
Optimizing Algorithms and Code for
Data Locality and Parallelism

Marc Moreno Maza

University of Western Ontario, Canada

SHARCNET Summer Seminar, London
June 17, 2013

What is this tutorial about?

Optimizing algorithms and code

Improving code performance is hard and complex.

Requires a good understanding of the underlying algorithm and
implementation environment (hardware, OS, compiler, etc.).

Optimizing for data locality

Computer cache memories have led to introduce a new complexity
measure for algorithms and new performance counters for code.

Optimizing for data locality brings large speedup factors.

Optimizing for parallelism

All recent home and office desktops/laptops are parallel machines;
moreover “GPU cards bring supercomputing to the masses.”

Optimizing for parallelism improves the use of computing resources.

And optimizing for data locality is often a first step!

What is this tutorial about?

Optimizing algorithms and code

Improving code performance is hard and complex.

Requires a good understanding of the underlying algorithm and
implementation environment (hardware, OS, compiler, etc.).

Optimizing for data locality

Computer cache memories have led to introduce a new complexity
measure for algorithms and new performance counters for code.

Optimizing for data locality brings large speedup factors.

Optimizing for parallelism

All recent home and office desktops/laptops are parallel machines;
moreover “GPU cards bring supercomputing to the masses.”

Optimizing for parallelism improves the use of computing resources.

And optimizing for data locality is often a first step!

What is this tutorial about?

Optimizing algorithms and code

Improving code performance is hard and complex.

Requires a good understanding of the underlying algorithm and
implementation environment (hardware, OS, compiler, etc.).

Optimizing for data locality

Computer cache memories have led to introduce a new complexity
measure for algorithms and new performance counters for code.

Optimizing for data locality brings large speedup factors.

Optimizing for parallelism

All recent home and office desktops/laptops are parallel machines;
moreover “GPU cards bring supercomputing to the masses.”

Optimizing for parallelism improves the use of computing resources.

And optimizing for data locality is often a first step!

Once upon a time, everything was slow in a computer.

The second space race . . .

Who is the speaker?

Who are the attendees?

What are the prerequisites?

Some familiarity with algorithms and their analysis.

Elementary linear algebra (matrix multiplication).

Ideas about multithreaded programming.

Some ideas about GPUs.

Visit http://uwo.sharcnet.ca/

What are the objectives of this tutorial?

1 Understand why data locality can have a huge impact on code
performances.

2 Acquire some ideas on how data locality can be analyzed and
improved.

3 Understand the concepts of work, span, parallelism, burdened
parallelism in multithreaded programming.

4 Acquire some ideas on how parallelism can be analyzed and improved
in multithreaded programming.

5 Understand issues related to memory bandwidth in GPU programming

6 Acquire some ideas on how the effective memory bandwidth of a GPU
kernel can be improved.

Acknowledgments and references

Acknowledgments.

Charles E. Leiserson (MIT), Matteo Frigo (Axis Semiconductor) Saman P.
Amarasinghe (MIT) and Cyril Zeller (NVIDIA) for sharing with me the sources of
their course notes and other documents.
Yuzhen Xie (Maplesoft) and Anisul Sardar Haque (UWO) for their great help in the
preparation of this tutorial.

References.

The Implementation of the Cilk-5 Multithreaded Language by Matteo Frigo Charles
E. Leiserson Keith H. Randall.
Cache-Oblivious Algorithms by Matteo Frigo, Charles E. Leiserson, Harald Prokop
and Sridhar Ramachandran.
The Cache Complexity of Multithreaded Cache Oblivious Algorithms by Matteo
Frigo and Volker Strumpen.
How To Write Fast Numerical Code: A Small Introduction by Srinivas Chellappa,
Franz Franchetti, and Markus Pueschel.
Models of Computation: Exploring the Power of Computing by John E. Savage.
http://developer.nvidia.com/category/zone/cuda-zone

http://www.csd.uwo.ca/∼moreno/HPC-Resources.html

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model

3 GPU programming
The CUDA programming and memory models
Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model

3 GPU programming
The CUDA programming and memory models
Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Capacity
Access Time
Cost

Staging
Xfer Unit

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 d L2 C h

Registers

L1 Cache
Instr. Operands prog./compiler

1-8 bytes

Upper Level

faster

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

L1 Cache
Blocks

cache cntl
32-64 bytes

L2 Cache
h tl

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Memory
OS

cache cntl
64-128 bytesBlocks

Disk
10s T Bytes, 10 ms
(10,000,000 ns)
~ $1 / GByte

Disk

Pages OS
4K-8K bytes

user/operator $1 / GByte

Tape
infinite
sec-min

Tape

Files user/operator
Mbytes

Lower Level
Larger

sec min
~$1 / GByte

Data locality and cache misses
Hierarchical memories and their impact on our

programs

CPU Cache (1/7)

A CPU cache is an auxiliary memory which is smaller, faster memory
than the main memory and which stores copies of the main memory
locations that are expectedly frequently used.

Most modern desktop and server CPUs have at least three
independent caches: the data cache, the instruction cache and the
translation look-aside buffer.

Data locality and cache misses
Hierarchical memories and their impact on our

programs

CPU Cache (2/7)

Each location in each memory (main or cache) has
• a datum (cache line) which ranges between 8 and 512 bytes in size,

while a datum requested by a CPU instruction ranges between 1 and
16.

• a unique index (called address in the case of the main memory)

In the cache, each location has also a tag (storing the address of the
corresponding cached datum).

Data locality and cache misses
Hierarchical memories and their impact on our

programs

CPU Cache (3/7)

When the CPU needs to read or write a location, it checks the cache:
• if it finds it there, we have a cache hit
• if not, we have a cache miss and (in most cases) the processor needs to

create a new entry in the cache.

Making room for a new entry requires a replacement policy: the Least
Recently Used (LRU) discards the least recently used items first; this
requires to use age bits.

Data locality and cache misses
Hierarchical memories and their impact on our

programs

CPU Cache (4/7)

Read latency (time to read a datum from the main memory) requires
to keep the CPU busy with something else:

out-of-order execution: attempt to execute independent instructions
arising after the instruction that is waiting due to the
cache miss

hyper-threading (HT): allows an alternate thread to use the CPU

Data locality and cache misses
Hierarchical memories and their impact on our

programs

CPU Cache (5/7)

Modifying data in the cache requires a write policy for updating the
main memory

- write-through cache: writes are immediately mirrored to main
memory

- write-back cache: the main memory is mirrored when that data is
evicted from the cache

The cache copy may become out-of-date or stale, if other processors
modify the original entry in the main memory.

Data locality and cache misses
Hierarchical memories and their impact on our

programs

CPU Cache (6/7)

The replacement policy decides where in the cache a copy of a
particular entry of main memory will go:

- fully associative: any entry in the cache can hold it
- direct mapped: only one possible entry in the cache can hold it
- N -way set associative: N possible entries can hold it

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Cache Performance for SPEC CPU2000 by J.F. Cantin and M.D. Hill.

The SPEC CPU2000 suite is a collection of 26 compute-intensive, non-trivial
programs used to evaluate the performance of a computer’s CPU, memory
system, and compilers (http://www.spec.org/osg/cpu2000).

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Cache issues

Cold miss: The first time the data is available. Cure: Prefetching
may be able to reduce this type of cost.

Capacity miss: The previous access has been evicted because too
much data touched in between, since the working data set is too
large. Cure: Reorganize the data access such that reuse occurs before
eviction.

Conflict miss: Multiple data items mapped to the same location with
eviction before cache is full. Cure: Rearrange data and/or pad arrays.

True sharing miss: Occurs when a thread in another processor wants
the same data. Cure: Minimize sharing.

False sharing miss: Occurs when another processor uses different
data in the same cache line. Cure: Pad data.

Data locality and cache misses
Hierarchical memories and their impact on our

programs

A typical matrix multiplication C code

#define IND(A, x, y, d) A[(x)*(d)+(y)]

uint64_t testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C;

long started, ended;

float timeTaken;

int i, j, k;

srand(getSeed());

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

// A[i][j] += B[i][k] + C[k][j];

IND(A,i,j,y) += IND(B,i,k,z) * IND(C,k,j,z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Issues with matrix representation

A

=

B

C
x

Contiguous accesses are better:
• Data fetch as cache line (Core 2 Duo 64 byte per cache line)
• With contiguous data, a single cache fetch supports 8 reads of doubles.
• Transposing the matrix C should reduce L1 cache misses!

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Transposing for optimizing spatial locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended; float timeTaken; int i, j, k;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

Cx = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for(j =0; j < y; j++)

for(k=0; k < z; k++)

IND(Cx,j,k,z) = IND(C,k,j,y);

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

IND(A, i, j, y) += IND(B, i, k, z) *IND(Cx, j, k, z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Issues with data reuse

C

1024 1024384

4

A B

C= x

10
24

10
24

38
4

Naive calculation of a row of A, so computing 1024 coefficients: 1024
accesses in A, 384 in B and 1024× 384 = 393, 216 in C. Total
= 394, 524.

Computing a 32× 32-block of A, so computing again 1024
coefficients: 1024 accesses in A, 384× 32 in B and 32× 384 in C.
Total = 25, 600.

The iteration space is traversed so as to reduce memory accesses.

