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Decomposing a non-linear system
Many ways to “solve” a polynomial system

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥2 + 𝑦 + 𝑧 = 1
𝑥 + 𝑦2 + 𝑧 = 1
𝑥 + 𝑦 + 𝑧2 = 1

Gröbner basisÔ⇒

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 + 𝑦 + 𝑧2 = 1
(𝑦 + 𝑧 − 1) (𝑦 − 𝑧) = 0

𝑧2 (𝑧2 + 2𝑦 − 1) = 0
𝑧2 (𝑧2 + 2𝑧 − 1) (𝑧 − 1)2 = 0

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 − 𝑧 = 0
𝑦 − 𝑧 = 0

𝑧2 + 2𝑧 − 1 = 0
,

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 = 0

𝑧 − 1 = 0
,

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 − 1 = 0

𝑧 = 0
,

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 − 1 = 0
𝑦 = 0
𝑧 = 0

Both solutions are equivalent.
→ by using triangular decomposition, multiple components are found,

suggesting possible component-level parallelism

Ô
⇒ Triangular Decomposition
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Incremental decomposition of a non-linear system

𝐹 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥2
+ 𝑦 + 𝑧 = 1

𝑥 + 𝑦2
+ 𝑧 = 1

𝑥 + 𝑦 + 𝑧2
= 1

∅
𝐹 (︀1⌋︀ ↓
{𝑥2 + 𝑦 + 𝑧 = 1}

𝐹 (︀2⌋︀ ↓

{ 𝑥 + 𝑦2 + 𝑧 = 1
𝑦4 + (2𝑧 − 2)𝑦2 + 𝑦 + (𝑧2 − 𝑧) = 0 (︀

𝐹 (︀3⌋︀ ↙ ↙ ↘ ↘
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥 − 𝑧 = 0
𝑦 − 𝑧 = 0

𝑧2
+ 2𝑧 − 1 = 0

,

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 = 0

𝑧 − 1 = 0
,

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 − 1 = 0

𝑧 = 0
,

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑥 − 1 = 0
𝑦 = 0
𝑧 = 0

Our Goal: take advantage of different components to gain better
performance in high-level decomposition algorithms via parallelism
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Motivations and challenges

• Many challenges exist in parallelizing triangular decompositions:
ë Some systems never split
ë Some split only at the final step, leaving very little concurrency
ë Some split into one “main” component and several degenerative cases

• Potential parallelism is problem-dependent and not algorithmic;
it exhibits irregular parallelism

• Where a splitting is found in an intermediate step, subsequent steps
can operate concurrently on each independent component
ë Finding splittings in the geometry is as difficult as solving the system

• An implementation must exploit all possible parallelism, without adding
too much overhead, in particular in the cases where there is no parallelism.
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A more interesting example (1/2)
∅

𝐹 (︀1⌋︀
××Ö

{𝑦 +𝑤}
𝐹 (︀2⌋︀

{5𝑦 + 1
5𝑤 − 1(︀, {𝑦

𝑤
(︀

𝐹 (︀3⌋︀

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 + 𝑧2 + 1
5𝑦 + 1
5𝑤 − 1

[︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌊︀
,

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

5𝑦 + 1
𝑧

5𝑤 − 1

[︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌊︀
,

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑥 + 𝑧2 + 1
𝑦
𝑤

[︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌊︀
,

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝑦
𝑧
𝑤

[︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌊︀
𝐹 (︀4⌋︀

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥 + 𝑧2
+ 1

5𝑦 + 1
𝑧8
+⋯

5𝑤 − 1

,

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥 − 𝑧
5𝑦 + 1

𝑧2
+ 𝑧 + 1
5𝑤 − 1

,

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥
5𝑦 + 1

𝑧
5𝑤 − 1

,

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥2
+ 1

5𝑦 + 1
𝑧

5𝑤 − 1

,

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥 + 𝑧2
+ 1

𝑦
𝑧8
+⋯

𝑤

,

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥 − 𝑧
𝑦

𝑧2
+ 𝑧 + 1

𝑤

,

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥2
+ 1

𝑦
𝑧
𝑤

,

)︀
⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀
]︀

𝑥
𝑦
𝑧
𝑤

𝐹 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑦 +𝑤
5𝑤2 + 𝑦
𝑥𝑧 + 𝑧3 + 𝑧
𝑥5 + 𝑥3 + 𝑧
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A more interesting example (2/2)

