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Decomposing a non-linear system

Many ways to “solve” a polynomial system
r+y+22=1

2
rr+y+z=1
:g Grébner basis (y+2-1)(y-2)=0
r+y“+z=1 e 2/ 2
2_ 1 z(z +2y—1)=0
T+y+2z°=
Y 22(22+22—1)(2—1)2:0

“ Triangular Decomposition

z—2z=0 =0 z=0 z—-1=0
y—-2z=0, y=0 , y-1=0 , y=0
22422-1=0 2-1=0 2=0 2=0

Both solutions are equivalent.
— by using triangular decomposition, multiple components are found,
suggesting possible component-level parallelism
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Incremental decomposition of a non-linear system

2 +y+z=1
F={z+y*+2=1

z+y+22=1

%]

Fl11
{22 +y+2=1}

PR

r+y’+z=
{ 1 (22-2)y2 +y+(z -2)= O}
N

r—2=0 =0 T
y_Z:O7 y:07 Y- 1
22+22-1=0 z-1=0 z=

Our Goal: take advantage of different components to gain better
performance in high-level decomposition algorithms via parallelism

8

0 1=0
0, y=0
0 z=0
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Motivations and challenges

= Many challenges exist in parallelizing triangular decompositions:
L, Some systems never split
L, Some split only at the final step, leaving very little concurrency

L, Some split into one “main” component and several degenerative cases

= Potential parallelism is problem-dependent and not algorithmic;
it exhibits irregular parallelism

= Where a splitting is found in an intermediate step, subsequent steps
can operate concurrently on each independent component

L, Finding splittings in the geometry is as difficult as solving the system

= An implementation must exploit all possible parallelism, without adding
too much overhead, in particular in the cases where there is no parallelism.
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A more interesting example (1/2)
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A more interesting example (2/2)

Sys2913 Component Tree

—s

000 002 004 006 008 010 012 0.14
Time (s)

— more parallelism exposed as more components found
— yet, work unbalanced between branches
— mechanism needed for dynamic parallelism: “workpile” or “task pool”
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Previous Works

= Parallelization of high-level algebraic and geometric algorithms was
more common roughly 30 years ago

L. Such as in Grébner bases [1, 3, 4] and CAD [11]

= Recent work on parallelism has been on low-/evel routines with
regular parallelism:

L. Polynomial arithmetic [5, 8]
L, Modular methods for GCDs and factorization [6, 9]

= Recently, high-level algorithms, often with irregular parallelism have
neither seen much attention nor received thorough parallelization

L. The normalization algorithm of [2] finds components serially, then
processes each component with a simple parallel map

L, Early work on parallel triangular decomposition was limited by
symmetric multi-processing and inter-process communication [10]
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Main Results

SIPZN

Basic Polynomial Algebra Subprograms http://WWW. bpaslib.org/

= An implementation of triangular decomposition fully in C/C++

= Parallelization effectively exploits as much parallelism as possible
throughout the triangular decomposition algorithm

= Implementation framework for parallelization based on task pools,
generating functions, pipelines, fork-join

= An extensive evaluation of our implementation against over 3000
real-world polynomial systems
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Regular chains, notations
Let k be a perfect field, and k[ X] have ordered vars. X = X << X,

A triangular set T is a regular chain if either T" is empty, or T} is a regular
chain and h is regular modulo sat(T;)

Example:
T, = hv? + tail(T)

(2y + ba)x - by + a?
T = > T = 2y — by - a®

T = Y Y
a+b

cQb<a<y<z]
c k[X]

Saturated ideal of a regular chain:  Quasi-component of a regular chain:

() = (T 4 Ty e~ WA=V Vi), b= T by

peT
- sat(@) = (0) — W(T) = V(sat(T))

Marc Moreno Maza
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Triangular decomposition algorithms

A triangular decomposition of an input system F ¢ k[X] is a set of
regular chains 717, ..., T, such that:

(a) V(F)=U5y W(T;), in the sense of Kalkbrener, or
(b) V(F)=Ui, W(T;), in the sense of Wu and Lazard

Triangular decomposition by incremental intersection has key subroutines:

Intersect. Given p e k[X], T c k[X], compute T1,..., T such that:
V(p) nW(T) € U, W(T3) € V(p)nW(T)

Regularize: Given p e k[X], T c k[X], compute T1,..., T, such that:

(i). W(T) ¢ Ui, W(T;) ¢ W(T), and
(i7). pesat(T;) or p is regular modulo sat(T;), fori=1,...,¢

RegularGCD: Given p € k[ X'] with main variable v, T = {T},} uT,,, find
pairs (g;,T;) such that:

(i). W(T;) € Ui, W(T}) € W(T,), and

(i7). g; is a regular gcd of p, T, w.rt. T;
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Finding splittings: GCDs and Regularize

Let p e k[ X ]\ k with main variable v. Let T'=T,  uT,. All are square free.

