are usually only
interested in the first n coefficients of fg. In other words, although multiplying f0 + · · ·+
fn−1z

n−1 and g0 + · · · + gn−1z
n−1 as polynomials and truncating the product does the

job, it might be possible to find a faster algorithm, which does not perform superfluous
computations.

When we use the naive multiplication algorithm, we may indeed gain a factor of two
by evaluating only the products (fg)k =

∑k
i=0 figk−i for k < n. We can also have a

truncated DAC-multiplication: first compute f∗g∗ using the usual algorithm and next
recursively compute f∗g∗ and f∗g∗ modulo zbn/2c. Finally, apply the formula

fgmod zn = [f∗g∗ mod zn] + [f∗g∗ mod zbn/2c]zdn/2e + [f∗g∗ mod zbn/2c]zdn/2e.

Although this algorithm has the same asymptotic complexity (and the same constant
factor), we do gain for moderate values of n, since fewer additions and subtractions
are needed. However, when using FFT-multiplication, the constant in the asymptotic
complexity becomes worse for this method.

During the referee process of this paper, we have been made aware of a new algorithm
by Mulders to accelerate truncated DAC-multiplication (Mulders, 2000). His algorithm
has an asymptotic time complexity µD(n), where

λ = 1− e−(log 2)2/(log 3/2) ≈ 0.694;

µ =
λlog 3/ log 2

1− 2(1− λ)log 3/ log 2
≈ 0.808

and D(n) stands for the time complexity of full DAC-multiplication. The idea is to choose
m = dλne (instead of m = dn/2e), and to truncate f∗ = f0···m, f∗ = fm···n and similarly
for g. Then we again have

fgmod zn = [f∗g∗ mod zn] + [f∗g∗ mod zn−m]zm + [f∗g∗ mod zn−m]zm.

Although we lose a bit on the dense multiplication of f∗ with g∗, the other two trun-
cated multiplications (for which we recursively use the same algorithm) become faster.
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In practice, it is recommended to take m as close as possible to λn, while being of the
form m = a2p with a < FFT ThresholdC and a, p ∈ N.

3.2. applications of Newton’s method

Many zealous algorithms for operations on formal power series are based on Newton’s
method, which doubles the number of correct coefficients at each iteration. The method
can in particular be used for division, reversion, exponentiation and the resolution of
ordinary differential equations.

3.2.1. Newton’s method

A classical problem in numerical analysis is to find single roots of an equation

f(x) = 0.

If we already have an approximate root x0, and if the function f is sufficiently regu-
lar, then better approximations can be found by Newton’s method, which consists of
performing the iteration

xn+1 = xn −
f(xn)
f ′(xn)

.

Ultimately, the number of correct digits doubles at each iterative step, which makes
the method extremely efficient. It was first observed by Brent and Kung that the same
method can be used when x is a power series and f a functional on the space of power
series. In this case, the number of correct terms of the approximate solution ultimately
doubles at each iterative step.

3.2.2. division

In this section, we will give an algorithm to invert a power series f , such that f0 is
invertible in C; this clearly yields a division algorithm too. In order to invert f , we have
to solve the equation

1
g
− f = 0.

If g is an approximate solution whose first n > 0 terms are correct, then the Newton
iteration

g := g −
1
g − f
− 1

g2

,

which is rewritten more conveniently as

g := g − fg − 1
zn

gzn, (2)

yields 2n correct terms. Indeed, if g = f−1+O(zn), then we have fg = 1+O(zn), whence
f(g−(fg−1)g) = 1−(fg−1)2 = 1+O(z2n) and g−(fg−1)g = f−1(f(g−(fg−1)g)) =
f−1 + O(z2n). Furthermore, (fg − 1)g = ((fg − 1)/zn)gzn, since the first n terms of
fg − 1 vanish. Using the iteration (2), we get the following inversion algorithm of time
complexity O(M(n)):
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Algorithm invert(f)
Input: f : TPS(C, n), such that f0 is invertible in C.
Output: f−1 : TPS(C, n)

if n = 1 then return (1/f0)0···1.
m := dn

2 e
g := invert(f0···m)0···n
return g − ((((f × g) div zm)× g0···n−m) mul zm)

3.2.3. exponentiation and logarithm

Assume that C is a ring which contains the rational numbers and that f is a power
series, such that f0 is invertible and log f0 well defined in C. Then the inversion algorithm
also yields a straightforward way to compute log f , since

log f = log f0 +
∫
f ′

f
,

where the integral is taken with integration constant zero. Solving the equation

log g = f

using Newton’s method, we also have the following algorithm for exponentiation, which
again has time complexity O(M(n)):

Algorithm exp(f)
Input: f : TPS(C, n), such that exp f0 is defined and invertible in C.
Output: exp f : TPS(C, n)

if n = 1 then return (exp f0)0···1.
m := dn

2 e
g := exp(f0···m)0···n
return g − (log(g)− f)× g

3.2.4. reversion

If we have an algorithm compose for the composition of power series with time com-
plexity O(C(n)) (where C(n)/n is an increasing function), then Newton’s method can
still be applied in order to solve the equation

f ◦ g − z = 0.

This yields the following O(C(n)) reversion algorithm for f :
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Algorithm revert(f)
Input: f : TPS(C, n) with f0 = 0 and f1 is invertible in C.
Output: f inv

if n = 1 then return 00···1
if n = 2 then return (z/f1)0···2
m := dn

2 e
g := revert(f0···m)0···n
N := compose(f, g)− z
D := compose(f ′, g0···n−1)
return g − (((N div z)/D) mul z)

3.2.5. resolution of ordinary differential equations

In this section, we assume that C contains the rational numbers. Let Φ(y0, . . . , yr, z)
be a multivariate polynomial in C[y0, . . . , yr, z]. We wish to solve the ordinary differential
equation

Φ(f(z), f ′(z), . . . , f (r)(z), z) = 0, (3)
where we assume that the separant of Φ is invertible in C for the initial conditions:

∂Φ
∂yr

(f(0), . . . , f (r)(0), 0) ∈ C∗. (4)

This condition ensures that (3) admits a unique formal solution. Indeed, modulo one
differentiation of (3), we may assume without loss of generality that Φ is linear in yr:

Φ = Φ0(y0, . . . , yr−1, z) + Φ1(y0, . . . , yr−1, z)yr.

Now (4) means that Φ1(0, . . . , 0) is invertible in C. Hence (3) may be solved formally by
repeated integration:

f = −
∫

rtimes· · ·
∫

Φ0(f, . . . , f (r−1), z)
Φ1(f, . . . , f (r−1), z)

, (5)

where the integration constants are taken appropriately, so that they match the initial
conditions.

Remark. Our assumption on the initial conditions is not satisfied in certain cases, such
as the linear differential equations

z2Jν
′′ + zJν

′ + (z2 − ν2)Jν = 0,

satisfied by the Bessel functions, or equations like

z2f ′ + f = z

with divergent power series solutions. Sometimes, our assumption on the initial conditions
can be satisfied after a change of variables of the form

f = f0 + f1z + · · ·+ fkz
k + zkf̃ , (6)

but, in general, Brent and Kung’s method does not apply.
On the other hand, the differential equation can always be rewritten as a differential

equation in δ = z ∂
∂z . Assume that f is not a multiple solution of this equation. Then,
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after a change of variables (6) as above and multiplication by a suitable power of z, the
equation can be put in normal form

L(f) + zR(f) = 0, (7)

where L ∈ C[δ] is non-zero and R(f) ∈ C[[z]][f, δf, . . . , δrf ]. The linear differential opera-
tor L with constant coefficients operates in a homogeneous way: Lzk = αkz

k, for certain
αk ∈ C. If the αk are all invertible, then (7) yields a way to express the kth coefficient of
the solution in terms of previous coefficients. Hence, we may apply the lazy and relaxed
resolution methods, which will be described later in this paper.

The repeated integral (5) is useful for solving (3) by lazy or relaxed evaluation. In this
section we show that (3) can also be solved using Newton’s method. For this, we assume
that we have implemented an O(M(n)) algorithm subst, which takes a polynomial Ψ ∈
C[y0, . . . , yr, z] and a truncated power series f : TPS(C, n) on input and which returns
the first n terms of Ψ(f, . . . , f (r), z) (where we take fn = · · · = fn+r−1 = 0).

Now let n > 3r and assume that f is an approximate solution (at order n) to (3) with

Φ(f, . . . , f (r), z) = O(zn−r).

Then the Newton iteration consists of replacing

f := f − ϕ,

where ϕ is the unique solution to the linear differential equation
Lϕ = g;

L =
∂Φ
∂y0

(f(z), . . . , f (r)(z), z) + · · ·+ ∂Φ
∂yr

(f(z), . . . , f (r)(z), z)
∂r

∂zr
;

g = Φ(f, . . . , f (r), z),

(8)

with ϕ0 = · · · = ϕr−1 = 0, which is obtained by linearizing Φ. Notice that the existence
and uniqueness of ϕ again follows from condition (4). Notice also that ϕ = O(zn−r).
Therefore,

Φ(f − ϕ, . . . , (f − ϕ)(r), z)

=
∑

k0,...,kr

(−1)k0+···+kr

k0! · · · kr!
∂k0+···+krΦ
∂yk0

0 · · · ∂y
kr
r

(f, . . . , f (r), z)ϕk0 · · · (ϕ(r))kr

= g − Lϕ+O(z2n−4r)
= O(z2n−4r).

Hence, we have a better approximation for the solution to (3), since n > 3r ⇒ 2n− 4r >
n − r. Consequently, when repeating the Newton iteration, the sequence of successive
approximations tends to the unique solution to (3). Modulo an algorithm linear to
solve (8), this yields the following algorithm:

Algorithm ode(Φ, f, n)
Input: A polynomial Φ ∈ C[y0, . . . , yr, z], an approximation f : TPS(C, r + 1) to a

solution to (3), so that (4) is satisfied, and an order n > r.
Output: A better approximation f : TPS(C, n) of the unique solution to (3), with

Φ(f, . . . , f (r), z) = O(zn−r).
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O1. [Separate cases]
m := dn+3r

2 e
if n > m (whence n > 3r) then

if r = 0 then go to step 3
if r 6= 0 then go to step 4

O2. [Compute first coefficients]
for i := r + 1 to n− 1 do

for j := 0 to r do Dj := subst( ∂Φ
∂yj

, f)0···i−r

S := D0 × f ′0···i−r + · · ·+Dr−1 × f (r)
0···i−r + subst(∂Φ

∂z , f)0···i−r

t := −S/Dr

f := f0···i+1 + i!
(i−r−1)! ti−r−1z

i

return f0···n

O3. [Newton iteration when r = 0]
f := ode(Φ, f,m)0···n
return f − subst(Φ, f)/subst( ∂Φ

∂y0
, f)

O4. [Newton iteration when r 6= 0]
f := ode(Φ, f,m)0···n
L := subst( ∂Φ

∂y0
, f) + · · ·+ subst( ∂Φ

∂yr
, f) ∂r

∂zr

return f − linear(L, subst(Φ, f), n)

In order to solve (8) up till n terms, we first compute a non-trivial solution to the
homogeneous differential equation

Lh = 0.

This is done by solving the associated Ricatti equation. More precisely, we rewrite each
h(k) as h times a polynomial Rk(ĥ, . . . , ĥk−1) in the logarithmic derivative ĥ = h′/h of
h. This amounts to computing the sequence{

R0 = 1;
Rk+1 = y0Rk + ∂Rk

∂y0
y1 + · · ·+ ∂Rk

∂yk−1
yk,

(9)

with Rk ∈ C[[y0, . . . , yk−1]] up till order r. We now compute the first n terms of ĥ by a
recursive application of ode with equation

R = L0R0 + · · ·+ LrRr ∈ C[[y0, . . . , yr−1, z]]

and initial conditions ĥ0 = · · · = ĥr−1 = 0. This yields the first n terms of a solution h
to (8) with h0 = 1 after exponentiation and integration h = exp

∫
ĥ.

Finally, we apply the method of variation of constants and write ϕ = ψh. Then (8)
transforms into L′(ψ′) = g, with

L′
j =

r∑
i=j+1

(
i

j + 1

)
Lih

(i−j−1).

The order of L′ is r − 1 and L′
r−1(0) = Lr(0)h0 is invertible in C. Hence, we can solve

the equation L′ξ = g by a recursive application of linear. Integration ψ =
∫
ξ yields ψ.
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Algorithm linear(L, g, n)
Input: A linear differential operator L of order r with coefficients in TPS(C, n) and

such that Lr(0) is invertible in C, a truncated power series g : TPS(C, n), and
an order n > r.

Output: The first n terms of the unique solution to Lϕ = g, with ϕ0 = · · · = ϕr = 0.

L1. [Homogeneous equation]
Compute R0, . . . , Rr using (9)
R := L0R0 + · · ·+ LrRr

ĥ := ode(R, 0, n− 1)
h := exp(

∫
ĥ)

L2. [Variation of constants]

L′ :=
r−1∑
j=0

[
r∑

i=j+1

(
i

j + 1

)
(Li)0···n−1 × (h(i−j−1))0···n−1

]
∂j

∂zj

ξ := linear(L′, g, n− 1)
return h×

∫
ξ

As to the time complexities of ode and linear, we observe that ode calls linear with
the same r and linear calls ode and linear with r decreased by one. Hence, the time
complexity is exponential in r. The following time complexity in n is easily proved by
induction over r, using that M(n)+M(d(n+3r)/2e)+M(d(d(n+3r)/2e+3r)/2e)+ · · · =
O(M(n)).

Theorem 1. Let Φ ∈ C[y0, . . . , yr, z] be a multivariate polynomial and consider the dif-
ferential equation (3) with initial conditions f(0), . . . , f (r)(0) that satisfy (4). Then this
equation admits a unique solution f ∈ C[[z]] and there exists an algorithm which computes
the first n coefficients of f in time O(M(n)).

Remark. The algorithm ode generalizes to the case when Φ is a multivariate power
series instead of a polynomial. In this case, we need to assume that the algorithm subst
also applies to Ψ = Φ and all its partial derivatives.

3.3. algebraic and holonomic power series

An algebraic function is a function f(z), which satisfies a polynomial relation of the
form

Pd(z)f(z)d + · · ·+ P0(z) = 0,

where P0, . . . , Pd ∈ C[z] are polynomials with Pd 6= 0. Such functions are special cases of
holonomic functions, which are functions f(z), that satisfy a linear differential equation

Lr(z)f (r)(z) + · · ·+ L0(z)f(z) = 0, (10)

where L0, . . . , Lr ∈ C[z] are polynomials with Lr 6= 0. An algebraic resp. holonomic power
series is an algebraic resp. holonomic function which is also a power series in C[[z]].

Holonomic power series are interesting, because their coefficients can be computed
sequentially in linear time and space. Indeed, the coefficients f0, f1, . . . of such power
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series satisfy a linear polynomial recurrence relation

Qq(n)fn+q + · · ·+Q0(n)fn = 0, (11)

where Q0, . . . , Qq are polynomials in C[n]. Here (11) is derived from (10) by extracting
the coefficient of zn from (10), while using the rules (zf)n = fn−1 and (f ′)n = nfn+1.

Furthermore, the class of holonomic functions enjoys many closure properties: it is
(algorithmically) stable under addition, multiplication, right composition with algebraic
functions, differentiation and integration, Hadamard product, etc. We refer to Lipshitz
(1989), Stanley (1999), Stanley (1980) and Zeilberger (1990) for more information on
this subject. Holonomic functions are also available in some computer algebra systems
(Salvy and Zimmermann, 1994).

