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Abstract

Regular chains and triangular decompositions are fundamental and well-developed tools for
describing the complex solutions of polynomial systems. This paper proposes adaptations of
these tools focusing on solutions of the real analogue: semi-algebraic systems.

We show that any such system can be decomposed into finitely many regular semi-algebraic

systems. We propose two specifications (full and lazy) of such a decomposition and present
corresponding algorithms. Under some simplifying assumptions, the lazy decomposition can be
computed in singly exponential time w.r.t. the number of variables. We have implemented our
algorithms and present experimental results illustrating their effectiveness.

Key words: Regular semi-algebraic system, regular chain, lazy decomposition, triangular
decomposition, border polynomial, fingerprint polynomial set.

1. Introduction

Regular chains, the output of triangular decompositions of systems of polynomial
equations, enjoy remarkable properties. Size estimates play in their favor [20] and permit
the design of modular [21] and fast [30] methods for computing triangular decomposi-
tions. These features stimulate the development of algorithms and software for solving
polynomial systems via triangular decompositions.

⋆ This research was partly supported by NSERC, Maplesoft and MITACS of Canada

Email addresses: cchen252@csd.uwo.ca (Changbo Chen), J.H.Davenport@bath.ac.uk (James H.
Davenport), jmay@maplesoft.com (John P. May), moreno@csd.uwo.ca (Marc Moreno Maza),
xbc@math.pku.edu.cn (Bican Xia), rong@csd.uwo.ca (Rong Xiao).

Preprint submitted to Elsevier 13 December 2010



For the fundamental case of semi-algebraic systems with rational number coefficients,
to which this paper is devoted, several algorithms for studying the real solutions of
such systems take advantage of the structure of a regular chain. Some are specialized to
isolating the real solutions of systems with finitely many complex solutions [39, 16, 3].
Other algorithms deal with parametric polynomial systems via real root classification
(RRC) [41] or with arbitrary systems via cylindrical algebraic decompositions (CAD) [15].

In this paper, we introduce the notion of a regular semi-algebraic system, which in
broad terms is the “real” counterpart of the notion of a regular chain. Then we define
two notions of a decomposition of a semi-algebraic system: one that we call lazy triangular

decomposition, where the analysis of components of strictly smaller (complex) dimension
is deferred, and one that we call full triangular decomposition where all cases are worked
out. These decompositions are obtained by combining triangular decompositions of al-
gebraic sets over the complex field with a special Quantifier Elimination (QE) method
based on RRC techniques.

Definition 1. Let T ⊂ Q[x] be a squarefree regular chain for an ordering of the variables
x = x1, . . . , xn. Let u = u1, . . . , ud and y = y1, . . . , yn−d designate respectively the
variables of x that are free and algebraic w.r.t. T . Let P ⊂ Q[x] be finite and such that
each polynomial in P is regular w.r.t. the saturated ideal of T . Define P> := {p > 0 |
p ∈ P}. Let Q be a quantifier-free formula over Q[x] involving only the u variables. Let
S be the semi-algebraic subset of Rd defined by Q. When d = 0, the 0-ary Cartesian
product Rd is treated as a singleton set. We say that R := [Q, T, P>] (also written as
[RQ, RT , RP ]) is a regular semi-algebraic system if:

(i) S is a non-empty open subset in Rd,
(ii) the regular system [T, P ] specializes well at every point u of S (see Section 2 for

this notion),
(iii) at each point u of S, the specialized system [T (u), P (u)>] admits real solutions.
The zero set of R, denoted by ZR(R), is the set of points (u, y) ∈ Rd × Rn−d such that
Q(u) holds and t(u, y) = 0, p(u, y) > 0, for all t ∈ T and all p ∈ P .

Using the notations of Definition 1, Let R = [Q, T, P>] be a regular semi-algebraic
system. Since Q is open, each connected component C of Q is locally homeomorphic to
the hypercube (0, 1)d. From Property (ii), the zero set ZR(R) consists of disjoint graphs
of continuous semi-algebraic functions defined on each such C. Moreover, from Property
(iii), there is at least one such graph. For these reasons, which are formally stated in
Theorem 1, the regular semi-algebraic system R can be understood as a parameterization
of the set ZR(R). Clearly, the dimension of ZR(R) is d.

Example 1. For the variables z > y > x, we consider two classical surfaces (from the
Algebraic Surface Gallery 1 ) called Sofa and Cylinder with equations:

x2 + y3 + z5 = 0 and x4 + y2 = 1.

The common points of these surfaces with real coordinates can be described as the union
of the zero sets of the following 5 regular semi-algebraic systems R1 to R5 (unspecified

1 www1-c703.uibk.ac.at/mathematik/project/bildergalerie/gallery.html
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RP
i are empty and unspecified RQ

i are “true”):

RT
1 =







z5 + (1 − x4)y + x2

y2 + x4 − 1

RQ
1 =







−1 < x < 1

x12 − 3x8 + 4x4 − 1 6= 0,

RT
2 =



















z + 1

y

x− 1

RT
3 =



















z + 1

y

x+ 1

RT
4 =



















z5 + (1 − x4)y + x2

(x4 − 1)y + x2

x12 − 3x8 + 4x4 − 1

RT
5 =



















z

(x4 − 1)y − x2

x12 − 3x8 + 4x4 − 1

This decomposition is obtained by the algorithms of Section 7. The fact that R2 to R5

are regular semi-algebraic systems is clear, since each of them consists only of a zero-
dimensional squarefree regular chain. For R1, we observe that

(−1 < x < 1) ∧ (x12 − 3x8 + 4x4 − 1 6= 0)

is a quantifier-free formula 2 defining an open set S; moreover py := y2 +x4−1, regarded
as a univariate polynomial in y, admits two distinct real roots for each x ∈ S while
pz := z5 + (1 − x4)y + x2, as a univariate polynomial in z, is squarefree and admits
(exactly) one real root for any x ∈ S and any y defined by y2 + x4 − 1 = 0. Indeed, the

discriminant of pz in z is 3125
(

−y + yx4 − x2
)4

and the resultant w.r.t. y of this latter

polynomial and py is 9765625
(

x12 − 3x8 + 4x4 − 1
)4

.

In Section 3 we show that the zero set of any semi-algebraic system S can be de-
composed as a finite union of zero sets of regular semi-algebraic systems. We call such a
decomposition a full triangular decomposition (or simply triangular decomposition when
clear from context) of S, and denote by RealTriangularize an algorithm to compute it.

The existence of such a triangular decomposition can be understood in terms of CAD.
Indeed, consider a CAD of the polynomials defining S and a cell C where all constraints of
S are satisfied. The cell C is a connected semi-algebraic set homeomorphic to hypercube
(0, 1)d, for some d, and from the CAD data (see for instance [15]) one can extract a regular
semi-algebraic system R whose zero set is C. However, we should stress the fact that a
triangular decomposition of S has much less information and structure than a CAD of the
polynomials defining S. For instance, the zero sets of the regular semi-algebraic systems
in a triangular decomposition of S need not be cylindrically arranged.

Our motivations in introducing this concept of triangular decomposition are threefold.
First, we aim at proposing an encoding of the solutions of an arbitrary semi-algebraic
system which, as much as possible, is both explicit (thus using “triangular representation”
of the components) and compact (thus trying to keep the size of output under control).
Secondly, we aim at developing algorithms that are capable of producing either a full
description of the solution set, or partial answers (such as dimension information or
sample points) at a lower cost than a full description. Thirdly, we aim at proposing an

2 We said ‘involving only strict inequalities’, but we are using the shorthand f 6= 0 for f > 0 ∨ f < 0.
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encoding of semi-algebraic sets that can support efficient algorithms for the set theoretical
operations on such sets. We believe that the work reported here address the former two
motivations while the latter one is the subject of [12].

Triangular decomposition of algebraic sets come in two flavors, recalled in Section 2.
The first one, proposed by Kalkbrener in [26], focuses on representing the generic points of
the irreducible components of the input algebraic set. In [36], Szántó establishes that this
representation is computable in singly exponential time w.r.t. the number of variables.

The second one, introduced by Wu [38] and studied by many authors (see [14] and the
references therein) represents all the points of the input algebraic set. Our proposed algo-
rithm, RealTriangularize, leads to triangular decompositions of this second type for which
it is not known whether or not they can be computed in singly exponential time w.r.t.
the number of variables. Meanwhile, we are hoping to obtain an algorithm for decom-
posing semi-algebraic systems (certainly under some genericity assumptions) that would
fit in that complexity class. Moreover, we observe that, in practice, full triangular de-
compositions are not always necessary and providing information about the components
of maximum dimension is often sufficient. These theoretical and practical considerations
yield a weaker notion of a decomposition of a semi-algebraic system.