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Blocking for optimizing temporal locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C;

long started, ended; float timeTaken; int i, j, k, i0, j0, k0;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)

for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,k0,j0,y);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Transposing and blocking for optimizing data locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C;

long started, ended; float timeTaken; int i, j, k, i0, j0, k0;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)

for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,j0,k0,z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Experimental results

Computing the product of two n× n matrices on my laptop (Core2 Duo
CPU P8600 @ 2.40GHz, L1 cache of 3072 KB, 4 GBytes of RAM)

n naive transposed speedup 64× 64-tiled speedup t. & t. speedup
128 7 3 7 2
256 26 43 155 23
512 1805 265 6.81 1928 0.936 187 9.65
1024 24723 3730 6.62 14020 1.76 1490 16.59
2048 271446 29767 9.11 112298 2.41 11960 22.69
4096 2344594 238453 9.83 1009445 2.32 101264 23.15

Timings are in milliseconds.

The cache-oblivious multiplication (more on this later) runs within 12978
and 106758 for n = 2048 and n = 4096 respectively.

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Other performance counters

Hardware count events

CPI Clock cycles Per Instruction: the number of clock cycles that
happen when an instruction is being executed. With pipelining we can
improve the CPI by exploiting instruction level parallelism

L1 and L2 Cache Miss Rate.

Instructions Retired: In the event of a misprediction, instructions that
were scheduled to execute along the mispredicted path must be
canceled.

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Analyzing cache misses in the naive and transposed multiplication

A

=

B

C
x

Let A, B and C have format (m,n), (m, p) and (p, n) respectively.
A is scanned once, so mn/L cache misses if L is the number of
coefficients per cache line.
B is scanned n times, so mnp/L cache misses if the cache cannot
hold a row.
C is accessed “nearly randomly” (for m large enough) leading to mnp
cache misses.
Since 2mnp arithmetic operations are performed, this means roughly
one cache miss per flop!
If C is transposed, then the ratio improves to 1 for L.

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Analyzing cache misses in the tiled multiplication

C

1024 1024384

4

A B

C= x

10
24

10
24

38
4

Let A, B and C have format (m,n), (m, p) and (p, n) respectively.

Assume all tiles are square of order b and three fit in cache.

If C is transposed, then loading three blocks in cache cost 3b2/L.

This process happens n3/b3 times, leading to 3n3/(bL) cache misses.

Three blocks fit in cache for 3b2 < Z, if Z is the cache size.

So O(n3/(
√
ZL)) cache misses, if b is well chosen, which is optimal.

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model

3 GPU programming
The CUDA programming and memory models
Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

The (Z,L) ideal cache model (1/4)

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

The (Z,L) ideal cache model (2/4)

Computer with a two-level memory hierarchy:
• an ideal (data) cache of Z words partitioned into Z/L cache lines,

where L is the number of words per cache line.
• an arbitrarily large main memory.

Data moved between cache and main memory are always cache lines.

The cache is tall, that is, Z is much larger than L, say Z ∈ Ω(L2).

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

The (Z,L) ideal cache model (3/4)

The processor can only reference words that reside in the cache.

If the referenced word belongs to a line already in cache, a cache hit
occurs, and the word is delivered to the processor.

Otherwise, a cache miss occurs, and the line is fetched into the
cache.

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

The (Z,L) ideal cache model (4/4)

The ideal cache is fully associative: cache lines can be stored
anywhere in the cache.

The ideal cache uses the optimal off-line strategy of replacing the
cache line whose next access is furthest in the future, and thus it
exploits temporal locality perfectly.

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

Cache complexity

For an algorithm with an input of size n, he ideal-cache model uses
two complexity measures:

• the work complexity W (n), which is its conventional running time in
a RAM model.

• the cache complexity Q(n;Z,L), the number of cache misses it
incurs (as a function of the size Z and line length L of the ideal cache).

• When Z and L are clear from context, we simply write Q(n) instead of
Q(n;Z,L).

An algorithm is said to be cache aware if its behavior (and thus
performances) can be tuned (and thus depend on) on the particular
cache size and line length of the targeted machine.

Otherwise the algorithm is cache oblivious.

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

Cache complexity of an array scanning

B and N on the picture are our L and n.

Consider an array of n words in main memory.

Loading its elements by scanning incurs n/L + 1 cache misses.

That would be n/L if L divides L and the array is aligned, that is,
starts and ends with a cache line.

We will often use this remark and, for simplicity, we will always
neglect the +1.

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

Cache complexity of the naive and tiled matrix multiplications

Consider square matrices of order n and an (Z,L)-ideal cache.

The naive multiplication (as specified before)

for(i =0; i < n; i++)

for(j =0; j < n; j++)

for(k=0; k < n; k++)

C[i][j] += A[i][k] * B[k][j];

incurs O(n3) cache misses, for n large enough (n > Z2).

The tiled multiplication (as specified before)

for(i =0; i < n/s; i++)

for(j =0; j < n/s; j++)

for(k=0; k < n/s; k++)

blockMult(A,B,C,i,j,k,s);

incurs Θ(n3/(L
√
Z)) cache misses, for n large enough (n >

√
Z)

which can be proved to be optimal, though cache-aware.

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

A matrix transposition cache-oblivious and cache-optimal algorithm

Given an m× n matrix A stored in a row-major layout, compute and
store AT into an n×m matrix B also stored in a row-major layout.

A naive approach would incur O(mn) cache misses, for n,m large
enough.
The algorithm Rec-Transpose below incurs Θ(1 + mn/L) cache
misses, which is optimal.

1 If n ≥ m, the Rec-Transpose algorithm partitions

A = (A1 A2) , B =

(
B1

B2

)
and recursively executes Rec-Transpose(A1, B1) and
Rec-Transpose(A2, B2).

2 If m > n, the Rec-Transpose algorithm partitions

A =

(
A1

A2

)
, B = (B1 B2)

and recursively executes Rec-Transpose(A1, B1) and
Rec-Transpose(A2, B2).

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

Cache-oblivious matrix transposition works in practice!

size Naive Cache-oblivious ratio

5000x5000 126 79 1.59
10000x10000 627 311 2.02
20000x20000 4373 1244 3.52
30000x30000 23603 2734 8.63
40000x40000 62432 4963 12.58

Intel(R) Xeon(R) CPU E7340 @ 2.40GHz

L1 data 32 KB, L2 4096 KB, cache line size 64bytes

Both codes run on 1 core on a node with 128GB.

The ration comes simply from an optimal memory access pattern.

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

A cache-oblivious matrix multiplication algorithm

To multiply an m× n matrix A and an n× p matrix B, the Rec-Mult
algorithm halves the largest of the three dimensions and recurs according to
one of the following three cases:(

A1

A2

)
B =

(
A1B
A2B

)
, (1)

(
A1 A2

)(B1

B2

)
= A1B1 + A2B2 , (2)

A
(
B1 B2

)
=

(
AB1 AB2

)
. (3)

In case (1), we have m ≥ max {n, p}. Matrix A is split horizontally, and both
halves are multiplied by matrix B.
In case (2), we have n ≥ max {m, p}. Both matrices are split, and the two
halves are multiplied.
In case (3), we have p ≥ max {m,n}. Matrix B is split vertically, and each
half is multiplied by A.
The base case occurs when m = n = p = 1.
The algorithm Rec-Mult above incurs
Θ(m + n + p + (mn + np + mp)/L + mnp/(L

√
Z)) cache misses, which is

optimal.

Data locality and cache misses A detailed case study: counting sort

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model

3 GPU programming
The CUDA programming and memory models
Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA

Data locality and cache misses A detailed case study: counting sort

Counting sort: the algorithm

Counting sort takes as input a collection of n items, each of which
known by a key in the range 0 · · · k.

The algorithm computes a histogram of the number of times each key
occurs.

Then performs a prefix sum to compute positions in the output.

allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:

Count[key(x)] = Count[key(x)] + 1

total = 0

for i = 0, 1, ... k:

c = Count[i]

Count[i] = total

total = total + c

allocate an output array Output[0..n-1]

for each input item x:

store x in Output[Count[key(x)]]

Count[key(x)] = Count[key(x)] + 1

return Output

Data locality and cache misses A detailed case study: counting sort

Counting sort: cache complexity analysis

allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:

Count[key(x)] = Count[key(x)] + 1

total = 0

for i = 0, 1, ... k:

c = Count[i]

Count[i] = total

total = total + c

allocate an output array Output[0..n-1]

for each input item x:

store x in Output[Count[key(x)]]

Count[key(x)] = Count[key(x)] + 1

return Output

1 n/L to compute k.
2 k/L cache misses to initialize Count.
3 n/L + n cache misses for the histogram (worst case).
4 k/L cache misses for the prefix sum.
5 n/L + n + n cache misses for building Output (worst case).

Total: 3n+3n/L + 2k/L cache misses (worst case).

Data locality and cache misses A detailed case study: counting sort

Counting sort: cache complexity analysis: explanations

1 n/L to compute k: this can be done by traversing the items linearly.

2 k/L cache misses to initialize Count: this can be done by traversing
the Count linearly.

3 n/L + n cache misses for the histogram (worst case): items accesses
are linear but Count accesses are potentially random.

4 k/L cache misses for the prefix sum: Count accesses are linear.

5 n/L + n + n cache misses for building Output (worst case): items

accesses are linear but Output and Count accesses are potentially
random.

Total: 3n+3n/L + 2k/L cache misses (worst case).

