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Cylindrical Algebraic Decomposition (CAD) of Rn

A CAD of Rn is a partition of Rn s.t. each cell of it is a connected
semi-algebraic subset of Rn and all the cells are cylindrically arranged.
Two subsets A and B of Rn are called cylindrically arranged if for any
1 ≤ k < n, the projections of A and B on Rk are either equal or disjoint.

Introduced by G. E. Collins in 1975 and improved by many others.
Implementation available in different software, such as QEPCAD, Mathematica, Redlog,
SyNRAC, RegularChains (www.regularchains.org).
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A CAD is naturally described by a tree

The following is a sign-invariant CAD w.r.t. y2 + x.

T :=



x < 0



y < −
√
|x|

y = −
√
|x|

y > −
√
|x| ∧ y <

√
|x|

y =
√
|x|

y >
√
|x|

x = 0


y < 0
y = 0
y > 0

x > 0 any y
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Cylindrical Algebraic Formula (CAF)

A CAF associated with a CAD cell c, denoted by φc, is defined recursively.
n = 1

• If c = R, then φc := true.
• If c is a point α, then define φc := x1 = α.
• If c is an open interval (α, β) 6= R, then φc := x1 > α ∧ x1 < β.

n > 1. Let cn−1 be the projection of c onto Rn−1.
• If c = cn−1 × R, then define φc := φcn−1 .
• If c is an θi-section, then φc := φcn−1

∧ xn = θi.
• If c is an (θi, θi+1)-sector, then φc := φcn−1

∧ xn > θi ∧ xn < θi+1.

Let S be a set of disjoint cells in a CAD. If S = ∅, φS := false.
Otherwise, a CAF associated with S is defined as φS := ∨c∈Sφc.

Example

A CAF associated with the closed unit disk x2 + y2 ≤ 1 is as below.

(x = −1 ∧ y = 0) ∨ (−1 < x ∧ x < 1 ∧ y = −
√

1− x2)
∨ (−1 < x ∧ x < 1 ∧ −

√
1− x2 < y ∧ y <

√
1− x2)

∨ (−1 < x ∧ x < 1 ∧ y =
√

1− x2)
∨ (x = 1 ∧ y = 0)
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Pros and Cons of the CAF representation

Pros

The projection of a CAF onto any lower-dimensional space can be
easily read off from the CAF itself.

For CAD-based QE, the CAF representation saves the cost of
introducing augmented projection factors.

A CAF naturally exhibits case distinctions.

Each atomic formula of a CAF has the convenient format x σ E, and
thus provides the specific value of each coordinate.

Cons

Indexed root expressions are not globally defined.

A CAD-based QE solver usually outputs very lengthy CAFs.

For the application of automatic loop parallelization, too many case
distinctions might increase the arithmetic cost of evaluation.

Thus, simplification of CAFs is needed!
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Related work

Simplification of Tarski formulas (A. Dolzmann & T. Sturm, 1995; H.
Hong 1992; C. Brown & A. Strzeboński, 2010; C. Brown 2012;
H. Iwane & H. Higuchi & H. Anai, 2013).

Simplification of extended Tarski formulas (Chapter 8 of C. Brown’s
PhD thesis, Mathematica).

Our goal is to reduce as much as possible the number of conjunctive
CAF clauses while still maintaining the feature of case distinctions.
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Generalized cylindrical algebraic formula (GCAF)

A GCAF is a “combination” of “nearby” CAFs.

GCAF

Let S be a set of disjoint cells in a CAD of Rn. A GCAF associated with
S, denoted by Φ, is of the form Φ = ∨si=1 ∧

si
j=1 φi,j such that

Each φi,j is of the form w σ Rootw,k(f), where
σ ∈ {=, 6=, >,<,≥,≤} and w ∈ {x1, . . . , xn}.
Let v(φi,j) be the biggest variable appearing in φi,j . Then for any
φi,j1 and φi,j2 , where j1 < j2, we have v(φi,j1) ≤ v(φi,j2).

Let w ∈ {x1, . . . , xn}. Denote by Φ<w
i := ∧v(φi,j)<wφi,j . If

φi,j = w σ Rootw,k(f), then Rootw,k(f(α)) is defined for all α
satisfying Φ<w

i .

For every w ∈ {x1, . . . , xn}, we have π<wZR(Φ≤wi ) = ZR(Φ<w
i ).

The zero set of Φi := ∧sij=1φi,j is a union of some cells in S.

The zero sets of Φi and Φj are disjoint for 1 ≤ i < j ≤ s.

The zero set of Φ is exactly ∪c∈Sc.
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Example

Example

A CAF associated with the closed unit disk x2 + y2 ≤ 1 is as below.