Definition 2. Let S = [F,N≥, P>,H6=] (see Section 3 for this notation) be a semi-
algebraic system of Q[x] and ZR(S) ⊆ Rn be its zero set. Denote by d the dimension
of the constructible set {x ∈ Cn | f(x) = 0, g(x) 6= 0, for all f ∈ F, g ∈ P ∪ H}. A
finite set of regular semi-algebraic systems {Ri | i = 1 · · · t} is called a lazy triangular

decomposition of S if
• ∪t

i=1ZR(Ri) ⊆ ZR(S) holds, and
• there exists G ⊂ Q[x] such that the real-zero set ZR(G) ⊂ Rn contains ZR(S) \

(∪t
i=1ZR(Ri)) and the complex-zero set V (G) ⊂ Cn either is empty or has dimension

less than d.
We denote by LazyRealTriangularize an algorithm computing such a decomposition. In our
software implementation presented hereafter, LazyRealTriangularize outputs additional in-
formation in order to continue the computations and obtain a full triangular decomposi-
tion, if needed. This additional information appears in the form of unevaluated recursive

calls, explaining the usage of the adjective lazy in this type of decompositions.

Complexity results for lazy triangular decomposition. In Section 4, we provide a run-
ning time estimate for computing a lazy triangular decomposition of the semi-algebraic
system S when S has no inequations nor inequalities, (that is, when N≥ = P> = H 6= = ∅
holds) and when F generates a strongly equidimensional ideal of dimension d. We show
that one can compute such a decomposition in time singly exponential w.r.t. n. Our
estimates are not sharp and are just meant to reach a singly exponential bound. We
rely on the work of J. Renagar [33] for QE. In Sections 5, 6 and 7 we turn our atten-
tion to algorithms that are more suitable for implementation even though they rely on
sub-algorithms with a doubly exponential running time w.r.t. d.

A special case of quantifier elimination. By means of triangular decomposition of
algebraic sets over C, triangular decomposition of semi-algebraic systems (both full and
lazy) reduces to a special case of QE. In Section 5, we perform this latter step via the
concept of a fingerprint polynomial set, which is inspired by that of a discrimination

polynomial set used for RRC in [41, 40].
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Complexity results for fingerprint polynomial set. In Section 6, we show that the
fingerprint polynomial set of a pre-regular semi-algebraic system R (See Section 3 for
this notion) can be computed in singly exponential time w.r.t. the number of variables
as long as the regular chain part of R is in generic position. The advantage of this result,
compared to that of Section 4, is that its proof leads to a practical algorithm, actually
used in our software implementation. Despite its stronger assumptions, this latter result
is practically important since regular chains are often in generic position.

Implementation and experimental results. In Section 7 we describe the algorithms that
we have implemented for computing triangular decompositions of semi-algebraic systems.
Our Maple code is part of the RegularChains library. We provide experimental data for
two groups of well-known problems. In the first group, each input semi-algebraic system
consists of equations only while the second group is a collection of semi-algebraic sys-
tems from QE problems. To illustrate the difficulty of our test problems, and only for this
purpose, we provide timings obtained with other well-known polynomial system solvers
which are based on algorithms whose running time estimates are comparable to ours.
For this first group we use Maple’s Groebner:-Basis command for computing lexico-
graphical Gröbner bases. For the second group we use a general purpose QE software,
Qepcad b (in non-interactive mode) [6], on the respective QE problems. Our results show
that LazyRealTriangularize code solves most of our test problems and more problems than
the tools it is compared to, though these solving tools have different specifications.

With respect to our ISSAC 2010 article [11], the present paper offers the following
enhancements and extensions. First of all, Section 6 and its results are new develop-
ments. Secondly, Section 7 contains a new algorithm called SamplePoints which appears
to be useful on problems for which RealTriangularize is too expensive. Section 9 is also
a completely new section which illustrates the solving tools presented in this paper,
namely RealTriangularize, LazyRealTriangularize and SamplePoints, on concrete applica-
tions. Section 3 contains new results such as Theorem 1, which is essential for Section 7.
Sections 4 and 5 provide more details. Finally, Section 10 is another new section, offering
a discussion and concluding remarks,

We conclude this introduction by computing a triangular decomposition of a particular
semi-algebraic system taken from [8]. Consider the following question: when does p(z) =
z3 +az+ b have a non-real root x+ iy satisfying xy < 1 ? This problem can be expressed
as (∃x)(∃y)[f = g = 0∧y 6= 0∧xy−1 < 0], where f = Re(p(x+ iy)) = x3−3xy2 +ax+b
and g = Im(p(x + iy))/y = 3x2 − y2 + a. We call our LazyRealTriangularize command
on the semi-algebraic system f = 0, g = 0, y 6= 0, xy − 1 < 0 with the variable order
y > x > b > a. Its first step is to call the Triangularize command of the RegularChains

library on the algebraic system f = g = 0. We obtain one squarefree regular chain
T = [t1, t2], where t1 = g and t2 = 8x3 + 2ax− b, satisfying V (f, g) = V (T ). The second
step of LazyRealTriangularize is to check whether the polynomials defining inequalities
and inequations are regular w.r.t. the saturated ideal of T , which is the case here. The
third step is to compute the so called border polynomial set (see Section 2) which is
B = [h1, h2] with h1 = 4a3 +27b2 and h2 = −4a3b2−27b4 +16a4 +512a2 +4096. One can
check that the regular system [T, {y, xy− 1}] specializes well outside of the hypersurface
h1h2 = 0. The fourth step is to compute the fingerprint polynomial set which yields
the quantifier-free formula Q = h1 > 0 ∧ h2 6= 0 telling us that [Q, T, 1 − xy > 0] is a
regular semi-algebraic system. After performing these four steps, (based on Algorithm 5,
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Section 7) the function call LazyRealTriangularize([f, g, y 6= 0, xy − 1 < 0], [y, x, b, a]) in
our implementation returns the following:























































[[t1 = 0, t2 = 0, 1 − xy > 0]] h1 > 0 ∧ h2 6= 0

%LazyRealTriangularize([t1 = 0, t2 = 0, f = 0,

h1 = 0, 1 − xy > 0, y 6= 0], [y, x, b, a]) h1 = 0

%LazyRealTriangularize([t1 = 0, t2 = 0, f = 0,

h2 = 0, 1 − xy > 0, y 6= 0], [y, x, b, a]) h2 = 0

[ ] otherwise

The above output shows that {[Q, T, 1−xy > 0]} forms a lazy triangular decomposition
of the input semi-algebraic system. Moreover, together with the output of the recursive
calls, one obtains a full triangular decomposition. Note that the cases of the two recursive
calls correspond to h1 = 0 and h2 = 0. Since LazyRealTriangularize uses the Maple

piecewise structure for output format, one simply needs to evaluate the recursive calls
with the value command, yielding the same result as directly calling RealTriangularize































[[t1 = 0, t2 = 0, 1 − xy > 0]] h1 > 0 ∧ h2 6= 0

[ ] h1 = 0

[[t3 = 0, t4 = 0, h2 = 0]] h2 = 0

[ ] otherwise

where t3 = xy + 1 and t4 = 2a3x− a2b+ 32ax− 48b+ 18xb2.
From this output, after some simplification, one could obtain the equivalent quantifier-

free formula, 4a3 + 27b2 > 0, of the original QE problem.

2. Triangular decomposition of algebraic sets

This section reviews the basic notions related to regular chains and triangular decom-
positions of algebraic sets. Throughout this paper, k is a field of characteristic 0 and K

is its algebraic closure. Let k[x] be the polynomial ring over k and with ordered variables
x = x1 < · · · < xn. Let p, q ∈ k[x]. Assume that p /∈ k. Then denote by mvar(p), init(p),
and mdeg(p) respectively the greatest variable appearing in p (called the main variable

of p), the leading coefficient of p w.r.t. mvar(p) (called the initial of p), and the degree of
p w.r.t. mvar(p) (called the main degree of p); denote by der(p) the derivative of p w.r.t.
mvar(p) and by discrim(p) the discriminant of p w.r.t. mvar(p). Let F ⊂ k[x]. If F = ∅,
define

∏

f∈F f as 1; otherwise define
∏

f∈F f as the product of polynomials in F .

Triangular set. Let T ⊂ k[x] be a triangular set, that is, a set of non-constant polyno-
mials with pairwise distinct main variables. Denote by mvar(T ) the set of main variables
of the polynomials in T . A variable v in x is called algebraic w.r.t. T if v ∈ mvar(T ),
otherwise it is said free w.r.t. T . If no confusion is possible, we shall always denote by
u = u1, . . . , ud and y = y1, . . . , ym respectively the free and the main variables of T . We
let d = 0 whenever T has no free variables. Let hT be the product of the initials of the
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polynomials in T . We denote by sat(T ) the saturated ideal of T : if T is the empty trian-
gular set, then sat(T ) is defined as the trivial ideal 〈0〉, otherwise it is the ideal 〈T 〉 : h∞T .

The quasi-component W (T ) of T is defined as V (T ) \V (hT ). Denote W (T ) = V (sat(T ))
as the Zariski closure of W (T ).

Iterated resultant. Let p, q ∈ k[x]. Assume q 6∈ k holds. Let v = mvar(q). We define
res(p, q, v) as follows: if v does not appear in p, then res(p, q, v) = p; otherwise res(p, q, v)
is the resultant of p and q w.r.t. v. Let T be a triangular set of k[x]. We define res(p, T )
by induction: if T is empty, then res(p, T ) = p; otherwise let v be the greatest vari-
able appearing in T , then res(p, T ) = res(res(p, Tv, v), T<v), where Tv and T<v denote
respectively the polynomials of T with main variables equal to and less than v.