Data locality and cache misses A detailed case study: counting sort

How to fix the poor data locality of counting sort?

allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:

Count[key(x)] = Count[key(x)] + 1

total = 0

for i = 0, 1, ... k:

c = Count[i]

Count[i] = total

total = total + c

allocate an output array Output[0..n-1]

for each input item x:

store x in Output[Count[key(x)]]

Count[key(x)] = Count[key(x)] + 1

return Output

Recall that our worst case is 3n+3n/L + 2k/L cache misses.
The troubles come from the irregular memory accesses which
experience capacity misses and conflict misses.
Workaround: we preprocess the input so that counting sort is applied
in succession to several smaller input sets with smaller value ranges.
To put it simply, so that k and n are small enough for Output and
Count to incur cold misses only.

Data locality and cache misses A detailed case study: counting sort

Counting sort: bukecting the input

alloacate an array bucketsize[0..m-1]; initialize each array cell to zero

for each input item x:

bucketsize[floor(key(x) m/(k+1))] := bucketsize[floor(key(x) m/(k+1))] + 1

total = 0

for i = 0, 1, ... m-1:

c = bucketsize[i]

bucketsize[i] = total

total = total + c

alloacate an array bucketedinput[0..n-1];

for each input item x:

q := floor(key(x) m/(k+1))

bucketedinput[bucketsize[q]] := key(x)

bucketsize[q] := bucketsize[q] + 1

return bucketedinput

Goal: after preprocessing, Count and Output incur cold misses only.
To this end we choose a parameter m (more on this later) such that

1 a key in the range [ih, (i + 1)h− 1] is always before a key in the range
[(i + 1)h, (i + 2)h− 1], for i = 0 · · ·m− 2, with h = k/m,

2 bucketsize and m cache-lines from bucketedinput all fit in cache.
That is, counting cache-lines, m/L + m ≤ Z/L, that is, m + mL ≤ Z.

Data locality and cache misses A detailed case study: counting sort

Counting sort: cache complexity with bukecting

alloacate an array bucketsize[0..m-1]; initialize each array cell to zero

for each input item x:

bucketsize[floor(key(x) m/(k+1))] := bucketsize[floor(key(x) m/(k+1))] + 1

total = 0

for i = 0, 1, ... m-1:

c = bucketsize[i]

bucketsize[i] = total

total = total + c

alloacate an array bucketedinput[0..n-1];

for each input item x:

q := floor(key(x) m/(k+1))

bucketedinput[bucketsize[q]] := key(x)

bucketsize[q] := bucketsize[q] + 1

return bucketedinput

1 3m/L + n/L caches misses to compute bucketsize

2 Key observation: bucketedinput is traversed regularly by segment.

3 Hence, 2n/L + m + m/L caches misses to compute bucketedinput

Preprocessing: 3n/L + 3m/L + m cache misses.

Data locality and cache misses A detailed case study: counting sort

Counting sort: cache complexity with bukecting: explanations

1 3m/L + n/L caches misses to compute bucketsize:
• m/L to set each cell of bucketsize to zero,
• m/L + n/L for the first for loop,
• m/L for the second for loop.

2 Key observation: bucketedinput is traversed regularly by segment:

• So writing bucketedinput means writing (in a linear traversal) m
consecutive arrays, of possibly different sizes, but with total size n.

• Thus, because of possible misalignments between those arrays and
their cache-lines, this writing procedure can yield n/L + m cache
misses (and not just n/L).

3 Hence, 2n/L+m+m/L caches misses to compute bucketedinput:
• n/L to read the items,
• n/L + m to write bucketedinput,
• m/L to load bucketsize.

Data locality and cache misses A detailed case study: counting sort

Cache friendly counting sort: complete cache complexity analysis

Assumption: the preprocessing creates buckets of average size n/m.

After preprocessing, counting sort is applied to each bucket whose
values are in a range [ih, (i + 1)h− 1], for i = 0 · · ·m− 1.

To be cache-friendly, this requires, for i = 0 · · ·m− 1,
h + |{key ∈ [ih, (i + 1)h− 1]}| < Z and m < Z/(1 + L). These two
are very realistic assumption considering today’s cache size.

And the total complexity becomes;

Qtotal = Qpreprocessing + Qsorting

= Qpreprocessing + mQsortingofonebucket

= Qpreprocessing + m (3 n
mL + 3 n

m + 2 k
mL)

= Qpreprocessing + 6n/L + 2k/L
= 3n/L + 3m/L + m + 6n/L + 2k/L
= 9n/L + 3m/L + m + 2k/L

Instead of 3n+3n/L + 2k/L for the naive counting sort.

Data locality and cache misses A detailed case study: counting sort

Cache friendly counting sort: experimental results

Experimentation on an Intel(R) Core(TM) i7 CPU @ 2.93GHz. It has
L2 cache of 8MB.

CPU times in seconds for both classical and cache-friendly counting
sort algorithm.

The keys are random machine integers in the range [0, n].

n classical cache-oblivious
counting counting sort

sort (preprocessing + sorting)

100000000 13.74 4.66 (3.04 + 1.62)

200000000 30.20 9.93 (6.16 + 3.77)

300000000 50.19 16.02 (9.32 + 6.70)

400000000 71.55 22.13 (12.50 +9.63)

500000000 94.32 28.37 (15.71 + 12.66)

600000000 116.74 34.61 (18.95 + 15.66)

Data locality and cache misses A detailed case study: counting sort

Summary and notes

Multicore programming Multicore architectures

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model

3 GPU programming
The CUDA programming and memory models
Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA

Multicore programming Multicore architectures

A multi-core processor is an integrated circuit to which two or more
individual processors (called cores in this sense) have been attached.

Multicore programming Multicore architectures

Memory I/O

Network

…$ $ $
PPP

Chip Multiprocessor (CMP)

Cores on a multi-core device can be coupled tightly or loosely:
• may share or may not share a cache,
• implement inter-core communications methods or message passing.

Cores on a multi-core implement the same architecture features as
single-core systems such as instruction pipeline parallelism (ILP),
vector-processing, hyper-threading, etc.

Multicore programming Multicore architectures

Cache Coherence (1/6)

x=3

…Load x x=3

P P P

Figure: Processor P1 reads x=3 first from the backing store (higher-level memory)

Multicore programming Multicore architectures

Cache Coherence (2/6)

x=3

…Load x x=3 x=3

P P P

Figure: Next, Processor P2 loads x=3 from the same memory

Multicore programming Multicore architectures

Cache Coherence (3/6)

x=3

…Load x x=3 x=3 x=3

P P P

Figure: Processor P4 loads x=3 from the same memory

Multicore programming Multicore architectures

Cache Coherence (4/6)

x=3

Store …Store
x=5 x=3 x=3 x=3

P P P

Figure: Processor P2 issues a write x=5

Multicore programming Multicore architectures

Cache Coherence (5/6)

x=3

Store …Store
x=5 x=3 x=5 x=3

P P P

Figure: Processor P2 writes x=5 in his local cache

Multicore programming Multicore architectures

Cache Coherence (6/6)

x=3

…Load x x=3 x=5 x=3

P P P

Figure: Processor P1 issues a read x, which is now invalid in its cache

Multicore programming Multicore architectures

MSI Protocol

In this cache coherence protocol each block contained inside a cache
can have one of three possible states:

- M: the cache line has been modified and the corresponding data is
inconsistent with the backing store; the cache has the responsibility to
write the block to the backing store when it is evicted.

- S: this block is unmodified and is shared, that is, exists in at least one
cache. The cache can evict the data without writing it to the backing
store.

- I: this block is invalid, and must be fetched from memory or another
cache if the block is to be stored in this cache.

These coherency states are maintained through communication
between the caches and the backing store.

The caches have different responsibilities when blocks are read or
written, or when they learn of other caches issuing reads or writes for
a block.

Multicore programming Multicore architectures

True Sharing and False Sharing

True sharing:
• True sharing cache misses occur whenever two processors access the

same data word
• True sharing requires the processors involved to explicitly synchronize

with each other to ensure program correctness.
• A computation is said to have temporal locality if it re-uses much of

the data it has been accessing.
• Programs with high temporal locality tend to have less true sharing.

False sharing:
• False sharing results when different processors use different data that

happen to be co-located on the same cache line
• A computation is said to have spatial locality if it uses multiple words

in a cache line before the line is displaced from the cache
• Enhancing spatial locality often minimizes false sharing

See Data and Computation Transformations for Multiprocessors by
J.M. Anderson, S.P. Amarasinghe and M.S. Lam
http://suif.stanford.edu/papers/anderson95/paper.html

Multicore programming Multicore architectures

Multi-core processor (cntd)

Advantages:
• Cache coherency circuitry operate at higher rate than off-chip.
• Reduced power consumption for a dual core vs two coupled single-core

processors (better quality communication signals, cache can be shared)

Challenges:
• Adjustments to existing software (including OS) are required to

maximize performance
• Production yields down (an Intel quad-core is in fact a double

dual-core)
• Two processing cores sharing the same bus and memory bandwidth

may limit performances
• High levels of false or true sharing and synchronization can easily

overwhelm the advantage of parallelism

Multicore programming Cilk / Cilk++ / Cilk Plus

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model

3 GPU programming
The CUDA programming and memory models
Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA

Multicore programming Cilk / Cilk++ / Cilk Plus

From Cilk to Cilk++ and Cilk Plus

Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo.

Besides being used for research and teaching, Cilk was the system
used to code the three world-class chess programs: Tech, Socrates,
and Cilkchess.

Over the years, the implementations of Cilk have run on computers
ranging from networks of Linux laptops to an 1824-nodes Intel
Paragon.

