
Parallelization of Triangular Decompositions

Marc Moreno Maza & Yuzhen Xie

Ontario Research Centre for Computer Algebra (ORCCA)

University of Western Ontario, Canada

SHARCNET Fall Workshop 2006, Waterloo

1

Solving polynomial systems symbolically . . .

• Polynomial systems :

– systems of non-linear algebraic (or differential) equations,

– solving them is a fundamental problem in mathematical sciences,

– which is hard for both numerical and symbolic approaches.

• Symbolic solving :

– provides exact answers,

– but suffers from expression swell.

• Applications of symbolic solving :

– increasing number of applications (cryptology, robotics, geometric

modeling, dynamical systems in biology, . . .)

– can now compete with numerical solving (real solving)

– sometimes, this is the only way to go (parametric solving, solving

over finite fields).

2

Solving polynomial systems . . .














x2 + y + z = 1

x + y2 + z = 1

x + y + z2 = 1

The output with phc the symb.-num. software of J. Verschelde:

solution 1 : start residual : 3.968E-12 #iterations : 1 success

x : 9.99999695984909E-01 4.13938269379988E-07

y : 3.04015091103714E-07 -4.13938269379988E-07

z : 3.04015090976779E-07 -4.13938269379988E-07

== err : 2.154E-06 = rco : 1.197E-07 = res : 9.920E-13 = complex regular ==

solution 2 : start residual : 1.388E-16 #iterations : 1 success

x : 4.14213562373095E-01 2.35098870164458E-38

y : 4.14213562373095E-01 -1.67507944992176E-37

z : 4.14213562373095E-01 1.29304378590452E-37

== err : 7.517E-16 = rco : 6.017E-02 = res : 5.551E-17 = real regular ==

solution 3 : start residual : 2.400E-12 #iterations : 1 success

x : 1.80048038888678E-08 4.29782537417684E-07

y : 9.99999981995196E-01 -4.29782537417684E-07

z : 1.80048038262633E-08 4.29782537417684E-07

== err : 1.344E-06 = rco : 7.463E-08 = res : 5.995E-13 = complex regular ==

3

solution 4 : start residual : 9.614E-13 #iterations : 1 success

x : 1.00000024904061E+00 -3.93267692590196E-08

y : -2.49040612161639E-07 3.93267692590197E-08

z : -2.49040612108234E-07 3.93267692590197E-08

== err : 8.657E-07 = rco : 4.806E-08 = res : 2.400E-13 = complex regular ==

solution 5 : start residual : 2.745E-12 #iterations : 1 success

x : 3.58839953269127E-07 1.89357516639334E-07

y : 3.58839953269127E-07 1.89357516639334E-07

z : 9.99999641160047E-01 -1.89357516639334E-07

== err : 1.645E-06 = rco : 7.071E-08 = res : 6.863E-13 = complex regular ==

solution 6 : start residual : 1.744E-34 #iterations : 1 success

x : -2.41421356237309E+00 0.00000000000000E+00

y : -2.41421356237309E+00 0.00000000000000E+00

z : -2.41421356237309E+00 -1.00577224408752E-106

== err : 3.611E-35 = rco : 4.142E-01 = res : 6.868E-106 = real regular ==

solution 7 : start residual : 1.112E-12 #iterations : 1 success

x : -2.64786238552867E-07 -4.67724648385200E-08

y : -2.64786238552867E-07 -4.67724648385200E-08

z : 1.00000026478624E+00 4.67724648385200E-08

== err : 9.341E-07 = rco : 4.530E-08 = res : 2.779E-13 = complex regular ==

solution 8 : start residual : 2.045E-12 #iterations : 1 success

x : 1.42636460554469E-07 -3.16738323586431E-07

y : 9.99999857363539E-01 3.16738323586431E-07

z : 1.42636460467758E-07 -3.16738323586431E-07

== err : 1.378E-06 = rco : 7.656E-08 = res : 5.117E-13 = complex regular ==

===

A list of 8 solutions has been refined :

Number of regular solutions : 8.

Number of singular solutions : 0.

Number of real solutions : 2.

Number of complex solutions : 6.

Number of clustered solutions : 0.

Number of failures : 0.