3.4. composition

3.4.1. right composition with polynomials

Let f = f0 + · · ·+ fp−1z
p−1 and g = g1z + · · · gq−1z

q−1 be polynomials, considered as
truncated power series in TPS(C). In order to efficiently compute f0···n◦g0···n : TPS(C, n)
for given n, we may use a DAC method based on the formula

f ◦ g = f∗ ◦ g + (f∗ ◦ g)gbp/2c,

in which f∗ = f0···bp/2c and f∗ = fbp/2c···p denote the lower and upper parts of f .
Although all computations will be done with truncated power series in our implemen-

tation, we will really compute with polynomials as long as their degrees remain inferior
to n. Assuming that gi : TPS(C,min((q−1)i+1, n)) has been precomputed and stored in
a hashtable H for all i of the form bp/2kc or dp/2ke with k > 0, we obtain the following
algorithm:

Algorithm compose pol(f,H, n)
Input: f : TPS(C, p), a hashtable H and an integer n;

H[i] contains gi
0···min((q−1)i+1,n) for all i ∈ bp/2N∗c ∪ dp/2N∗e.

Output: f0···l ◦ g0···l, where l = min((p− 1)(q − 1) + 1, n).

P1. [Start]
if p = 0 then return f0···1

P2. [DAC]
l := min((p− 1)(q − 1) + 1, n)
h∗ := compose pol(f0···bp/2c,H, n)
h∗ := compose pol(fbp/2c···p,H, n)
return (h∗)0···l + (h∗ ? H[bp/2c])0···l

Theorem 2. Let f : TPS(C, p) and g : TPS(C, q) be such that g0 = 0 and let n > 0.
There exists an algorithm to compute f0···n ◦ g0···n in time O(pq

n M(n) log n) and space
O(n log pq

n ).

Proof. Since the time and space complexities of the algorithm are increasing functions
in p, q and n, we may assume without loss of generality that p, q and n are powers of
two. We may also assume that pq > n.
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The precomputation of the powers of g takes a time O(log nM(n)). Denoting by
T (n, p, q) the time complexity apart from the precomputation, we have T (n, 1, q) = O(1)
and for p > 1:

T (n, p, q) 6 2T (n, p
2 , q) +O(M(min(pq, n))). (12)

This leads to the time complexity bound:

T (n, p, q) 6 O(M(n) + 2M(n) + · · ·+ pq
n M(n)

+ 2pq
n M(n

2 ) + 4pq
n M(n

4 ) + · · ·+ p
2M(2q)) +O(p)

6 O(pq
n M(n)) +O(pq

n M(n) log n).

We need a space O(min(q, n) + min(2q, n) + · · ·+ min(pq, n)) 6 O(n log q) in order to
store the powers of g. For the remaining space S(n, p, q) needed by the algorithm, we
have S(n, 1, q) = O(1) and for p > 1:

S(n, p, q) 6 S(n, p
2 , q) +O(min(pq

2 , n)). (13)

This yields the space complexity bound:

S(n, p, q) 6 O(n log pq
n + n

2 + · · ·+ q) +O(1)
6 O(n log pq

n ). 2

3.4.2. right composition with algebraic power series

The algorithm compose pol generalizes to the case when g is an algebraic power
series with g0 = 0, i.e.

Pdg
d + · · ·+ P0 = 0, (14)

with P0, . . . , Pd ∈ C[z] and Pd 6= 0. We will denote by v the valuation of Pd and by q the
maximum of the degrees of the Pi plus one.

For completeness, we will treat the fully general case in this section. The presentation
may be greatly simplified in the case when v = 0 or when g is a rational fraction.
The reader who does not wish to go into technical details may directly proceed with
Section 3.4.3, which does not rely on the material presented here.

Algebraic functions. Instead of computing with (truncated) polynomials, we will now
compute with (truncated) algebraic functions in C[z, g], which are conveniently repre-
sented by fractions

F =
Fd−1g

d−1 + · · ·+ F0

P kF

d

, (15)

where F0, . . . , Fd−1 ∈ C[z] and kF ∈ N. The degree degF of F is defined to be degF =
max06i<d degFi + i(q − 1). We also define the multiplicity µF of the pole Pd in F as
µF = max{i|Fi 6= 0} if kf = 0 and µF = kf + d− 1 otherwise.

The addition of two fractions like (15) is done as usual: we multiply one of the
numerators with a suitable power of Pd in order to obtain a common denominator
(kF+G = max(kF , kG)) and we add up the numerators. Notice that we have{

deg(F +G) 6 max(degF,degG);
µF+G 6 max(µF , µG). (16)



Relax, but Don’t be Too Lazy 497

The asymptotic cost of the addition F +G is

TF+G = O(dM(degF + degG+ degP kf

d + degP kg

d )).

In order to multiply fractions like (15), we first precompute gd, . . . , g2d−2 as frac-
tions (15), using (14):

gi =
(gi)d−1g

d−1 + · · ·+ (gi)0
P

i−(d−1)
d

. (17)

Notice that deg gi 6 i(q − 1) for all i. Now in order to compute the product

F ×G =
Fd−1g

d−1 + · · ·+ F0

P kF

d

× Gd−1g
d−1 + · · ·+G0

P kG

d

,

we first rewrite the product as

F ×G =
1

P kF +kG

d

2d−2∑
i=0

(∑
j

FjGi−j

)
gi.

Next, we substitute gi by the right-hand side of (17) for d 6 i 6 2d− 2. Notice that{
deg(F ×G) 6 degF + degG;

µF×G 6 µF + µG.
(18)

The asymptotic cost of the multiplication F ×G is

TF×G = O(dM(degF + degG) + qd2(degF + degG)),

since the polynomials gi
j are fixed.

Let f = f0 + · · ·+ fp−1z
p−1 be a polynomial. Then the bounds (16) and (18) yield the

following bounds for its right composition f ◦ g = f0 + · · ·+ fp−1g
p−1 with g:{

deg(f ◦ g) 6 (p− 1)(q − 1) + 1;
µf◦g 6 p− 1. (19)

In particular, kf◦g 6 max(p− d, 0).

The algorithm. In the truncated context, the polynomials Fi in (15) are replaced by
a truncated power series in TPS(C, n + kF v). This will enable us to extract the first n
coefficients of F , when considered as a power series. We will denote by Algebraic TPS(C, g)
and Algebraic TPS(C, g, n) the algebraic analogues of the classes TPS(C) resp. TPS(C, n).

Now assume that we want to compute the composition of a polynomial f = f0 + · · ·+
fp−1z

p−1 with the series g up till order n. Then we do the following

— We precompute gi : Algebraic TPS(C, g,min(i(q − 1) + 1 − max(i + 1 − d, 0)v, n))
for all i of the form bp/2kc or dp/2ke with k > 0. Recall that µgi 6 i for all i.

— We precompute P i
d : Algebraic TPS(C, g,min(i(q − 1) + 1 −max(i + 1 − d, 0)v, n))

for all i of the form bp/2kc or dp/2ke with k > 0.
— We apply the analogue compose alg of compose pol below.
— We convert the result in Algebraic TPS(C, g, n) back to a truncated series in

TPS(C, n). This can be done in time O(M(N)) using fast division and the linear
recurrence relation for the coefficients of g (see Section 3.3).
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Algorithm compose alg(f,H, P, n)
Input: f : TPS(C, p), hashtables H,P and an integer n;

H[i] contains (gi)0···min(i(q−1)+1−max(i+1−d,0)v,n) for all i ∈ bp/2N∗c∪dp/2N∗e.
P [i] contains (P i

d)0···min(i(q−1)+1−max(i+1−d,0)v,n) for all i ∈ bp/2N∗c∪dp/2N∗e.
Output: h = f0···n ◦ g ∈ Algebraic TPS(C, g, l),

with l = min((p− 1)(q − 1) + 1−max(p− d, 0)v, n).

P1. [Start]
if p = 0 then return f0···1

P2. [DAC]
l := min((p− 1)(q − 1) + 1−max(p− d, 0)v, n)
h∗ := compose alg(f0···bp/2c,H, n)
h∗ := compose alg(fbp/2c···p,H, n)
return (h∗)0···l + (h∗ ? H[bp/2c])0···l

Remark. The hashtable P is used in the final addition, in order to rewrite the left-hand
and right-hand fractions, such that they have a common denominator.

Theorem 3. Let f : TPS(C, p), g as above and n > 0. Then there exists an algorithm to
compute the first n coefficients of f ◦ g in time O(qd2 p(q−v)

n )M(n+ pv) log n) and space
O(d(pv + n log p(q−v)

n )).

Proof. The proof is analogous to the proof of Theorem 2. In this case, using that

kh∗ , kh∗ , kH[p/2] = O(p);
deg h∗,deg h∗,degH[p/2] = O(min(pq, pv)),

the main inequalities (12) and (13) become

T (n, p, q) 6 2T (n, p
2 , q) +O(qd2M(min(pq, n+ pv)));

S(n, p, q) 6 S(n, p
2 , q) +O(dmin(pq, n+ pv)). 2

Remark. Notice that we may take v = 0 if g is a rational function, since g has to be a
power series in this case. Consequently, the time and space complexity bounds become
O(d2q2M(n) log n) resp. O(dn log q) for p = n. The composition algorithm may also be
simplified in this particular, but important case.

3.4.3. general composition for divisible rings C

If C is a divisible ring, then Brent and Kung’s fast algorithm (Brent and Kung, 1978)
can be used in order to compute the composition f ◦ g of formal power series f and g
up to order n. Their method relies on decomposing g = g∗ + g∗ = g0···q + gq···n with
q = b

√
n/ log nc and using the Taylor series expansion at order r = dn/qe

f ◦ g = f ◦ g∗ + (f ′ ◦ g∗)g∗ + · · ·+ 1
(r−1)! (f

(r−1) ◦ g∗)(g∗)r−1 +O(zn). (20)

Assuming that (g′∗)0 is invertible in C, f (i) ◦g∗ can then easily be computed as a function
of f (i−1) ◦ g∗, since

f (i) ◦ g∗ = (f (i−1) ◦ g∗)′/g′∗.
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Conversely, if (g′∗)0 is not necessarily invertible in C, we may write

1
(i−1)!f

(i−1) ◦ g∗ = fi−1 + i

(∫
( 1

i!f
(i) ◦ g∗)g′∗

)
.

This leads to the following algorithm:

Algorithm compose(f, g)
Input: f, g ∈ TPS(C, n) with g0 = 0.
Output: f ◦ g.

C1. [Polynomial Composition]
q := b

√
n/ log nc

r := dn/qe
g∗ := (g0···q)0···n
g∗ := g − g∗
Compute H[i] := (gi

∗)0···min((q−1)i+1,n) for all i = bn/2kc and i = dn/2ke with k > 0
D := compose pol(f (r−1),H, n+ 1− r)/(r − 1)!

C2. [Taylor expansion]
S := D0···max(0,n+q−rq)

for i := r − 1 downto 1 do

D := (fi−1)0···n+1−i +
∫

((iD)× (g′∗)0···n−i)
T := (S × (g∗ div zq)0···max(0,n−iq)) mul zq

S := D0···max(0,n+q−iq) + T0···max(0,n+q−iq)

return S

Theorem 4. Let f and g be power series truncated at order n. Assuming that g0 = 0,
there exists an algorithm to compute the power series expansion of f ◦ g up till order n
in time O(

√
n log nM(n)) and space O(n log n).

Proof. Step 1 takes a time O(
√
n log nM(n)) and space O(n log n), by Theorem 2.

Since the loop in the second step requires only r = O(
√
n log n) iterations, the second

step requires a time O(
√
n log nM(n)) and space O(n). 2

Remark. The above algorithm also applies if C is an overring of Z, such that the equation
nx = y can be solved effectively in C for n ∈ Z∗ and y ∈ C (i.e. we can test whether the
equation admits a solution and, if so, compute it). Indeed, in this case, we can do the
computations in the effective partial quotient ring of C in which the non-zero integers
are invertible.

3.4.4. general composition for rings C of finite characteristic

Assume now that Z can no longer be embedded in C, i.e. the canonical ring homo-
morphism Z ∈ C has a non-trivial kernel rZ with r > 0. Bernstein recently gave a fast
composition algorithm for such C (Bernstein, 1998). The idea is to consider, subsequently,
the cases when r is prime, a prime power and general.
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r = pr = pr = p is prime. We have (a + b)p = ap + bp for all a, b ∈ C and g(z)p = gp
0 + gp

1z
p +

gp
2z

2p + · · · = g[p](zp) for power series g(z) = g0 + g1z + g2z
2 + · · ·. Hence we may use

the following formula to compute the composition of two power series f and g:

f ◦ g =
p−1∑
i=0

(fi + fi+pz + fi+2pz
2 + · · ·) ◦ g[p](zp)gi. (21)

Assuming that we have an algorithm Horner(P, h) to compute P (h) by Horner’s method
for P ∈ TPS(C, n)[X] and h ∈ TPS(C, n), this leads to the following recursive algorithm
of time complexity O((p/ log p)M(n) log n) and linear space complexity (Bernstein, 1998):

Algorithm prime compose(f, g)
Input: f, g : TPS(C, n) with g0 = 0.

We assume that C has prime characteristic p.
Output: f ◦ g.

m := dn/pe
for i := 0 to p− 1 do

L := fi + fi+pz + · · ·+ fi+p(m−1)z
m−1

R := gp
0 + gp

1z + · · ·+ gp
m−1z

m−1

hi := (prime compose(L,R) ◦ zp)0···n

return Horner(h0 + · · ·+ hp−1X
p−1, g)

Remark. The algorithm can be optimized by using the algorithm compose from the
previous section for small n. Indeed, it suffices that 1, 2, . . . , dn/b

√
n/ log nce are inver-

tible in C.

r = pkr = pkr = pk is a prime power. In this case, the composition algorithm is based on the fact
that we still have δ = g(z)p − g[p](zp) ∈ pC. Hence, (21) becomes

f ◦ g =
p−1∑
i=0

(fi + fi+pz + fi+2pz
2 + · · ·) ◦ (g[p](zp) + δ)gi. (22)

This leads to the more general problem of composing f with g+ε, where ε is an infinites-
imal formal parameter with εk = pεk−1 = · · · = pk−1ε = 0. The analogue relation of (22)
then again yields a recursive formula and we obtain the following algorithm of time
complexity O((k3p/ log p)M(n) log n) and space complexity O(kn) (Bernstein, 1998):

Algorithm prime power compose(f, g)
Input: f, g : TPS(C, n) with g0 = 0.

We assume that C has prime power characteristic pk.
Output: f ◦ (g + ε) : TPS(C[ε]/(εk, pεk−1, . . . , pk−1), n).

m := dn/pe
ϕ := (g + ε)p − (gp

0 + · · ·+ gp
mz

mp)0···n
for i := 0 to p− 1 do
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L := fi + · · ·+ fi+p(m−1)z
m−1

R := gp
0 + · · ·+ gp

m−1z
m−1

ψ := (prime power compose(L,R) ◦ zp)0···n
Write ψ = ψ0 + ψ1ε+ · · ·+ ψk−1ε

k−1

hi := Horner(ψ0 + · · ·+ ψk−1X
k−1, ϕ, n)

return Horner(h0 + · · ·+ hp−1X
p−1, g, n)

r = q1 · · · qlr = q1 · · · qlr = q1 · · · ql is a non-trivial product of distinct prime powers. This case is a
standard application of the Chinese remainder theorem. More precisely, using the Chinese
remainder theorem, we first compute integers i1, . . . , il with

i1
q1 · · · ql
q1

+ · · ·+ il
q1 · · · ql
ql

= 1 modq1 · · · ql.