→ more parallelism exposed as more components found
→ yet, work unbalanced between branches
→ mechanism needed for dynamic parallelism: “workpile” or “task pool”
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Previous Works

• Parallelization of high-level algebraic and geometric algorithms was
more common roughly 30 years ago

ë Such as in Gröbner bases [1, 3, 4] and CAD [11]

• Recent work on parallelism has been on low-level routines with
regular parallelism:

ë Polynomial arithmetic [5, 8]
ë Modular methods for GCDs and factorization [6, 9]

• Recently, high-level algorithms, often with irregular parallelism have
neither seen much attention nor received thorough parallelization

ë The normalization algorithm of [2] finds components serially, then
processes each component with a simple parallel map

ë Early work on parallel triangular decomposition was limited by
symmetric multi-processing and inter-process communication [10]
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Main Results

http://www.bpaslib.org/

• An implementation of triangular decomposition fully in C/C++

• Parallelization effectively exploits as much parallelism as possible
throughout the triangular decomposition algorithm

• Implementation framework for parallelization based on task pools,
generating functions, pipelines, fork-join

• An extensive evaluation of our implementation against over 3000
real-world polynomial systems
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Regular chains, notations
Let k be a perfect field, and k(︀𝑋⌋︀ have ordered vars. 𝑋 = 𝑋1 < ⋯ < 𝑋𝑛

A triangular set 𝑇 is a regular chain if either 𝑇 is empty, or 𝑇−

𝑣 is a regular
chain and ℎ is regular modulo sat(𝑇−

𝑣 )

𝑇 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑇𝑣 = ℎ 𝑣𝑑 + tail(𝑇𝑣)

𝑇−

𝑣 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

[︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌊︀

[︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌊︀
⊂ k(︀𝑋⌋︀

Example:

𝑇 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

(2𝑦 + 𝑏𝑎)𝑥 − 𝑏𝑦 + 𝑎2

2𝑦2 − 𝑏𝑦 − 𝑎2

𝑎 + 𝑏

[︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌊︀
⊂ Q(︀𝑏 < 𝑎 < 𝑦 < 𝑥⌋︀

Saturated ideal of a regular chain:
→ sat(𝑇 ) = (sat(𝑇−

𝑣 ) + 𝑇𝑣) ∶ ℎ∞

→ sat(∅) = ∐︀0̃︀

Quasi-component of a regular chain:
→ 𝑊 (𝑇 ) ∶= 𝑉 (𝑇 ) ∖ 𝑉 (ℎ𝑇 ), ℎ𝑇 ∶= ∏

𝑝∈𝑇
ℎ𝑝

→ 𝑊 (𝑇 ) = 𝑉 (sat(𝑇 ))
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Triangular decomposition algorithms
A triangular decomposition of an input system 𝐹 ⊆ k(︀𝑋⌋︀ is a set of
regular chains 𝑇1, . . . , 𝑇𝑒 such that:
(a) 𝑉 (𝐹 ) = ⋃𝑒

𝑖=1 𝑊 (𝑇𝑖), in the sense of Kalkbrener, or
(b) 𝑉 (𝐹 ) = ⋃𝑒

𝑖=1 𝑊 (𝑇𝑖), in the sense of Wu and Lazard

Triangular decomposition by incremental intersection has key subroutines:
Intersect. Given 𝑝 ∈ k(︀𝑋⌋︀, 𝑇 ⊂ k(︀𝑋⌋︀, compute 𝑇1, . . . , 𝑇𝑒 such that:
𝑉 (𝑝) ∩𝑊 (𝑇 ) ⊆ ⋃𝑒

𝑖=1 𝑊 (𝑇𝑖) ⊆ 𝑉 (𝑝) ∩𝑊 (𝑇 )

