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Parametric Matrix Computations in CAS

Computer algebra systems are currently unable to handle case discussion
for parametric matrices.
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Jordan Canonical Form: Maple, Mathematica, Sage

Jordan canonical form of:
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Regular Chains
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Multivariate Polynomials

I Let K be an algebraically closed of real closed field

I Let x1 < · · · < xn be n ≥ 1 ordered variables

I K[x1, . . . , xn] is the ring of polynomials in x1, . . . , xn
I For non-constant p ∈ K[x1, . . . , xn], mvar(p) denotes the greatest

variable in p

I Leading coefficient of p w.r.t mvar(p) is called the initial denoted
init(p)
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Regular Chain

Definition (Triangular Set)

A set T of non-constant polynomials in K[x1, . . . , xn] is called a
triangular set if for all p, q ∈ T with p 6= q, mvar(p) 6= mvar(q) .

Definition (Saturated Ideal)

The saturated ideal sat(T ) of T is the ideal 〈T 〉 : h∞T , where hT is the
product of the initials of the polynomials in T

Definition (Regular Chain)

T is a regular chain if T = ∅ or T = T ′ ∪ {t} for t ∈ T with mvar(t)
maximum such that

I T ′ is a regular chain

I init(t) is regular modulo sat(T ′)

RMC, MMM, SET () Parametric Matrix Computations ICMS 2014 7 / 33



Regular Chain

Definition (Triangular Set)

A set T of non-constant polynomials in K[x1, . . . , xn] is called a
triangular set if for all p, q ∈ T with p 6= q, mvar(p) 6= mvar(q) .

Definition (Saturated Ideal)

The saturated ideal sat(T ) of T is the ideal 〈T 〉 : h∞T , where hT is the
product of the initials of the polynomials in T

Definition (Regular Chain)

T is a regular chain if T = ∅ or T = T ′ ∪ {t} for t ∈ T with mvar(t)
maximum such that

I T ′ is a regular chain

I init(t) is regular modulo sat(T ′)

RMC, MMM, SET () Parametric Matrix Computations ICMS 2014 7 / 33



Regular Chain

Definition (Triangular Set)

A set T of non-constant polynomials in K[x1, . . . , xn] is called a
triangular set if for all p, q ∈ T with p 6= q, mvar(p) 6= mvar(q) .

Definition (Saturated Ideal)

The saturated ideal sat(T ) of T is the ideal 〈T 〉 : h∞T , where hT is the
product of the initials of the polynomials in T

Definition (Regular Chain)

T is a regular chain if T = ∅ or T = T ′ ∪ {t} for t ∈ T with mvar(t)
maximum such that

I T ′ is a regular chain

I init(t) is regular modulo sat(T ′)

RMC, MMM, SET () Parametric Matrix Computations ICMS 2014 7 / 33



Constructible Set

Definition (Constructible Set)

A constructible set is the disjunction of systems of polynomial equations
and inequations. Where the systems of equations are conjunctions of
constraints.
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Semi-algebraic Set

Definition (Semi-algebraic System)

A semi-algebraic system of K[x1, . . . , xn] is any polynomial system S of
the form 

f1 = · · · = fa = 0
g 6= 0

p1 > 0, . . . , pb > 0
q1 ≥ 0, . . . , qc ≥ 0


for f1, . . . , fa, g, p1, . . . , pb, q1, . . . , qc ∈ K[x1, . . . , xn] .

Definition (Semi-algebraic Set)

A semi-algebraic set S of K[x1, . . . , xn] is the solution set of a
semi-algebraic system.
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Notation

I Parameters α = α1, . . . , αs

I K is an algebraically closed or real closed field

I K[α] is the ring of polynomials in the parameters

I K(α) is the quotient field of K[α]

I S is a constructible (resp. semi-algebraic) set of Ks
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Proposition1,2

For two constructible (resp. semi-algebraic) sets S1, S2 ⊆ Ks one can
compute a triangular decomposition of their

I intersection S1 ∩ S2
I union S1 ∪ S2
I set theoretic difference S1 \ S2

1C. Chen, J. H. Davenport, J. P. May, M. Moreno Maza, B. Xia, and
R. Xiao. Triangular decomposition of semi-algebraic systems. J. Symb.
Comput., 49:326, 2013.

2C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza, W. Pan.
Comprehensive triangular decomposition. In Proc. of CASC07. Volume 4770 of
Lecture Notes in Computer Science. (2007) 73101.