We next compute the compositions of the projections of f and g in C/(qj)[[z]]. More
precisely, for each j, elements in C/(qj) are redundantly represented by elements in C
(we do not require a zero test) and we use the previous algorithm. We thus obtain a
truncated series hj ∈ C[[z]] with hj − g ◦ f ∈ qjC +O(zn). Then we have i1h1 + · · ·+ ilhl

is equal to f ◦ g up to n terms.

Theorem 5. Let C be a ring of positive characteristic r > 0 and let f, g : TPS(C, n) be
such that g0 = 0. Then n terms of f ◦ g can be computed in time O((r/ log r)M(n) log n)
and space O(n log r).

Proof. By what precedes and since k3p/ log p = O(pk/(k log p)), the theorem holds for
prime power characteristic. In general, we have

q1
log q1

+ · · ·+ ql
log ql

= O

(
r

log r

)
and log q1 + · · · + log qr = log r, so we can perform the composition modulo each qi
in the required time and space. Gluing these partial results together using the Chinese
remainder theorem takes linear time and space. 2

4. Relaxed Multiplication

4.1. naive relaxed multiplication

The lazy, or naive relaxed multiplication algorithm for formal power series f and g in z
just computes the coefficient of zn in fg using the convolution sum (fg)n =

∑n
i=0 fign−i.

In order to implement this method, we define the class

Class. Product1 Series Rep(C) . Series Rep(C)
f, g : Series(C)

The constructor takes two series on input which are stored in f and g. We compute the
nth coefficient of fg as follows:

Method Product1 Series Rep(C).next()
Action: The next coefficient (fg)n.

return
∑n

i=0 fign−i
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The actual function for multiplication is given by
Algorithm (f : Series(C))× (g : Series(C))
Input: Two series f and g.
Output: Their product fg.

return new Product1 Series Rep(C)(f, g)

Obviously, the naive multiplication algorithm has O(n2) resp. O(n) time and space
complexities. The computation of the successive coefficients of fg by the naive algorithm
is illustrated in Figure 1: each box corresponds to the contribution of a product figj

to the sum (fg)i+j =
∑i+j

k=0 fkgi+j−k. The number of the box corresponds to the stage
when this contribution is computed. Indeed, the naive algorithm only computes figj at
the moment that (fg)i+j is needed, that is, at stage i+ j.

Figure 1. Relaxed multiplication by the naive algorithm.

4.2. relaxation of dac-multiplication

The relaxed multiplication algorithm we present in this section is based on the obser-
vation that DAC-multiplication is essentially relaxed . Hereby we mean that, if we apply
the algorithm to compute the product of two power series f and g with symbolic coef-
ficients, then the computed formula for (fg)i only depends on the coefficients f0, . . . , fi

and g0, . . . , gi. In order to transform this observation into an actual relaxed multiplica-
tion algorithm, the main problem is to design suitable data structures, which correspond
to partial executions of the DAC algorithm. Roughly speaking, the whole computation
will be stored in memory, but information which is no longer needed at a given stage is
freed again.

4.2.1. relaxed multiplication of polynomials

Let f = f0+f1z+· · ·+fN−1z
N−1 and g = g0+g1z+· · ·+gN−1z

N−1 be two polynomials
of degrees < N , represented as truncated series at order O(zN ). In this section, we show
how to compute the coefficients of their product fg in a relaxed way. For the application



Relax, but Don’t be Too Lazy 503

we have in mind, we will suppose that N is a power of two. The representation class
which corresponds to the relaxed computation of fg is given by

Class. DAC Rep(C) . Series Rep(C)
N : Integer
f, g : Series(C)
lo,mid, hi : DAC(C)

The pointers lo,mid and hi correspond to the relaxed computations of f∗g∗, (f∗+f∗)(g∗+
g∗) and f∗g∗ (with f∗ = f0···N/2, f

∗ = fN/2···n, g∗ = g0···N/2 and g∗ = gN/2···N ). The
constructor for DAC Rep(C) is given by

Constructor DAC Rep(C)(f, g,N)
Input: Two series f, g and an order TPS(C, N).

N := N , f := f , g := g
lo := mid := hi := null
ϕ := 00···2N−1

The computation of the coefficients now goes in three stages. At the first stage, when
0 6 n < N

2 , we only compute the product f∗g∗; the pointer lo becomes non-null at
this stage. At the second stage, when n

2 6 n < N , we also start the computations of
(f∗ + f∗)(g∗ + g∗) and f∗g∗; the pointers mid and hi also become non-null at this stage.
At the third, and last stage, when n > N , the computation of fg is completed and the
pointers lo,mid and hi are freed. For small N 6 ThresholdC, where ThresholdC is a
power of two, we compute fg using the lazy multiplication algorithm.

Method DAC Rep(C).next()
Output: The next coefficient (f0···N ? g0···N )n.

D0. [Small N ]
if N > ThresholdC then go to D1
if n < N then return

∑n
i=0 fign−i

else return
∑N−1

i=n−(N−1) fign−i

D1. [First stage (n < N
2 )]

if n > N
2 then go to D2

if n = 0 then lo := new DAC Rep(f, g, N
2 )

return lon

D2. [Second stage (N
2 6 n < N)]

if n > N then go to D3
if n = N

2 then

mid := new DAC Rep(f + (f div z
N
2 ), g + (g div z

N
2 ), N

2 )
hi := new DAC Rep(f div z

N
2 , g div z

N
2 , N

2 )

return lon +midn−N/2 − lon−N/2 − hin−N/2
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D3. [Third stage (N 6 n)]
if n > 2N − 1 then return 0
if n > N then return ϕn

ϕN ···2N−1 := hi0···N−1

ϕN ··· 3N
2 −1 += midN

2 ···N−1 − loN
2 ···N−1 − hiN

2 ···N−1

lo := mid := hi := null
return ϕn

4.2.2. complexity analysis

Up to some extra operations related to the storage of partial auxiliary products, the
main control structure of the relaxed DAC-multiplication algorithm is the same as in the
classical algorithm. Hence, their respective time complexities only differ up to a constant
factor.

As to the memory storage S(N) needed by the relaxed algorithm, we claim that

S(N) 6 2S(N/2) +O(N). (23)

Indeed, as long as less than N/2 coefficients of f and g are known, f∗ and g∗ are not
needed at all. As soon as N/2 coefficients are known, f∗ and g∗ are entirely determined,
whence the computation of f∗g∗ is completed, and the result takes O(N) memory stor-
age. Furthermore, f∗ + f∗ and g∗ + g∗ require another O(N) memory storage, while
the computations of (f∗ + f∗)(g∗ + g∗) and f∗g∗ require 2S(N/2) memory storage, by
induction. From (23), we deduce that

S(N) = O(N logN).

4.2.3. general relaxed dac-multiplication

Let us finally treat the case, when we want to compute fg up to any order, and
not merely up to order O(zN ). In this case, we use the algorithm from above between
successive powers of two. Each time we cross a power of two, we let the old f and g play
the rôles of f∗ and g∗ for the new f and g. More precisely, we introduce the class

Class. Product2 Series Rep(C) . Series Rep(C)
f, g : Series(C)
h : DAC(C)

The constructor takes two series on input, which are stored in f and g; h is initialized
with new DAC Rep(C)(f, g,ThresholdC). The member function next is now given by

Method Product2 Series Rep(C).next(n)
Output: The next coefficient (fg)n.

if n > ThresholdC and n ∈ 2N then h := new DAC Rep(C)(f, g, h, 2n)
return hn.
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Figure 2. Relaxed multiplication by the DAC algorithm.

Here we use a second constructor for DAC Rep(C) in order to extend previous compu-
tations:

Constructor DAC Rep(C)(f, g, g,N)
Input: Series f, g, h∗ and an order TPS(C, N).

N := N , f := f , g := g
lo := h∗,mid := hi := null
ϕ := (h∗)0···2N−1, n := N/2

Clearly, the time and space complexities of this algorithm are again O(nlog 3/ log 2) and
O(n log n). In Figure 2, we schematically represented the computation process of the
successive coefficients of fg by the relaxed multiplication algorithm.

4.3. fast relaxed multiplication

Although relaxed DAC-multiplication is significantly faster than the naive algorithm,
it still is not as fast as the fastest zealous multiplication algorithms based on the fast
Fourier transform. In this section, we give a fast relaxed multiplication algorithm, in
which the fast Fourier transform may be exploited.

For each i, j, p ∈ N, let us denote

Πi,j,p = (fi2p−1z
i2p−1 + · · ·+ f(i+1)2p−1z

(i+1)2p−1)

× (gj2p−1z
j2p−1 + · · ·+ g(j+1)2p−1z

(j+1)2p−1).

The fast multiplication algorithm is based on the observation that, as soon as the first
2p+1 − 1 coefficients of f and g are known, then the contribution of Π1,1,p to fg can be
computed prematurely by any fast zealous multiplication algorithm. More generally, as
soon as the first n = k2p−1 coefficients of f and g are known, with odd k > 3 and p > 1,
then we can compute the contributions of Π1,k−1,p and Πk−1,1,p.

4.3.1. fast relaxed multiplication algorithm

The representation class Product3 Series Rep(C) and its constructor are taken to be
the same as for Product1 Series Rep(C):
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Class. Product3 Series Rep(C) . Series Rep(C)
f, g : Series(C)

The coefficients of fg are computed as follows:

Method Product3 Series Rep(C).next()
Output: The next coefficient (fg)n.

F1. [Enlarge ϕ]
Let k ∈ 2N be minimal with k > 2n.
if ]ϕ < k then ϕ := ϕ0···k

F2. [Accumulate]
k := 2(n+ 2), p := −1
while (k mod 2) = 0

k := k/2, p := p+ 1
ϕk2p−2···(k+2)2p−3 += f2p−1···2p+1−1 ? g(k−1)2p−1···k2p−1

if k = 2 then return ϕn

ϕk2p−2···(k+2)2p−3 += f(k−1)2p−1···k2p−1 ? g2p−1···2p+1−1

return ϕn

The computation process is schematically represented in Figure 3. From this figure, it
is easily seen that the contribution of each figj to (fg)i+j is computed exactly once and
before the coefficient (fg)i+j is output. This proves the correctness of our algorithm.

4.3.2. complexity analysis

Theorem 6. There exists a relaxed multiplication algorithm for formal power series f
and g with coefficients in C, which computes the first n terms of fg in time O(M(n) log n)
and space O(n).

Proof. Since the time complexity of the algorithm from the previous section is an
increasing function in n, it suffices to consider the case when n = 2p − 1 for some
p > 0. Then looking at Figure 3, we observe that the algorithm performs 2(n + 1) − 3
constant multiplications, (n + 1) − 3 multiplications of polynomials with two terms,
1
2 (n+1)−3 multiplications of polynomials with four terms and so on. Hence, the overall
time complexity is bounded by

2
p−1∑
k=0

n

2k
M(2k) +O(n) = O(M(n) log n).

The space complexity is clearly bounded by O(n). 2

4.4. remarks and optimizations

Although the relaxed multiplication algorithms from Sections 4.2 and 4.3 are both
asymptotically faster than lazy multiplication, they both have drawbacks for certain
applications: the relaxed DAC-multiplication algorithm is more cumbersome to imple-
ment (whence a large overhead) and it has an additional logarithmic space overhead. On
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Figure 3. Fast relaxed multiplication.

the other hand, fast relaxed multiplication has a good space complexity, is asymptotically
fast and easy to implement, but the algorithm outperforms the relaxed DAC algorithm
only for large values of n, especially when multiplications in C are expensive, so that the
extra overhead needed by the DAC strategy can be neglected. Finally, if we know before-
hand that we wish to compute only n coefficients of a power series, then both methods
have the drawback that they anticipate the computation of the next n coefficients.

Consequently, it is interesting to search for algorithms which overcome these problems
and we will make some suggestions in this section. In Table 3 we have compared the
respective complexities of different methods, by counting the number of constant mul-
tiplications they use as a function of n. For the fast relaxed algorithm and the variant
from Section 4.4.1 below, we considered both the cases in which we use

I. DAC-multiplication.
II. A linear algorithm with M(n) = 2n− 1

for zealous multiplication.
As a conclusion, it seems that there is no overall best relaxed multiplication method.

The implementer should choose the algorithm as a function of the application he has in
mind and in particular as a function of the cost of constant multiplications, the expansion
order n, the space complexity he is willing to pay, the desired degree of laziness and the
time he wishes to spend on his implementation. We refer to Section 7 for a further
discussion of this issue.
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Table 3. The number of needed constant multiplications at order n for different relaxed multiplication
algorithms.

n 1 2 3 4 5 6 7 8 9 10 100 1000 10 000

Naive 1 3 6 10 15 21 28 36 45 55 5050 500 500 50 005 000
DAC 1 3 5 9 11 15 19 27 29 33 1251 52 137 1 844 937
Fast-I 1 3 8 10 18 20 37 39 47 49 2938 103 693 4 458 055
Fast-II 1 3 8 10 18 20 35 37 45 47 1602 27 408 411 963
Variant-I 1 3 5 8 14 16 22 24 33 35 1904 66 515 2 535 836
Variant-II 1 3 5 8 14 16 22 24 33 35 1176 20 311 300 794

4.4.1. an alternative fast relaxed multiplication algorithm

It is possible to slightly improve the constant factor in the theoretical complexity of the
algorithm from Section 4.3.1, by using the trick (1) in order to compute the contributions
of Π1,k−1,p and Πk−1,1,p simultaneously. Unfortunately, this makes the algorithm more
complex, since this supposes that we have Π1,1,p and Πk−1,k−1,p in memory. Nevertheless,
working the idea out carefully leads to the slightly more efficient algorithm below, which
uses approximately twice as much memory. In this algorithm, the “diagonal products”
Πi,i,p are retrieved from the truncated series ψ.

In Figure 4 we illustrated the corresponding computation process. In Table 3 we com-
pared its theoretical efficiency with the algorithm from Section 4.3.1. However, it should
be noticed that, in practice, for certain constant rings C, the operands for which we apply
the trick (1) usually have very different sizes, so that the mean cost of multiplications in
C may be higher for the alternative algorithm.

Class. Product4 Series Rep(C) . Series Rep(C)
f, g : Series(C)
ψ : TPS(C)

Method Product4 Series Rep(C).next()
Output: The next coefficient (fg)n.

V1. [Enlarge ϕ and ψ]
Let k ∈ 2N be minimal with k > 2n.
if ]ϕ < k then ϕ := ϕ0···k
if ]ψ < k then ψ := ψ0···k

V2. [Accumulate]
c := fngn

ϕ2n += c
ψ2n += c
if n+ 2 = 5× 2p (p ∈ N) then accumulate(2× 2p − 1, 3× 2p − 1, 2p, true)

k := 2(n+ 2), p := −1
while (k mod 2) = 0 and k 6= 4

k := k/2, p := p+ 1
if p > 0 then accumulate((2k − 1)2p−1 − 1, (2k − 2)2p−1 − 1, 2p−1, true)
accumulate(2p − 1, (k − 1)2p − 1, 2p, false)

return ϕn
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Method Product4 Series Rep(C).accumulate(i, j, k, f lag)
Input: Indices i, j, k and a flag flag.
Action: ξ = fi···i+kgj···j+k + fj···j+kgi···i+k is added to ϕi+j···i+j+2k−1.