Regularize: Given 𝑝 ∈ k(︀𝑋⌋︀, 𝑇 ⊂ k(︀𝑋⌋︀, compute 𝑇1, . . . , 𝑇𝑒 such that:
(𝑖). 𝑊 (𝑇 ) ⊆ ⋃𝑒

𝑖=1 𝑊 (𝑇𝑖) ⊆ 𝑊 (𝑇 ), and
(𝑖𝑖). 𝑝 ∈ sat(𝑇𝑖) or 𝑝 is regular modulo sat(𝑇𝑖), for 𝑖 = 1, . . . , 𝑒

RegularGCD: Given 𝑝 ∈ k(︀𝑋⌋︀ with main variable 𝑣, 𝑇 = {𝑇𝑣} ∪ 𝑇−

𝑣 , find
pairs (𝑔𝑖, 𝑇𝑖) such that:
(𝑖). 𝑊 (𝑇 −

𝑣 ) ⊆ ⋃𝑒
𝑖=1 𝑊 (𝑇𝑖) ⊆ 𝑊 (𝑇−

𝑣 ), and
(𝑖𝑖). 𝑔𝑖 is a regular gcd of 𝑝, 𝑇𝑣 w.r.t. 𝑇𝑖
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Finding splittings: GCDs and Regularize

Let 𝑝 ∈ k(︀𝑋⌋︀∖k with main variable 𝑣. Let 𝑇 = 𝑇−

𝑣 ∪𝑇𝑣. All are square free.

A regular GCD 𝑔 of 𝑝 and 𝑇𝑣 w.r.t. sat(𝑇−

𝑣 ) has:
1 ℎ𝑔 is regular modulo sat(𝑇−

𝑣 )
2 𝑔 ∈ ∐︀𝑝, 𝑇𝑣̃︀ (every solution of 𝑝 and 𝑇𝑣 solves 𝑔 as well)
3 if deg(𝑔, 𝑣) > 0, then 𝑔 pseudo-divides 𝑝 and 𝑇𝑣.

Let 𝑞 = pquo(𝑇𝑣, 𝑔). In Regularize, 𝑔 says where 𝑝 vanishes or is regular:
𝑊 (𝑇 ) ⊆ 𝑊 (𝑇 −

𝑣 ∪ 𝑔) ∪ 𝑊 (𝑇−

𝑣 ∪ 𝑞) ∪ (𝑉 (ℎ𝑔) ∩𝑊 (𝑇 )) ⊆ 𝑊 (𝑇 )

In Intersect, splittings are found via recursive calls:
𝑉 (𝑝) ∩𝑊 (𝑇 ) ⊆

𝑊 (𝑇 −

𝑣 ∪ 𝑔) ∪ (𝑉 (𝑝) ∩ (𝑉 (ℎ𝑔) ∩𝑊 (𝑇 )))
⊆ 𝑉 (𝑝) ∩𝑊 (𝑇 )
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The foundation of splitting: regularity testing
To intersect a polynomial with an existing regular chain, it must have a
regular initial, regularizing finds splittings via a case discussion
→ either the initial is regular, or it is not regular

𝑓 = (𝑦 + 1)𝑥2 − 𝑥

𝑇 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦2 − 1 = 0
𝑧 − 1 = 0

𝑇1 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦 + 1 = 0
𝑧 − 1 = 0

𝑇2 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑦 − 1 = 0
𝑧 − 1 = 0

𝑇1 =

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑥 = 0
𝑦 + 1 = 0
𝑧 − 1 = 0

𝑇2 =

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

2𝑥2 − 𝑥 = 0
𝑦 − 1 = 0
𝑧 − 1 = 0

𝑦 +
1 =

0

𝑦 + 1 ≠ 0

𝑓 = 𝑥

𝑓 = 2𝑥2
− 𝑥
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All roads lead to Regularize

The Triangularize algorithm iteratively calls intersect, then a network of
mutually recursive functions do the heavy-lifting.