Regular chain. A triangular set T ⊂ k[x] is a regular chain if: either T is empty; or
(letting t be the polynomial in T with maximum main variable), T \{t} is a regular chain,
and the initial of t is regular (that is neither zero nor zero divisor) modulo sat(T \ {t}).
The empty regular chain is denoted by ∅. Let H ⊂ k[x]. The pair [T,H] is a regular

system if each polynomial in H is regular modulo sat(T ). If h is the only element in H,
we also write as [T, h] for short. A regular chain T or a regular system [T,H], is squarefree

if for all t ∈ T , the der(t) is regular w.r.t. sat(T ).

Triangular decomposition. Let F ⊂ k[x]. Regular chains T1, . . . , Te of k[x] form a
triangular decomposition of V (F ) if either: V (F ) = ∪e

i=1W (Ti) (Kalkbrener’s sense [26])
or V (F ) = ∪e

i=1W (Ti) (Lazard’s sense). In this paper, we denote by Triangularize an
algorithm, such as the one of [31, 14], computing a Kalkbrener triangular decomposition.

Regularization. Let p ∈ k[x] and T ⊂ k[x] be a regular chain. The function call
Regularize(p, T ) computes a set of regular chains {T1, . . . , Te} such that (1) for each
i = 1 · · · e, either p ∈ sat(Ti) or p is regular w.r.t. sat(Ti); (2) we have W (T ) =
W (T1) ∪ · · · ∪W (Te), and mvar(T ) = mvar(Ti) for each i = 1 · · · e.

Good specialization [13]. Consider a squarefree regular system [T,H] of k[u,y]. Recall
that y and u = u1, . . . , ud stand respectively for mvar(T ) and x \ y. Let z = (z1, . . . , zd)
be a point of Kd. We say that [T,H] specializes well at z if: (i) none of the initials of
the polynomials in T vanishes modulo the ideal 〈z1 − u1, . . . , zd − ud〉; (ii) the image of
[T,H] modulo 〈z1 − u1, . . . , zd − ud〉 is a squarefree regular system.

Border polynomial [41]. Let [T,H] be a squarefree regular system of k[u,y]. Let bp be
the primitive and square free part of the product of all res(der(t), T ) and all res(h, T )
for h ∈ H and t ∈ T . We call bp the border polynomial of [T,H] and denote by
BorderPolynomial(T,H) an algorithm to compute it. We call the set of irreducible fac-
tors of bp the border polynomial set of [T,H]. Denote by BorderPolynomialSet(T,H) an
algorithm to compute it. Proposition 1 follows from the specialization property of sub-
resultants and states a fundamental property of border polynomials.

Proposition 1. The system [T,H] specializes well at u ∈ Kd if and only if the border
polynomial bp(u) 6= 0.

Corollary 1. Let [T,H] be a squarefree regular system of k[u,y] and B be its border
polynomial set. Let D ⊂ k[u] such that B ⊆ D. Then we have

V (sat(T )) \ V (
∏

h∈H

h) \ V (
∏

f∈D

f) = W (T ) \ V (
∏

f∈D

f)

and V (sat(T )) ∩ V (
∏

h∈H h) \ V (
∏

f∈D f) = ∅ hold.
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3. Triangular decomposition of semi-algebraic systems

In this section, we prove that any semi-algebraic system decomposes into finitely many
regular semi-algebraic systems. This latter notion was defined in the introduction.

Semi-algebraic system. Let us consider four finite polynomial subsets F = {f1, . . . , fs},
N = {n1, . . . , nt}, P = {p1, . . . , pr} and H = {h1, . . . , hℓ} of Q[x1, . . . , xn]. Let N≥

denote the set of the inequalities {n1 ≥ 0, . . . , nt ≥ 0}. Let P> denote the set of the
inequalities {p1 > 0, . . . , pr > 0}. Let H 6= denote the set of inequations {h1 6= 0, . . . , hℓ 6=
0}. We will denote by [F, P>] the basic semi-algebraic system {f1 = 0, . . . , fs = 0, p1 >
0, . . . , pr > 0}. We denote by S = [F,N≥, P>,H6=] the semi-algebraic system (SAS) which
is the conjunction of the following conditions: f1 = 0, . . . , fs = 0, n1 ≥ 0, . . . , nt ≥ 0,
p1 > 0, . . . , pr > 0 and h1 6= 0, . . . , hℓ 6= 0.

Notations for zero sets. In this paper, we use “Z” to denote the zero set in Cn of a
polynomial system, involving equations and inequations, and “ZR” to denote the zero
set in Rn of a semi-algebraic system.

Pre-regular semi-algebraic system. Let [T, P ] be a squarefree regular system of Q[u,y].
Let bp be the border polynomial of [T, P ]. Let B ⊂ Q[u] be a polynomial set such that bp
divides the product of polynomials in B. We call the triple [B6=, T, P>] a pre-regular semi-

algebraic system of Q[x]. Its zero set, written as ZR(B6=, T, P>), is the set (u, y) ∈ Rn

such that b(u) 6= 0, t(u, y) = 0, p(u, y) > 0, for all b ∈ B, t ∈ T , p ∈ P . Lemma 1 and
Theorem 1 are fundamental properties of pre-regular semi-algebraic systems.

Lemma 1. Let S be a semi-algebraic system of Q[x]. Then there exists finitely many pre-
regular semi-algebraic systems [Bi 6=, Ti, Pi>], i = 1 · · · e, s.t. ZR(S) = ∪e

i=1ZR(Bi 6=, Ti, Pi>).

Proof. The semi-algebraic system S decomposes into basic semi-algebraic systems, by
rewriting inequality of type n ≥ 0 as: n > 0∨n = 0. Let [F, P>] be one of those basic semi-
algebraic systems. If F is empty, then the triple [∅,∅, P>], is a pre-regular semi-algebraic
system. If F is not empty, by Proposition 1 and the specifications of Triangularize and
Regularize, one can compute finitely many squarefree regular systems [Ti,H] such that
V (F )∩Z(P 6=) = ∪e

i=1

(

V (Ti) ∩ Z(Bi 6=)
)

holds and where Bi is the border polynomial set
of the regular system [Ti,H]. Hence, we have ZR(F, P>) = ∪e

i=1ZR(Bi 6=, Ti, P>), where
each [Bi 6=, Ti, P>] is a pre-regular semi-algebraic system. 2

Next, we exhibit properties of pre-regular semi-algebraic systems. To this end, we
recall the notion of delineability [17]. Assume n > 1. Let C be a connected cell in Rn−1.
A polynomial p ∈ R[x1, . . . , xn] is delineable on C if the real zeros of p define continuous
real-valued functions θ1, . . . , θs such that, for all α ∈ C we have θ1(α) < · · · < θs(α).

Lemma 2 (Theorem 1 in [17]). Let p be a polynomial of R[y1 < · · · < yn] and C be a
connected semi-algebraic subset of Rn−1. If init(p) 6= 0 on C and the number of distinct
complex roots of p is invariant on C, then p is delineable on C.

Theorem 1. Let [B6=, T, P>] be a pre-regular semi-algebraic system of Q[u,y], with
T non-empty. Let h be the product of the polynomials in B. Let C be a connected
subset of the complement of h = 0 in Rd. Then there exist finitely many, say k, contin-
uous semi-algebraic functions ψ1(u), . . . , ψk(u) defined on C, such that ZR([T, P>]) =
·∪k

i=1{(α,ψi(α)) | α ∈ C} holds, where ·∪ denotes a disjoint union. In particular, for each
α ∈ C, we have ZR([T (α), P>(α)]) = {ψ1(α), . . . , ψk(α)}, which is a set of k points.

8



Proof. We prove by induction on m, the number of variables in y = y1 < · · · < ym. For
1 ≤ i ≤ m, let Pi = {p ∈ P | mvar(p) ≤ yi}. Write T = {t1, . . . , tm}, where polynomials
are sorted by main variables.