If flag holds, then ξ is also added to ψi+j···i+j+2k−1.

ξ := (fi···i+k + fj···j+k) ? (gi···i+k + gi···i+k)− ψ2i···2i+2k−1 − ψ2j···2j+2k−1

ϕi+j···i+j+2k−1 += ξ
if flag then ψi+j···i+j+2k−1 += ξ
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Figure 4. A variant of fast relaxed multiplication.

4.4.2. truncation

Assume that we want to compute the first n terms of a power series and that we know
that we do not need any more terms. Then the relaxed algorithms from the previous
sections have the disadvantage that they do more computations than needed, since the
computations of the next n coefficients are already anticipated. There are two approaches
to this problem.

In the first approach, we implement a class of “truncated product series”. Such a series
has a field ν which contains the truncation order and no computations beyond this order
are allowed and anticipated. Furthermore, such a series contains an additional method to
increase the truncation order and which anticipates part of the forthcoming computations
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Figure 5. Truncated fast relaxed multiplication at order 13.

if needed. When applied to fast relaxed multiplication, we have illustrated in Figure 5
the truncated computation at order 12.

In the second approach, we do not have an additional method to increase ν. Instead,
we adopt the convention that, as soon as we wish to compute the nth term of the product
series, then we increase ν to n if necessary. This approach has the advantage that the user
interface does not change. However, one should be aware that a sequential computation
of the first n terms of the product will have the same complexity as in the case of naive
lazy multiplication. Therefore, if the user knows beforehand that he needs n terms, then
he should first compute the last term, before retrieving the others.

We finally notice that Mulders’ algorithm for truncated DAC-multiplication, as des-
cribed at the end of Section 3.1.3, is essentially relaxed. Consequently, a similar constant
speed-up can be achieved in the relaxed setting.

4.4.3. inlining

For applications in numerical analysis, it is interesting to consider the case when C
is a “ring” of floating point numbers of low, bounded precision and when the expan-
sion order is small. Then one would like to use truncated relaxed DAC-multiplication,
since this method has a good complexity for small orders. However, the overhead of the
method becomes much too high in this case, due to recursive function calls and memory
allocations. Nevertheless, the overhead can significantly be reduced by “unrolling” the
whole process. This means that a buffer is allocated at the start for all premature and
temporary results and that the computations at each stage are performed “inline”.

Let us give an example of how to do this program for order 8. In practice, the program
should rather be generated automatically as a function of the (maximal) order. The
product class is given by

Class. Product5 Series Rep(C) . Series Rep(C)
f, g : Series(C)
ψ : TPS(C, 5)
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The constructor takes the two multiplicands on input and stores them in f and g. We
also set ϕ := 00···8, ψ := 00···5.

Method Product5 Series Rep(C).next()
Output: The next coefficient (fg)n assuming that n < 8.

I*. [Separate cases]
if n = 0 then go to I0
...
if n = 7 then go to I7
error “n too high”

I0. return f0g0

I1. ϕ2 := f1g1
return (f0 + f1)(g0 + g1)− ϕ0 − ϕ2

I2. ψ0 := ϕ2

ϕ4 := f2g2
ψ1 := f0 + f2
ψ2 := g0 + g2
return ϕ2 + ψ1ψ2 − ϕ0 − ϕ4

I3. ϕ6 := f3g3
ϕ5 := (f2 + f3)(g2 + g3)− ϕ4 − ϕ6

ψ3 := f1 + f3
ψ4 := f2 + f4
ϕ4 := ψ3ψ4 − ψ0 − ϕ6

return (ψ1 + ψ3)(ψ2 + ψ4)− ϕ1 − ϕ5

I4. ψ0 := f0g4
ψ1 := f4g0
return ϕ4 + ψ0 + ψ1

I5. ψ2 := f1g5
ψ3 := f5g1
return ϕ5 + (f0 + f1)(g4 + g5) + (f4 + f5)(g0 + g1)− ψ0 − ψ1 − ψ2 − ψ3

I6. return ϕ6 + ψ2 + ψ3 + f0g6 + f2g4 + f4g2 + f6g0

I7. return f0g7 + f1g6 + f2g5 + f3g4 + f4g3 + f5g2 + f6g1 + f7g0

Although the size of inline programs tends to grow rapidly as a function of the order,
they should remain acceptable due to the fact that we only consider small orders. In the
case when multiplication in C is really fast with respect to addition (for instance, when
using “machine doubles”), it is possible to adapt the strategy, so that the trick (1) is
only applied for 2p × 2p multiplications with sufficiently large p. Numerical experiments
by A. Norman tend to show that inline relaxed multiplication becomes more efficient for
orders > 32.
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4.5. applications

4.5.1. implicit series

The main application of the relaxed multiplication algorithm is the efficient expansion
of power series solutions to certain functional equations, mainly ordinary and partial
differential equations. Therefore, it is convenient to introduce the class Implicit Series(C),
whose instances are pointers to the representation class

Class. Implicit Series Rep(C) . Series Rep(C)
I : TPS(C)
eq : Series(C)

Here I contains the initial conditions (]I in number) and eq the implicit equation which
yields the remaining coefficients. The constructor sets I := 00···0 and eq := null. The nth
coefficient is computed as follows:

Method Implicit Series Rep(C).next()
Output: The next, nth coefficient of the series.

if eq = null then error “equation not set”
if n < ]I then return In
else return eqn

Remark. We notice that in low-level languages, implicit series have to be treated with
care from a memory management point of view. When using a reference counting tech-
nique for the copying of series, one needs to reset eq to null after using the implicit series;
otherwise, cyclic dependencies might fool the reference counter. In high level computer
algebra systems this problem usually does not occur, because the garbage collector is
sufficiently powerful to recover non-used memory automatically.

4.5.2. ordinary differential equations

The use of the class Implicit Series(C) is well illustrated by an example. Consider the
system of ordinary differential equations{

f ′ = fg;
g′ = f + g,

with initial conditions f(0) = g(0) = 1. Then the following piece of code computes the
nth coefficient of f :

f := new Implicit Series(C)
g := new Implicit Series(C)
f.I := 10···1
g.I := 10···1
f.eq :=

∫
f × g

g.eq :=
∫
f + g
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Table 4. Time in seconds to expand exp(z exp z) at various orders, using different algorithms and 10 000
bits floating point coefficients.

Multiplication 10 20 50 100 200 500 1000 2000 1 h

Zealous 0.161 0.985 7.202 27.017 92.36 361.19 1135.4 3403 2135
Naive 0.048 0.282 2.533 11.474 48.86 317.00 1283.8 1670
DAC 0.079 0.309 1.428 4.384 13.19 61.35 1887.4 1025
Fast 0.061 0.331 2.162 7.583 25.10 96.20 307.2 959 4095
Variant 0.077 0.347 1.874 5.938 18.34 67.27 193.8 494 *
Truncated 0.047 0.274 1.838 6.782 21.70 98.21 307.5 947 4408

Table 5. Time in seconds to expand exp(z exp z) at various orders, using different algorithms and
rational coefficients.

Multiplication 10 20 50 100 200 500 1 h

Zealous 0.052 0.187 1.294 6.916 50.09 1085.87 686
Naive 0.025 0.072 0.417 2.194 16.62 446.34 845
DAC 0.029 0.101 0.641 3.614 30.45 918.78 758
Fast 0.038 0.125 0.800 4.190 30.96 430.92 767
Variant 0.047 0.155 0.995 5.658 48.78 888.92 703
Truncated 0.026 0.082 0.485 2.308 15.52 342.05 944

c := fn

f.eq := null
g.eq := null

In a similar fashion, relaxed multiplication can, for instance, be used to solve systems
of algebraic differential equations, by rewriting the equations in integral form as in (5).
Although we lose a factor log n in the asymptotic complexity with respect to Brent and
Kung’s zealous algorithm, the relaxed approach has two advantages:

— We may directly treat systems of o.d.e.’s.
— The constant factor in the asymptotic complexity depends linearly on the size of

the equation, when rewritten in its integral form.

As to the second advantage, we notice that Brent and Kung’s algorithm is exponential in
the order r of the equation. Therefore, our algorithm is more efficient in practice except
for particularly low orders (typically r = 1 or r = 2, but even in this case, Tables 4 and 5
provide interesting benchmarks).

4.5.3. other functional equations

The relaxed multiplication algorithm can also be used to solve more general functional
equations, such as

s(z) = 1 + z
s(z)3 + 2s(z3)

3
. (24)

The generating function s(z) which satisfies this equation enumerates the number of
stereoisomers of alcohols of the form CnH2n+1OH (Pólya, 1937). Theorem 6 implies
that the asymptotic complexity to compute the first n coefficients of s(z) is O(n log2 n),
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which is much better than the previously best known bound O(n2). Many other differ-
ential difference equations arising in combinatorics and the analysis of algorithms are
similar to (24) (Flajolet and Sedgewick, 1996); in particular, we mention binary splitting
algorithms and differential q-difference equations. In Section 5, we will consider even
more general equations.

4.5.4. partial differential equations

Fast relaxed multiplication can also be used to solve nonlinear partial differential equa-
tions, by considering d-dimensional power series as power series with (d−1)-dimensional
power series as coefficients. Consider, for instance, the equation

∂f

∂y
=
(
∂f

∂x

)2

+
(
∂2f

∂x2

)2

;

f(x, 0) = ex.

We can compute the coefficient of xnym in f(x, y) using the following piece of code:

f := new Implicit Series(Series(C))
f.I := exp(x)
f.eq :=

∫
y
((∂xf)2 + (∂x∂xf)2)

c := (fm)n

f.eq := null

Here x : Series(C),
∫

y
=
∫

and ∂x is implemented trivially. Now we notice that the
computation of xnym involves expansion of fm up till n + 1 terms, fm−1 up till n +
3 terms and so on until f0, which is expanded up till n + 2m + 1 terms. Using fast
relaxed multiplication in y, the complexity of this computation is therefore bounded by
O(M((n +m)m) logm). Actually, this almost linear theoretical complexity is a general
situation and the following theorem is proved similarly:

Theorem 7. Let the classes Ad be defined inductively by

— A0 = C.
— Ad is the class of power series f ∈ C[z1, . . . , zd], which satisfy an algebraic differ-

ential equation of the form

P

((
∂k1+···+kdf

∂zk1
1 · · · z

kd

d

)
k1,···,kd

)
,

with initial conditions in Ad−1, and such that the separant in zd

Sd =
∂P

∂ ∂rf
∂zr

d

((
∂k1+···+kdf

∂zk1
1 · · · z

kd

d

)
k1,···,kd

)
,

(where r is highest such that ∂rf
∂zr

d
occurs in P ) evaluates to an invertible series in

C[[z1, . . . , zd−1]] when setting zd = 0.

Given a series f in Ad and integers n1, . . . , nd > 0, the coefficients of zk1
1 · · · z

kd

d in f
with k1 < n1, . . . , kn < nd can be evaluated in time O(M((n1 + · · · + nd) · · · (nd−1 +
nd)nd) log(n1 + · · ·+ nd)) and space O(n1 · · ·nd).
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4.6. benchmarks

We have implemented the zealous multiplication algorithm and several relaxed multi-
plication algorithms in C++, using integer, rational and floating point arithmetic from
GMP (the GNU multiprecision library). Our benchmarks were obtained on a PC running
under Linux, with a 166 MHz AMD processor and 64MB of memory. In our tables, all
timings are done in seconds. We aborted the computations after 1 h; the maximal number
of coefficients which could be computed in this time are shown in the last columns of the
tables.

We compared the following multiplication algorithms:

— Zealous: the purely zealous algorithms from Section 3.
— Naive: the naive lazy algorithm from Section 4.1.
— DAC: the relaxed DAC-multiplication algorithm from Section 4.2.
— Fast: fast relaxed multiplication from Section 4.3.
— Variant: the variant of fast relaxed multiplication from Section 4.4.1.
— Truncated: fast truncated relaxed multiplication, as sketched in Section 4.4.2.

In Table 4, we considered the expansion of exp(z exp z), using high precision float-
ing point numbers, so that multiplication in C has a high, but fixed cost. Not surpris-
ingly, all relaxed algorithms do asymptotically better than lazy multiplication (except
for DAC-multiplication, which starts swapping for high orders). The threshold for FFT-
multiplication being high, we observe an O(n3/2) asymptotic complexity. In the future,
when GMP will support FFT-multiplication, even higher gains should be achievable (see
Section 6.1). We also noticed another advantage of fast relaxed multiplication: when
sufficient memory is not available, little time is spent on swapping, since most of the
computations are done on large blocks of consecutive coefficients in memory.

In Table 5, we have computed the expansion of exp(z exp z), using rational coefficients.
Although the naive algorithm turns out to be the fastest in this case, the results are
“fooled” by the fact that rational number arithmetic is not implemented optimally in
GMP. Indeed, although DAC-multiplication is used for integers, the gcd-algorithm has
a quadratic complexity . . .. Therefore, most time is spent on computing gcd’s. Notice
also that, both in Tables 4 and 5, the zealous algorithm is slower than the fast relaxed
algorithms, despite its better asymptotic complexity.

In Table 6, we considered the expansion of the solution to equation (24), using inte-
ger coefficients modulo the prime number 1 234 577. In this case, multiplication in C
has a fixed low cost. The threshold for FFT-multiplication is between 2048 and 4096
coefficients, which explains a better asymptotic performance of the fast relaxed algo-
rithms than O(n3/2). Although our implementation of FFT-multiplication may still be
improved, it becomes clear that important gains are already achieved.

In Table 7, we again considered the expansion of the solution to equation (24), but
using integer coefficients. In this case, the sizes of the coefficients in C grow linearly
with the expansion order, which explains the rapid growth of the computation times. For
suggestions about additional speedups, we refer to Sections 6.1 and 6.3.

5. Relaxed Composition

A dependency analysis of the composition algorithms from Section 3.4 shows that
they are, or are almost, essentially relaxed, just like DAC-multiplication. Therefore, they
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Table 6. Time in seconds to compute the number of stereoisomers of CnH2n+1OH modulo 1 234 577
for various n, using different algorithms.

Multiplication 500 1000 2000 5000 10 000 20 000 50 000 100 000 200 000 1 h

Naive 0.948 2.897 9.541 52.09 198.46 786.5 43 312
DAC 0.992 2.603 6.860 24.70 70.24 204.4 873 2624 121 561
Fast 0.863 2.101 5.407 20.93 56.25 147.4 547 1355 3370 217 087
Variant 0.918 2.055 4.997 16.28 42.10 108.7 411 1014 2480 275 967
Truncated 0.766 2.022 5.151 19.03 52.60 145.3 539 1392 3529 203 767

Table 7. Time in seconds to compute the number of stereoisomers of CnH2n+1OH for various n, using
different algorithms (and integer coefficients).

Multiplication 10 20 50 100 200 500 1000 2000 5000 1 h

Naive 0.012 0.026 0.087 0.249 0.850 5.485 32.56 297.57 4018
DAC 0.013 0.032 0.113 0.308 0.922 5.635 30.72 235.50 3583
Fast 0.015 0.037 0.131 0.375 1.185 4.853 21.33 134.54 2611 5759
Variant 0.017 0.043 0.151 0.407 1.221 5.558 29.59 215.59 3519 5119
Truncated 0.012 0.028 0.098 0.276 0.871 4.496 19.95 129.23 2295 5862

admit relaxed analogues with the same asymptotic time complexities (when using a
relaxed multiplication algorithm). We will specify these analogues in more detail in this
section.