RMC, MMM, SET () Parametric Matrix Computations ICMS 2014 12 / 33



Proposition1,2

For two constructible (resp. semi-algebraic) sets S1, S2 ⊆ Ks one can
compute a triangular decomposition of their

I intersection S1 ∩ S2
I union S1 ∪ S2
I set theoretic difference S1 \ S2

1C. Chen, J. H. Davenport, J. P. May, M. Moreno Maza, B. Xia, and
R. Xiao. Triangular decomposition of semi-algebraic systems. J. Symb.
Comput., 49:326, 2013.

2C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza, W. Pan.
Comprehensive triangular decomposition. In Proc. of CASC07. Volume 4770 of
Lecture Notes in Computer Science. (2007) 73101.

RMC, MMM, SET () Parametric Matrix Computations ICMS 2014 12 / 33



Proposition1,2

For two constructible (resp. semi-algebraic) sets S1, S2 ⊆ Ks one can
compute a triangular decomposition of their

I intersection S1 ∩ S2
I union S1 ∪ S2
I set theoretic difference S1 \ S2

1C. Chen, J. H. Davenport, J. P. May, M. Moreno Maza, B. Xia, and
R. Xiao. Triangular decomposition of semi-algebraic systems. J. Symb.
Comput., 49:326, 2013.

2C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza, W. Pan.
Comprehensive triangular decomposition. In Proc. of CASC07. Volume 4770 of
Lecture Notes in Computer Science. (2007) 73101.

RMC, MMM, SET () Parametric Matrix Computations ICMS 2014 12 / 33



Proposition1,2

For two constructible (resp. semi-algebraic) sets S1, S2 ⊆ Ks one can
compute a triangular decomposition of their

I intersection S1 ∩ S2
I union S1 ∪ S2
I set theoretic difference S1 \ S2

1C. Chen, J. H. Davenport, J. P. May, M. Moreno Maza, B. Xia, and
R. Xiao. Triangular decomposition of semi-algebraic systems. J. Symb.
Comput., 49:326, 2013.

2C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza, W. Pan.
Comprehensive triangular decomposition. In Proc. of CASC07. Volume 4770 of
Lecture Notes in Computer Science. (2007) 73101.

RMC, MMM, SET () Parametric Matrix Computations ICMS 2014 12 / 33



Remark

Let S ⊆ Ks be a constructible (resp. semi-algebraic) set; for every
f(α) ∈ K[α] a partition (Seq, Sneq) of S can be computed by

Seq = S ∩ V (f(α))

Sneq = S \ V (f(α)) = S \ Seq .

I f(α) is zero everywhere on Seq
I f(α) is nonzero everywhere on Sneq
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Parametric Matrix

Definition

A m× n parametric matrix takes the form:

A(α) =


f1,1(α) f1,2(α) · · · f1,n(α)

f2,1(α) f2,2(α) · · · f2,n(α)
...

...
. . .

...

fm,1(α) fm,2(α) · · · fm,n(α)


for

fi,j ∈ K(α) 1 ≤ i ≤ m, 1 ≤ j ≤ n .

Require constructible (resp. semi-algebraic) set S ⊆ Ks such that
denominator of every entry of A(α) is nonzero everywhere on S.
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Parametric Rank Algorithm (Complex Case)

Input: I Parametric matrix A(α)
I Constraints on the parameter values given in a set S by a

polynomial system of the form

f1(α) = · · · = fa(α) = 0, g(α) 6= 0

Output: I A list with elements of the form [ri, Si] where Si gives
conditions on α such that the rank of A(α) is ri

I Si’s form a partition of S⋃
i

Si = S, Si ∩ Sj = ∅ ∀i 6= j
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Parametric Rank Algorithm (Complex Case)

Step 1: Define polynomial system S′ as union of equations of
A(α)X = 0 and S

Let

T := Triangularize(S′,K[α1 < · · · < αs < x1 < · · · < xn])

For 0 ≤ r ≤ n, let Cr be the constructible set of Ks given by
all regular systems [Tj ∩ K[α1 < · · · < αs], hj ] such that
[Tj , hj ] ∈ T and the number of polynomials of Tj of positive
degree in (at least) one of the variables x1 < · · · < xn is
exactly n− r.

For r := n down to 1 do

Cr := Difference(Cr, Cr−1 ∪ · · · ∪ C0)

Project out the xi variables
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Example3 over C

Example

Consider Eẍ = A1ẋ+A2x+Bu

E =


1 3 1

3 1 1

0 0 0

 A1 =


1 1 3

1 3 1

0 0 0

 B =


0

0

1



A2 =


λ 3λ λ

3λ+ µ λ+ µ λ+ 3µ

0 0 0

 λ, µ ∈ C

3M. I. Garćıa-Planas and J. Clotet. Analyzing the set of uncontrollable
second order generalized linear systems. International Journal of Applied
Mathematics and Informatics, 2007.
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Example3 over C

Example (cont.)