From 2007 to 2009 Cilk has lead to Cilk++, developed by Cilk Arts,
an MIT spin-off, which was acquired by Intel in July 2009 and
became Cilk Plus, see http://www.cilk.com/

Cilk++ can be freely downloaded at
http://software.intel.com/en-us/articles/download-intel-cilk-sdk/

Cilk is still developed at MIT
http://supertech.csail.mit.edu/cilk/

Multicore programming Cilk / Cilk++ / Cilk Plus

Cilk++ (and Cilk Plus)

Cilk++ (resp. Cilk) is a small set of linguistic extensions to C++

(resp. C) supporting fork-join parallelism

Both Cilk and Cilk++ feature a provably efficient work-stealing
scheduler.

Cilk++ provides a hyperobject library for parallelizing code with
global variables and performing reduction for data aggregation.

Cilk++ includes the Cilkscreen race detector and the Cilkview

performance analyzer.

Multicore programming Cilk / Cilk++ / Cilk Plus

Nested Parallelism in Cilk ++

int fib(int n)

{

if (n < 2) return n;

int x, y;

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return x+y;

}

The named child function cilk spawn fib(n-1) may execute in
parallel with its parent

Cilk++ keywords cilk spawn and cilk sync grant permissions for
parallel execution. They do not command parallel execution.

Multicore programming Cilk / Cilk++ / Cilk Plus

Loop Parallelism in Cilk ++

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n

a11 a21 ⋯ an1
a12 a22 ⋯ an221 22 2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

12 22 n2

⋮ ⋮ ⋱ ⋮
a1n a2n ⋯ annn1 n2 nn 1n 2n nn

A AT

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {

for (int j=0; j<i; ++j) {
d bl [i][j]double temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}}
}

The iterations of a cilk for loop may execute in parallel.

Multicore programming Cilk / Cilk++ / Cilk Plus

Serial Semantics (1/2)

Cilk (resp. Cilk++) is a multithreaded language for parallel
programming that generalizes the semantics of C (resp. C++) by
introducing linguistic constructs for parallel control.

Cilk (resp. Cilk++) is a faithful extension of C (resp. C++):

• The C (resp. C++) elision of a Cilk (resp. Cilk++) is a correct
implementation of the semantics of the program.

• Moreover, on one processor, a parallel Cilk (resp. Cilk++) program
scales down to run nearly as fast as its C (resp. C++) elision.

To obtain the serialization of a Cilk++ program

#define cilk_for for

#define cilk_spawn

#define cilk_sync

Multicore programming Cilk / Cilk++ / Cilk Plus

Serial Semantics (2/2)

int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk spawn fib(n-1);

Cilk++ source

x cilk_spawn fib(n 1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x fib(n 1);x = fib(n-1);
y = fib(n-2);
return (x+y);

}
} Serialization

Multicore programming Cilk / Cilk++ / Cilk Plus

Scheduling

Memory I/O

Network

P$ $ $…P
P P P
$ $ $

A scheduler’s job is to map a computation to particular processors. Such
a mapping is called a schedule.

If decisions are made at runtime, the scheduler is online, otherwise, it
is offline

Cilk++’s scheduler maps strands onto processors dynamically at
runtime.

Multicore programming Cilk / Cilk++ / Cilk Plus

The Cilk++ Platform

Cilk++
Compiler

Conventional

Hyperobject
Library1

2 3int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);

Cilk++source

Conventional
Compiler

y b();
cilk_sync;
return (x+y);

}
}

Cilkview
S l bilit A l

6

BinaryBinary Cilkscreen

Linker

5

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

Scalability Analyzer

BinaryBinary Cilkscreen
Race Detector

y = fib(n-2);
return (x+y);

}
}

y = fib(n-2);
return (x+y);

}
} Serialization

Runtime4Conventional
Regression Tests

Parallel
Regression Tests

Runtime
System

4

Reliable Single-
Threaded Code

Exceptional
Performance

Reliable Multi-
Threaded Code

Multicore programming Cilk / Cilk++ / Cilk Plus

Benchmarks for the parallel version of the cache-oblivious mm

Multiplying a 4000x8000 matrix by a 8000x4000 matrix

on 32 cores = 8 sockets x 4 cores (Quad Core AMD Opteron 8354)
per socket.

The 32 cores share a L3 32-way set-associative cache of 2 Mbytes.

#core Elision (s) Parallel (s) speedup

8 420.906 51.365 8.19
16 432.419 25.845 16.73
24 413.681 17.361 23.83
32 389.300 13.051 29.83

Multicore programming Cilk / Cilk++ / Cilk Plus

So does the (tuned) cache-oblivious matrix multiplication

Multicore programming The fork-join multithreaded programming model

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model

3 GPU programming
The CUDA programming and memory models
Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA

Multicore programming The fork-join multithreaded programming model

The fork-join parallelism model

int fib (int n) {
if (n<2) return (n);

int fib (int n) {
if (n<2) return (n);

Example:
fib(4)() ();

else {
int x,y;
x = cilk_spawn fib(n-1);
y fib(n 2);

() ();
else {

int x,y;
x = cilk_spawn fib(n-1);
y fib(n 2);

fib(4)

4
y = fib(n-2);
cilk_sync;
return (x+y);

}

y = fib(n-2);
cilk_sync;
return (x+y);

} 3 2}
}

}
}

2 1 1 0

“Processor
oblivious”

2

1

1 1 0

0 The computation dag
unfolds dynamically.

1 0

We shall also call this model multithreaded parallelism.

Multicore programming The fork-join multithreaded programming model

Work and span

We define several performance measures. We assume an ideal situation:
no cache issues, no interprocessor costs:

Tp is the minimum running time on p processors

T1 is called the work, that is, the sum of the number of instructions at
each node.

T∞ is the minimum running time with infinitely many processors, called
the span

Multicore programming The fork-join multithreaded programming model

The critical path length

Assuming all strands run in unit time, the longest path in the DAG is equal
to T∞. For this reason, T∞ is also referred to as the critical path length.

Multicore programming The fork-join multithreaded programming model

Work law

We have: Tp ≥ T1/p.

Indeed, in the best case, p processors can do p works per unit of time.

Multicore programming The fork-join multithreaded programming model

Span law

We have: Tp ≥ T∞.

Indeed, Tp < T∞ contradicts the definitions of Tp and T∞.

Multicore programming The fork-join multithreaded programming model

Speedup on p processors

T1/Tp is called the speedup on p processors

A parallel program execution can have:
• linear speedup: T1/TP = Θ(p)

• superlinear speedup: T1/TP = ω(p) (not possible in this model,
though it is possible in others)

• sublinear speedup: T1/TP = o(p)

Multicore programming The fork-join multithreaded programming model

Series composition

A B

Work?

Span?

Multicore programming The fork-join multithreaded programming model

Series composition

A B

Work: T1(A ∪B) = T1(A) + T1(B)

Span: T∞(A ∪B) = T∞(A) + T∞(B)

Multicore programming The fork-join multithreaded programming model

Parallel composition

AA

B

Work?

Span?

Multicore programming The fork-join multithreaded programming model

Parallel composition

AA

B

Work: T1(A ∪B) = T1(A) + T1(B)

Span: T∞(A ∪B) = max(T∞(A), T∞(B))

Multicore programming The fork-join multithreaded programming model

Some results in the fork-join parallelism model

Algorithm Work Spang p
Merge sort Θ(n lg n) Θ(lg3n)
Matrix multiplication Θ(n3) Θ(lg n)
Strassen Θ(nlg7) Θ(lg2n)
LU-decomposition Θ(n3) Θ(n lg n)
Tableau construction Θ(n2) Ω(nlg3)
FFT Θ(n lg n) Θ(lg2n)
B d h fi h Θ(E) Θ(d l V)Breadth-first search Θ(E) Θ(d lg V)

We shall prove those results in the next lectures.

Multicore programming The fork-join multithreaded programming model

For loop parallelism in Cilk++

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n

a11 a21 ⋯ an1
a12 a22 ⋯ an221 22 2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

12 22 n2

⋮ ⋮ ⋱ ⋮
a1n a2n ⋯ annn1 n2 nn 1n 2n nn

A AT

cilk_for (int i=1; i<n; ++i) {

for (int j=0; j<i; ++j) {

double temp = A[i][j];

A[i][j] = A[j][i];

A[j][i] = temp;

}

}

The iterations of a cilk for loop execute in parallel.

Multicore programming The fork-join multithreaded programming model

Implementation of for loops in Cilk++

Up to details (next week!) the previous loop is compiled as follows, using a
divide-and-conquer implementation:

void recur(int lo, int hi) {

if (hi > lo) { // coarsen

int mid = lo + (hi - lo)/2;

cilk_spawn recur(lo, mid);

recur(mid+1, hi);

cilk_sync;

} else

for (int j=lo; j<hi; ++j) {

double temp = A[hi][j];

A[hi][j] = A[j][hi];

A[j][hi] = temp;

}

}

}

Multicore programming The fork-join multithreaded programming model

Analysis of parallel for loops

1 2 3 41 2 3 4 5 6 7 8

Here we do not assume that each strand runs in unit time.

Span of loop control: Θ(log(n))

Max span of an iteration: Θ(n)

Span: Θ(n)

Work: Θ(n2)

Parallelism: Θ(n)

Multicore programming The fork-join multithreaded programming model

For loops in the fork-join parallelism model: another example

cilk_for (int i = 1; i <= 8; i ++){

f(i);

}

A cilk for loop executes recursively as 2 for loops of n/2 iterations,
adding a span of Θ(log(n)).

Figure: DAG for a cilk for with 8 iterations.