5.1. fast relaxed composition with polynomials

In this section, we specify the relaxed version of the algorithm from Section 3.4.1.
Actually, we will compute partial compositions fi···i+p ◦ g using the algorithm from Sec-
tion 3.4.1 and “glue” these partial computations together into a global algorithm as we
did in Section 4.2.3 for DAC-multiplication.

5.1.1. partial series

For convenience, we first introduce the class

Class. Partial Series Rep(C) . Series Rep(C)
eq : Series(C)
N : Integer

This class implements series, whose first N coefficients are given by eq and whose other
coefficients vanish. Moreover, as soon as the first N coefficients have been computed, eq
is released.

More precisely, the constructor of Partial Series Rep(C) takes a series and an integer
on input, which are assigned to eq and N . We also implement a function

partial : Series(C)× Integer→ Series(C),

which takes eq and N on input and returns new Partial Series Rep(C)(eq,N). The coef-
ficients of a partial series are computed using the method below. The first line of the
program is needed for memory allocation purposes.
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Method Partial Series Rep(C).next()
Output: The next coefficient of the partial series.

if n is a power of two then ϕ := ϕ0···max(2n,]ϕ)

if n = N then eq := null
if n > N then return 0
return eqn

Remark. Recall that ϕ := ϕ0···max(2n,]ϕ) is filled up with zeros if 2n > ]ϕ. In other
words, this statement is used to reserve additional memory for coefficients of ϕ.

5.1.2. partial right composition with polynomials

In what follows, p will always be a power of two and g is as in Section 3.4.1. The
algorithm partial compose pol below computes the partial composition of fi···i+p with
g. We assume that the powers g, g2, g4, . . . , gp/2 have been computed elsewhere and stored
in a hashtable H.

Algorithm partial compose pol(f, i, p, q,H)
Input: f : Series(C), integers i, p and a hashtable H,

such that H[i] contains gi for i = 1, 2, 4, . . . , p/2.
Output: The right composition of fi···i+p with g.

if p = 1 then return fi

h∗ := partial compose pol(f, i, p/2, q,H)
h∗ := partial compose pol(f, i+ p/2, p/2, q,H)
h := h∗ + ((h∗ × (H[p/2] div zp/2)) mul zp/2)
return partial(h, (p− 1)(q − 1) + 1)

It is also convenient to have the following variant of partial compose pol in order
to extend previous computations:

Algorithm partial compose pol(h∗, p, q,H)
Input: A previous partial composition h∗ = f0···p/2 ◦ g and

the hashtable H with the powers of g.
Output: The right composition of f0···p with g.

h∗ := partial compose pol(f, p/2, p/2, q,H)
h := h∗ + ((h∗ × (H[p/2] div zp/2)) mul zp/2)
return partial(h, (p− 1)(q − 1) + 1)

5.1.3. right composition with polynomials

The representation class Compose Polynomial Rep(C) corresponds to the total compo-
sition of f with a polynomial g:
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Class. Compose Polynomial Rep(C)
f, h : Series(C)
H : Hash Table(Integer,Series(C))
q : Integer

The constructor takes f, g : Series(C) and an integer q as arguments and initializes
f := f,H[1] := g, q := q and h := partial compose pol(f, 0, 1, q,H); the other entries
of H are undefined at initialization.

In order to compute the coefficients of f ◦ g, we use the partial composition algorithm,
but we double the order p each time when n becomes a power of two.

Method Compose Polynomial Rep(C).next()
Output: The next coefficient (f ◦ g)n.

if n is a power of two then

if n > 1 then H[n] := H[n/2]×H[n/2]
h := partial compose pol(h, 2n, q,H)

return hn

5.1.4. complexity analysis

Theorem 8. There exists a relaxed right composition algorithm for formal power series
f by polynomials g, which computes n terms of f ◦ g in time O(qM∗(n) log n) and space
O(nq log q).

Proof. We may assume without loss of generality that n is a power of two. Then the
estimation for the time complexity is clear, since we perform the same constant operations
as in the zealous case.

In order to determine the space complexity, we have to estimate the space which is
occupied by the instances hi,p of Partial Series Rep(C), which correspond to the compo-
sitions fi···i+p ◦ g (here p is a power of two and i a multiple of p). These instances can
be organized in a binary tree with root h0,n and such that the children of hi,p are hi,p/2

and hi+p/2,p/2 (for p > 1).
We distinguish the following types of instances h = hi,p:

I. Active instances: h.eq 6= null and h.n > 0.
II. Latent instances: h.eq 6= null but h.n = 0.

III. Completed instances: h.eq = null.

We observe that each latent instance occupies O(1) memory space. In total, they therefore
occupy O(n) memory space. Each remaining instance occupies O(min(pq, n)) memory.
Furthermore, the parent of a completed instance is necessarily active, so that the com-
pleted instances do not occupy more than twice as much memory as the active ones.

Now for given p|n, consider the instances h0,p, . . . , hn−p,p. Each instance hi,p con-
tributes to the coefficients of f ◦ g between i and i + (p − 1)(q − 1) + 1. Hence, if the
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instance hi,p is active at stage k, then i 6 k < i + pq. The number of such instances
is therefore bounded by q. Hence, the total amount of memory occupied by the active
instances is bounded by

O

(∑
p|n

qmin(n, pq)

)
= O(nq log q),

where we remember that n is a power of two. 2

5.2. fast relaxed composition with algebraic functions

5.2.1. the class Algebraic Series(C)

Let g be as in Section 3.4.2. The algorithm for relaxed right composition with polyno-
mials is easily adapted to the case of right composition with g, by introducing a suitable
relaxed analogue Algebraic Series(g,C) of the class Algebraic TPS(g,C) from Section 3.4.2.

An instance of Algebraic Series(g,C) consists of d series F0, . . . , Fd−1 and an integer
kF . The following functions are easily implemented:

— A binary powering algorithm to compute and remember P kF

d in a hashtable PC.
— An addition algorithm for Algebraic Series(g,C).
— A multiplication algorithm for Algebraic Series(g,C).
— The analogue of the algorithm partial from Section 5.1.1 for Algebraic Series(g,C).
— A function convert which converts an instance of Algebraic Series(g,C) back to a

series in Series(C).

5.2.2. partial right composition

The analogues of the algorithms partial compose alg from Section 5.1.2 are given
by
Algorithm partial compose alg(f, i, p, q,H)
Input: f : Series(C), integers i, p and a hashtable H,

such that H[i] contains gi for i = 1, 2, 4, . . . , p/2.
Output: The right composition of fi···i+p with g.

if p = 1 then return fi

h∗ := partial compose alg(f, i, p/2, q,H)
h∗ := partial compose alg(f, i+ p/2, p/2, q,H)
h := h∗ + ((h∗ × (H[p/2] div zp/2)) mul zp/2)
return partial(h, (p− 1)(q − 1) + 1−max(p− d, 0)v)

Algorithm partial compose alg(h∗, p, q,H)
Input: A previous partial composition h∗ = f0···p/2 ◦ g and

the hashtable H with the powers of g.
Output: The right composition of f0···p with g.

h∗ := partial compose alg(f, p/2, p/2, q,H)
h := h∗ + ((h∗ × (H[p/2] div zp/2)) mul zp/2)
return partial(h, (p− 1)(q − 1) + 1−max(p− d, 0)v)
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5.2.3. right composition with algebraic functions

The analogue of the class Compose Polynomial Rep(C) is given by

Class. Compose Algebraic Rep(g,C)
f, h : Series(C)
halg : Algebraic Series(g,C)
H : Hash Table(Integer,Algebraic Series(g,C))
q : Integer

The constructor takes f and an integer q as arguments and initializes f := f,H[1] :=
g, q := q, halg := partial compose alg(f, 0, 1, q,H) and h := convert(halg); the other
entries of H are undefined at initialization.

Method Compose Algebraic Rep(g,C).next()
Output: The next coefficient (f ◦ g)n.

if n is a power of two then

if n > 1 then H[n] := H[n/2]×H[n/2]
halg := partial compose alg(halg, 2n, q,H)
h := convert(halg)

return hn

The following theorem is proved in a similar way as Theorem 8:

Theorem 9. Let g be as in Section 3.4.2. There exists a relaxed right composition
algorithm for formal power series f by g, which computes n terms of f ◦ g in time
O(qd2(q − v)M∗((1 + v)n)) and space O(qdn(v + log(q − v))).

5.3. fast relaxed composition when C is a divisible ring

Assume that C is a divisible ring. The representation class Compose Rep(C) below
corresponds to the composition of two arbitrary power series f, g : Series(C).

Class. Compose Rep(C) . Series Rep(C)
f, g, h : Series(C)

The constructor initializes f and g with the arguments and h := null.
The “relaxation” of Brent and Kung’s algorithm from Section 3.4.3 gives rise to a new

problem: we would like to use the relaxed algorithm for right composition with polyno-
mials in order to compute f ◦ g∗ in (20). But as n increases, the value of g∗ changes very
often, and each time this happens, we have to start over the relaxed computation of f ◦g∗.

Therefore, we should neither change g∗ too often, so that we make efficient use of the
polynomial right composition algorithm, nor too little, so that the power series expansion
of f ◦ (g∗ + g∗) can still be done quickly. A good compromise (from the asymptotic
complexity point of view) is to let q = 2p+1 be the largest power of two with p4p−1 6 n.
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Method Compose Rep(C).next()
Output: The next coefficient of (f ◦ g)n.

C1. [n small]
if n = 0 then return f0
if n = 1 then return f1g1
if n = 2 then return f2g

2
1 + f1g2

if n = 3 then return (f3g2
1 + 2f2g2)g1 + f1g3

C2. [Compute q and r]
p := max{p ∈ N|p4p−1 6 n}
if n 6= 4 and p4p−1 6 n− 1 then return hn n′ := (p+ 1)4p

q := 2p+1

r := dn′/qe
while r > n do q := 2q, r := dn′/qe

C3. [Adjust h]
g∗ := g0···q
g∗ := g − g∗
D := new Compose Polynomial Rep(f (r−1), g∗)
h := D := D/(r − 1)!
for i := r − 1 downto 1 do

D := fi−1 +
∫

((iD)× g′∗)
h := D + ((h× (g∗ div zq)) mul zq)

return hn

Theorem 10. There exists a relaxed composition algorithm for formal power series f, g,
which computes n terms of f ◦ g in time O(M∗(n)

√
n log n) and space O(n

√
n log n).

Proof. For n between two successive changes of q, the time and space complexities of
the computation of f ◦ g∗ are O(M∗(n)

√
n log n) resp. O(n

√
n log n), by Theorem 8.

The Taylor expansion of f ◦ g contains O(
√
n log n) terms. Hence, the complexity of

its evaluation (which requires only additions, derivations, multiplications and divisions,
which are all performed in time O(M∗(n)) is again O(M∗(n)

√
n log n). The Taylor expan-

sion requires O(n
√
n log n) space.

Now observe that q changes at most once for n between a given number n0 and 2n0.
Hence, for general values of n, the time complexity is bounded by O(M∗(n)

√
n log n +

M∗(n/2)
√

(n log n)/2 + · · ·+M∗(1)) = O(M∗(n)
√
n log n) and the space complexity by

O(n
√
n log n). 2

Remark. In Section 4.4.2, we have shown how to gain a constant factor on the time and
space complexities for relaxed multiplication if an a priori bound for the expansion order
has been specified. A similar optimization can be carried out here: if the maximal order
is known beforehand, then we may choose q and r as in Section 3.4.3, thereby avoiding
certain recomputations.



522 J. van der Hoeven

5.4. fast relaxed composition for rings C of finite characteristic

The formulae (21) and (22), combined with the Chinese remainder theorem, yield
straightforward relaxed composition algorithms when C has finite characteristic. We will
just treat the case when the characteristic p of C is prime; the general case is longer, but
not essentially more difficult.

The following functions are easily implemented

— compose p : Series(C)→ Series(C); f 7→ f ◦ zp.
— power p : Series(C)→ Series(C); f 7→ fp

0 + fp
1 z + fp

2 z
2 + · · ·.

— progression p : Series(C)× Integer→ Series(C); (f, i) 7→ fi + fi+pz+ fi+2pz
2 + · · ·.

Now the class Compose Rep(C) corresponds to the composition of f and g:

Class. Compose prime Rep(C) . Series Rep(C)
f, g, h : Series(C)

The constructor initializes f and g with the arguments and h := null.

Method Compose prime Rep(C).next()
Output: The next coefficient of (f ◦ g)n.

C1. [Easy case]
if n = 0 then return f0
if n > 1 then return hn

C2. [Set up equation]
h := 0
for i := p− 1 downto 0 do

t := compose p(compose(progression p(f, i),power p(g)))
h := ((h× (g div z)) mul z) + t

return hn

Theorem 11. Assume that C has prime characteristic p. Then there exists a relaxed
composition algorithm for formal power series f, g, which computes n terms of f ◦ g in
time O((p/ log p)M∗(n) log n) and space O((p/ log p)n log n).

Proof. The time and space complexities T (n) resp. S(n) satisfy

T (n) = pT (n/p) +O(pM∗(n));
S(n) = pS(n/p) +O(pn).

The complexity bounds follow from these relations. 2

As in the zealous case, the above algorithm can be optimized by using the lazy ver-
sion of Brent and Kung’s algorithm for small values of n. For rings C of more general
characteristic, the relaxed analogues of Bernstein’s result and Theorem 5:
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Theorem 12.

a. Assume that C has prime power characteristic pk. Then there exists a relaxed com-
position algorithm for formal power series f, g, which computes n terms of f ◦ g in
time O((k3p/ log p)M∗(n) log n) and space O((kp/ log p)n log n).

b. Assume that C has general characteristic r. Then there exists a relaxed composition
algorithm for formal power series f, g, which computes n terms of f ◦ g in time
O((r/ log r)M∗(n) log n) and space O((r/ log r)n log n).

5.5. applications

5.5.1. finite difference equations

One of the most interesting applications of Theorem 9 is that all linear or nonlinear
finite difference equations at infinity (assuming that they have been put in some normal
form) can be solved in essentially linear space and time. Consider, for instance, the
equation

f(x) =
1
x

(1 + f(x+ 1) + f ′(x)2), (25)

which admits a unique power series solution in 1/x:

f(x) =
1
x

+
1
x2
− 1
x4
− 3
x6

+O

(
1
x7

)
.

Putting x = 1/z and f(x) = f(1/z) = g(z), equation (25) becomes

g(z) = z

(
1 + g

(
z

1 + z

)
− z4g′(z)2

)
. (26)

Using the initial condition g(0) = 0, the first n terms of g(z) can be computed in time
O(n log3 n log log n) by Theorem 9, when using FFT-multiplication.

5.5.2. combinatorics

In combinatorics, one also sometimes encounters functional equations, which involve
right composition with polynomials or algebraic functions. An example of such an equa-
tion is

f(z) = z + f(z2 + z3).
The generating function f counts the number of so called 2-3-trees (Odlyzko, 1982). The
coefficients can again be computed in essentially linear time.