4

Solving polynomial systems symbolically . . .















x2 + y + z = 1

x + y2 + z = 1

x + y + z2 = 1

has Gröbner basis :



























z6 − 4z4 + 4z3 − z2 = 0

2z2y + z4 − z2 = 0

y2 − y − z2 + z = 0

x + y + z2 − 1 = 0

and triangular decomposition :















z = 1

y = 0

x = 0

⋃















z = 0

y = 1

x = 0

⋃















z = 0

y = 0

x = 1

⋃















z2 + 2z − 1 = 0

y = z

x = z

5

Processor P0

x2 + y + z = 1

x + y2 + z = 1

x + y + z2 = 1

Processor P1

z = 1

y = 0

x = 0

Processor P2

z = 0

y = 1

x = 0

Processor P3

z = 0

y = 0

x = 1

Processor P4

z2 + 2z − 1 = 0

y = z

x = z

6

An example of efficient parallelization

Consider a tridiagonal linear system of order n:

· · · · · · · · · · · ·

ai−2xi−2 + bi−1xi−1 + cixi = ei−1

ai−1xi−1 + bixi + ci+1xi+1 = ei

aixi + bi+1xi+1 + ci+2xi+2 = ei+1

· · · · · · · · · · · ·

For every even i replacing xi with − ei−ci+1xi+1−ai−1xi−1

bi

leads to another

tridiagonal system of order n/2:

· · · · · · · · · · · ·

Ai−3xi−3 + Bi−1xi−1 + Ci+1xi+1 = Ei−1

Ai−1xi−1 + Bi+1xi+1 + Ci+3xi+3 = Ei+1

· · · · · · · · · · · ·

7

Observe that, on this example:

• the number of processors, here p = n, can be set such that

• the number of parallel steps, here O(logn), is known and small,

• processors activity (scheduling) is easy to organize,

• data-communication is not intensive.

8

Why solving non-linear systems is much more difficult?

Let F ⊂ K[X] with X = x1 < · · · < xn and a coefficient field K. Let d be

the maximum (total) degree of a monomial in F .

Let V (F) ⊂ K
n

be the zero set of F , where K is an algebraically closed

field containing K. For instance K = Q and K = C.

• V (F) may consist of components of different dimension: points,

curves, surfaces, . . . ,

• Even if V (F) is finite, it may contain O(dn) points,

• The idea of substitution or simplification is much more complicated

than in the linear case and leads to the notion of a Gröbner basis,

• Large intermediate data.

9

Solving polynomial systems symbolically and in

parallel!

• Related work :

– Parallelizing the computation of Gröbner bases (R. Bündgen,

M. Göbel & W. Küchlin, 1994) (S. Chakrabarti & K. Yelick, 1993 -

1994) (G. Attardi & C. Traverso, 1996) (A. Leykin, 2004)

– Parallelizing the computation of characteristic sets (I.A. Ajwa,

1998), (Y.W. Wu, W.D. Liao, D.D. Liu & P.S. Wang, 2003)

(Y.W. Wu, G.W. Yang, H. Yang, H.M. Zheng & D.D. Liu, 2005)

10

What is a Gröbner basis?

• Assume F is a linear system. Then, a solution of F is a a solved

system system S for x1 < · · · < xn which reduces to 0 (i.e. cancels) all

polynomials in F . Moreover, up to trivial transformations, the set S is

unique.

• Now, assume that F is not linear. Then, a Gröbner basis of F is a

system B which which reduces to 0 all polynomials in the ideal generated

by F . Moreover, up to trivial transformations, the set B is unique.















x2 + y + z = 1

x + y2 + z = 1

x + y + z2 = 1

has Gröbner basis :



























z6 − 4z4 + 4z3 − z2 = 0

2z2y + z4 − z2 = 0

y2 − y − z2 + z = 0

x + y + z2 − 1 = 0

11

Parallelizing the computation of Gröbner bases

Input: F ⊂ K[X] and an admissible monomial ordering ≤.

Output: G a reduced Gröbner basis w.r.t. ≤ of the ideal 〈F 〉

generated by F .

repeat

(S) B := MinimalAutoreducedSubset(F, ≤)

(R) A := S Polynomials(B)∪F ;

R := Reduce(A, B, ≤)

(U) R := R \ {0}; F := F ∪R

until R = ∅

return B

12

To go further: triangular decompositions

• The zero set V (F) admits a decomposition (unique when minimal)

V (F) = V (F1)∪ · · · ∪V (Fe),

s.t. F1, . . . , Fe ⊂ K[X] and every V (Fi) cannot be decomposed further.