A regular GCD g of p and T, w.r.t. sat(7} ) has:
hg is regular modulo sat(T,,)
g € (p,Ty) (every solution of p and T}, solves g as well)
if deg(g,v) >0, then g pseudo-divides p and 7.

Let ¢ = pquo(Ty,g). In Regularize, g says where p vanishes or is regular:

W(T)c W(T,ug) u W(T,;uq) u (V(hg) nW(T)) cW(T)

In Intersect, splittings are found via recursive calls:
V(p)nW(T) c
W(T;ug) v (V(p) n (V(hg) nW(T)))
cV(p)nW(T)

Marc Moreno Maza
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The foundation of splitting: regularity testing

To intersect a polynomial with an existing regular chain, it must have a
regular initial, regularizing finds splittings via a case discussion
— either the initial is regular, or it is not regular

z=0
f=+Da-z o le{y+1=0 ST =] ys1=0
z-1=0 2-1=0

»*x
2
_1:0/
T:{Z/ 1=0 9222 0
z-1= x°-x=
&\‘ -1=0
X]%o T2:{ Yy f=2932_$ T2:

z—-1=0 y-1=0
z—=1=0
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All roads lead to Regularize

The Triangularize algorithm iteratively calls intersect, then a network of
mutually recursive functions do the heavy-lifting.

L, In all cases, polynomials are forced to be regular and splittings are
(possibly) found via Regularize

Triangularize

l

Intersect
IntersectFree J
J CleanChain \
Extend «<— Regularize IntersectAlgebraic

U O \ RegularGCD ‘/ U
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Parallel map and workpile

Map is the possibly the most well-known parallel programming pattern
L, execute a function on each item in a collection concurrently
L, with multiple Maps, tasks must execute in lockstep

Map Pattern [7] Thread Pool (Wikipedia)

00000000 ‘caw—o

shsdUERE - COONOO

Completed Tasks

COO00000 @D — o
(Dpata ttem [ Function Execution

Workpile generalizes Map to a queue of a tasks, allowing tasks to add
more tasks, thus enabling load-balancing as tasks start asynchronously

L, one possible implementation of workpile is a thread pool

Marc Moreno Maza
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Triangularize: incremental triangular decomposition

Algorithm 1 Triangularize(F)

Input: a finite set F' c k[ X]
Output: regular chains T1,...,T. € k[X] encoding the solutions of V(F")
1. T:={2}
2: for pe F' do
7' ()
4 for T € T Map > map Intersect over the current components
5: T':=T'U Intersect(p, T')
6
7

T:=T

return RemoveRedundantComponents(7)

= Coarse-grained parallelism: each Intersect represents substantial work

= At each “level” there are |T| components with which to intersect,
yielding |7| concurrent calls to intersect

= Performs a breadth-first search, with intersects occurring in lockstep
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Triangularize: a task-based approach

Algorithm 2 TriangularizeByTasks(F')

Input: a finite set F' < k[ X]

Output: regular chains T1,...,T. € k[ X] encoding the solutions of V (F)
1. Tasks < { (F,2)}; T <{}
2: while | Tasks| > 0 do

(P,T) < pop a task from Tasks

4 Choose a polynomial p e P; P’ « P~ {p}

5: for 77 in Intersect(p,T) do

6: if [P'|=0then T « T u{T'}

7.

8:

else Tasks < Tasks u {(P',T")}
return RemoveRedundantComponents(7)

= Tasks is really a task scheduler augmented with a thread pool
= Tasks create more tasks, workers pop Tasks until none remain.

= Adaptive to load-balancing, no inter-task synchronization
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Generators and Pipelines

Generators

— A generator function (i.e. iterator) yields data items one at a time,
allowing the function’s control flow to resume on its next execution.

Asynchronous Generators; Producer-Consumer

— async generators can concurrently produce items while the generator's
caller is consuming items; creating a producer-consumer pair

Pipeline

— By connecting many producer-consumer pairs we create a pipeline

— Pipelines need not be linear, they can be directed acyclic graphs

O-E-0-E-0-B-0

Marc Moreno Maza
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Intersect as a generator

Algorithm 3 Intersect(p,T")

Input: p e k[X]\k, v:=mvar(p), a regular chain T's.t. T =T, uT,
Output: regular chains T7, ..., T, satisfying specs.