Multicore programming The fork-join multithreaded programming model

The work-stealing scheduler (1/11)

spawn
call spawncall
call
call

spawn
spawn
call
spawn
call

spawn
callcall

P P PP

call
Call!

P P PP

Multicore programming The fork-join multithreaded programming model

The work-stealing scheduler (2/11)

spawn
call spawncall
call
call
spawn

spawn
spawn
call
spawn
call

spawn
callcall

P

spawn

P PP

call
Spawn!

P P PP

Multicore programming The fork-join multithreaded programming model

The work-stealing scheduler (3/11)

spawn
call spawncall
call
call
spawn

spawn
spawn
call
spawn
call

spawn
call
spawn

call

P

spawn
spawn

P PP

call
call

spawn
Spawn!Spawn! Call!

P P PP

Multicore programming The fork-join multithreaded programming model

The work-stealing scheduler (4/11)

spawn
call spawn

spawn
call

call
call
call
spawn

spawn
call
spawn
call

spawn
call
spawn

P

spawn

P PP

call
callspawn

spawn
Return!

P P PP

Multicore programming The fork-join multithreaded programming model

The work-stealing scheduler (5/11)

spawn
call spawn

spawn
call
call
call
spawn

spawn
call
spawn
call

spawn
call
spawn

P

spawn

P PP

call
callspawn

spawn
Return!

P P PP

Multicore programming The fork-join multithreaded programming model

The work-stealing scheduler (6/11)

spawn
call spawncall
call
call
spawn

spawn
call
spawn
call

spawn
call
spawn

P

spawn

P PP

call
callspawn

spawn
Steal!

P P PP

Multicore programming The fork-join multithreaded programming model

The work-stealing scheduler (7/11)

spawn
call spawncall
call
call
spawn

spawn
call
spawn
call

spawn
call
spawn

P

spawn

P PP

call
callspawn

spawn
Steal!

P P PP

Multicore programming The fork-join multithreaded programming model

The work-stealing scheduler (8/11)

spawn
call spawncall
call
call
spawn

spawn
call
spawn
call

spawn
call
spawn

P

spawn

P PP

call
callspawn

spawn

P P PP

Multicore programming The fork-join multithreaded programming model

The work-stealing scheduler (9/11)

spawn
call spawncall
call
call
spawn

spawn
call

spawn
call

spawn
call
spawn

spawn

P

spawn

P PP

call
callspawn

spawn
Spawn!

P P PP

Multicore programming The fork-join multithreaded programming model

The work-stealing scheduler (10/11)

spawn
call spawncall
call
call
spawn

spawn
call

spawn
call

spawn
call
spawn

spawn

P

spawn

P PP

call
callspawn

spawn

P P PP

Multicore programming The fork-join multithreaded programming model

The work-stealing scheduler (11/11)

spawn
call spawncall
call
call
spawn

spawn
call

spawn
call

spawn
call
spawn

spawn

P

spawn

P PP

call
callspawn

spawn

P P PP

Multicore programming The fork-join multithreaded programming model

Performances of the work-stealing scheduler

Assume that

each strand executes in unit time,

for almost all “parallel steps” there are at least p strands to run,

each processor is either working or stealing.

Then, the randomized work-stealing scheduler is expected to run in

TP = T1/p + O(T∞)

Multicore programming The fork-join multithreaded programming model

Overheads and burden

Many factors (simplification assumptions of the fork-join parallelism
model, architecture limitation, costs of executing the parallel
constructs, overheads of scheduling) will make Tp larger in practice
than T1/p + T∞.

One may want to estimate the impact of those factors:
1 by improving the estimate of the randomized work-stealing complexity

result
2 by comparing a Cilk++ program with its C++ elision
3 by estimating the costs of spawning and synchronizing

Cilk++ estimates Tp as Tp = T1/p + 1.7 burden span, where
burden span is 15000 instructions times the number of continuation
edges along the critical path.

Multicore programming The fork-join multithreaded programming model

Cilkview

Work Law
(linear

Span
Law(linear

speedup)
Measured

Burdened

Measured
speedup

Burdened
parallelism

— estimates Parallelismestimates
scheduling
overheads

Cilkview computes work and span to derive upper bounds on
parallel performance

Cilkview also estimates scheduling overhead to compute a burdened
span for lower bounds.

Multicore programming The fork-join multithreaded programming model

The Fibonacci Cilk++ example

Code fragment

long fib(int n)

{

if (n < 2) return n;

long x, y;

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return x + y;

}

Multicore programming The fork-join multithreaded programming model

Fibonacci program timing

The environment for benchmarking:

– model name : Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz

– L2 cache size : 4096 KB

– memory size : 3 GB

#cores = 1 #cores = 2 #cores = 4

n timing(s) timing(s) speedup timing(s) speedup

30 0.086 0.046 1.870 0.025 3.440
35 0.776 0.436 1.780 0.206 3.767
40 8.931 4.842 1.844 2.399 3.723
45 105.263 54.017 1.949 27.200 3.870
50 1165.000 665.115 1.752 340.638 3.420

Multicore programming The fork-join multithreaded programming model

Quicksort

code in cilk/examples/qsort

void sample_qsort(int * begin, int * end)

{

if (begin != end) {

--end;

int * middle = std::partition(begin, end,

std::bind2nd(std::less<int>(), *end));

using std::swap;

swap(*end, *middle);

cilk_spawn sample_qsort(begin, middle);

sample_qsort(++middle, ++end);

cilk_sync;

}

}

Multicore programming The fork-join multithreaded programming model

Quicksort timing

Timing for sorting an array of integers:

#cores = 1 #cores = 2 #cores = 4

of int timing(s) timing(s) speedup timing(s) speedup

10× 106 1.958 1.016 1.927 0.541 3.619
50× 106 10.518 5.469 1.923 2.847 3.694

100× 106 21.481 11.096 1.936 5.954 3.608
500× 106 114.300 57.996 1.971 31.086 3.677

Multicore programming The fork-join multithreaded programming model

Matrix multiplication

Code in cilk/examples/matrix

Timing of multiplying a 687× 837 matrix by a 837× 1107 matrix

iterative recursive

threshold st(s) pt(s) su st(s) pt (s) su

10 1.273 1.165 0.721 1.674 0.399 4.195
16 1.270 1.787 0.711 1.408 0.349 4.034
32 1.280 1.757 0.729 1.223 0.308 3.971
48 1.258 1.760 0.715 1.164 0.293 3.973
64 1.258 1.798 0.700 1.159 0.291 3.983
80 1.252 1.773 0.706 1.267 0.320 3.959

st = sequential time; pt = parallel time with 4 cores; su = speedup

Multicore programming The fork-join multithreaded programming model

The cilkview example from the documentation

Using cilk for to perform operations over an array in parallel:

static const int COUNT = 4;

static const int ITERATION = 1000000;

long arr[COUNT];

long do_work(long k){

long x = 15;

static const int nn = 87;

for (long i = 1; i < nn; ++i)

x = x / i + k % i;

return x;

}

int cilk_main(){

for (int j = 0; j < ITERATION; j++)

cilk_for (int i = 0; i < COUNT; i++)

arr[i] += do_work(j * i + i + j);

}

Multicore programming The fork-join multithreaded programming model

1) Parallelism Profile

Work : 6,480,801,250 ins

Span : 2,116,801,250 ins

Burdened span : 31,920,801,250 ins

Parallelism : 3.06

Burdened parallelism : 0.20

Number of spawns/syncs: 3,000,000

Average instructions / strand : 720

Strands along span : 4,000,001

Average instructions / strand on span : 529

2) Speedup Estimate

2 processors: 0.21 - 2.00

4 processors: 0.15 - 3.06

8 processors: 0.13 - 3.06

16 processors: 0.13 - 3.06

32 processors: 0.12 - 3.06

Multicore programming The fork-join multithreaded programming model

A simple fix

Inverting the two for loops

int cilk_main()

{

cilk_for (int i = 0; i < COUNT; i++)

for (int j = 0; j < ITERATION; j++)

arr[i] += do_work(j * i + i + j);

}

Multicore programming The fork-join multithreaded programming model

1) Parallelism Profile

Work : 5,295,801,529 ins

Span : 1,326,801,107 ins

Burdened span : 1,326,830,911 ins

Parallelism : 3.99

Burdened parallelism : 3.99

Number of spawns/syncs: 3

Average instructions / strand : 529,580,152

Strands along span : 5

Average instructions / strand on span: 265,360,221

2) Speedup Estimate

2 processors: 1.40 - 2.00

4 processors: 1.76 - 3.99

8 processors: 2.01 - 3.99

16 processors: 2.17 - 3.99

32 processors: 2.25 - 3.99

Multicore programming The fork-join multithreaded programming model

Timing

#cores = 1 #cores = 2 #cores = 4

version timing(s) timing(s) speedup timing(s) speedup

original 7.719 9.611 0.803 10.758 0.718
improved 7.471 3.724 2.006 1.888 3.957

Multicore programming The fork-join multithreaded programming model

Summary and notes

GPU programming The CUDA programming and memory models

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model

3 GPU programming
The CUDA programming and memory models
Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA

GPU programming The CUDA programming and memory models

CUDA design goals

Enable heterogeneous systems (i.e., CPU+GPU)

Scale to 100’s of cores, 1000’s of parallel threads

Use C/C++ with minimal extensions

Let programmers focus on parallel algorithms

GPU programming The CUDA programming and memory models

Heterogeneous programming (1/3)

A CUDA program is a serial program with parallel kernels, all in C.