ë In all cases, polynomials are forced to be regular and splittings are
(possibly) found via Regularize

Triangularize

Intersect
IntersectFree

CleanChain

IntersectAlgebraicRegularize

RegularGCD

Extend
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Parallel map and workpile
Map is the possibly the most well-known parallel programming pattern

ë execute a function on each item in a collection concurrently
ë with multiple Maps, tasks must execute in lockstep

Map Pattern [7] Thread Pool (Wikipedia)

Workpile generalizes Map to a queue of a tasks, allowing tasks to add
more tasks, thus enabling load-balancing as tasks start asynchronously

ë one possible implementation of workpile is a thread pool

Data Item Function Execution
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Triangularize: incremental triangular decomposition

Algorithm 1 Triangularize(𝐹 )
Input: a finite set 𝐹 ⊆ k(︀𝑋⌋︀
Output: regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ k(︀𝑋⌋︀ encoding the solutions of 𝑉 (𝐹 )
1: 𝒯 ∶= {∅}
2: for 𝑝 ∈ 𝐹 do
3: 𝒯 ′ ∶= {}
4: for 𝑇 ∈ 𝒯 Map ▷ map Intersect over the current components
5: 𝒯

′
∶= 𝒯

′
∪ Intersect(𝑝, 𝑇 )

6: 𝒯 ∶= 𝒯
′

7: return RemoveRedundantComponents(𝒯 )

• Coarse-grained parallelism: each Intersect represents substantial work
• At each “level” there are ⋃︀𝒯 ⋃︀ components with which to intersect,

yielding ⋃︀𝒯 ⋃︀ concurrent calls to intersect
• Performs a breadth-first search, with intersects occurring in lockstep
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Triangularize: a task-based approach

Algorithm 2 TriangularizeByTasks(𝐹 )
Input: a finite set 𝐹 ⊆ k(︀𝑋⌋︀
Output: regular chains 𝑇1, . . . , 𝑇𝑒 ⊆ k(︀𝑋⌋︀ encoding the solutions of 𝑉 (𝐹 )
1: Tasks ← { (𝐹,∅) }; 𝒯 ← {}
2: while ⋃︀Tasks ⋃︀ > 0 do
3: (𝑃, 𝑇 )← pop a task from Tasks
4: Choose a polynomial 𝑝 ∈ 𝑃 ; 𝑃 ′ ← 𝑃 ∖ {𝑝}
5: for 𝑇 ′ in Intersect(𝑝, 𝑇 ) do
6: if ⋃︀𝑃 ′⋃︀ = 0 then 𝒯 ← 𝒯 ∪ {𝑇 ′}
7: else Tasks← Tasks ∪ {(𝑃 ′, 𝑇 ′)}
8: return RemoveRedundantComponents(𝒯 )

• Tasks is really a task scheduler augmented with a thread pool
• Tasks create more tasks, workers pop Tasks until none remain.
• Adaptive to load-balancing, no inter-task synchronization
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Generators and Pipelines

Generators
→ A generator function (i.e. iterator) yields data items one at a time,

allowing the function’s control flow to resume on its next execution.

Asynchronous Generators; Producer-Consumer
→ async generators can concurrently produce items while the generator’s

caller is consuming items; creating a producer-consumer pair

Pipeline
→ By connecting many producer-consumer pairs we create a pipeline
→ Pipelines need not be linear, they can be directed acyclic graphs
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Intersect as a generator

Algorithm 3 Intersect(𝑝, 𝑇 )
Input: 𝑝 ∈ k(︀𝑋⌋︀ ∖ k, 𝑣 ∶= mvar(𝑝), a regular chain 𝑇 s.t. 𝑇 = 𝑇 −

𝑣 ∪ 𝑇𝑣

Output: regular chains 𝑇1, . . . , 𝑇𝑒 satisfying specs.
1: for (𝑔𝑖, 𝑇𝑖) ∈ RegularGCD(𝑝, 𝑇𝑣, 𝑣, 𝑇 −