1: for (g;,T;) € RegularGCD(p, T,,v, T, ) do

2: if dim(7;) # dim(7;,) then

3: for T; ; € Intersect(p,T;) do

4: yleld Ti,j

5: else

6: if g; ¢ k and deg(g;,v) >0 then

7: yIE|d Ti @] {gz}

8: for T; ; € Intersect(lc(g;,v),T;) do

9: for T' ¢ Intersect(p, T; ;) do
10: yield T’

— vyield “produces” a single data item, and then continues computation

— each for loop consumes a data one at a time from the generator
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Generators are both producers and consumers

Algorithm 3 Intersect(p,T') Algorithm 4 Regularize(p,T")
1: for (g, T;) € RegularGCD(p, Ty, T, ) do 1: for (g;,T;) € RegularGCD(p, Ty, T, ) do
2:  if dim(T;) # dim(T},) then 2: > assume dim(7;) = dim(7}))
3: for T; ; € Intersect(p, T;) do 3: if 0<deg(g;,v) <deg(Ty,v) then
4: yield T; ; 4: yield T; U g;
5. else 5: yield T; u pquo(Tv, g;)
6: if g; ¢ k and deg(gi,v) > O then 6: for T; ; € Intersect(lc(g;,v),T;) do
7 yield T; U {g;} 7 for T € Regularize(p, T; ;) do
- H ’
8: for T; ; € Intersect(lc(g;,v),T;) do 8: yield T
9: for T’ ¢ Intersect(p,T; ;) do 9: else
10: yield T’ 10: yield T;

— Establishing mutually recursive functions as generators allows data to
stream between subroutines; subroutines are effectively non-blocking

— function call stack of generators creates a dynamic parallel pipeline.
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The subroutine pipeline

Triangularize

\
Intersect
IntersectF? i \
l - CleanChain
Extend <— Regularize IntersectAlgebraic

@) () ™ RegularGCD ¥ @)

— All subroutines, as generators, allow the pipeline to evolve
dynamically with the call stack.

— The call stack forms a tree if several generators are invoked by one
consumer

— This pipeline creates fine-grained parallelism since work diminishes
with each recursive call

— A thread pool is used and shared among all generators; generators run
synchronously if the pool is empty
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Divide-and-conquer and fork-join

— Divide a problem into
sub-problems, solving each
. Divide
recursively
— Combine sub-solutions to
produce a full solution

— Fork: execute multiple
recursive calls in parallel
(divide)

— Join: merge parallel Combine

execution back into serial

execution (combine)
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Removal of redundant components

After a system is solved, and many components found, we can remove
components from the solution set that are contained within others
— Follow a merge-sort approach; spawn/fork and sync/join

Algorithm 5 RemoveRedundantComponents(7)

Input: a finite set 7 = {T1,...,Tc} of regular chains
Qutput: an irredudant set 7" with the same algebraic set as 7
if e =1 then return T
{ |'6/2‘|; 7-55 <~ {Tl,. .. ,Tg}; 7->g <~ {Tg+1, e ,Ts}
Ti := spawn RemoveRedundantComponents(7<¢)
T2 := RemoveRedundantComponents(7-¢)
sync
T=2; T:=0
for T}, €71 do
if VT2 in 73 IsNotincluded (71,T2) then T :=T{ u{Ti}
for T» €73 do
if V71 in 77 IsNotlncluded (7%,7T1) then T3 :=T; u{T%}
return 7 U T3
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Experimentation Setup

Thanks to Maplesoft, we have a collection of over 3000 real-world systems
from: actual user data, the literature, bug reports.

Of these >3000 systems, 828 require greater than 0.1s to solve

— Non-trivial systems to warrant the overheads of parallelism

203 of these 828 systems (25%) do not split at all
— No speed-up expected; some slow-down is expected in these cases

— however, we include them to ensure that slow-down is minimal

These experiments are run on a node with 2x6-core Intel Xeon X560
processors (24 physical threads with hyperthreading)
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BPAS serial vs Maple

25 Kalkbrener, Maple 2020 vs BPAS Serial 25 Lazard, Maple 2020 vs BPAS Serial 3.
+
27

20 20 24
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| L k3" :

1

Runtime Ratio

or

0
107 1072 107! 10° 10! 10? 10° 104 107 1072 107! 10° 10t 10? 10° 10%
Maple 2020 Runtime (s)

Comparing the runtime performance of triangular decomposition in the
RegularChains library of MAPLE 2020 against the serialized
implementation in BPAS.
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Speedup obtained from tasks and fork-join