The serial C code executes in a host (= CPU) thread

The parallel kernel C code executes in many device threads across
multiple GPU processing elements, called streaming processors (SP).

GPU programming The CUDA programming and memory models

Heterogeneous programming (2/3)

Thus, the parallel code (kernel) is launched and executed on a device
by many threads.

Threads are grouped into thread blocks.

One kernel is executed at a time on the device.

Many threads execute each kernel.

GPU programming The CUDA programming and memory models

Heterogeneous programming (3/3)

The parallel code is written for a thread
• Each thread is free to execute a unique code path
• Built-in thread and block ID variables are used to map each thread

to a specific data tile (see next slide).

Thus, each thread executes the same code on different data based on
its thread and block ID.

GPU programming The CUDA programming and memory models

Example: increment array elements (1/2)

See our example number 4 in /usr/local/cs4402/examples/4

GPU programming The CUDA programming and memory models

Example: increment array elements (2/2)

GPU programming The CUDA programming and memory models

Thread blocks (1/2)

A Thread block is a group of threads that can:
• Synchronize their execution
• Communicate via shared memory

Within a grid, thread blocks can run in any order:
• Concurrently or sequentially
• Facilitates scaling of the same code across many devices

GPU programming The CUDA programming and memory models

Thread blocks (2/2)

Thus, within a grid, any possible interleaving of blocks must be valid.

Thread blocks may coordinate but not synchronize
• they may share pointers
• they should not share locks (this can easily deadlock).

The fact that thread blocks cannot synchronize gives scalability:
• A kernel scales across any number of parallel cores

However, within a thread block, threads may synchronize with
barriers.

That is, threads wait at the barrier until all threads in the same
block reach the barrier.

GPU programming The CUDA programming and memory models

Memory hierarchy (1/3)

Host (CPU) memory:

Not directly accessible by CUDA threads

GPU programming The CUDA programming and memory models

Memory hierarchy (2/3)

Global (on the device) memory:

Also called device memory

Accessible by all threads as well as host (CPU)

Data lifetime = from allocation to deallocation

GPU programming The CUDA programming and memory models

Memory hierarchy (3/3)

Shared memory:

Each thread block has its own shared memory, which is accessible
only by the threads within that block

Data lifetime = block lifetime

Local storage:

Each thread has its own local storage

Data lifetime = thread lifetime

GPU programming The CUDA programming and memory models

Blocks run on multiprocessors

GPU programming The CUDA programming and memory models

Streaming processors and multiprocessors

GPU programming The CUDA programming and memory models

Hardware multithreading

Hardware allocates resources to blocks:
• blocks need: thread slots, registers, shared memory
• blocks don’t run until resources are available

Hardware schedules threads:
• threads have their own registers
• any thread not waiting for something can run
• context switching is free every cycle

Hardware relies on threads to hide latency:
• thus high parallelism is necessary for performance.

GPU programming The CUDA programming and memory models

SIMT thread execution

At each clock cycle, a multiprocessor executes the same instruction
on a group of threads called a warp

• The number of threads in a warp is the warp size (32 on G80)
• A half-warp is the first or second half of a warp.

Within a warp, threads
• share instruction fetch/dispatch
• some become inactive when code path diverges
• hardware automatically handles divergence

Warps are the primitive unit of scheduling:
• each active block is split into warps in a well-defined way
• threads within a warp are executed physically in parallel while warps

and blocks are executed logically in parallel.

GPU programming Tiled matrix multiplication in CUDA

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model

3 GPU programming
The CUDA programming and memory models
Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA

GPU programming Tiled matrix multiplication in CUDA

Matrix multiplication (1/16)

The goals of this example are:
• Understanding how to write a kernel for a non-toy example
• Understanding how to map work (and data) to the thread blocks
• Understanding the importance of using shared memory

We start by writing a naive kernel for matrix multiplication which
does not use shared memory.

Then we analyze the performance of this kernel and realize that it is
limited by the global memory latency.

Finally, we present a more efficient kernel, which takes advantage of a
tile decomposition and makes use of shared memory.

GPU programming Tiled matrix multiplication in CUDA

Matrix multiplication (2/16)

Consider multiplying two rectangular matrices A and B with
respective formats m× n and n× p. Define C = A×B.

Principle: each thread computes an element of C through a 2D grid
with 2D thread blocks.

GPU programming Tiled matrix multiplication in CUDA

Matrix multiplication (3/16)

__global__ void mat_mul(float *a, float *b,

float *ab, int width)

{

// calculate the row & col index of the element

int row = blockIdx.y*blockDim.y + threadIdx.y;

int col = blockIdx.x*blockDim.x + threadIdx.x;

float result = 0;

// do dot product between row of a and col of b

for(int k = 0; k < width; ++k)

result += a[row*width+k] * b[k*width+col];

ab[row*width+col] = result;

}

GPU programming Tiled matrix multiplication in CUDA

Matrix multiplication (4/16)

Analyze the previous CUDA kernel for multiplying two rectangular
matrices A and B with respective formats m× n and n× p. Define
C = A×B.

Each element of C is computed by one thread:
• then each row of A is read p times and
• each column of B is read m times, thus
• 2mnp reads in total for 2mnp flops.

Let t be an integer dividing m and p. We decompose C into t× t
tiles. If tiles are computed one after another, then:

• (m/t)(t n)(p/t) slots are read in A
• (p/t)(t n)(m/t) slots are read in B, thus
• 2mnp/t reads in total for 2mnp flops.

For a CUDA implementation, t = 16 such that each tile is computed
by one thread block.

GPU programming Tiled matrix multiplication in CUDA

Matrix multiplication (5/16)

The previous explanation can be adapted to a particular GPU
architecture, so as to estimate the performance of the first (naive)
kernel.

The first kernel has a global memory access to flop ratio (GMAC)
of 8 Bytes / 2 ops, that is, 4 B/op.

Suppose using a GeForce GTX 260, which has 805 GFLOPS peak
performance.

In order to reach peak fp performance we would need a memory
bandwidth of GMAC× Peak FLOPS = 3.2 TB/s.

Unfortunately, we only have 112 GB/s of actual memory bandwidth
(BW) on a GeForce GTX 260.

Therefore an upper bound on the performance of our implementation
is BW / GMAC = 28 GFLOPS.

GPU programming Tiled matrix multiplication in CUDA

Matrix multiplication (6/16)

The picture below illustrates our second kernel

Each thread block computes a tile in C, which is obtained as a dot
product of tile-vector of A by a tile-vector of B.

Tile size is chosen in order to maximize data locality.

GPU programming Tiled matrix multiplication in CUDA

Matrix multiplication (7/16)

So a thread block computes a t× t tile of C.

Each element in that tile is a dot-product of a row from A and a
column from B.

We view each of these dot-products as a sum of small dot products:

ci,j = Σt−1
k=oai,kbk,j + Σ2t−1

k=t ai,kbk,j + · · ·Σn−1
k=n−1−tai,kbk,j

Therefore we fix ` and then compute Σ
(`+1)t−1
k=`t ai,kbk,j for all i, j in

the working thread block.

We do this for ` = 0, 1, . . . , (n/t− 1).

This allows us to store the working tiles of A and B in shared memory.

GPU programming Tiled matrix multiplication in CUDA

Matrix multiplication (8/16)

We assume that A, B, C are stored in row-major layout.

Observe that for computing a tile in C our kernel code does need to
know the number of rows in A.

It just needs to know the width (number of columns) of A and B.

#define BLOCK_SIZE 16

template <typename T>

__global__ void matrix_mul_ker(T* C, const T *A, const T *B,

size_t wa, size_t wb)

// Block index; WARNING: should be at most 2^16 - 1

int bx = blockIdx.x; int by = blockIdx.y;

// Thread index

int tx = threadIdx.x; int ty = threadIdx.y;

GPU programming Tiled matrix multiplication in CUDA

Matrix multiplication (9/16)

We need the position in *A of the first element of the first working
tile from A; we call it aBegin.

We will need also the position in *A of the last element of the first
working tile from A; we call it aEnd.

Moreover, we will need the offset between two consecutive working
tiles of A; we call it aStep.

int aBegin = wa * BLOCK_SIZE * by;

int aEnd = aBegin + wa - 1;

int aStep = BLOCK_SIZE;

GPU programming Tiled matrix multiplication in CUDA

Matrix multiplication (10/16)

Similarly for B we have bBegin and bStep.

We will not need a bEnd since once we are done with a row of A, we
are also done with a column of B.

Finally, we initialize the accumulator of the working thread; we call it
Csub.

int bBegin = BLOCK_SIZE * bx;

int bStep = BLOCK_SIZE * wb;

int Csub = 0;

GPU programming Tiled matrix multiplication in CUDA

Matrix multiplication (11/16)

The main loop starts by copying the working tiles of A and B to
shared memory.

for(int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) {

// shared memory for the tile of A

__shared__ int As[BLOCK_SIZE][BLOCK_SIZE];

// shared memory for the tile of B

__shared__ int Bs[BLOCK_SIZE][BLOCK_SIZE];

// Load the tiles from global memory to shared memory

// each thread loads one element of each tile

As[ty][tx] = A[a + wa * ty + tx];

Bs[ty][tx] = B[b + wb * ty + tx];

// synchronize to make sure the matrices are loaded

__syncthreads();

GPU programming Tiled matrix multiplication in CUDA

Matrix multiplication (12/16)

Compute a small “dot-product” for each element in the working tile
of C.