What is the rank of:

C =



−E 0 0 0 B 0 0 0 0 0

−A1 −E 0 0 0 B 0 0 0 0

A2 −A1 −E 0 0 0 B 0 0 0

0 A2 −A1 −E 0 0 0 B 0 0

0 0 A2 −A1 0 0 0 0 B 0

0 0 0 A2 0 0 0 0 0 B



3M. I. Garćıa-Planas and J. Clotet. Analyzing the set of uncontrollable
second order generalized linear systems. International Journal of Applied
Mathematics and Informatics, 2007.
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Example3 over C

Example (cont.)

Rank(C) =



18 if λ 6= 0, µ 6= 1/2

17 if λ 6= 0, µ = 1/2

16 if λ = 0, µ 6= −1

15 if λ = 0, µ = −1

3M. I. Garćıa-Planas and J. Clotet. Analyzing the set of uncontrollable
second order generalized linear systems. International Journal of Applied
Mathematics and Informatics, 2007.
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Zigzag Form of Parametric Matrices

Step 2:Step 3:Step 4:Step 5:
Zigzag Form
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Parametric Polynomial

Define a polynomial in x with parameters α as

f(x;α) = f0(α) + f1(α)x+ · · ·+ fr−1(α)x
r−1 + xr

with f0(α), . . . , fr−1(α) ∈ K(α).

Require constructible (resp. semi-algebraic) set S ⊆ Kk such that
denominator of every coefficient is nonzero everywhere on S.
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Companion Matrix

Frobenius companion matrix in x of a parametric polynomial

f(x;α) = f0(α) + f1(α)x+ · · ·+ fr−1(α)x
r−1 + xr

takes the form

Cf(x;α) =


0 · · · 0 −f0(α)

1
. . .

...
...

. . . 0 −fr−2(α)

1 −fr−1(α)


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Off-diagonal Block

Let b ∈ {0, 1}. Define

Bb =


b 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


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Zigzag Matrix4



Cc1(x;α) Bb1

CTc2(x;α)

Bb2 Cc3(x;α) Bb3

CTc4(x;α)
. . .

CTcd−2(x;α)

Bbd−2
Ccd−1(x;α) Bbd−1

CTcd(x;α)


for d even

4A. Storjohann. An O(n3) algorithm for the Frobenius normal form. In
Proceedings of ISSAC 1998, pages 101-105. ACM, 1998.
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Theorem

Theorem

For every matrix A(α) ∈ Kn×n[α], there exists a partition (S1, . . . , SN ) of
the input constructible (resp. semi-algebraic) set S such that for each Si,
there exists a matrix Zi(α) ∼ A(α) in Zigzag form where the denominator
of the entries of Zi(α) are all nonzero everywhere on Si.
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Algorithm

I The algorithm extends the work of Storjohann4 on the computation
of the Zigzag form.

I The algorithm only uses similarity transformations to obtain the
Zigzag form.

I Stages 1 and 3 of Storjohann’s algorithm4 are modified such that
computation splits when searching for pivots.

4A. Storjohann. An O(n3) algorithm for the Frobenius normal form. In
Proceedings of ISSAC 1998, pages 101-105. ACM, 1998.
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Semi-Algebraic Example over R

Example

A(a, b) =


0 0 2

a 0 3

0 6 b

 with a ≥ 0, b > 0, a 6= b

Z1(a, b) =


0 0 12 a

1 0 18

0 1 b

 if a > 0, b > 0, a 6= b

Z2(a, b) =


0 1 0

0 1

18 b

 if a = 0, b > 0
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Algebraic Example over C

Example

A(α) =


−1 −α− 1 0

−1/2 α− 2 1/2

−2 3α+ 1 −1

 with α ∈ C

Z1(α) =


0 0 4α

1 0 4(α− 1)

0 1 α− 4

 if α+ 3 6= 0

Z2(α) =


0 −4 1

1 −4 0

−3

 if α+ 3 = 0
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Future Work

Research is currently being conducted to create a Maple package
ParametricMatrixTools with methods to compute

I Rank X

I Frobenius (Rational) form

I Minimal polynomial

I Test for similarity

I Jordan form

I Weyr form5

5K. O’Meara, J.Clark, and C. Vinsonhaler. Advanced Topics in Linear
Algebra: Weaving Matrix Problems Through the Weyr Form. Oxford University
Press, 2011
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Future Work

I Speed improvements

I Minimize unnecessary splitting
I Parallel implementation

I Cost analysis

I Matrix factorizations
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Code & Examples

All current and future code and example worksheets will be available at
StevenThornton.ca/Code

Information on the RegularChains package of Maple is available at
RegularChains.org
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Thank You!
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