• Moreover, up to technical details, each V (Fi) is the zero set of a

triangular system, which can view as a solved system


















































Tn(x1, . . . , xd, xd+1, xd+2, . . . , xn−1,xn) = 0

Tn1
(x1, . . . , xd, xd+1, xd+2, . . . ,xn−1) = 0

...

Td+2(x1, . . . , xd, xd+1,xd+2) = 0

Td+1(x1, . . . , xd,xd+1) = 0

h(x1, . . . , xd) 6= 0

13

The characteristic set method

Input: F ⊂ K[X].

Output: C an autoreduced characteristic set of F (in the sense of Wu).

repeat

(S) B := MinimalAutoreducedSubset(F, ≤)

(R) A := F \ B;

R := PseudoReduce(A, B, ≤)

(U) R := R \ {0}; F := F ∪R

until R = ∅

return B

• Repeated calls to this procedure computes a decomposition of V (F).

• Cannot start computing the 2nd component before the 1st is completed.

14

Continue solving polynomial systems symbolically and

in parallel!

• New motivations :

– revival of parallelism,

– sharper complexity results for polynomial system solving,

– new algorithms, modular triangular decompositions, offering better

opportunities for parallel execution.

• Our goal :

– to develop a solver for which the number of processes in use

depends on the geometry of the solution set (= its intrinsic

complexity) of the input system,

– as a complement to other approaches for parallelizing symbolic

computations.

15

Main approach 1

Incremental solving: by solving one equation after the other, leads to a

more geometric approach

{

x2 + y + z = 1







x2 + y + z = 1

x + y2 + z = 1















x2 + y + z = 1

x + y2 + z = 1

x + y + z2 = 1

16

{

x2 + y + z = 1















x + y2 + z = 1

y4 + (2z − 2)y2

+ y − z + z2 = 0















x + y = 1

y2 − y = 0

z = 0














2x + z2 = 1

2y + z2 = 1

z3 + z2 − 3z = −1

Main approach 2

A task manager algorithm for triangular decompositions: Triade

(M. Moreno Maza, 2000)

• A task is any couple [F, T] where F ⊂ K[X] and T ⊂ K[X] is a

triangular system.

– if F = ∅ the task is solved,

– otherwise we aim at solving [F, T], that is, computing triangular

systems T1, . . . , Tℓ representing Z(F, T) the common zeros of F and

T .

• In fact, we shall solve [F, T] lazily that is, computing tasks

[F1, T1], . . . , [Fℓ, Tℓ] such that

– each [Fi, Ti] is more solved than [F, T],

– Z(F1, T1) ∪ · · · ∪ Z(Fℓ, Tℓ) represents Z(F, T),

– for all i we have Fi = ∅ whenever Ti has maximum dimension.

18

Triade Top level

Input: F ⊂ K[X].

Output: T a triangular decomposition of V (F).

ToDo := [[F, ∅]; T := []

repeat

(S) Tasks := Select(ToDo)

(R) Results := LazySolve(Tasks)

(U) (ToDo, T) := Update(Results, ToDo, T)

until ToDo = ∅

return T

19

A Triade example















f1 = x − 2 + (y − 1)
2

f2 = (x − 1)(y − 1) + (x − 2)y

f3 = (x − 1)z

Factorizing f3 leads to two sub-systems:

S1 :







y = 0

x = 1
and S2 :















x − 1 + y2 − 2y = 0

(2y − 1)x + 1 − 3y = 0

z = 0

The sub-system S1 is solved. Continuing with S2 leads finally to















z = 0

y = 0

x = 1

,















z = 0

y = 1

x = 2

and















z = 0

2y = 3

4x = 7

20

Main difficulties for parallel execution

• Very irregular tasks (CPU time, memory, data-communication)

• For most systems with rational number coefficients, in theory and in

practice, the solution set consists of one main piece and possibly a few tiny

pieces.

T4

T0

T1 T2

T3
T5

T9T8T7

T6

21

Key solution 1

Modular Solving:

O(d)3

Merging: O (d)~

2Lifting: O(d)

T0

For solving F ⊆ Q[X] we use modular methods. Indeed, for a prime p:

• irreducible polynomials in Q[X] are likely to factor modulo p,

• for p big enough, the result over Q can be recovered from the one over

Z/pZ[X].