Case m = 1. For any α ∈ C, the regular system [{t1}, P1] specializes well at α by
Proposition 1, which implies that init(t1)(α) 6= 0 and t1(α, y1) is a squarefree polynomial
in R[y1]. Therefore, the polynomial t1 is delineable on C by Lemma 2, which implies that
the real zero set of t1 over C consists of finitely many (possibly none) disjoint graphs
of continuous functions. Let ψ1(u), . . . , ψk′(u) be these functions. For i = 1, . . . , k′, the
graph of ψi over C, denoted by Gi, is a connected semi-algebraic set. Moreover, since
[{t1}, P1] specializes well above C, we deduce that the sign of each p ∈ P1 does not change
above Gi. We pick those ψi such that Gi ∩ ZR(P1>) 6= ∅ holds and renumber them as
ψ1(u), . . . , ψk(u). Clearly we have ZR([t1, P1>]) = ·∪k

i=1{(α,ψi(α)) | α ∈ C)} holds.
Case m > 1. Assume that the conclusion holds for the pre-regular semi-algebraic sys-

tem [B6=, {t1, . . . , tm−1}, Pm−1>], that is, there exist k continuous semi-algebraic func-
tions ψ1(u), . . . , ψk(u) defined on C such that

ZR([{t1, . . . , tm−1}, Pm−1>]) = ·∪k
i=1{(α,ψi(α)) | α ∈ C}

holds. For i = 1, . . . , k, let Gi := {(α,ψi(α)) | α ∈ C}. Then each Gi is a connected semi-
algebraic set. Moreover, by Proposition 1, [T, P ] specializes well above ZR(B6=), which
implies that [{tm}, Pm] specializes well above Gi. By similar arguments as in the proof
of the case m = 1, we deduce that for each i = 1, . . . , k, there exists ni ≥ 0 continuous
semi-algebraic functions ψi,1(u, y1, . . . , ym−1), . . . , ψi,ni

(u, y1, . . . , ym−1) defined on Gi

such that {(γ, β) ∈ Rd+m−1 ×R | γ ∈ Gi, tm(γ, β) = 0, p(γ, β) > 0 for all p ∈ Pm} equals
to ·∪ni

j=1{(γ, ψi,j(γ)) | γ ∈ Gi}, which implies that

ZR([T, P>]) = ·∪k
i=1 ·∪

ni

j=1{(α,ψi(α), ψi,j(α,ψi(α))) | α ∈ C}

holds. Clearly (ψi(u), ψi,j(u, ψi(u))), where i = 1, . . . , k, j = 1, . . . , ni, are continuous
semi-algebraic functions defined on C, so the conclusion holds. 2

Lemma 3. Let [B6=, T, P>] be a pre-regular semi-algebraic system of Q[u,y]. One can
decide whether its zero set is empty or not. If it is not empty, then one can compute a
regular semi-algebraic system [Q, T, P>] whose zero set is the same as that of [B6=, T, P>].

Proof. If T = ∅, we can test whether the zero set of [B6=, P>] is empty or not, for instance
using CAD. If it is empty, we are done. Otherwise, defining Q = B6= ∧P>, [Q, T, P>] is a
regular semi-algebraic system whose zero set equals that of [B6=, T, P>]. If T is not empty,
we solve the quantifier elimination problem ∃y(B(u) 6= 0, T (u,y) = 0, P (u,y) > 0)
and let Q be the resulting formula. By Theorem 1, above each connected component of
B(u) 6= 0, the number of real zeros of the system [B6=, T, P>] is constant. Hence, we claim
that the zero set defined by Q is the union of the connected components ofB(u) 6= 0 above
which [B6=, T, P>] possesses at least one solution. If Q is false, we are done. Otherwise,
Q defines a nonempty open set of Rd and [Q, T, P>] is a regular semi-algebraic system
whose zero set equals that of [B6=, T, P>]. 2

Theorem 2. Let S be a semi-algebraic system of Q[x]. Then one can compute a (full)
triangular decomposition of S, that is, as defined in the introduction, finitely many
regular semi-algebraic systems such that the union of their zero sets is the zero set of S.

Proof. This follows from Lemma 1 and 3. 2
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4. Complexity results for computing a lazy triangular decomposition: a the-

oretical perspective

We prove that, under some genericity assumptions, a lazy triangular decomposition
of a polynomial system is computed in singly exponential time w.r.t. the number of vari-
ables. First, we state complexity estimates for basic multivariate polynomial operations.

Complexity of basic polynomial operations. Let p, q ∈ Q[x] be polynomials with re-
spective total degrees δp, δq, and let x ∈ x. Let ~p, ~q, ~pq and ~r be the height (that is, the
bit size of the maximum absolute value of the numerator or denominator of a coefficient)
of p, q, the product pq and the resultant res(p, q, x), respectively; let δ := max(δp, δq) and
~ := max(~p, ~q). In [22], it is proved that gcd(p, q) can be computed within O(n2δ+1~3)
bit operations. It is easy to establish that ~pq and ~r are respectively upper bounded
by ~p + ~q + n log(min(δp, δq) + 1) and δq~p + δp~q + nδq log(δp + 1) + nδp log(δq + 1) +
log ((δp + δq)!). Finally, according to [24], the bit operations of p pseudo-dividing q w.r.t.
x is O((δ + 1)3n~2); let M be a k × k matrix over Q[x], δ (resp. ~) be the maximum
total degree (resp. height) of an element of M , then det(M) can be computed within
O(k2n+5(δ + 1)2n~2) bit operations.

We turn now to the main subject of this section, that is, complexity estimates for a
lazy triangular decomposition of a polynomial system under some genericity assumptions.
Let F ⊂ Q[x]. A lazy triangular decomposition (defined in the Introduction) of the semi-
algebraic system S = [F, ∅, ∅, ∅], involving only equations, is obtained by Algorithm 1.

Algorithm 1: LazyRealTriangularize(S)

Input: a semi-algebraic system S = [F, ∅, ∅, ∅]
Output: a lazy triangular decomposition of S

T := Triangularize(F )1

for Ti ∈ T do2

bpi := BorderPolynomial(Ti, ∅)3

solve ∃y(bpi(u) 6= 0, Ti(u,y) = 0); let Qi be the resulting quantifier-free formula4

if Qi 6= false then output [Qi, Ti, ∅]5

Proof of Algorithm 1. The termination of the algorithm is obvious. Let us prove its
correctness. Let Ri = [Qi, Ti, ∅], for i = 1 · · · t be the output of Algorithm 1 and let
Tj for j = t + 1 · · · s be the regular chains such that Qj = false. By Lemma 3, each
Ri is a regular semi-algebraic system. For i = 1 · · · s, define Fi = sat(Ti). Then we
have V (F ) = ∪s

i=1V (Fi), where each Fi is equidimensional. For each i = 1 · · · s, by
Proposition 1, we have V (Fi) \ V (bpi) = V (Ti) \ V (bpi). Moreover, we have V (Fi) =
(V (Fi) \ V (bpi)) ∪ V (Fi ∪ {bpi}). Hence, ZR(Ri) = ZR(Ti) \ ZR(bpi) ⊆ ZR(Fi) ⊆ ZR(F )
holds. In addition, since bpi is regular modulo Fi, we have

ZR(F ) \ ∪t
i=1ZR(Ri) = ∪s

i=1ZR(Fi) \ ∪
t
i=1ZR(Ri)

⊆ ∪s
i=1ZR(Fi) \ (ZR(Ti) \ ZR(bpi))

⊆ ∪s
i=1ZR(Fi ∪ {bpi}),

and dim (∪s
i=1V (Fi ∪ {bpi})) < dim(V (F )). So the Ri, for i = 1 · · · t, form a lazy trian-

gular decomposition of S. �
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In this section, under some genericity assumptions for F , we establish running time
estimates for Algorithm 1, see Theorem 4. This is achieved through Proposition 2 (which
gives running time and output size estimates for a Kalkbrener triangular decomposition of
an algebraic set) and Theorem 3 (which states running time and output size estimates for
a border polynomial computation). Our assumptions for these results are the following:
(H0) V (F ) is equidimensional of dimension d,
(H1) x1, . . . , xd are algebraically independent modulo each associated prime ideal of
the ideal generated by F in Q[x],

(H2) F consists of m := n− d polynomials, f1, . . . , fm.
Hypotheses (H0) and (H1) are equivalent to the existence of regular chains T1, . . . , Te

of Q[x1, . . . , xn] such that x1, . . . , xd are free w.r.t. each of T1, . . . , Te and such that we
have V (F ) = W (T1) ∪ · · · ∪ W (Te).

Denote by δ, ~ respectively the maximum total degree and height of f1, . . . , fm. In
her PhD Thesis [36], Á. Szántó describes an algorithm which computes a Kalkbrener
triangular decomposition, T1, . . . , Te, of V (F ). Under hypotheses (H0) to (H2), this

algorithm runs in timemO(1)(δO(n2))d+1 counting operations in Q, while the total degrees

of the polynomials in the output are bounded by nδO(m2). In addition, T1, . . . , Te are
square free, strongly normalized [31] and reduced [1].

From T1, . . . , Te, we obtain regular chains E1, . . . , Ee forming another Kalkbrener tri-
angular decomposition of V (F ), as follows. Let i = 1 · · · e and j = (d + 1) · · ·n. Let ti,j
be the polynomial of Ti with xj as main variable. Let ei,j be the primitive part of ti,j
regarded as a polynomial in Q[x1, . . . , xd][xd+1, . . . , xn]. Define Ei = {ei,d+1, . . . , ei,n}.
According to the complexity results for polynomial operations stated at the beginning of
this section, this transformation can be done within δO(m4)O(n) operations in Q.

Dividing ei,j by its initial we obtain a monic polynomial di,j of the polynomial ring
Q(x1, . . . , xd)[xd+1, . . . , xn]. Denote by Di the regular chain {di,d+1, . . . , di,n}. Observe
that Di is the reduced lexicographic Gröbner basis of the radical ideal it generates in
Q(x1, . . . , xd)[xd+1, . . . , xn]. So Theorem 1 in [20] applies to each regular chain Di. For
each polynomial di,j , this theorem provides height and total degree estimates expressed as

functions of the degree [9] and the height [32, 27] of the algebraic set W (Di). Note that the
degree and height of W (Di) are upper bounded by those of V (F ). Write di,j = Σµ

αµ

βµ
µ

where each µ ∈ Q[xd+1, . . . , xn] is a monomial and αµ, βµ are in Q[x1, . . . , xd] such that
gcd(αµ, βµ) = 1 holds. Let γ be the lcm of the βµ’s. Then for γ and each αµ:

• the total degree is bounded by 2δ2m and,
• the height by O(δ2m(m~ + dm log(δ) + nlog(n))).