5.5.3. general functional equations

Theorem 10 can be used to solve any kind of functional equation involving differenti-
ation and composition up till n terms in time O(n3/2 log5/2 n log log n). An example of
such an equation is given by

f(z) = z + f(zf(z) + z2f ′(z)) + z4 exp(zf ′′(z)).

Notice that power series reversion is another example.
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Table 8. Time in seconds to expand the solution to (26) at various orders, using different algorithms
and integer coefficients modulo 1 234 577.

Composition Multiplication 100 200 500 1000 2000 5000 10 000 20 000 1 h

Naive Naive 0.537 3.213 43.80 337.1 2647.2 2216
Fast 1.113 6.187 69.15 459.5 3152.5 2093
Truncated 0.592 2.857 28.53 169.0 1022.7 3119

Brent&Kung Naive 0.561 2.065 23.68 96.4 871.1 4148
Fast 1.067 3.549 34.90 120.0 960.2 4188
Truncated 0.809 2.650 23.18 75.0 573.8 2905 5628

Fast Naive 0.406 1.448 8.21 34.2 144.9 1111 8560
Fast 0.713 2.151 8.13 25.8 83.8 499 1611 16 385
Truncated 0.445 1.366 5.89 19.2 62.9 333 1070 3341 20 253

5.6. benchmarks

Using the same conventions and multiplication algorithms as in Section 4.6, we have
tested four composition algorithms:

— Naive: the naive relaxed composition algorithm, using Horner’s rule.
— Brent&Kung: the relaxed version of Brent and Kung’s algorithm.
— Fast: the almost linear algorithms in the case of right composition with polynomials

or algebraic functions.
— Bernstein: the relaxed version of Bernstein’s algorithm, for coefficient rings of char-

acteristic p > 0.

We also implemented truncated versions of these algorithms, which were used each time
we used truncated relaxed multiplication.

In Table 8, we have considered the expansion of the solution to equation (26), where we
took the ring of integers modulo a large number p as our coefficient ring. Actually, these
timings do not depend on p, whence they can be compared to those from Table 9, where p
is a small prime number, and where we use the relaxed version of Bernstein’s composition
algorithm. In Table 10, we considered the same equation, using integer coefficients.

6. Suggestions for Specific Coefficient Rings

In the previous sections, we have given asymptotically fast algorithms for the manipu-
lation of formal power series over a “generic ring” C. In practice, C is usually the ring of
integers, rational numbers, floating point numbers, etc. or constructed from one of these,
by considering polynomial rings, rings of formal power series, or quotients.

On the one hand, this makes it possible to exploit the special nature of C in order to gain
additional constant factors on the complexities of the relaxed algorithms. These factors
may be considerable, but they rely on a clever use of the FFT-transform, as explained
in Section 6.1. In particular, it is time consuming to write good implementations.

On the other hand, for most of the constant fields used in practice, the size of the
nth coefficient of a series tends to grow with n. Analogously, in numerical analysis, the
precision of the nth coefficient of a series tends to decrease with n. Unfortunately, the
relaxed algorithms, more than the naive ones, tend to add coefficients of different sizes,



Relax, but Don’t be Too Lazy 525

Table 9. Time in seconds to expand the solution to (26) at various orders, using the relaxed version of
Bernstein’s algorithm and integer coefficients modulo p.

p Multiplication 100 200 500 1000 2000 5000 10 000 20 000 50 000 1 h

3 Naive 0.182 0.557 2.535 8.704 31.72 187.4 738 2923 22 198
Fast 0.326 0.894 3.444 10.597 34.23 176.7 617 2214 25 809
Truncated 0.231 0.565 1.955 5.287 14.76 56.8 162 489 3254 50 000

11 Naive 0.264 0.855 4.275 15.876 60.77 370.4 1470 15 668
Fast 0.431 1.400 5.901 19.281 66.00 358.4 1287 17 025
Truncated 0.279 0.819 2.940 8.351 24.86 96.1 287 868 31 946

37 Naive 0.483 1.678 9.988 39.336 158.56 994.5 9492
Fast 0.867 2.876 13.866 48.200 173.21 983.8 9990
Truncated 0.501 1.412 6.181 18.791 58.95 226.0 682 2132 24 601

Table 10. Time in seconds to expand the solution to (26) at various orders, using different algorithms
and integer coefficients.

Composition Multiplication 10 20 50 100 200 500 1000 2000 1 h

Naive Naive 0.018 0.055 0.433 3.129 24.942 456.09 618
Fast 0.024 0.104 0.979 6.495 47.541 1037.63 514
Truncated 0.018 0.066 0.547 3.307 22.258 344.23 596

Brent&Kung Naive 0.026 0.077 0.848 2.881 12.805 195.72 830
Fast 0.039 0.135 1.764 5.781 23.679 298.51 894
Truncated 0.028 0.091 1.342 4.747 18.764 220.00 800

Fast Naive 0.031 0.095 0.431 1.782 7.636 55.15 359.41 3487 2012
Fast 0.057 0.202 0.955 3.575 13.124 59.69 274.84 1722 2049
Truncated 0.033 0.116 0.572 2.206 8.439 47.24 229.90 1572 2307

resp. precisions, which leads to a loss of efficiency or numerical instability. This issue will
be treated in more detail in Sections 6.2 and 6.3 and some approaches will be suggested.

This section is mainly included to give some hints about how to adapt the theoretical
algorithms from the previous sections to particular, frequently used constant rings C. Our
presentation will be informal and our suggestions have still to be tried out in practice.

6.1. generalizing the fast Fourier transform

In most of the actual computer algebra systems, polynomials, vectors, matrices, etc.
over a base ring C are implemented in a generic way. Unfortunately, this approach makes
it hard to fully exploit the fast Fourier transformation.

Consider, for instance, polynomials A and B with large integer coefficients, so that
the coefficients are multiplied using the FFT. Then in order to compute AB, we may
first transform the coefficients of A and B, next multiply the transformed polynomials
and finally transform back. In this approach we only have to compute the FFT of each
coefficient of A and B once, so that we gain with respect to the generic polynomial multi-
plication algorithm. Moreover, this optimization can be used recursively for multivariate
polynomials over the integers, and each time we increase the number of variables, we
gain a constant factor with respect to the generic approach.

This example shows that we have to rethink the basic arithmetic operations for the
most elementary generic computer algebra types, in order to obtain maximal efficiency for
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large input sizes. For this purpose, let us reformulate FFT-multiplication in an abstract
way for elements A and B in a ring C.

— We first have to “transform” the ring C into ĈA,B .

— We next compute the fast Fourier transforms Â, B̂ : ĈA,B of A and B.

— We multiply Â and B̂ in ĈA,B , yielding Ĉ.

— We transform Ĉ back into the product C of A and B.

The “transformed ring” ĈA,B depends on certain characteristics of A and B, such as
size or degree. In the algorithm from Section 3.1.2, we would have ̂C[x]/(xn + 1)A,B =
C[y]/(ym + 1). The multiplication is represented schematically by the following diagram:

A,B : C
FFT−−−−→ Â, B̂ : ĈA,By×C

y×ĈA,B

AB : C
FFT−1

←−−−−− ÂB̂ : ĈA,B

It is not hard to see how such an abstract FFT-transform might be implemented for
elementary computer algebra types such as integers, floating point numbers, polynomials,
matrices, etc. However, there are three different approaches in the case of dense polyno-
mials, which are detailed below. The choice of the fastest approach may depend on the
system. A calibration function should be implemented to find the optimal one for a given
input size.

6.1.1. usual multiplication with transformed coefficients

Let C be a constant ring for which an abstract FFT-transform has been implemented
and consider the ring C[x] of dense polynomials over C. Given such a polynomial A =
Adx

d + · · ·+A0, we may transform it using

Â = Âdx
d + · · ·+ Â0 : Ĉ[x] = Ĉ[x]

and use a generic multiplication algorithm in Ĉ[x]. Of course, the precise ring Ĉ depends
on the sizes of the polynomials one wishes to multiply.

For small degrees, this approach yields the best results. For instance, the cost of mul-
tiplying two polynomials of degree 1 is strictly less than three constant multiplications
(when the coefficients have approximately the same sizes). For other small degrees n, two
polynomials can be multiplied using 2n+1 constant operations using Toom–Cook’s algo-
rithm (Toom, 1963b; Cook, 1966; Knuth, 1997). However, the overhead of this algorithm
grows rapidly, which makes this approach less interesting for higher degrees.

6.1.2. reduction to the base ring

For rings C of characteristic zero, another approach is to take

Â = Â(2N ) : Ĉ[x] = Ĉ,
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for a sufficiently large N . For example, in base 10, this corresponds to multiplying poly-
nomials as follows:

(101x+ 213)× (219x+ 173) FFT−−−−→ 101 000 212× 219 000 173y yFFT-multiply

22 119x2 + 64 120 + 36 849 FFT−1

←−−−−− 22 119 064 120 036 849

If A and B are polynomials of degree n, whose coefficients are very large and of
approximately the same size s, then the sizes of A(2N ) and B(2N ) are both approx-
imately (2n + 1)s. Hence, AB can be computed in roughly the same time as 2n + 1
coefficient multiplications. Moreover, contrary to the method from the previous section,
the additional overhead is low, even for large n.

Another advantage of the present method is that it “smoothes” the graph with the
computation time as a function of the input size. Indeed, when using FFT-multiplication,
each time that extra roots of unity are needed (i.e. when doubling the input size), a
sudden increase in the computation time is observed. The present method reduces this
phenomenon.

Remark. Notice the interesting philosophy behind the method: usually, complex prob-
lems (such as multiplying polynomials) are reduced to many small simple problems (mul-
tiplication of coefficients). Here, we rather reduce the complex problem to a huge, but
simple problem, and we make use of the fact that we have an asymptotically efficient
method for the huge simple problem.

6.1.3. multivariate fast Fourier transforms

Yet another method is based on the observation that, in order to multiply polyno-
mials in Ĉ[x], we may use the fact that the ring Ĉ already has many 2N th roots of
unity. Hence, after a first transformation Adx

d + · · · + A0 → Âdx
d + · · · + Â0 as in

Section 6.1.1, FFT-multiplication becomes interesting much earlier than for a generic
polynomial ring.

Although the multiplication scheme based on this method is slightly slower for small
degrees (for instance, we need four “constant multiplications” in order to multiply two
first degree polynomials), the method is virtually linear from then on. Especially when
multiplication in Ĉ becomes expensive with respect to the fast Fourier transformation,
this method may be an interesting alternative for moderate degrees of n.

Remark. We also suggest using this method for integer multiplication itself. Indeed,
Schönhage–Strassen’s algorithm (Schönhage and Strassen, 1971) reduces the multipli-
cation problem for integers modulo 22N

+ 1 to the problem of multiplying polynomi-
als of degrees 6 n in Z/(22n

+ 1)Z[x], where n ≈ N/2. However, for large N (that is
N ' 20 on actual machines), the modular multiplication step of numbers modulo 22n

+1
becomes far more expensive than the transformation step. For such N , we therefore sug-
gest using polynomials in Z/(22n

+ 1)Z[x, y] of degrees 6 n in x and y instead, where
n ≈ N/3.
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6.2. on the numerical instability of relaxed algorithms

In this section, we study the numerical stability of the different relaxed multiplica-
tion algorithms for power series with floating point coefficients. For this purpose, it is
important to distinguish two types of applications.

For applications to numerical analysis, such as the analytic continuation of holomorphic
functions, the coefficients are usually known with a high precision, that is, a precision
which is linearly dependent on the required expansion order. This enables us to evaluate
the series close to the origin up till a number of digits which is linearly dependent on the
expansion order. For such applications, a sublinear or even a small linear precision loss
will not change the asymptotic complexity of the evaluation of the series up till n digits.

For other applications, such as the random generation of combinatorial structures (Fla-
jolet et al., 1994; Denise et al., 1998; Denise and Zimmermann, 1999), we are interested
in the coefficients themselves and we require a given, small number of digits after the
decimal point. On the one hand, the fact that we want many terms using a low precision
makes this application vulnerable for numerical instability. On the other hand, the coef-
ficients of the series are often all positive with nice asymptotic properties in this case.
Under additional hypotheses, we may therefore hope to estimate the precision loss.

6.2.1. sources of numerical instability

There are two main sources of numerical instability when multiplying formal power
series. The first source is “massive cancellation” of coefficients, which induces the radius
of convergence of the product to be strictly larger than those of its factors. An example
is given by

tan z × cos z = sin z.
This source is intrinsic and no particular numerical multiplication method will be able
to avoid it.

The second source of numerical instability is encountered, when coefficients of different
magnitudes are added up in order to speed up the product computation. Consider, for
instance, the computation of

P = (1.000 · 100 + 1.000 · 10−5z)× (1.000 · 100 + 1.000 · 10−5z)

using DAC-multiplication:

1.000 · 100 = (1.000 · 100)× (1.000 · 100)
1.000 · 10−10 = (1.000 · 10−5)× (1.000 · 10−5)

1.000 · 100 = (1.000 · 100 + 1.000 · 10−5)× (1.000 · 100 + 1.000 · 10−5).

We obtain
P = 1.000 · 100 + 0.000 · 100z + 1.000 · 10−10z2.

Hence, the addition 1.000 · 100 + 1.000 · 10−5 is responsible for the precision loss.

6.2.2. increasing the numerical stability

In the frequent case when we multiply convergent power series f and g, we can often
avoid this problem by “normalizing” blocks fi···i′ and gj···j′ (with l = i′ − i = j′ − j)
of successive coefficients before multiplying them. Indeed, in the convergent case, the
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exponents of the coefficients fi, . . . , fi′−1 resp. gj , . . . , gj′−1 usually approximately form
an arithmetic progression, i.e. log |fk| ≈ log |fi|+α(k− i), for some α and all i 6 k < i′.

Hence, by looking at these exponents, we determine the “least approximate minimal
radius of convergence” r̃ of f and g: for certain constants F and G we have

fk 6 F/r̃k (i 6 k < i′);
gk 6 G/r̃k (j 6 k < j′),

where the inequalities are (approximate) equalities for at least one k and l, and for at
least two k or l. Now we compute

h0 + · · ·+ h2l−1 = (fi + · · ·+ fi′−1r̃
l−1zl−1)× (gj + · · ·+ gj′−1r̃

l−1zl−1)

using any fast multiplication algorithm for polynomials. Then

fi···i′gj···j′ = h0 + · · ·+ h2l−1

r̃2l−1
z2l−1.

This way of computing fi···i′gj···j′ increases the numerical stability. For instance, in the
example from the previous section, we get r̃ = 1.000 · 105 and

h = 1.000 · 100 + 2.000 · 100z + 1.000 · 100z2;
fg = 1.000 · 100 + 2.000 · 10−5z + 1.000 · 100z−10.

Remark. Considering a finite number of coefficients fi···i′ , the “approximate radius of
convergence” of a series f may, for instance, be computed in linear time, by “traversing”
the convex envelope of the logarithms of these coefficients and retaining the longest
segment. A slower, but more stable method is obtained by maximizing the quantity

i′−1∑
k=i

C|fk/r̃
k|

among all C > 0 and r̃ > 0 with
i′−1
max
k=i

C|fk/r̃
k| = 1.

It would be interesting to find a fast and stable compromise between these two extremes.

6.2.3. series with positive coefficients and error estimations

In the case when all series we consider have positive coefficients, which is frequently the
case in combinatorics and the analysis of algorithms, it is often possible to obtain precise
error estimations for the various relaxed algorithms for multiplication and composition.