(x = −1 ∧ y = 0) ∨ (−1 < x ∧ x < 1 ∧ y = −
√

1− x2)
∨ (−1 < x ∧ x < 1 ∧ −

√
1− x2 < y ∧ y <

√
1− x2)

∨ (−1 < x ∧ x < 1 ∧ y =
√

1− x2)
∨ (x = 1 ∧ y = 0)

Example

Both (−1 ≤ x ∧ x ≤ 1 ∧ −
√

1− x2 ≤ y ∧ y ≤
√

1− x2) and

(x = −1 ∧ y = 0) ∨ (−1 < x ∧ x < 1 ∧ −
√

1− x2 ≤ y ∧ y ≤
√

1− x2)
∨ (x = 1 ∧ y = 0)

are GCAFs equivalent to the CAF.

(a) 9 / 1



The main features of the simplification procedure

Transform a CAF into a GCAF with less conjunctive clauses.

Make use of the CAD data structure when applying the simplification.

The procedure has four simplification levels.

The first two levels merge adjacent or nearby CAD cells.

The last two levels attempt to simplify a CAF into a single
conjunctive clause, which is usually expected in the application of
loop transformation.

The first two levels are effective for general QE problems.

The last two are effective for QE problems arising from loop
transformation.
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Automatic parallelization of polynomial multiplication

Serial dense univariate polynomial multiplication

for(i=0; i<= 2*n; i++) c[i] = 0;

for(i=0; i<=n; i++) {

for(j=0; j<=n; j++)

c[i+j] += a[i] * b[j];

}

Dependence analysis suggests to set t(i, j) = n− j and p(i, j) = i+ j.

Synchronous parallel dense univariate polynomial multiplication

for (p=0; p<=2*n; p++) c[p]=0;

for (t=0; t<=n; t++)

parallel_for (p=n-t; p<=2*n-t; p++)

c[p] += a[t+p-n] * b[n-t];

}

A. Größlinger et al. Quantifier elimination in automatic loop parallelization. J. Symb. Comput., 41(11):1206–1221, 2006.
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The first simplification level (I)

ff := &E([i,j]), (0 <= i) &and (i <= n) &and (0 <= j) &and

(j <= n) &and (t = n - j) &and (p = i + j);

R := PolynomialRing([i,j,p,t,n]);

sols := QuantifierElimination(ff, R, output=rootof, simplification=false);

‘&or‘(‘&and‘(n = 0,t = n,p = 0),

‘&and‘(0 < n,t = 0,p = n),

‘&and‘(0 < n,t = 0,n < p,p < 2*n),

‘&and‘(0 < n,t = 0,p = 2*n),

‘&and‘(0 < n,0 < t,t < n,p = -t+n),

‘&and‘(0 < n,0 < t,t < n,-t+n < p,p < 2*n-t),

‘&and‘(0 < n,0 < t,t < n,p = 2*n-t),

‘&and‘(0 < n,t = n,p = 0),

‘&and‘(0 < n,t = n,0 < p,p < n),

‘&and‘(0 < n,t = n,p = n))

Observation 1: adjacent cells can be merged

Consider the following subformula:

(0 < n ∧ t = 0 ∧ p = n) ∨ (0 < n ∧ t = 0 ∧ n < p ∧ p < 2n)
∨ (0 < n ∧ t = 0 ∧ p = 2n)

.

It can be simplified to: 0 < n ∧ t = 0 ∧ n ≤ p ∧ p ≤ 2n.
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The first level (II)

Simplified result using Observation 1.

‘&or‘(‘&and‘(n = 0,t = n,p = 0),

‘&and‘(0 < n,t = 0,n <= p,p <= 2*n),

‘&and‘(0 < n,0 < t,t < n,-t+n <= p,p <= 2*n-t),

‘&and‘(0 < n,t = n,0 <= p,p <= n)

Observation 2: specialization

If we specialize
−t+ n ≤ p ∧ p ≤ 2n− t

at t = 0, we obtain
n ≤ p ∧ p ≤ 2n.

Similarly, at t = n, we obtain 0 ≤ p ∧ p ≤ n.
Thus, the last three conjunctive clauses can be combined into one:

‘&and‘(0 < n,0 <= t,t <= n,-t+n <= p,p <= 2*n-t).

Applying this specialization technique again, we obtain the final output:

‘&and‘(0 <= n,0 <= t,t <= n,-t+n <= p,p <= 2*n-t).
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The second simplification level

Main idea

The formula n > 0 ∧ p < n and n > 0 ∧ p > n can be combined as
n > 0 ∧ p 6= n, even though the underlying CAD cells are not adjacent.