Multiplying di,j by γ brings ei,j back. We deduce the height and total degree estimates
for each ei,j below.

Proposition 2. Under the hypotheses (H0), (H1), (H2), the Kalkbrener triangular

decomposition E1, . . . , Ee of V (F ) can be computed in δO(m4)O(n) operations in Q. In
addition, every polynomial ei,j has total degree upper bounded by 4δ2m + δm, and has
height upper bounded by O(δ2m(m~ + dmlog(δ) + nlog(n))).

Next we estimate running time and output size for a border polynomial computation.

Theorem 3. Let R = [T, P ] be a squarefree regular system of Q[u,y], with m =
#T and ℓ = #P . Let bp be the border polynomial of R. Denote by δR, ~R respec-
tively the maximum total degree and height of a polynomial in R. Then the total
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degree of bp is upper bounded by (ℓ + m)2m−1δR
m, and bp can be computed within

(nℓ+ nm)O(n)(2δR)O(n)O(m)~R
3 bit operations.

Proof. Define G := P ∪ {der(t) | t ∈ T}. We need to compute the ℓ + m iterated
resultants res(g, T ), for all g ∈ G. Let g ∈ G. Observe that the total degree and
height of g are bounded by δR and ~R + log(δR) respectively. Define rm+1 := g, . . . ,
ri := res(ti, ri+1, yi), . . . , r1 := res(t1, r2, y1). Let i ∈ {1, . . . ,m}. Denote by δi and ~i the
total degree and height of ri, respectively. Using the complexity estimates stated at the
beginning of this section, we have δi ≤ 2m−i+1δR

m−i+2 and ~i ≤ 2δi+1(~i+1+n log(δi+1+

1)). Therefore, we have ~i ≤ (2δR)O(m2)nO(m)~R. From these size estimates, one can
deduce that each resultant ri (thus the iterated resultants) can be computed within

(2δR)O(mn)+O(m2)nO(m)~R
2 bit operations, by the complexity of computing a determi-

nant stated at the beginning of this section. Hence, the product of all iterated resultants
has total degree and height bounded by (ℓ+m)2m−1δR

m and (ℓ+m)(2δR)O(m2)nO(m)~R,
respectively. Thus, the primitive and squarefree part of this product can be computed
within (nℓ + nm)O(n)(2δR)O(n)O(m)~R

3 bit operations, based on the complexity of a
polynomial gcd computation stated at the beginning of this section. 2

Theorem 4. From the Kalkbrener triangular decomposition E1, . . . , Ee of Proposi-
tion 2, a lazy triangular decomposition of f1 = · · · = fm = 0 can be computed in
(

δn2

n4n
)O(n2)

~O(1) bit operations. Thus, under the hypotheses (H0), (H1) and (H2),

a lazy triangular decomposition of this system is computed from the input polynomials
in singly exponential time w.r.t. n, counting operations in Q.

Proof. For each i ∈ {1 · · · e}, let bpi be the border polynomial of [Ei, ∅] and let ~Ri
(resp.

δRi
) be the height (resp. the total degree) bound of the polynomials in the pre-regular

semi-algebraic system Ri = [{bpi}6=, Ei, ∅]. According to Algorithm 1, the remaining task
is to solve the QE problem ∃y(bpi(u) 6= 0, Ei(u,y) = 0) for each i ∈ {1 · · · e}, which can

be solved within ((m+ 1)δRi
)
O(dm)

~
O(1)
Ri

bit operations, based on the results of [33]. The
conclusion follows from the size estimates in Proposition 2 and Theorem 3. 2

5. Quantifier elimination via real root classification

In Section 4, we saw that in order to compute a triangular decomposition of a semi-
algebraic system, a key step was to solve the following quantifier elimination problem:

∃y(B(u) 6= 0, T (u,y) = 0, P (u,y) > 0), (1)

where [B6=, T, P>] is a pre-regular semi-algebraic system of Q[u,y]. This problem is an
instance of the so-called real root classification (RRC) [43]. In this section, we show how
to solve this problem when B is what we call a fingerprint polynomial set.

Definition 3. Let R := [B6=, T, P>] be a pre-regular semi-algebraic system of Q[u,y].
Let D ⊂ Q[u]. Let dp be the product of all polynomials in D. We call D a fingerprint

polynomial set (FPS) of R if:
(i) for all α ∈ Rd, for all b ∈ B we have: dp(α) 6= 0 =⇒ b(α) 6= 0,

(ii) for all α, β ∈ Rd with α 6= β, dp(α) 6= 0 and dp(β) 6= 0: if p(α) and p(β) have the
same sign for all p ∈ D, then R(α) has real solutions if and only if R(β) does.
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Now, we present a method for constructing an FPS based on CAD projection operators.

Open projection operator [35, 5]. Hereafter in this section, we let u = u1 < · · · < ud

be ordered variables. Let p ∈ Q[u] be non-constant. We denote by factor(p) the set of the
non-constant irreducible factors of p. For A ⊂ Q[u], we define factor(A) = ∪p∈A factor(p).
Let Cd (resp. C0) be the set of the polynomials in factor(p) with main variable equal to
(resp. less than) ud. The open projection operator (oproj) w.r.t. variable ud maps p to a
set of polynomials of Q[u1, . . . , ud−1] defined below:

oproj(p, ud) := C0 ∪
⋃

f,g∈Cd, f 6=g factor(res(f, g, ud))

∪
⋃

f∈Cd
factor(init(f, ud) · discrim(f, ud)).

Then, we define: oproj(A, ud) := oproj(Πp∈A p, ud).

Augmentation. Let A ⊂ Q[u] and x ∈ {u1, . . . , ud}. Denote by der(A, x) the derivative

closure of A w.r.t. x, that is, der(A, x) := ∪p∈A {der(i)(p, x) | 0 ≤ i < deg(p, x)}. The
open augmented projected factors of A is denoted by oaf(A) and defined as follows. Let
k be the smallest positive integer such that A ⊂ Q[u1, . . . , uk] holds. Denote by C the
set factor(der(A, uk)); we have

• if k = 1, then oaf(A) := C;
• if k > 1, then oaf(A) := C ∪ oaf(oproj(C, uk)).

Proposition 3. Let A ⊂ Q[u] be finite and let σ be an arbitrary map from oaf(A) to
the set of signs {−1,+1}. We define:

Sd :=
⋂

p∈oaf(A)
{u ∈ Rd | p(u)σ(p) > 0}.

Then the set Sd is either empty or a connected open set in Rd.

Proof. By induction on d. When d = 1, the conclusion follows from Thom’s Lemma [2].
Assume d > 1. If d is not the smallest positive integer k such that A ⊂ Q[u1, . . . , uk]
holds, then Sd writes Sd−1×R and the conclusion follows by induction. Otherwise, write
oaf(A) as C ∪ E, where C = factor(der(A, ud)) and E = oaf(oproj(C, ud)). We have:
E ⊂ Q[u1, . . . , ud−1]. Let M = ∩p∈E {u ∈ Rd−1 | p(u)σ(p) > 0}. If M is empty then so is
Sd and the conclusion is clear. From now on assume M not empty. Then, by induction
hypothesis, M is a connected open set in Rd−1. By the definition of the operator oproj
and Lemma 2, the product of the polynomials in C is delineable over M w.r.t. ud.
Moreover, C is derivative closed (may be empty) w.r.t. ud. Therefore ∩p∈oaf(A) {u ∈ Rd |
p(u)σ(p) > 0} ⊂M ×R is either empty or a connected open set by Thom’s Lemma. 2

Theorem 5. Let R := [B6=, T, P>] be a pre-regular semi-algebraic system of Q[u,y].
The polynomial set oaf(B) is a fingerprint polynomial set of R.

Proof. Recall that the border polynomial bp of [T, P ] divides the product of the polyno-
mials in B. We have factor(B) ⊆ oaf(B). So oaf(B) clearly satisfies (i) in Definition 3.
Let us prove (ii). Let dp be the product of the polynomials in oaf(B). Let α, β ∈ Rd such
that both dp(α) 6= 0, dp(β) 6= 0 hold and the signs of p(α) and p(β) are equal for all
p ∈ oaf(B). Then, by Proposition 3, α and β belong to the same connected component
of dp(u) 6= 0, and thus to the same connected component of B(u) 6= 0. Therefore the
number of real solutions of R(α) and that of R(β) are the same by Theorem 1. 2
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From now on, let us assume that the set B in the pre-regular semi-algebraic system

R = [B6=, T, P>] is an FPS of R. We solve the quantifier elimination problem (1) in three

steps: (s1) compute at least one sample point in each connected component of the semi-

algebraic set defined by B(u) 6= 0; (s2) for each sample point α such that the specialized

system R(α) possesses real solutions, compute the sign of b(α) for each b ∈ B; (s3)

generate the corresponding quantifier-free formulas.