Let B be the number of significant bits with which we compute. In what follows, when
approximating a real number x̃ by a floating point number x = M ·2E (with 1

2 6 M < 1),
we will denote by δx the “normalized relative error” we commit, so that

x̃− δx2E−B 6 x 6 x̃+ δx2E−B .

For small errors (that is δx 6 2B/2), we then have

δx+y 6 max(δx, δy) + 2; (27)
δxy 6 δx + δy + 2, (28)

for positive floating point numbers x and y.
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Naive lazy algorithms. Let us first consider the case of a system of differential equa-
tions, which has been put into integral form f1(z)

...
fr(z)

 =
∫  P1(f1, . . . , fr)

...
Pr(f1, . . . , fr)

 , (29)

where P1, . . . , Pr are polynomials with positive coefficients. Then we can expand the
solutions using the lazy power series technique. Let fi,n denote the nth coefficient of fi.
Then the equations (27) and (28) yield

δfi,n 6 max
n1+···+nr=n−1

r∑
j=1

δfj,nj
+O(n), (30)

for each i, since coefficients of the Pi and the initial conditions fi,0 have bounded nor-
malized relative errors. Consequently, putting En = max16i6r δfi,n , we have

En 6 max
n1+···+nr=n−1

r∑
j=1

Ej +O(n). (31)

It follows that En = O(n2). This shows that the number of erroneous bits in fi,n grows
only logarithmically with n.

For functional equations which involve composition, we get similar bounds. For instance,
if we compute (f ◦ (zg))n using Horner’s rule:

(f ◦ (zg))n = f0 + zg(f1 + zg(f2 + · · ·+ zg(fn) · · ·)),

we obtain
δ(f◦(zg))n

6 max
i+j1+···+jk=n

δfi
δgj1

+ · · ·+ δgjk
+O(n2).

Hence, (30) would now become

δfi,n
6 max∑

nj,k=n−1

∑
j,k

δfj,nj,k
+O(n2),

and we would rather get En = O(n3), which still ensures a logarithmic growth of the
number of erroneous bits in the result. For the fast relaxed composition algorithms, a
similar growth of the error can be proved, since the symbolic application of the algorithm
yields the nth coefficient of f ◦ g as an expression in f0, . . . , fn, g1, . . . , gn and positive
rational numbers, using sums and products only.

Fast relaxed multiplication. Let f and g be convergent power series with positive
coefficients. Denoting by rf and rg the convergence radii of f and g, we define

εf (n) = 1
n log2 fn + log2 rf ;

εg(n) = 1
n log2 gn + log2 rg.

Let us make the “convexity hypothesis” that the sequences εf (n) and εg(n) are convex
or concave for sufficiently large n (all four combinations being possible). This is, in
particular, the case if the coefficients fn and gn admit asymptotic equivalents in Hardy
fields, such as

fn ∼ C(log n)αnβr−n
f .
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We will study the numerical stability of the fast relaxed multiplication algorithm, assum-
ing that we use the normalization procedure from Section 6.2.2.

Let us first assume that rf = rg and consider the multiplication fi···i′ × gj···j′ with
the notations from Section 6.2.2. The convexity hypothesis implies that the exponents
of the normalized coefficients are dominated by O(|εf (i′)| + |εg(j′)|). Consequently, we
lose O(|εf (i′)| + |εg(j′)|) extra bits of precision in the multiplication fi···i′ × gj···j′ with
respect to the naive method. This leads to the error estimation

δ(fg)n
6 max

i+j=n
δfi

+ δgj
+ 2O(|εf (n)|+|εg(n)|) +O(n)

for the coefficients of the product fg. This estimation remains valid in the case when rf <
rg (or rf > rg), because the extra precision loss in the multiplications is compensated by
the exponential decrease of the coefficients of g with respect to those of f (see also the
next paragraph).

Now reconsider the system of differential equation (29). Assume that the convexity
hypothesis is verified for all series g encountered in the relaxed expansion process and let
ε(n) be the sum of the corresponding |εg(n)|. Then equation (30) become

δfi,n
6 max

n1+···+nr=n−1

r∑
j=1

δfj,nj
+ 2ε(n) +O(n) (32)

and we obtain

En = O(2ε(n) + n2). (33)

Indeed ε is ultimately monotonic (by the convexity hypothesis), so that either 2ε(n) =
O(n), or 2ε(n) increases towards infinity.

Intuitively speaking, (33) means that the precision loss is proportional to the asymp-
totic behaviour near the most violent dominant singularity encountered in the expansion
process. In particular, if all these singularities are algebraic (such as in Example (24)),
then the precision loss remains logarithmic. This result generalizes to the case of more
general functional equations, as in the case of naive multiplication. Finally, a similar
growth of the error may be expected in the general case when the coefficients are no
longer positive. Indeed, the main obstruction to such a behaviour is massive cancellation
of coefficients, which occurs only in very specific situations.

Unequal radii of convergence. Assume that we want to multiply two series f and g
with unequal radii rf < rg of convergence, which satisfy the convexity hypothesis. Then
fn/gn decreases exponentially. We will indicate how to use this observation in order to
obtain a multiplication algorithm for f with g of time complexity O(n).

During the expansion process of f (resp. g), we heuristically compute its approximate
convergence radius r̃f , based on the knowledge of the first n coefficients. This may, for
instance, be done efficiently by updating r̃f , each time that n becomes a power of two,
by applying a similar algorithm as in Section 6.2.2 on the coefficients fn/2, . . . , fn−1.
Simultaneously, at each stage n, we update a bound Cf (resp. Cg), such that fi 6 Cf r̃

−i
f

for all i < n. By the convexity hypothesis, r̃f will tend to the convergence radius rf of f
for large n.

When computing the nth coefficient of fg (say by the naive algorithm for simplicity),
we now sum fn−igi for i running from 0 to n, where we stop the summation process as
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soon as ∑
j>i

fn−jgj 6 CfCg r̃
n
f

(r̃f/r̃g)i

1− (r̃f/r̃g)

is smaller than 2−B(fng0 + · · ·+ fn−(i−1)g
i−1). Assuming the convexity hypothesis, the

summation process stops for i = O(1), when n tends to infinity. Consequently, we obtain
a linear time algorithm. Modulo some care, the trick may be adapted to relaxed multi-
plication.

6.3. power series in several variables

6.3.1. representation of power series in several variables

In principle, multivariate power series can be implemented recursively as univariate
power series with multivariate power series coefficients. Unfortunately, this way has two
disadvantages. First, the generalized fast Fourier transformation from Section 6.1 cannot
be fully exploited. Secondly, the truncation orders of the coefficients of, say, a bivariate
power series are not necessarily constant. For instance, given f =

∑
j fjz

j
2 and fj =∑

i fj,iz
i
1 for each j, we may need 10 terms of f5 and only five of f10. This may lead to a

phenomenon which is analogous to the “precision loss” phenomenon from Section 6.2.1:
adding numbers with different orders of growth is equally as harmful as adding power
series with different truncation orders.

By analogy with ordinary multivariate polynomials, one may also be tempted to con-
sider sparse multivariate power series. Of course, most natural operations on power series
like inversion or exponentiation do not preserve sparseness. Nevertheless, during the
referee process of this paper, we became aware of the existence of asymptotically fast
algorithms for multiplying sparse multivariate polynomials (Canny et al., 1989). In Sec-
tion 6.3.5, we will show that these ideas also have applications in our setting.

Multivariate power series f(z1, . . . , zd) can be truncated in many ways. For applications
in numerical analysis, we are usually interested in evaluating f . Hence, we need the
coefficients fn1,...,nd

with

α1n1 + · · ·+ αdnd < N,

where N is proportional to the required precision and α1, . . . , αd > 0 depend on the
evaluation point and the domain of convergence of f . For applications in combinatorics
and the analysis of algorithms, we are often interested in certain specific coefficients of
f only. Nevertheless, the computation of such a coefficient fn1,...,nd

usually amounts to
the computation of all “previous” coefficients fk1,...,kd

with k1 6 n1, . . . , kd 6 nd.
We therefore suggest implementing multivariate power series by an abstract class

Multivariate Series(C) whose representation class is given by

Class. Multivariate Series Rep(C)
ϕ : Multivariate TPS(C)
I : Multivariate Dense Set
virtual compute : Array(Integer)→ C
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Here

— Instances of Multivariate Dense Set are subsets of Nd with “a dense flavour”: in our
case, I will always be the initial segment of already computed coefficients, i.e. if
(n1, . . . , nd) ∈ I and 0 6 m1 6 n1, . . . , 0 6 md 6 nd, then (m1, . . . ,md) ∈ I.

— Instances of Multivariate TPS(C) are “multivariate truncated power series”. The
analogue of ]ϕ is an instance Φ ⊇ I of Multivariate Dense Set, called the domain of
ϕ. Then ϕ associates a coefficient in C to each element of Φ.

— The (private) method compute computes the (n1, . . . , nd)th coefficient of the
series, while assuming that all previous coefficients have already been computed.
As in the univariate case, the corresponding public method makes sure that all
previous coefficients are computed.

Remark. As we will see in Section 6.3.4, it is convenient not to assume that instances
of Multivariate Dense Set are necessarily initial segments.

6.3.2. truncated multiplication

The zealous multivariate truncated multiplication problem can be stated as follows:
given two multivariate truncated series f, g : Multivariate TPS(C) and a dense subset
H : Multivariate Dense Set of Nd, how to compute the restriction h = f ×H g of f × g to
H efficiently? That is, how to compute the coefficients (f × g)n, with n ∈ H?

Let F and G denote the domains of f and g. The naive approach consists of computing
h using the formula

h =
∑

(n,m)∈F×HG

fngm,

where
F ×H G = {(n,m) ∈ F ×G|n+m ∈ H}.

For most domains F,G and H, the time complexity of this computation is bounded by
O(|F ×H G|), where |F ×H G| denotes the cardinality of F ×H G. The worst case time
complexity of a sufficiently clever implementation of the naive algorithm is bounded by

O(min(|F | |G|, |F | |H|, |G| |H|) + |H|).

The “fully dense” approach consists of changing f and g into f and g by inserting zero
terms, so that the enlarged domains F and G of f and g are blocks of the form

(a1 · · · b1)× · · · × (ad · · · bd).

Here i · · · j denotes {i, . . . , j− 1}. Next, we apply an asymptotically fast dense algorithm
as described in Section 6.1 for the multiplication f × g and we truncate the result.

Unfortunately, the fully dense approach is extremely inefficient for certain domains
F,G and H in the multivariate case, because the ratio

ρ =
|F | |G|
|F ×H G|

(34)

may become more important than the gain we obtain by using FFT-multiplication. Con-
sider, for instance, the important special case when

F = G = H = {(n1, . . . , nd) ∈ Nd|n1 + · · ·+ nd 6 N},
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for some N > 0. Let ρd,N denote the ratio (34) for given d and N . For large N , it can
be checked that ρd,N tends to a constant ρd given by

ρ2 = 24;
ρ3 = 1080;

ρd ∼
4dd!2

2
√
πd
, for d→∞.

Hence, even for d = 2, we lose a very important factor with respect to the naive algorithm,
for small values of N .

6.3.3. a compromise between naive and fully dense multiplication

In this section, we sketch a truncated multivariate multiplication algorithm, which is a
compromise between the naive and the fully dense algorithms from the previous section.
Our algorithm will never be more than a fixed small constant factor slower than the naive
algorithm, but it will fully exploit FFT-multiplication if F,G and H are blocks.

Our algorithm will be recursive on the dimension d. We decompose the truncated series
f and g as follows:

f = fzqd

d = (f0 + · · ·+ fk−1z
(k−1)pd

d )zqd

d ;

g = gzrd

d = (g0 + · · ·+ gl−1z
(l−1)pd

d )zrd

d ,

where pd > 1, qd and rd will be chosen heuristically and where f and g are series in
z1, . . . , zd−1, zd = zpd

d , whose coefficients are polynomials of degrees < pd in zd.
Assuming that we have computed pd, qd and rd, our truncated multiplication algorithm

now consists of the following steps, which will be detailed below.

1. Compute f and g with domains F and G.
2. Compute the “closure” H of H.
3. Compute the truncated product h = f ×H g using

hn =
∑

ı+=n

f ı ×Hn
g,

where Hn = {(n1, . . . , nd−1) ∈ Nd−1|(n1, . . . , nd−1, n) ∈ H}.
4. Recover the product h = f ×H g from h.

Step 1 is easy. For instance, the domain of f is determined by (n1, . . . , nd−1, nd) ∈ F , if
and only if there exists an nd with pdnd 6 nd − qd < pdnd + pd and (n1, . . . , nd) ∈ F .
As to H, we take (n1, . . . , nd−1, nd) ∈ H if and only if there exists an nd with pdnd 6
nd−qd−rd < pdnd +2pd−1 and (n1, . . . , nd) ∈ H. Indeed, the degrees of the coefficients
of h in zd are strictly bounded by 2pd − 1 and not merely by pd. In order to recover
hn1,...,nd

, we therefore should add up (hn1,...,nd−1,nd
)i and (hn1,...,nd−1,nd−1)i+pd

, where
nd and 0 6 i < pd satisfy nd − qd − rd = pdnd + i.

Let us now show how to compute pd and qd. We assume that given pd, we have
an algorithm which rapidly estimates the running time of the multiplication algorithm.
The computation of such an estimation will take much time if pd is small and little
time when pd is large. The idea is now to compare the estimated running times for
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decreasing values of pd and to stop the search of an optimal pd as soon as smaller
values of pd yield larger estimated running times. More precisely, we start with pd =
min(span F, span G, span H), where

span S = max
(n1,...,nd)∈S

nd − min
(n1,...,nd)∈S

nd + 1 > 0.

Next, we decrease pd by factors of two (pd := dpd/2e). Finally, qd and rd are chosen such
that span F , span G and span H are as small as possible.

6.3.4. relaxed multiplication of multivariate power series

Let us now sketch the multivariate analogue of the fast truncated relaxed multiplication
algorithm from Section 4.4.2. Let f and g denote the series we want to multiply and let
h be their product. We will first assume that we have fixed upper bounds F,G,H :
Multivariate Dense Set for the coefficients of f, g and h that we want to compute. These
upper bounds coincide with the domains of f.ϕ, g.ϕ and h.ϕ.

We observe that, essentially, the fast univariate relaxed algorithm from Section 4.3.1
is based on a partition

N2 =
∐
n∈N

Sn =
∐
n∈N

∐
α∈An

Sn,α, (35)

where the Sn,α are square blocks of the form (i · · · i+ l)× (j · · · j + l):

S1 = (0 · · · 1)× (0 · · · 1);
S2 = (0 · · · 1)× (1 · · · 2)q (1 · · · 2)× (0 · · · 1);
S3 = (0 · · · 1)× (2 · · · 3)q (2 · · · 3)× (0 · · · 1)q

(1 · · · 3)× (1 · · · 3);
S4 = (0 · · · 1)× (3 · · · 4)q (3 · · · 4)× (0 · · · 1);
S5 = (0 · · · 1)× (4 · · · 5)q (4 · · · 5)× (0 · · · 1)q

(1 · · · 3)× (3 · · · 5)q (3 · · · 5)× (1 · · · 3);
...