(X. Dahan, M. Moreno Maza, É. Schost, W. Wu & Y. Xie, 2005)
22

Modular solving: some data

Sys Name n d p sol. numb. sol. sizes

1 eco6 6 3 105761 [1,1,2,4,4,4] [56,57,721,1205,1293,1283]

2 Weispfenning-94 3 5 7433 [2,2,9,35,3,3] [100,99,282,1048,134,135]

3 Issac97 4 2 1549 [4,7,3,2] [561,749,458,334]

4 dessin-2 10 2 358079 [1,1,6,12,22] [98,98,885,1100,1448]

5 eco7 7 3 387799 [1,1,1,1,4,2, [67,72,73,76,4776,2603,

4,4,4,4,4,2] 4770,4755,4770,4751,4764,2601]

6 Methan61 10 2 450367 [1,1,1,3,18,3] [109,105,106,961,2307,957]

7 Reimer-4 4 5 55313 [1,1,1,1,4,4,24] [35,35,35,35,350,352,868]

8 Uteshev-Bikker 4 3 7841 [1,1,1,1,2,30] [16,27,32,27,472,2006]

9 gametwo5 5 4 159223 [14,19,11] [2811,2987,2700]

23

Key solution 2

T0

T0

For solving F ⊆ Z/pZ[X], we combine dimension theory and the lazy

solving techniques of the Triade:

⇒ triangular systems are generated by decreasing order of dimension,

⇒ the hardest tasks to solve are postponed and can be solved in a single

parallel step.
24

Challenges in the implementation

• dynamic process creation and management,

• scheduling of highly irregular tasks,

• complex data types, such as the polynomial data type,

• heavy data-communication,

• synchronization in heterogeneous environment.

25

Preliminary implementation

• Environment:

– in the aldor language (high-level language, designed for symbolic

computations)

– on an Authentic AMD with 4 CPUs (2390 MHz) and 8 GB total

memory

– using multi-processed parallelism.

– using shared memory segments for data communication.

• Limitations in this implementation:

– Only 4 CPUs . . .

– management of process workers quite rudimentory imposing heavy

load on process creation and data communication

– during the modular solving, computations are not split yet as much

as they could.

26

Meet the challenges in the implementation

• The aldor language and available libraries do not provide support for

parallelism

– Thanks to its interoperability with C, we could implement an

aldor type SharedMemorySegment for exchanging an array of

machine integers.

• The Manager and Workers need to exchange Triade tasks [F, T], that is

collections of multivariate polynomials through SharedMemorySegment.

– We use efficient conversions (based on Kronecker’s substitution and

others) between polynomials and C arrays of int.

– Synchronization for data communication between each worker and

the Manager is controlled by four SharedMemorySegments and an

access sequence defined by our protocol.

27

Implementation/Synchronization Scheme

task_tag_itask_i result_tag_i result_i

Manager

Worker

write

write
write

read/free
read/free

read/free
read/free

write

28

Current results

• Promising experimental results: a speedup ratio of 1.5 to 2.0 w.r.t. the

comparable sequential solver for some examples having 2 process

workers on average through the entire solving process.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 50 100 150 200 250

[N
um

be
r

of
 P

ro
ce

ss
es

]

Uteshev-Bikker (n=4, d=3, p=7841): Time [s]

Number of Processes vs Time [s]
Average

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140 160 180
[N

um
be

r
of

 P
ro

ce
ss

es
]

gametwo5 (n=5, d=4, p=159223): Time [s]

Number of Processes vs Time [s]
Average

29

Conclusions and work in progress

• Conclusions :

– Combining geometrical considerations (modular methods,

dimension theory) and lazy evaluation techniques,

– we have achieved successful coarse-grain parallelization of

triangular decompositions,

– such that the number of working processors depend on the

geometry of the input system.

• Work in progress :

– porting to machines with more processors, like Silky (64 bits

128-processor SMP)

– implementing a finer scheduler (management of workers, data

communication)

– gaining more from the modular solving phasis.

30

Future plan

• develop a model for threads in Aldor to support parallelism for

symbolic computations targeting SMP and multi-cores.

– in particular, parametric types, such as polynomial data types,

shall be properly treated.

• investigate multi-level parallel algorithms for triangular

decompositions of polynomial systems.

– coarse grained level for tasks to compute geometric of the solution

sets.

– medium/fine grained level for polynomial arithmetic such as

multiplication, GCD/resultant, and factorization.

– hence, to gain higher scalability.

31

Propaganda

Waterloo, July 29
ISSAC 07

PASCO 07

London, July 25 London, July 27

Detroit, Aug 3

SNC 07

ACA 07

32