In practice, when the set B is not an FPS, one adds some polynomials from oaf(B),

using a heuristic procedure (for instance one by one) until Property (ii) of the definition

of an FPS is satisfied. This strategy is implemented in Algorithm 3 of Section 7.

6. Complexity results for computing a fingerprint polynomial set: a practical

perspective

Let R := [B6=, T, P>] be a pre-regular semi-algebraic system of Q[u,y], where u stands

for the free variables of T and y = y1 < · · · < ym are the main variables of T . We write

P = {p1, . . . , pℓ} and T = {t1, . . . , tm}. In this section, we always assume that T is

in generic position, that is, the main degree of ti is 1 for 1 < i ≤ m. Under such an

assumption, we show that a fingerprint polynomial set of R can be computed in singly

exponential time w.r.t. the number of variables. Note that the construction in Section 5

is doubly exponential [7]. Since a regular chain is often in generic position and detecting

this shape is easy, this new construction leads to a practical and more effective way for

computing fingerprint polynomial set, which has been integrated in our tools.

To achieve this, we present an alternative way (w.r.t. the one presented in last section)

to construct a fingerprint polynomial set of R. This new method relies on a tool called

generalized discriminant sequence (GDS) for counting the number of real solutions of a

univariate polynomial with parametric coefficients, which we review as follows.

Definition 4 ([41, 42]). Let p, q ∈ R[x]. We denote by p′ the derivative of p w.r.t. x.

Let r := rem(p′q, p, x) be the Euclidean remainder of p′q divided by p. Let s := deg(p, x)

and write p = a0x
s + · · · + as, r = c0x

s−1 + · · · + cs−1. The following 2s× 2s matrix

(mij) =























a0 a1 a2 · · · as

0 c0 c1 · · · cs−1

. . .
. . .

. . .

a0 a1 a2 · · · as

0 c0 c1 · · · cs−1























is called the generalized discrimination matrix of p w.r.t. q. For i = 1 · · · s, we de-

note by gdsi(p, q, x), the 2 i-th leading principal minor of the above matrix and call

gds1(p, q, x), . . . , gdss(p, q, x) the generalized discriminant sequence of p w.r.t. q, denoted

by gds(p, q, x). We write {gds(p, q, x)} the set consisting of the elements of gds(p, q, x).

Notation 1. Let p and q be two polynomials in R[x]. Denote by TaQ(p, q) the number

#{x | p = 0, q > 0} − #{x | p = 0, q < 0}, the Tarski query [2] of p w.r.t. q.
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Remark 1. The elements in the generalized discriminant sequence of p w.r.t. q are in
one-to-one correspondence (up to a power of a0 and a power of −1) with the signed subre-

sultant coefficients [2] of p and r. One can compute TaQ(p, q) merely from the signs of the
elements in gds(p, q, x), see Theorem 4.32 in [2] or Theorem 3.2.1 in [42]: given two pairs
of polynomials (pi, qi) (i = 1, 2) with deg(p1) = deg(p2) = s, if sign(gdsj(p1, q1, x)) =
sign(gdsj(p2, q2, x)) holds for all j = 1, . . . , s, then TaQ(p1, q1) = TaQ(p2, q2) holds.

We prove Lemmas 4 and 5 for completness; similar results appear in [41, 42]. Let
k > 0 be an integer. Let p and q1, q2, . . . , qk be polynomials from R[x] with gcd(p, qj) =
1 for each j = 1, . . . , k. Lemma 4 shows that in this case, the numbers #{x | p =
0, q1σ10, . . . , qkσk0} with σ1, . . . , σk ∈ {>,<} can be computed from the numbers in

{TaQ(p,
∏k

j=1 q
ej

j ) | e1, . . . , ek ∈ {0, 1}} by solving a linear system with fixed coefficients.

Denote M :=
(

1
1

1
−1

)

and let M1 := M. For i = 1, . . . , k − 1, denote by Mi+1

the 2i × 2i matrix obtained by replacing each element e of M with eMi. It is easy to
deduce that det(Mi+1) = 22i

det(Mi)
2 from its block structure, which implies that all

Mi (i = 1, . . . , k) are nonsingular.
Denote by S1 the list of constraints [q1 > 0, q1 < 0], by P1 the polynomial list [1, q1].

For i = 1, . . . , k − 1, denote by Si+1 the list of constraints

[Si[1] ∧ qi+1 > 0, . . . ,Si[2
i] ∧ qi+1 > 0,Si[1] ∧ qi+1 < 0, . . . ,Si[2

i] ∧ qi+1 < 0],

by Pi+1 the polynomial list [Pi[1], . . . ,Pi[2
i],Pi[1] · qi+1, . . . ,Pi[2

i] · qi+1]. It is easy to
deduce that Si and Pi are of length 2i.

Let Tk be [TaQ(p,Pk[1]),TaQ(p,Pk[2]), . . . ,TaQ(p,Pk[2k])]. Let Nk be [#{x | p =
0, Sk[1]},#{x | p = 0, Sk[2]}, . . . ,#{x | p = 0, Sk[2k]}]. We observe that each of Tk and
Nk is a list of 2k non-negative integers.

Lemma 4 ([42]). Using the above notations Mk, Tk, Nk and viewing Tk and Nk as
vectors, we have Nk = M−1

k × Tk.

Proof. Consider the system of linear equations Mk×X = Tk with X as unknown vector,
one can verify that X = Nk is the solution. Here, we only verify the base case, namely
k = 1. Since gcd(p, q1) = 1, we have

#{x | p = 0, q1 > 0} + #{x | p = 0, q1 < 0} = #{x | p = 0} = TaQ(p, 1).

Moreover #{x | p = 0, q1 > 0}−#{x | p = 0, q1 < 0} equals TaQ(p, q1) by definition. 2

Let p and q be two univariate polynomials of x with coefficients in Q[u]. The signed

pseudo-remainder (see [2]) of p divided by q, denoted by sPrem(p, q, x), is the polynomial
r satisfying lc(q)ep = aq + r, where deg(r, x) < deg(q, x) and e is the smallest non-
negative even integer greater than or equal to deg(p, x)−deg(q, x)+1. In Definition 4, we
reviewed the concepts of “generalized discriminant matrix (sequence)” of two univariate
polynomials with real coefficients. We extend the definition to cover the case of two
univariate polynomials p and q with coefficients in Q[u] by replacing r := rem(p′q, p, x)
with r := sPrem(p′q, p, x).

Lemma 5. Let p and q be two polynomials of x with coefficients in Q[u]. Let p =
a0x

s + · · · + as, where a0 6= 0. Suppose α1 and α2 are two points of Rd such that both
a0(α1) 6= 0 and a0(α2) 6= 0 hold. If sign(gdsj(p, q, x)(α1)) = sign(gdsj(p, q, x)(α2)) hold
for all j = 1, . . . , s, then we have TaQ(p(α1), q(α1)) = TaQ(p(α2), q(α2)) holds.
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Proof. Let r := sPrem(p′q, p, x). Then there exists a non-negative even integer e and
a polynomial b such that ae

0p
′q = bp + r holds. Therefore for any α ∈ Rd such that

a0(α) 6= 0, we have

p(α)′q(α) =
b

ae
0

(α)p(α) +
r

ae
0

(α).

For i = 1, 2, denote ri := rem(p(αi), q(αi)). By the uniqueness of Euclidean reminder,
we deduce that ri = r

ae
0

(αi) for i = 1, 2. By the specialization properties of computing

the determinant of a polynomial matrix and the fact that e is an even number, we
deduce that sign(gdsj(p, q, x)(αi)) = sign(gdsj(p(αi), q(αi), x)) holds for i = 1, 2 and
j = 1, . . . , s. Then the conclusion follows from (ii) of Remark 1. 2

Lemma 6. Let p and q1, q2, . . . , qk be polynomials of x with coefficients in Q[u] and
deg(p, x) = s. Assume that p is squarefree and that p has no common factors with
each of q1, q2, . . . , qk. Let D be the polynomial set consisting of the non-zero polyno-
mials in

⋃

e1,...,ek∈{0,1}{gds(p,
∏k

j=1 q
ej

j , x)}. Suppose α1, α2 are two values of u such

that sign(f(α1)) = sign(f(α2)) 6= 0 for each f ∈ D. Then the numbers #{x|p(α1) =
0, q1(α1) > 0, . . . , qk(α1) > 0} and #{x|p(α2) = 0, q1(α2) > 0, . . . , qk(α2) > 0} are equal.

Proof. Let q be any polynomial in {1, q1, q2, . . . , qk}. Then there exists a non-negative
even integer e and polynomial b such that lc(p)ep′q = bp+ r, where deg(r, x) < deg(p, x).
Since p is squarefree and p has no common factors with q, we deduce that gcd(p, r) =
gcd(p′q, p) = 1 in Q(u)[x], which implies that gdss(p, q) 6= 0 and therefore belongs to D.