A program termination analysis example. The non-simplified one has 246 conjunctive clauses.

R := PolynomialRing([v1,v2,v3,labda,a11,a21,a22,a33,b12,b22,b23]);

f:= &E([v1,v2,v3,labda]), (labda>0) &and (a11*v1=labda*v1) &and

(a21*v1+a22*v2=labda*v2)&and(a33*v3=labda*v3)&and(b12*v2>0)&and(b22*v2+b23*v3>0);

QuantifierElimination(f, R, output=rootof,partial=true,simplification=’L2’);

‘&or‘(‘&and‘(b23 <> 0, b22 < 0, b12 < 0, a22 <= 0, a21 <> 0, 0 < a11),

‘&and‘(b23 <> 0, b22 < 0, b12 < 0, 0 < a22),

‘&and‘(b23 <> 0, b22 < 0, 0 < b12, 0 < a33, a22 <> a33, a21 <> 0, a11 = a33),

‘&and‘(b23 <> 0, b22 < 0, 0 < b12, 0 < a33, a22 = a33),

‘&and‘(b23 <> 0, b22 = 0, b12 <> 0, 0 < a33, a22 <> a33, a21 <> 0, a11 = a33),

‘&and‘(b23 <> 0, b22 = 0, b12 <> 0, 0 < a33, a22 = a33),

‘&and‘(b23 <> 0, 0 < b22, b12 < 0, 0 < a33, a22 <> a33, a21 <> 0, a11 = a33),

‘&and‘(b23 <> 0, 0 < b22, b12 < 0, 0 < a33, a22 = a33),

‘&and‘(b23 <> 0, 0 < b22, 0 < b12, a22 <= 0, a21 <> 0, 0 < a11),

‘&and‘(b23 <> 0, 0 < b22, 0 < b12, 0 < a22),

‘&and‘(b23 = 0, b22 < 0, b12 < 0, a22 <= 0, a21 <> 0, 0 < a11),

‘&and‘(b23 = 0, b22 < 0, b12 < 0, 0 < a22),

‘&and‘(b23 = 0, 0 < b22, 0 < b12, a22 <= 0, a21 <> 0, 0 < a11),

‘&and‘(b23 = 0, 0 < b22, 0 < b12, 0 < a22))
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The third simplification level

ff := &E([i,j]), (0 <= i) &and (i <= n) &and (0 <= j) &and (j <= n) &and

(t = n - j) &and (p = i + j);

R := PolynomialRing([i,j,t,p,n]);

sols := QuantifierElimination(ff, R, output=rootof, simplification=false);

‘&or‘(‘&and‘(n = 0,p = 0,t = n), ‘&and‘(0 < n,p = 0,t = n),

‘&and‘(0 < n,0 < p,p < n,t = -p+n),

‘&and‘(0 < n,0 < p,p < n,-p+n < t,t < n),‘&and‘(0 < n,0 < p,p < n,t = n),

‘&and‘(0 < n,p = n,t = 0),‘&and‘(0 < n,p = n,0 < t,t < n),

‘&and‘(0 < n,p = n,t = n),‘&and‘(0 < n,n < p,p < 2*n,t = 0),

‘&and‘(0 < n,n < p,p < 2*n,0 < t,t < -p+2*n),

‘&and‘(0 < n,n < p,p < 2*n,t = -p+2*n),‘&and‘(0 < n,p = 2*n,t = 0))

Result using simplification level 1 or 2

‘&or‘(‘&and‘(n = 0,p = 0,t = 0),

‘&and‘(0 < n,0 <= p,p <= n,-p+n <= t,t <= n),

‘&and‘(0 < n,n < p,p <= 2*n,0 <= t,t <= -p+2*n))
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The third simplification level

The question is how to merge the following two conjunctive clauses

0 < n ∧ 0 ≤ p ∧ p ≤ n ∧ −p+ n ≤ t ∧ t ≤ n (1)

and
0 < n ∧ n < p ∧ p ≤ 2n ∧ 0 ≤ t ∧ t ≤ −p+ 2n. (2)

Observation

The blue parts can be merged if the red parts are the same.

7 If we force the red part to be equivalent, then p = n must hold.

3 Instead, to merge A1 ∧B1 and A2 ∧B2, we check if A1 ∧B1 =⇒ B2

and A2 ∧B2 =⇒ B1. If both are true, then we have

(A1 ∧B1) ∨ (A2 ∧B2) ⇐⇒ (A1 ∨A2) ∧B1 ∧B2.