𝑣 ) do
2: if dim(𝑇𝑖) ≠ dim(𝑇 −

𝑣 ) then
3: for 𝑇𝑖,𝑗 ∈ Intersect(𝑝, 𝑇𝑖) do
4: yield 𝑇𝑖,𝑗

5: else
6: if 𝑔𝑖 ⇑∈ k and deg(𝑔𝑖, 𝑣) > 0 then
7: yield 𝑇𝑖 ∪ {𝑔𝑖}
8: for 𝑇𝑖,𝑗 ∈ Intersect(lc(𝑔𝑖, 𝑣), 𝑇𝑖) do
9: for 𝑇 ′ ∈ Intersect(𝑝, 𝑇𝑖,𝑗) do

10: yield 𝑇 ′

→ yield “produces” a single data item, and then continues computation
→ each for loop consumes a data one at a time from the generator
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Generators are both producers and consumers

Algorithm 3 Intersect(𝑝, 𝑇 )
1: for (𝑔𝑖, 𝑇𝑖) ∈ RegularGCD(𝑝, 𝑇𝑣 , 𝑇−

𝑣 ) do
2: if dim(𝑇𝑖) ≠ dim(𝑇−

𝑣 ) then
3: for 𝑇𝑖,𝑗 ∈ Intersect(𝑝, 𝑇𝑖) do
4: yield 𝑇𝑖,𝑗

5: else
6: if 𝑔𝑖 ⇑∈ k and deg(𝑔𝑖, 𝑣) > 0 then
7: yield 𝑇𝑖 ∪ {𝑔𝑖}

8: for 𝑇𝑖,𝑗 ∈ Intersect(lc(𝑔𝑖, 𝑣), 𝑇𝑖) do
9: for 𝑇 ′

∈ Intersect(𝑝, 𝑇𝑖,𝑗) do
10: yield 𝑇 ′

Algorithm 4 Regularize(𝑝, 𝑇 )
1: for (𝑔𝑖, 𝑇𝑖) ∈ RegularGCD(𝑝, 𝑇𝑣 , 𝑇−

𝑣 ) do
2: ▷ assume dim(𝑇𝑖) = dim(𝑇−

𝑣 )
3: if 0 < deg(𝑔𝑖, 𝑣) < deg(𝑇𝑣 , 𝑣) then
4: yield 𝑇𝑖 ∪ 𝑔𝑖

5: yield 𝑇𝑖 ∪ pquo(𝑇𝑣 , 𝑔𝑖)

6: for 𝑇𝑖,𝑗 ∈ Intersect(lc(𝑔𝑖, 𝑣), 𝑇𝑖) do
7: for 𝑇 ′

∈ Regularize(𝑝, 𝑇𝑖,𝑗) do
8: yield 𝑇 ′

9: else
10: yield 𝑇𝑖

→ Establishing mutually recursive functions as generators allows data to
stream between subroutines; subroutines are effectively non-blocking

→ function call stack of generators creates a dynamic parallel pipeline.
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The subroutine pipeline
Triangularize

Intersect
IntersectFree

CleanChain
IntersectAlgebraicRegularize

RegularGCD
Extend

→ All subroutines, as generators, allow the pipeline to evolve
dynamically with the call stack.

→ The call stack forms a tree if several generators are invoked by one
consumer

→ This pipeline creates fine-grained parallelism since work diminishes
with each recursive call

→ A thread pool is used and shared among all generators; generators run
synchronously if the pool is empty
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Divide-and-conquer and fork-join

→ Divide a problem into
sub-problems, solving each
recursively

→ Combine sub-solutions to
produce a full solution

→ Fork: execute multiple
recursive calls in parallel
(divide)

→ Join: merge parallel
execution back into serial
execution (combine)
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Removal of redundant components
After a system is solved, and many components found, we can remove
components from the solution set that are contained within others
→ Follow a merge-sort approach; spawn/fork and sync/join