Now at the nth stage, the algorithm consists of computing the contribution∑
α∈An

∑
(i,j)∈Sn,α

figjz
i+j

of all blocks Sn,α to fg.
In the multivariate case, we do a similar thing: we partition (Nd)2 by

(Nd)2 =
∐

(n1,...,nd)∈Nd

S(n1,...,nd)

=
∐

(n1,...,nd)∈Nd

∐
(α1,...,αd)∈A(n1,...,nd)

S(n1,...,nd),(α1,...,αd)

=
∐

(n1,...,nd)∈Nd

∐
(α1,...,αd)∈An1×···×And

ϕ(Sn1,α1 × · · · × Snd,αd
),

where ϕ is the natural isomorphism from (N2)d onto (Nd)2. Then each S(n1,...,nd),(α1,...,αd)
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is the product of two d-dimensional blocks

S(n1,...,nd),(α1,...,αd) = B(n1,...,nd),(α1,...,αd) × C(n1,...,nd),(α1,...,αd).

When we ask for the (n1, . . . , nd)th coefficient of h, the multivariate truncated relaxed
multiplication algorithm now computes all truncated products

(B(n1,...,nd)∩F ),(α1,...,αd) ×H (C(n1,...,nd)∩G),(α1,...,αd)

by the zealous algorithm from the previous section and adds these contributions to h.ϕ.
Until now, we assumed that F,G and H remained fixed throughout the execution, as

is often the case in practice. Sometimes however, these domains have to be increased
dynamically, say into F̂ , Ĝ and Ĥ. Whenever this happens, it suffices to add all products

(B(n1,...,nd),(α1,...,αd) ∩ (F̂\F )) ×H (C(n1,...,nd),(α1,...,αd) ∩G),

(B(n1,...,nd),(α1,...,αd) ∩ F̂ ) ×H (C(n1,...,nd),(α1,...,αd) ∩ (Ĝ\G)) and

(B(n1,...,nd),(α1,...,αd) ∩ F̂ ) ×Ĥ\H (C(n1,...,nd),(α1,...,αd) ∩ Ĝ)

to h.ϕ, where (n1, . . . , nd) runs over all already computed coefficients in h.I. Notice
that F̂\F , Ĝ\G and Ĥ\H are not necessarily initial segments; this explains why it is
convenient to allow the instances of Multivariate Dense Set to be general subsets of Nd.

6.3.5. fast truncated multiplication of multivariate power series

Let us again consider the case when we want to find all coefficients hn1,...,nd
of a power

series h = fg in d variables with

α1k1 + · · ·+ αdkd < n,

where α1, . . . , αd > 0 and n > 0. Without loss of generality, we may assume that
min{α1, . . . , αn} = 1 and we call

degα P = max{α1k1 + · · ·+ αdkd|Pk1,...,kd
6= 0}

the total α-degree of a polynomial P ∈ C[z1, . . . , zd]. As we stressed before, this particular
case is frequently encountered when we want to evaluate multivariate power series. Our
aim is to design an algorithm which remains fast when both d and n become moderately
large, such as d ≈ 5 and n ≈ 10. Throughout this section, we assume that Z ⊆ C.

In Canny et al. (1989), a fast algorithm has been given for the multiplication of sparse
multivariate polynomials. The key-ingredients of this algorithm are evaluation in prime
powers and interpolation:

Theorem 13. Let P (z1, . . . , zd) = c1M1 + · · ·+ ctMt be a polynomial, which is a linear
combination of t monomials. Let p1, . . . , pd be distinct prime numbers. Then

a. The P (pi
1, . . . , p

i
d) may be evaluated for i ∈ {0, . . . , t− 1} in time O(M(t) log t).

b. The polynomial P can be recovered from the P (pi
1, . . . , p

i
d) with i ∈ {0, . . . , t− 1} in

time O(M(t) log t).

Remark. In the theorem it is implicitly assumed that the evaluations Mi(pi
1, . . . , p

i
d)

for i ∈ {1, . . . , t} can be performed in time O(M(t) log t). This is usually the case, if the
degrees of the Mi are not too high w.r.t. t.
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From the theorem it follows that if P and Q are polynomials, which are linear combi-
nations of monomials in finite sets A resp. B, then the product PQ can be computed in
time O(M(t) log t), where t = |AB| is the cardinal of the set AB of all possible products
of elements in A with elements in B. In particular, if t∗n denotes the maximal num-
ber of terms in a polynomial of total α-degree < n, then the product of two arbitrary
polynomials P and Q can be computed in time O(M(t∗degα PQ) log t∗degα PQ).

We will now simplify and generalize an algorithm from Lecerf and Schost (2001).
Assume that we want to multiply two truncated multivariate power series f and g of
total α-degrees < n. Multiplying these series as polynomials and truncating afterwards
has a bad complexity, which involves a factor 2d. Therefore, we rather decompose the set
S∗

n of all monomials of total degree < n in slices

S∗
n = S0 q · · · q Sn−1,

where

Si = S∗
i+1\S∗

i

for each i. This leads to the decomposition

f = f0 + · · ·+ fn−1

of f , where

fi =
∑

z
k1
1 ...z

kd
d ∈Si

fk1,...,kd
zk1
1 . . . zkd

d

for each i. We have similar decompositions for g and fg. Since SiSj ⊆ Si+j q Si+j+1 for
all i and j, we have

t
def= |S0Sn ∪ S1Sn−1 ∪ · · · ∪ SnS0| 6 |Sn−1 ∪ Sn|.

Since 1 ∈ {α1, . . . , αn}, we also have |Si| 6 |Sj | whenever i 6 j. Therefore, |S0Si ∪
S1Si−1 ∪ · · · ∪ SiS0| 6 t for all i < n.

The multiplication algorithm now goes as follows:

1. Compute ai,j = fi(p
j
1, . . . , p

j
d) and bi,j = gi(p

j
1, . . . , p

j
d) for all i < n and j < t.

2. Denote aj(z) = a0,j + · · ·+ an−1,jz
n−1 and bj(z) = b0,j + · · ·+ bn−1,jz

n−1 for each
j < t. Compute the truncated power series products cj(z) = aj(z)bj(z) at order n
and denote cj(z) = c0,j + · · ·+ cn−1,jz

n−1 for each j < t.

3. For each i < n, compute polynomials (h∗)i and (h∗)i, which are linear combinations
of monomials in Si resp. Si+1, such that ci,j = ((h∗)i + (h∗)i)(p

j
1, . . . , p

j
d) for all

j < t. Return (h∗)0 + [(h∗)0 + (h∗)1] + · · ·+ [(h∗)n−2 + (h∗)n−1].

The first step can be accomplished in time O(nM(t) log t) by Theorem 13(a). The second
step can be done in time O(tM(n)), by using a standard fast multiplication algorithm.
The final interpolation step can again be accomplished in time O(nM(t) log t) by Theo-
rem 13(b). Indeed, in this step, (h∗)i + (h∗)i is actually a linear combination of at most
t monomials in S0Si ∪ S1Si−1 ∪ · · · ∪ SiS0. Placing ourselves in the non-pathological
case when nt = O(dt∗n) and n = O(t) (we recall that t∗n = |S∗

n|), this leads to an
O(dM(t∗n) log t∗n) time complexity bound for our truncated multiplication algorithm.
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Remark. Actually, Lecerf and Schost (2001) deals with the special case when α1 =
· · · = αd = 1. Their work yields a time complexity bound of the form O(M(t∗n) log2 t∗n).
Notice that SiSj = Si+j for all i and j in this case, whence t = |Sn−1|.

The truncated multiplication algorithm can be adapted to the relaxed setting, if we
assume that the computation of terms of α-degree ν of the factors f and g only requires
the computation of terms of α-degrees < ν of the product fg. This is done by generalizing
the above algorithm to the computation of products of the form (fi+· · ·+fi+l−1)(gj+· · ·+
gj+l−1). Working this out carefully leads to a truncated relaxed multiplication algorithm
of complexity O(dM(t∗n) log2 t∗n).

Remark. In practice, Theorem 13 only becomes efficient for very large t. Furthermore,
the evaluation in high powers of the pj may lead to expression growth in the coefficient
ring C. When computing over Z (for instance), it is therefore recommended to replace
the computations in Z[z1, . . . , zd] by computations in a polynomial ring of the form
Fq[x, z1, . . . , zd]. Here q is a not too large prime number (say q ≈ 232 or q ≈ 264) and
we have rewritten the integer coefficients of the original polynomials as polynomials in
x ≈

√
q/t with coefficients in {1−dx/2e, . . . , bx/2c}. The evaluation and interpolation is

now done at points of the form (pi
0, . . . , p

i
d), for suitable p1, . . . , pd ∈ Fq such that there

are no non-trivial identities pk0
0 · · · p

kd

d = 1 for small |k0|, . . . , |kd|.

7. Conclusion

In this paper, we have shown that all classical fast zealous algorithms for manipulating
formal power series admit relaxed analogues of the same asymptotic complexity up to a
factor O(log n). Theoretically speaking, this allows us to expand power series solutions
to (partial) differential equations with almost linear time complexities and solutions to
differential-composition equations with an almost O(n3/2) complexity.

We have also pointed out that it is hard to conceive implementations in actual computer
algebra systems, which adequately reflect these asymptotic time complexities. This is
mainly due to the absence of fast arithmetic in such systems, such as DAC- and FFT-
multiplication. An interesting, but perverse consequence of the lack of such arithmetic,
is that comparisons between certain algorithms on the basis of benchmarks may be
misleading (e.g. see our remarks about Table 5).

Another difficulty for actual implementations is that there seems not to be a best
overall relaxed multiplication algorithm (see Section 4.4). Nevertheless, for applications
where the expansion order is known in advance, i.e. when computations need not be
resumed, the fast truncated relaxed algorithm (see Sections 4.4.2 and 6.3.4) often turns
out to be the fastest. In general, we expect that the best performance is obtained by a
hybrid algorithm, which selects between different expansion methods as a function of the
origin of the series (general, algebraic, holonomic, etc.), the constant field, the expansion
order and the possibility to resume computations. Of course, such a hybrid algorithm is
also the longest one to implement.

Despite the above drawbacks of the relaxed approach, our benchmarks show that
for large expansion orders, we systematically gain with respect to the lazy approach.
In certain cases (see Tables 8–10) these gains become very important and may exceed
a factor of 100. In the future, these factors are expected to increase more and more,
since processor speed and memory capacity tend to increase proportionally and powerful
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implementations of the FFT-transform might eventually show up. We also notice that the
relaxed algorithms tend to be faster than Brent and Kung’s algorithm for exponentiation
and the resolution of differential equations (see Table 4).

Having summarized the advantages and disadvantages of the relaxed approach, we will
conclude this section by a discussion of its fitness for different types of applications, with
some suggestions for those who want to implement a power series library into a computer
algebra system, and some final general remarks.

7.1. applications

Symbolic computation. The pertinence of the relaxed approach for general applica-
tions in symbolic computation depends strongly on the problem. On the one hand, mul-
tiplication of large symbolic expressions will tend to be slow (which favours the relaxed
approach). On the other hand, often only few terms are required (which favours the lazy
approach).

Combinatorics and the analysis of algorithms. In combinatorics, the analysis of
algorithms and for the random generation of combinatorial objects, one usually needs to
expand generating functions up to a high order. Therefore, this is an ideal application
for relaxed power series (Flajolet et al., 1990). In this context, multivariate power series
correspond to the study of parameters in enumeration problems or the analysis of a
certain algorithm (Soria, 1990).

Numerical analysis. In numerical analysis, power series are mainly computed in order
to be evaluated. The required number of terms usually depends linearly on the required
precision of the evaluation. Usually, in the absence of numerical instability only a few
terms suffice and constant multiplications will be very efficient. Therefore, only small
speed-ups can possibly be achieved using the relaxed approach, at the price of massive
inlining.

On the other hand, near singularities, analytic continuation algorithms may become
numerically unstable and higher precisions and expansion orders might be required. The
numerical resolution of partial differential equations is another possible application of
the relaxed approach.

7.2. suggestions for implementors

The choice of which algorithms to implement in a power series package should mainly
depend on the applications one has in mind and the time one is willing to spend. Roughly
speaking, we would like to distinguish three choices:

A simple quickly implemented package. If you have little time and are not inter-
ested in applications where high expansion orders are needed (such as combinatorics and
the analysis of algorithms), you are probably better off with a quickly implemented lazy
power series package.
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Boosting your simple package. If you have some more time and you want to boost
the performance of a lazy power series package for large expansion orders, then you
may replace your multiplication procedure with the algorithm from Section 4.3.1. You
may also implement one or more relaxed composition algorithms from Section 5 and a
holonomic function package. On the other hand, it seems not necessary to implement the
fast zealous algorithms from Section 3, since the relaxed algorithms are almost as fast
and offer the possibility of solving virtually all functional equations.

Developing an optimal package. If you really want optimal speed and/or genericity,
then we suggest to first implement a package for really fast dense arithmetic based on the
FFT-transform (as described in Section 6.1). Next, we suggest you carefully implement
hybrid relaxed truncated multiplication and composition algorithms, which are both effi-
cient for small sizes (due to massive inlining) and larger sizes (due to the asymptotically
fast zealous arithmetic).

7.3. final remarks

Other infinite structures. In principle, the relaxed approach may be applied to other
valuation rings with fast zealous arithmetic, such as the p-adic numbers (Bernardin,
1998).

Generalized series and transseries. The lazy approach also applies in the case of
power series with generalized exponents (Salvy, 1991). In general, the relaxed approach
does not lead to faster algorithms, because of the lack of fast arithmetic for polynomials
with generalized exponents. Nevertheless, if the exponents are grid-based (i.e. they belong
to a set of the form a+ b1N + · · ·+ bnN, where a ∈ R and b1, . . . , bn ∈ R+

∗ ), then we are
essentially handling power series in several variables, so we can gain on the complexity.
For applications, see Richardson et al. (1996) and van der Hoeven (1997a).

Computing specific terms. For certain very particular power series, it is possible
to compute given coefficients without computing the previous ones, usually by using
Lagrange’s inversion formula (Brent and Kung, 1978).

Modular arithmetic. In computer algebra, modular arithmetic is often used to speed
up computations with integers. For our application, modular algorithms may be interest-
ing for parallelization purposes and in order to reduce the memory requirements if we are
merely interested in a particular coefficient of the series. Notice that modular arithmetic
enters in the general scheme for fast arithmetic as described in Section 6.1.

Parallelism. Except for the zealous algorithms from Section 3, lazy and relaxed algo-
rithms have the disadvantage of being essentially sequential. Nevertheless, the fast relaxed
multiplication algorithm is closer to being parallel, since the zealous multiplications might
be done in parallel modulo a proper synchronization. We also notice that it is often pos-
sible to parallelize the ring operations for C.
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Mixing zealous and relaxed multiplication. Consider the multiplication h = f × g
of two relaxed power series. Sometimes, the arguments f and g do not depend on h. In
this case, a zealous algorithm may be used for the multiplication. It can also happen that
f depends on h, but not g. In this case, it is possible to improve the constant factor for
the relaxed multiplication by choosing a more appropriate partition of N2 instead of (35).

Other operations on formal power series. Some other operation on formal power
series may be considered, such as

f(z) 7→
∑
k>1

φ(k)
k

log
1

1− f(zk)
,

which corresponds to taking cycles of combinatorial structures (Flajolet and Soria, 1991).
Other interesting operations are functional iteration (Brent and Traub, 1980) and com-
position of multivariate power series (Brent and Kung, 1977). It seems that the relaxed
approach applies to these and other operations, although this should be checked in greater
detail.
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