// Multiply the two tiles together

// each thread computes one element of the tile of C

for(int k = 0; k < BLOCK_SIZE; ++k) {

Csub += As[ty][k] * Bs[k][tx];

}

// synchronize to make sure that the preceding computation is

// done before loading two new tiles of A dnd B in the next iteration

__syncthreads();

}

GPU programming Tiled matrix multiplication in CUDA

Matrix multiplication (13/16)

Once computed, the working tile of C is written to global memory.

// Write the working tile of C to global memory;

// each thread writes one element

int c = wb * BLOCK_SIZE * by + BLOCK_SIZE * bx;

C[c + wb * ty + tx] = Csub;

GPU programming Tiled matrix multiplication in CUDA

Matrix multiplication (14/16)

Each thread block should have many threads:
• TILE WIDTH = 16 implies 16× 16 = 256 threads

There should be many thread blocks:
• A 1024× 1024 matrix would require 4096 thread blocks.
• Since one streaming multiprocessor (SM) can handle 768 threads, each

SM will process 3 thread blocks, leading it full occupancy.

Each thread block performs 2× 256 reads of a 4-byte float while
performing 256× (2× 16) = 8, 192 fp ops:

• Memory bandwidth is no longer limiting factor

GPU programming Tiled matrix multiplication in CUDA

Matrix multiplication (15/16)

Experimentation performed on a GT200.

Tiling and using shared memory were clearly worth the effort.

GPU programming Tiled matrix multiplication in CUDA

Matrix multiplication (16/16)

Effective use of different memory resources reduces the number of
accesses to global memory

But these resources are finite!

The more memory locations each thread requires, the fewer threads
an SM can accommodate.

GPU programming Optimizing Matrix Transpose with CUDA

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model

3 GPU programming
The CUDA programming and memory models
Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA

GPU programming Optimizing Matrix Transpose with CUDA

Matrix transpose characteristics (1/2)

We optimize a transposition code for a matrix of floats. This operates
out-of-place:

• input and output matrices address separate memory locations.

For simplicity, we consider an n× n matrix where 32 divides n.
We focus on the device code:

• the host code performs typical tasks: data allocation and transfer between host
and device, the launching and timing of several kernels, result validation, and
the deallocation of host and device memory.

Benchmarks illustrate this section:
• we compare our matrix transpose kernels against a matrix copy kernel,
• for each kernel, we compute the effective bandwidth, calculated in GB/s as

twice the size of the matrix (once for reading the matrix and once for writing)
divided by the time of execution,

• Each operation is run NUM REFS times (for normalizing the measurements),
• This looping is performed once over the kernel and once within the kernel,
• The difference between these two timings is kernel launch and synchronization

overheads.

GPU programming Optimizing Matrix Transpose with CUDA

Matrix transpose characteristics (2/2)

We present hereafter different kernels called from the host code, each
addressing different performance issues.

All kernels in this study launch thread blocks of dimension 32x8,
where each block transposes (or copies) a tile of dimension 32x32.

As such, the parameters TILE DIM and BLOCK ROWS are set to 32 and
8, respectively.

Using a thread block with fewer threads than elements in a tile is
advantageous for the matrix transpose:

• each thread transposes several matrix elements, four in our case, and
much of the cost of calculating the indices is amortized over these
elements.

This study is based on a technical report by Greg Ruetsch (NVIDIA)
and Paulius Micikevicius (NVIDIA).

GPU programming Optimizing Matrix Transpose with CUDA

A simple copy kernel (1/2)

__global__ void copy(float *odata, float* idata, int width,

int height, int nreps)

{

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index = xIndex + width*yIndex;

for (int r=0; r < nreps; r++) { // normalization outer loop

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index+i*width] = idata[index+i*width];

}

}

}

GPU programming Optimizing Matrix Transpose with CUDA

A simple copy kernel (2/2)

odata and idata are pointers to the input and output matrices,

width and height are the matrix x and y dimensions,

nreps determines how many times the loop over data movement
between matrices is performed.

In this kernel, xIndex and yIndex are global 2D matrix indices,

used to calculate index, the 1D index used to access matrix elements.

__global__ void copy(float *odata, float* idata, int width,

int height, int nreps)

{

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index = xIndex + width*yIndex;

for (int r=0; r < nreps; r++) {

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index+i*width] = idata[index+i*width];

} } }

GPU programming Optimizing Matrix Transpose with CUDA

A naive transpose kernel

_global__ void transposeNaive(float *odata, float* idata,

int width, int height, int nreps)

{

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index_in = xIndex + width * yIndex;

int index_out = yIndex + height * xIndex;

for (int r=0; r < nreps; r++) {

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index_out+i] = idata[index_in+i*width];

}

}

}

GPU programming Optimizing Matrix Transpose with CUDA

Naive transpose kernel vs copy kernel

The performance of these two kernels on a 2048x2048 matrix using a
GTX280 is given in the following table:

The minor differences in code between the copy and nave transpose
kernels have a profound effect on performance.

GPU programming Optimizing Matrix Transpose with CUDA

Coalesced Transpose (1/11)

Because device memory has a much higher latency and lower
bandwidth than on-chip memory, special attention must be paid to:
how global memory accesses are performed?

The simultaneous global memory accesses by each thread of a
half-warp (16 threads on G80) during the execution of a single read or
write instruction will be coalesced into a single access if:

1 The size of the memory element accessed by each thread is either 4, 8,
or 16 bytes.

2 The address of the first element is aligned to 16 times the element’s
size.

3 The elements form a contiguous block of memory.
4 The i-th element is accessed by the i-th thread in the half-warp.

Last two requirements are relaxed with compute capabilities of 1.2.

Coalescing happens even if some threads do not access memory
(divergent warp)

GPU programming Optimizing Matrix Transpose with CUDA

Coalesced Transpose (2/11)

GPU programming Optimizing Matrix Transpose with CUDA

Coalesced Transpose (3/11)

GPU programming Optimizing Matrix Transpose with CUDA

Coalesced Transpose (4/11)

GPU programming Optimizing Matrix Transpose with CUDA

Coalesced Transpose (5/11)

Allocating device memory through cudaMalloc() and choosing
TILE DIM to be a multiple of 16 ensures alignment with a
segment of memory, therefore all loads from idata are coalesced.

Coalescing behavior differs between the simple copy and naive
transpose kernels when writing to odata.

In the case of the naive transpose, for each iteration of the i-loop a
half warp writes one half of a column of floats to different segments
of memory:

• resulting in 16 separate memory transactions,
• regardless of the compute capability.

GPU programming Optimizing Matrix Transpose with CUDA

Coalesced Transpose (6/11)

The way to avoid uncoalesced global memory access is
1 to read the data into shared memory and,
2 have each half warp access non-contiguous locations in shared memory

in order to write contiguous data to odata.

There is no performance penalty for non-contiguous access patterns in
shared memory as there is in global memory.

a synchthreads() call is required to ensure that all reads from
idata to shared memory have completed before writes from shared
memory to odata commence.

GPU programming Optimizing Matrix Transpose with CUDA

Coalesced Transpose (7/11)

__global__ void transposeCoalesced(float *odata,

float *idata, int width, int height) // no nreps param

{

__shared__ float tile[TILE_DIM][TILE_DIM];

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index_in = xIndex + (yIndex)*width;

xIndex = blockIdx.y * TILE_DIM + threadIdx.x;

yIndex = blockIdx.x * TILE_DIM + threadIdx.y;

int index_out = xIndex + (yIndex)*height;

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

tile[threadIdx.y+i][threadIdx.x] =

idata[index_in+i*width];

} __syncthreads();

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index_out+i*height] =

tile[threadIdx.x][threadIdx.y+i];

} }

GPU programming Optimizing Matrix Transpose with CUDA

Coalesced Transpose (8/11)

1 The half warp writes four half rows of the idata matrix tile to the
shared memory 32x32 array tile indicated by the yellow line
segments.

2 After a syncthreads() call to ensure all writes to tile are
completed,

3 the half warp writes four half columns of tile to four half rows of an
odata matrix tile, indicated by the green line segments.

GPU programming Optimizing Matrix Transpose with CUDA

Coalesced Transpose (9/11)

While there is a dramatic increase in effective bandwidth of the coalesced
transpose over the naive transpose, there still remains a large performance
gap between the coalesced transpose and the copy:

One possible cause of this performance gap could be the
synchronization barrier required in the coalesced transpose.

This can be easily assessed using the following copy kernel which
utilizes shared memory and contains a syncthreads() call.

GPU programming Optimizing Matrix Transpose with CUDA

Coalesced Transpose (10/11)

_global__ void copySharedMem(float *odata, float *idata,

int width, int height) // no nreps param

{

__shared__ float tile[TILE_DIM][TILE_DIM];

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index = xIndex + width*yIndex;

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

tile[threadIdx.y+i][threadIdx.x] =

idata[index+i*width];

}

__syncthreads();

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index+i*width] =

tile[threadIdx.y+i][threadIdx.x];

} }

GPU programming Optimizing Matrix Transpose with CUDA

Coalesced Transpose (11/11)

The shared memory copy results seem to suggest that the use of shared
memory with a synchronization barrier has little effect on the performance,
certainly as far as the Loop in kernel column indicates when comparing
the simple copy and shared memory copy.

GPU programming Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (1/6)

1 Shared memory is divided into 16 equally-sized memory modules,
called banks, which are organized such that successive 32-bit words
are assigned to successive banks.