Algorithm 5 RemoveRedundantComponents(𝒯 )
Input: a finite set 𝒯 = {𝑇1, . . . , 𝑇𝑒} of regular chains
Output: an irredudant set 𝒯 ′ with the same algebraic set as 𝒯

if 𝑒 = 1 then return 𝒯
ℓ← [︂𝑒⇑2⌉︂; 𝒯≤ℓ ← {𝑇1, . . . , 𝑇ℓ}; 𝒯>ℓ ← {𝑇ℓ+1, . . . , 𝑇𝑒}

𝒯1 ∶= spawn RemoveRedundantComponents(𝒯≤ℓ)
𝒯2 ∶= RemoveRedundantComponents(𝒯>ℓ)
sync
𝒯
′

1 ∶= ∅; 𝒯 ′2 ∶= ∅
for 𝑇1 ∈ 𝒯1 do

if ∀𝑇2 in 𝒯2 IsNotIncluded (𝑇1, 𝑇2) then 𝒯 ′1 ∶= 𝒯 ′1 ∪ {𝑇1}

for 𝑇2 ∈ 𝒯2 do
if ∀𝑇1 in 𝒯 ′1 IsNotIncluded (𝑇2, 𝑇1) then 𝒯 ′2 ∶= 𝒯 ′2 ∪ {𝑇2}

return 𝒯 ′1 ∪ 𝒯 ′2
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Experimentation Setup

Thanks to Maplesoft, we have a collection of over 3000 real-world systems
from: actual user data, the literature, bug reports.

Of these >3000 systems, 828 require greater than 0.1s to solve
→ Non-trivial systems to warrant the overheads of parallelism

203 of these 828 systems (25%) do not split at all
→ No speed-up expected; some slow-down is expected in these cases
→ however, we include them to ensure that slow-down is minimal

These experiments are run on a node with 2x6-core Intel Xeon X560
processors (24 physical threads with hyperthreading)

Marc Moreno Maza Parallelization of Triangular Decompositions: Design and Implementation with the BPAS librarySage/Oscar Days, July 19, 2021 29 / 39



BPAS serial vs Maple

Comparing the runtime performance of triangular decomposition in the
RegularChains library of Maple 2020 against the serialized
implementation in BPAS.
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Speedup obtained from tasks and fork-join

The parallel-speedup obtained from using parallel triangularize tasks and
parallel removal of redundant components (RRC) together for solving in
Kalkbrener and Lazard modes.
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Adding generators

Using parallel triangularize tasks and parallel removal of redundant
components (RRC) as the base case, compare the addition of
asynchronous generators to overall performance for solving in Kalkbrener
and Lazard modes.
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Timings for a few well-known systems
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Inspecting the Geometry: Sys2691

→ Bottom “main” branch is majority of the work.
→ Little overlap with the quickly-solved degenerative branches
→ 2.13× speedup achieved; 88% efficient compared to work/span ratio
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Inspecting the Geometry: Sys3295

→ Up to 11 active branches at once, but overlap is only for 0.1s
→ 4.94× speedup; 75% efficient
→ Could consider other parallelism in “main” branch once all other tasks

have finished and released resources (poly arithmetic, subresultants)
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Conclusion & Future Work
We have tackled irregular parallelism in a high-level algebraic algorithm
→ our solution dynamically finds and exploits opportunities for

concurrency
→ uses dynamic parallel task management, async. generators, and DnC
→ Dnc is also used to construct subresultant chains via

evaluation/interpolation techniques
→ While async. generators do not help much (because the

corresponding tasks became too fine-grained as we were optimizing
polynomial arithmetic) they did help in the past (ISSAC 2021).

→ All our parallel patterns (task management, async. generators, and
DnC) are part of the BPAS library and do not rely on any other
concurrency plafform;

→ The benefit is that all those parallel patterns rely on the same
scheduler.

Further parallelism can be found through:
→ solving over a prime field, which produces more splittings;
→ then lifting to solutions over the rational numbers, which can be done

by evaluation/interpolation techniques.

Our parallel techniques could be employed in further high-level algorithms.
→ e.g. factorization: pipelining between square-free, distinct-degree, and

equal-degree factorization
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Thank You!

http://www.bpaslib.org/
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