Kalkbrener, Tasks & RRC Lazard, Tasks & RRC 30
+
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Serial Runtime (s)
The parallel-speedup obtained from using parallel triangularize tasks and
parallel removal of redundant components (RRC) together for solving in
Kalkbrener and Lazard modes.
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Adding generators

Kalkbrener, Tasks & RRC vs Tasks & RRC & Generators

Lazard, Tasks & RRC vs Tasks & RRC & Generators

4 4.0
35 35
3.0 30
o
=}
2 25 25
o
g 20 2.0
s
5 1s 15
o
10 10 ¥
n a
| o
0.5 05 m ]
0.0 - 0.0 -
10 102 107 10° 10t 10? 10° 104 102 10-2 101 100 10t 10 10°

Serial Runtime (s)

Using parallel triangularize tasks and parallel removal of redundant
components (RRC) as the base case, compare the addition of
asynchronous generators to overall performance for solving in Kalkbrener

and Lazard modes.
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Timings for a few well-known systems

Kalkbrenes Lazard
System Serial Time {5) Maple Ratio | Serial Time{s)  Speed-Up  Maple Ratio
Leykin-1 Lin A.6d 131 200 450
Sys2873 Lin 4.13 Ll 4. 413
Gonnet 115 aa 114 448 251
Sys1792 L7 kX IBE] 259 270
Sys2de6 1.4 [0 1] 157 ELLY 09
Sya26d? L7 ER] 2162 kL 306
Pappus L 108 565 188 415
Sya20458 130 m 129 EET 282
W33 1.38 193 163 248 1L &
Sya3011 131 168 155 133 188
Sys¥e 1.52 165 155 222 188
MontesS16 1.5 an 158 ELE 223
Wu-Wang L&l 241 2 224 1.9
Haires-2-BGK L&) La? 1 &l 215 L83
Sys2353 16 ER) 3 462 ER
w2 219 2.9 250 ERTY 250
nld-3-5 1n RN i 168 409
Sys2875 24 ER Y 244 623 ER N
# 3 config-Li 24 ian 463 452 A5
Sys2128 EE 4.53 329 135 454
Sys2881 EE: 1] g ER 557 287
Sys2885 iN in R L) 239
Sys2297 4.4 EE.7 434 480 EEL)
W5 6.96 EE. 699 588 EELY
Resif .81 1.96 181 574 196
Sys2l6l 550 540 8567 78S 499
Wad 114 208 1067 867 188
Meluad 1019 175 L] (B 475
SysM49 154 4.8 1085 BE4 417
Sya2882 12,50 251 1668 606 250
Sys2043 17.25 L1 21 90 265 135
depé 29.04 1% 3738 1027 203
Sys2880 56.57 4.1 5137 1047 R
Sys2874 T0.43 5.3 23 1017 R
Sysa270 149.11 1w 14911 imn LM
Sysi283 16782 190 167 82 EE Y 1.9
Syailkl 1Lz 21447 am 122
KW . 1.38 46234 iel 137
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Inspecting the Geometry: Sys2691

Sys2691 Component Tree

000 025 050 075 1.00 125 150 175
Time (s)

— Bottom “main” branch is majority of the work.
— Little overlap with the quickly-solved degenerative branches
— 2.13x speedup achieved; 88% efficient compared to work/span ratio
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Inspecting the Geometry: Sys3295

_Sys3295 Component Tree

00 01 02 03 04 05 06 07 08
Time (s)

— Up to 11 active branches at once, but overlap is only for 0.1s

— 4.94x speedup; 75% efficient

— Could consider other parallelism in “main” branch once all other tasks
have finished and released resources (poly arithmetic, subresultants)
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Conclusion & Future Work

We have tackled irregular parallelism in a high-level algebraic algorithm

— our solution dynamically finds and exploits opportunities for
concurrency

— uses dynamic parallel task management, async. generators, and DnC

— Dnc is also used to construct subresultant chains via
evaluation /interpolation techniques

— While async. generators do not help much (because the
corresponding tasks became too fine-grained as we were optimizing
polynomial arithmetic) they did help in the past (ISSAC 2021).

— All our parallel patterns (task management, async. generators, and
DnC) are part of the BPAS library and do not rely on any other
concurrency plafform;

— The benefit is that all those parallel patterns rely on the same
scheduler.

Further parallelism can be found through:
— solving over a prime field, which produces more splittings:
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Thank You!

Basic Polynomial Algebra Subprograms http://WWW. bpaslib.org/
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