2 These banks can be accessed simultaneously, and to achieve maximum
bandwidth to and from shared memory the threads in a half warp
should access shared memory associated with different banks.

3 The exception to this rule is when all threads in a half warp read
the same shared memory address, which results in a broadcast where
the data at that address is sent to all threads of the half warp in one
transaction.

4 One can use the warp serialize flag when profiling CUDA
applications to determine whether shared memory bank conflicts
occur in any kernel.

GPU programming Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (2/6)

GPU programming Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (3/6)

GPU programming Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (4/6)

1 The coalesced transpose uses a 32× 32 shared memory array of
floats.

2 For this sized array, all data in columns k and k+16 are mapped to
the same bank.

3 As a result, when writing partial columns from tile in shared
memory to rows in odata the half warp experiences a 16-way bank
conflict and serializes the request.

4 A simple way to avoid this conflict is to pad the shared memory array
by one column:

__shared__ float tile[TILE_DIM][TILE_DIM+1];

GPU programming Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (5/6)

The padding does not affect shared memory bank access pattern when
writing a half warp to shared memory, which remains conflict free,

but by adding a single column now the access of a half warp of data
in a column is also conflict free.

The performance of the kernel, now coalesced and memory bank
conflict free, is added to our table on the next slide.

GPU programming Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (6/6)

While padding the shared memory array did eliminate shared memory
bank conflicts, as was confirmed by checking the warp serialize

flag with the CUDA profiler, it has little effect (when implemented at
this stage) on performance.

As a result, there is still a large performance gap between the
coalesced and shared memory bank conflict free transpose and the
shared memory copy.

GPU programming Optimizing Matrix Transpose with CUDA

Decomposing Transpose (1/6)

To investigate further, we revisit the data flow for the transpose and
compare it to that of the copy.

There are essentially two differences between the copy code and the
transpose:

• transposing the data within a tile, and
• writing data to transposed tile.

We can isolate the performance between each of these two
components by implementing two kernels that individually perform
just one of these components:

fine-grained transpose: this kernel transposes the data within a tile,
but writes the tile to the location.

coarse-grained transpose: this kernel writes the tile to the
transposed location in the odata matrix, but does not
transpose the data within the tile.

GPU programming Optimizing Matrix Transpose with CUDA

Decomposing Transpose (2/6)

GPU programming Optimizing Matrix Transpose with CUDA

Decomposing Transpose (3/6)

GPU programming Optimizing Matrix Transpose with CUDA

Decomposing Transpose (4/6)

_global__ void transposeFineGrained(float *odata,

float *idata, int width, int height)

{

__shared__ float block[TILE_DIM][TILE_DIM+1];

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index = xIndex + (yIndex)*width;

for (int i=0; i < TILE_DIM; i += BLOCK_ROWS) {

block[threadIdx.y+i][threadIdx.x] =

idata[index+i*width];

}

__syncthreads();

for (int i=0; i < TILE_DIM; i += BLOCK_ROWS) {

odata[index+i*height] =

block[threadIdx.x][threadIdx.y+i];

}

}

GPU programming Optimizing Matrix Transpose with CUDA

Decomposing Transpose (5/6)

__global__ void transposeCoarseGrained(float *odata,

float *idata, int width, int height)

{

__shared__ float block[TILE_DIM][TILE_DIM+1];

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index_in = xIndex + (yIndex)*width;

xIndex = blockIdx.y * TILE_DIM + threadIdx.x;

yIndex = blockIdx.x * TILE_DIM + threadIdx.y;

int index_out = xIndex + (yIndex)*height;

for (int i=0; i<TILE_DIM; i += BLOCK_ROWS) {

block[threadIdx.y+i][threadIdx.x] =

idata[index_in+i*width];

} syncthreads();

for (int i=0; i<TILE_DIM; i += BLOCK_ROWS) {

odata[index_out+i*height] =

block[threadIdx.y+i][threadIdx.x];

} }

GPU programming Optimizing Matrix Transpose with CUDA

Decomposing Transpose (6/6)

The fine-grained transpose has performance similar to the shared memory
copy, whereas the coarse-grained transpose has roughly the performance of
the coalesced transpose. Thus the performance bottleneck lies in writing
data to the transposed location in global memory.

GPU programming Optimizing Matrix Transpose with CUDA

Partition Camping (1/4)

Just as shared memory performance can be degraded via bank
conflicts, an analogous performance degradation can occur with
global memory access through partition camping.

Global memory is divided into either 6 partitions (on 8- and 9-series
GPUs) or 8 partitions (on 200-and 10-series GPUs) of 256-byte width.

To use global memory effectively, concurrent accesses to global
memory by all active warps should be divided evenly amongst
partitions.

partition camping occurs when:
• global memory accesses are directed through a subset of partitions,
• causing requests to queue up at some partitions while other partitions

go unused.

GPU programming Optimizing Matrix Transpose with CUDA

Partition Camping (2/4)

Since partition camping concerns how active thread blocks behave,
the issue of how thread blocks are scheduled on multiprocessors is
important.

When a kernel is launched, the order in which blocks are assigned to
multiprocessors is determined by the one-dimensional block ID defined
as:

bid = blockIdx.x + gridDim.x*blockIdx.y;

which is a row-major ordering of the blocks in the grid.

Once maximum occupancy is reached, additional blocks are assigned
to multiprocessors as needed.

How quickly and the order in which blocks complete cannot be
determined.

So active blocks are initially contiguous but become less contiguous
as execution of the kernel progresses.

GPU programming Optimizing Matrix Transpose with CUDA

Partition Camping (3/4)

With 8 partitions of 256-byte width, all data in strides of 2048 bytes
(or 512 floats) map to the same partition.

Any float matrix with 512× k columns, such as our 2048x2048
matrix, will contain columns whose elements map to a single partition.

With tiles of 32× 32 floats whose one-dimensional block IDs are
shown in the figures, the mapping of idata and odata onto the
partitions is depicted below.

GPU programming Optimizing Matrix Transpose with CUDA

Partition Camping (4/4)

Concurrent blocks will be accessing tiles row-wise in idata which will
be roughly equally distributed amongst partitions

However these blocks will access tiles column-wise in odata which
will typically access global memory through just a few partitions.

Just as with shared memory, padding would be an option (potentially
expensive) but there is a better one . . .

GPU programming Optimizing Matrix Transpose with CUDA

Diagonal block reordering (1/7)

GPU programming Optimizing Matrix Transpose with CUDA

Diagonal block reordering (2/7)

The key idea is to view the grid under a diagonal coordinate
system.

If blockIdx.x and blockIdx.y represent the diagonal coordinates,
then (for block-square matrices) the corresponding Cartesian
coordinates are given by the following mapping:

blockIdx_y = blockIdx.x;

blockIdx_x = (blockIdx.x+blockIdx.y)%gridDim.x;

One would simply include the previous two lines of code at the
beginning of the kernel, and write the kernel assuming the Cartesian
interpretation of blockIdx fields, except using blockIdx x and
blockIdx y in place of blockIdx.x and blockIdx.y, respectively,
throughout the kernel.

This is precisely what is done in the transposeDiagonal kernel
hereafter.

GPU programming Optimizing Matrix Transpose with CUDA

Decomposing Transpose (3/7)

__global__ void transposeDiagonal(float *odata,

float *idata, int width, int height)

{

__shared__ float tile[TILE_DIM][TILE_DIM+1];

int blockIdx_x, blockIdx_y;

// diagonal reordering

if (width == height) {

blockIdx_y = blockIdx.x;

blockIdx_x = (blockIdx.x+blockIdx.y)%gridDim.x;

} else {

int bid = blockIdx.x + gridDim.x*blockIdx.y;

blockIdx_y = bid%gridDim.y;

blockIdx_x = ((bid/gridDim.y)+blockIdx_y)%gridDim.x;

}

GPU programming Optimizing Matrix Transpose with CUDA

Decomposing Transpose (4/7)

int xIndex = blockIdx_x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx_y*TILE_DIM + threadIdx.y;

int index_in = xIndex + (yIndex)*width;

xIndex = blockIdx_y*TILE_DIM + threadIdx.x;

yIndex = blockIdx_x*TILE_DIM + threadIdx.y;

int index_out = xIndex + (yIndex)*height;

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

tile[threadIdx.y+i][threadIdx.x] =

idata[index_in+i*width];

}

__syncthreads();

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index_out+i*height] =

tile[threadIdx.x][threadIdx.y+i];

}

}

GPU programming Optimizing Matrix Transpose with CUDA

Diagonal block reordering (5/7)

GPU programming Optimizing Matrix Transpose with CUDA

Diagonal block reordering (6/7)

GPU programming Optimizing Matrix Transpose with CUDA

Diagonal block reordering (7/7)

The bandwidth measured when looping within the kernel over the
read and writes to global memory is within a few percent of the
shared memory copy.
When looping over the kernel, the performance degrades slightly,
likely due to additional computation involved in calculating
blockIdx x and blockIdx y. However, even with this performance
degradation the diagonal transpose has over four times the bandwidth
of the other complete transposes.

GPU programming Optimizing Matrix Transpose with CUDA

Summary and notes

	Data locality and cache misses
	Hierarchical memories and their impact on our programs
	Cache complexity and cache-oblivious algorithms put into practice
	A detailed case study: counting sort

	Multicore programming
	Multicore architectures
	Cilk / Cilk++ / Cilk Plus
	The fork-join multithreaded programming model

	GPU programming
	The CUDA programming and memory models
	Tiled matrix multiplication in CUDA
	Optimizing Matrix Transpose with CUDA