From sign(f(α1)) = sign(f(α2)) 6= 0 holds for each f ∈ D, we deduce
(1) According to Definition 4, lc(p) is a factor of each polynomial in D. Therefore,

lc(p)(αi) 6= 0 holds.
(2) For each q ∈ {q1, . . . , qk}, we have gdss(p, q, x)(αi) 6= 0 holds, which implies that

gcd(p(αi), sPrem(p′q, p, x)(αi)) = 1 by (1) and the specialization properties of com-
puting the determinant of a polynomial matrix. So gcd(p(αi), p

′(αi)q(αi)) = 1,
which implies that gcd(p(αi), q(αi)) = 1.

(3) For all e1, . . . , ek ∈ {0, 1}, TaQ(p(α1),
∏k

j=1 q
ej

j (α1)) = TaQ(p(α2),
∏k

j=1 q
ej

j (α2))
by Lemma 5.

For i = 1, 2, let Nαi
, Tαi

be the Nk and Tk constructed as in Lemma 4 for the polynomi-
als p(αi), q1(αi), · · · , qk(αi). Then we have Tα1

= Tα2
by the above item (3). Therefore,

we have Nα1
= Nα2

by Lemma 4. Then the conclusion follows, since the two numbers
are the first element of Nα1

and Nα2
respectively. 2

We return to the pre-regular semi-algebraic system [B6=, T, P>] introduced at the be-
ginning of this section. Recall that m and ℓ are the numbers of polynomials in T and P
respectively. Let Pm+1 := P and Pi := {sPrem(p, ti, yi) | p ∈ Pi+1} for i = m, . . . , 2.
Note Pi (i = m + 1, . . . , 2) has at most ℓ elements and suppose that P2 = {b1, . . . , bk}
(k ≤ ℓ). Let

P1 :=
⋃

(α1,α2,...,αk)∈{0,1}k

{gds(t1,
k

∏

i=1

bαi

i , y1)} \ {0}.

Proposition 4. Assume that T is in generic position and let D := B∪P1. Then the set
D is a fingerprint polynomial set of the pre-regular semi-algebraic system [B6=, T, P>].

16



Proof. First since the main degree of ti, 2 ≤ i ≤ m, is 1, by the relation between pseudo
remainder and resultant, we conclude that P2 only have variables u and y1.

Let dp be the product of polynomials in D. By the definition of D, we know that
the border polynomial of [T, P ] divides dp. By Proposition 1, for any α ∈ Rd such that
dp(α) 6= 0, the regular system [T, P ] specializes well at α. On the other hand, by the
definition of signed pseudo remainder, there exists even integers δi, 1 ≤ i ≤ ℓ, and
polynomials qij , 1 ≤ i ≤ ℓ, 2 ≤ j ≤ m, such that hδi

T≥y2

pi =
∑m

j=2 qijtj + bi (∗).

Hence, for any β = (β1, . . . , βm) such that T (α, β) = 0 and P (α, β) > 0, we have
t1(α, β1) = 0 and b1(α, β1) > 0. Similarly, for all β1 such that t1(α, β1) = 0 and
b1(α, β1) > 0, there exists a unique β = (β1, . . . , βm) with T (α, β) = 0 and P (α, β) > 0.

Therefore, for any α ∈ Rd such that dp(α) 6= 0, there is a 1-to-1 correspondence
between the real solutions of t1(α) = 0,P2(α) > 0 and those of [T (α), P (α)>]. On the
other hand, since for any β such that T (α, β) = 0, we have p(α, β) 6= 0 for any p ∈ P , by
relation (∗) we deduce that t1(α) has no common factors with any p(α), where p ∈ P . The
polynomial t1(α) is clearly squarefree since [T, P ] specializes well at α. Thus it follows
from Lemma 6 that the number of real solutions of t1 = 0,P2 > 0 is determined by
signs of polynomials in D. Therefore, the number of real solutions of [B6=, T, P>] is also
determined by signs of polynomials in D. Finally, D is an FPS of [B6=, T, P>]. 2

Theorem 6. Let δ and ~ be respectively the maximum total degree and the maximum
coefficient size among all polynomials in P or T . Recall that ℓ and m denote the number
of polynomials in P and T respectively. Then the following three properties hold:

(1) P1 has at most δ2ℓ polynomials,
(2) the total degree and, the coefficient bit-size of any polynomials in P1 are upper

bounded by 2ℓ(δ + 1)m+3 and ℓ3δO(m2)n~ respectively;

(3) each polynomial in P1 can be computed within 2O(n)ℓO(n)δO(n)O(m2)~2 bit-operations.

Proof. Denote the total degree and coefficient bit-size of any polynomials in Pi+1 by ∆i

and H̄i respectively, for i = 2, . . . ,m. Combining the estimates for pseudo-reminder and
polynomial product recalled in Section 4, we have

∆i ≤ δ(∆i+1 + 1) and H̄i ≤ (∆i+1 + 1)
(

H̄i+1 + n log(∆i+1)
)

,

where ∆m+1 = δ, H̄m+1 = ~. Therefore, for i = 0, . . . ,m− 1, we have

∆m−i+1 ≤ (δ + 1)i+1 and Hm−i+1 < (δ + 1)
i2−i

2 (~ + i2n log(δ + 1)) .

Thus, the total degree and coefficient size of polynomials in P2 are upper bounded by

(δ+1)m and (δ+1)
m2

2 (~ + nm log(δ + 1)). Applying the estimates of polynomial product,
the total degrees and coefficient sizes of a product of k (k ≤ ℓ) polynomials from P2 are

bounded over respectively by ℓ(δ + 1)m and ℓ2(δ + 1)
m2

2 (~ +mn log(δ + 1)) . Since P2

has k (k ≤ ℓ) polynomials and deg(t1) < δ, the set P1 has at most δ2ℓ polynomials.
Applying the estimates for the determinant of a matrix of multivariate polynomials in

Section 4, each polynomial in P1 has total degree and coefficient size upper bound 2ℓ(δ+

1)m+3 and ℓ3δO(m2)n~ respectively, and can be computed in 2O(n)ℓO(n)δO(n)O(m2)~2 bit
operations starting from P2.

Note that a pseudo-remainder can be computed as a determinant of a matrix of mul-
tivariate polynomials. So the computation of of each polynomial in Pi (i = m, . . . , 2) is
dominated by the above estimates on computing a polynomial of P1 from P2. Therefore,
each polynomial in P1 is computed within 2O(n)ℓO(n)δO(n)O(m2)~2 bit operations. 2
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7. Algorithms

In this section, we present algorithms for LazyRealTriangularize and RealTriangularize

that we have implemented. As a byproduct of RealTriangularize, we obtain an algorithm

called SamplePoints which computes at least one sample point per connected component

of a semi-algebraic set. Note that this SamplePoints algorithm is different from the one

presented in our article [11], which is renamed as SampleOutHypersurface in this paper.

Algorithm 2: GeneratePreRegularSas(S)

Input: a semi-algebraic system S = [F,N≥, P>,H6=]
Output: a set of pre-regular semi-algebraic systems [Bi 6=, Ti, Pi>], i = 1 . . . e,
such that ZR(S) = ∪e

i=1ZR(Bi 6=, Ti, Pi>) ∪e
i=1 ZR(sat(Ti) ∪ {Πb∈Bi

b}, N≥, P>,H6=).
T := Triangularize(F ); T′ := ∅1

for p ∈ P ∪H do2

for T ∈ T do3

for C ∈ Regularize(p, T ) do4

if p /∈ sat(C) then T′ := T′ ∪ {C}5

T := T′; T′ := ∅6

T := {[T, ∅] | T ∈ T}; T′ := ∅7

for p ∈ N do8

for [T,N ′] ∈ T do9

for C ∈ Regularize(p, T ) do10

if p ∈ sat(C) then11

T′ := T′ ∪ {[C,N ′]}12

else13

T′ := T′ ∪ {[C,N ′ ∪ {p}]}14

T := T′; T′ := ∅15

T := {[T,N ′, P,H] | [T,N ′] ∈ T}16

for [T,N ′, P,H] ∈ T do17

B := BorderPolynomialSet(T,N ′ ∪ P ∪H)18

output [B, T,N ′ ∪ P ]19

Basic subroutines. The algorithms stated in this section rely on a few subroutines that we

specify hereafter. For a zero-dimensional squarefree regular system [T, P ], the function

call RealRootIsolate(T, P ) [39] returns all the isolated real zeros of [T, P>]. For A ⊂
Q[u1, . . . , ud] and a point s of Qd such that p(s) 6= 0 for all p ∈ A, the function call

GenerateFormula(A, s) computes a formula ∧p∈A (p σp,s >0), where σp,s is defined as +1

if p(s) > 0 and −1 otherwise. For a set of formulas G, the function call Disjunction(G)

computes a logic formula Φ equivalent to the disjunction of the formulas in G.

Proof of Algorithm 2. Its termination is obvious. We prove its correctness. By the

specification of Triangularize and Regularize, at line 16, we have

Z(F, P 6= ∪H 6=) = ∪[T,N ′,P,H]∈T Z(sat(T ), P 6= ∪H 6=).

18



Algorithm 3: GenerateRegularSas(B, T, P )

Input: S = [B6=, T, P>], a pre-regular semi-algebraic system of Q[u,y], where
u = u1, . . . , ud and y = y1, . . . , yn−d.