By the above observation, the two clauses (??) and (??) are combined into

0 < n ∧ 0 ≤ p ∧ p ≤ 2n ∧ −p+ n ≤ t ∧ t ≤ n ∧ 0 ≤ t ∧ t ≤ −p+ 2n.

(a) 16 / 1



The fourth simplification level

R := PolynomialRing([i, j, t, p, u, b, B, n]);

ff := &E([i,j]), (0 < n) &and (0 <= i) &and (i <= n) &and (0 <= j) &and

(j <= n) &and (t = n - j) &and (p = i + j) &and

(b>=0) &and (0<=u) &and (u<B) &and (p=b*B+u);

Without simplification, there are 223 conjunctive clauses. With
simplification level 1 or 2, there are 29 conjunctive clauses. Using level 3,
the output consists of 5 conjunctive clauses.

The following are the second and the third one

0 < n ∧B = 2n ∧ b = 0 ∧ 0 ≤ u ∧ u < 2n ∧ p = u ∧ n− u ≤ t ∧ t ≤ n ∧ 0 ≤ t ∧ t ≤ 2n− u)

0 < n ∧B = 2n ∧ 0 < b ∧ b < 1/2 ∧ 0 ≤ u ∧ u ≤ −2bn+ 2n ∧ p = 2bn+ u

∧ −2bn+ n− u ≤ t ∧ t ≤ n ∧ 0 ≤ t ∧ t ≤ −2bn+ 2n− u

Note that direct specialization cannot merge the two together. A better pivot subformula
simplifies the output as

‘&and‘(0 < n,0 < B,0 <= b,b <= 2*n/B,0 <= u,u < B,u <= -B*b+2*n,

p = B*b+u, -B*b+n-u <= t, t <= n, 0 <= t, t <= -B*b+2*n-u)
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The fourth simplification level
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Benchmark: effect of simplification
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A tiled parallel polynomial multiplication

for(i=0; i<=n; i++) {

for(j=0; j<=n; j++)

c[i+j] += a[i] * b[j];

}

Quantifier elimination with simplification level 4
R := PolynomialRing([i, j, t, p, u, b, B, n]);

ff := &E([i,j]), (0 < n) &and (0 <= i) &and (i <= n) &and (0 <= j) &and

(j <= n) &and (t = n - j) &and (p = i + j) &and

(b>=0) &and (0<=u) &and (u<B) &and (p=b*B+u);

QuantifierElimination(ff,R,partial=true,output=rootof,simplification=’L4’);

‘&and‘(0 < n,0 < B,0 <= b,b <= 2*n/B,0 <= u,u < B,u <= -B*b+2*n,

p = B*b+u, -B*b+n-u <= t, t <= n, 0 <= t, t <= -B*b+2*n-u)

The parallel code

parallel_for (b=0; b<= 2 n / B; b++) {

for (u=0; u<=min(B-1, 2*n - B * b); u++) {

p = b * B + u;

for (t=max(0,n-p); t<=min(n,2*n-p) ;t++)

c[p] = c[p] + a[t+p-n] * b[n-t];

}

}

b = blockIdx.x; u = threadIdx.x;

if (u <= 2*n - B * b) {

p = b * B + u;

for (t=max(0,n-p); t<=min(n,2*n-p) ;t++)

c[p] = c[p] + a[t+p-n] * b[n-t];

}
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More application examples on generating parametric CUDA kernels
The following data are obtained by calling QuantifierElimination of the
RegularChains library with the following option

precondition=’AP’, output=’rootof’, simplification=’L4’.

Here the first options enables the function to call a special QE procedure
(preprocessing the input by FM before calling CAD).

Example #constraints #variables Timing
Array reversal 6 5 0.072

1D Jacobi 6 5 0.948
2D Jacobi 14 9 7.735

LU decomposition 16 10 4.416
matrix transposition 14 9 1.314

matrix addition 14 9 1.314
matrix vector multiplication 6 5 0.072
matrix matrix multiplication 21 13 2.849

Table: Timings of quantifier elimination
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Conclusion

Introduce the notion of generalized cylindrical algebraic formula
(GCAF).

Propose a multi-level heuristic algorithm for simplifying CAFs into
GCAFs.

Make use of the CAD data structure when applying the simplification.

The method has been implemented and new options are added to
both the CylindricalAlgebraicDecompose and QuantifierElimination
commands of the RegularChains library.

The effectiveness of this algorithm is illustrated by examples coming
from the application of automatic loop transformation as well as from
other application domains.

The running time overhead of simplification compared to the running
time of the quantifier elimination procedure itself is negligible in the
first two levels and acceptable in the advanced levels of the proposed
heuristics.
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