Output: A pair (D,R) satisfying:
(1) D ⊂ Q[u] such that factor(B) ⊆ D;
(2) R is a finite set of regular semi-algebraic systems, such that we have:

∪R∈RZR(R) = ZR(D6=, T, P>).
D := factor(B \ Q)1

if d = 0 then2

if RealRootIsolate(T, P ) = [ ] then return (D, ∅); else return (D, {[true, T, P ]})3

while true do4

S := SampleOutHypersurface(D, d); G0 := ∅; G1 := ∅5

for s ∈ S do6

if RealRootIsolate(T (s), P (s)) = [ ] then7

G0 := G0 ∪ {GenerateFormula(D, s)}8

else9

G1 := G1 ∪ {GenerateFormula(D, s)}10

if G0 ∩G1 = ∅ then11

Q := Disjunction(G1)12

if Q = false then return (D, ∅); else return (D, {[Q, T, P ]})13

else14

select a subset D′ ⊆ oaf(B) \D by some heuristic method15

D := D ∪D′
16

Write ∪[T,N ′,P,H]∈T as ∪T . Then we deduce that

ZR(F,N≥, P>,H6=) = ∪T ZR(sat(T ), N≥, P>,H6=).

Between lines 17 and 19, for each [T,N ′, P,H], we generate a pre-regular semi-algebraic

system [B6=, T,N
′
> ∪ P>]. By Corollary 1, we have

ZR(sat(T ), N≥, P>,H6=) = ZR(sat(T ), N ′
≥, P>,H6=)

= ZR(B6=, T,N
′
> ∪ P>) ∪ ZR (sat(T ) ∪ {Πb∈Bb}, N≥, P>,H6=),

which implies that

ZR(S) = ∪T (ZR(B6=, T,N
′
> ∪ P>) ∪ ZR(sat(T ) ∪ {Πb∈Bb}, N≥, P>,H6=))

holds. Therefore, Algorithm 2 satisfies its specification.

Proof of Algorithms 3 and 4. By the definition of oproj, Algorithm 4 terminates and

satisfies its specification. By Theorem 5, oaf(B) is an FPS. Thus, by the definition of an

FPS, Algorithm 3 terminates and satisfies its specification.

Proof of Algorithm 5. Its termination is obvious; we prove it is correct. Let Ri, i = 1 · · · t
be the output. By the specification of each sub-algorithm, each Ri is a regular semi-

algebraic system and we have ∪t
i=1ZR(Ri) ⊆ ZR(S). Next we show that there exists
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Algorithm 4: SampleOutHypersurface(A, k)

Input: A ⊂ Q[x1, . . . , xk] is a finite set of non-zero polynomials
Output: A finite subset of Qk contained in (Πp∈A p) 6= 0 and having a non-empty

intersection with each connected component of (Πp∈A p) 6= 0.
if k = 1 then1

return one rational point from each connected component of Πp∈A p 6= 02

else3

Ak := {p ∈ A | mvar(p) = xk}; A
′ := oproj(A, xk)4

for s ∈ SampleOutHypersurface(A′, k − 1) do5

Collect in a set S one rational point from each connected component of6

Πp∈Ak
p(s, xk) 6= 0;

for α ∈ S do output (s, α)7

Algorithm 5: LazyRealTriangularize(S)

Input: a semi-algebraic system S = [F,N≥, P>,H6=]
Output: a lazy triangular decomposition of S

T := GeneratePreRegularSas(F,N, P,H)1

for [B, T, P ′] ∈ T do2

(D,R) = GenerateRegularSas(B, T, P ′)3

if R 6= ∅ then output R4

Algorithm 6: RealTriangularize(S)

Input: a semi-algebraic system S = [F,N≥, P>,H6=]
Output: a triangular decomposition of S

T := GeneratePreRegularSas(F,N, P,H)1

for [B, T, P ′] ∈ T do2

(D,R) = GenerateRegularSas(B, T, P ′)3

if R 6= ∅ then output R4

for p ∈ D do5

output RealTriangularize(F ∪ {p}, N, P,H)6

an ideal I ⊆ Q[x], whose dimension is less than dim(Z(F, P 6= ∪ H 6=)) and such that
ZR(S) \ ∪t

i=1ZR(Ri) ⊆ ZR(I) holds. At line 1, the specification of Algorithm 2 imply:

ZR(S) = ∪TZR(B6=, T, P
′
>) ∪ ∪TZR(sat(T ) ∪ {Πb∈B b}, N≥, P>,H6=).

At line 3, by the specification of Algorithm 3, for each B, we compute a set D such that
factor(B) ⊆ D and

∪TZR(D6=, T, P
′
>) = ∪t

i=1ZR(Ri) (2)

both hold. Following the strategy used in Algorithm 2, based on Corollary 1, we have

ZR(S) = ∪TZR(D6=, T, P
′
>) ∪ ∪TZR(sat(T ) ∪ {Πp∈D p}, N≥, P>,H6=). (3)

Combining the relations (2) and (3) together, we obtain

ZR(S) = ∪TZR(Ri) ∪ ∪TZR(sat(T ) ∪ {Πp∈D p}, N≥, P>,H6=).
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Therefore, the following relations hold

ZR(S) \ ∪t
i=1ZR(Ri) ⊆ ∪TZR(sat(T ) ∪ {Πp∈D p}, N≥, P>,H6=)

⊆ ZR (∩T (sat(T ) ∪ {Πp∈D p})) .

Define I = ∩T (sat(T ) ∪ {Πp∈D p}) . Since each p ∈ D is regular modulo sat(T ), we
have dim(I) < dim (∩T sat(T )) ≤ dim(Z(F, P 6= ∪H 6=)). So all Ri form a lazy triangular
decomposition of S. �

Proof of Algorithm 6. For its termination, it is sufficient to prove that there are
only finitely many recursive calls to RealTriangularize. Indeed, if [F,N, P,H] is the in-
put of a call to RealTriangularize then each of the immediate recursive calls takes [F ∪
{p}, N, P,H] as input, where p belongs to the set D of some pre-regular semi-algebraic
system [D6=, T, P>]. Since p is regular (and non-zero) modulo sat(T ) we have: 〈F 〉 (

〈F ∪ {p}〉. Therefore, the algorithm terminates by the ascending chain condition on ide-
als of Q[x]. The correctness of Algorithm 6 follows from that of its sub-algorithms. �

Implementation remark for LazyRealTriangularize. Our software implementation (within
the RegularChains library in Maple) of Algorithm 5 returns the necessary information
for completing a full triangular decomposition of the input semi-algebraic system S. This
is achieved simply by returning [F ∪ {p}, N, P,H] for each p ∈ D, for each D.

For an input semi-algebraic system S Algorithm 7 computes a sample point set of S,
see Definition 5, thus producing at least one point per connected component of ZR(S).

Definition 5. Let S be a semi-algebraic set of Rn. A finite subset A of Rn is called a
sample point set of S if the following conditions hold:

(i) every point of A belongs to some connected component of S,
(2) every connected component of S has a nonempty intersection with A.

Algorithm 7: SamplePoints(S)

Input: a semi-algebraic system S = [F,N≥, P>,H6=]
Output: A sample point set of S.
T := GeneratePreRegularSas(F,N, P,H)1

for [B, T, P ′] ∈ T do2

for s ∈ SampleOutHypersurface(B) do3

for α ∈ RealRootIsolate(T (s), P ′(s)) do4

output (s, α)5

for p ∈ B do6

output SamplePoints(F ∪ {p}, N, P,H)7

Lemma 7. Let S, S1 and S2 be nonempty semi-algebraic sets of Rn. Assume that
S = S1 ∪ S2. Let A1 (resp. A2) be a sample point set of S1 (resp. S2). Then A1 ∪ A2 is
a sample point set of S.

Proof. First, any point of A1 ∪A2 obviously belongs to S and therefore belongs to some
connected component of S. Secondly, we want to prove that each connected component
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Table 1 Notations for Tables 2 and 3

symbol meaning

#e number of equations in the input system

#v number of variables in the input equations

d maximum total degree of an input equation

G Groebner:-Basis (plex order) in Maple

T Triangularize in RegularChains library of Maple

ST Squarefree Triangularize in RegularChains library of Maple

LR LazyRealTriangularize implemented in Maple

R RealTriangularize implemented in Maple

S SamplePoints implemented in Maple

Q Qepcad b 1.61

> 1h computation does not complete within 1 hour

FAIL Qepcad b failed due to prime list exhausted

of S contains at least one point of A1 ∪A2. We prove this by contradiction. Suppose C is
a connected component of S that does not contain any point of A1 ∪A2 (∗). Let p ∈ C.
Then p belongs to some connected component D of S1 or S2. Let q be a point of A1 ∪A2

such that q belongs to D. Then there exists a path L(p, q) connecting p and q, which
is contained in D and hence contained in S. So p and q belongs to the same connected
component of S, which implies that q ∈ C holds. This is a contradiction to (∗). 2

Proof of Algorithm 7. The proof of its termination is exactly the same as that of
RealTriangularize. It correctness follows from Lemma 7 and Theorem 1.

8. Experimentation

We have implemented our algorithms on top of the RegularChains library in Maple.
Hereafter, we report on experimental results using well known benchmark examples from
the literature. The test examples are available at www.orcca.on.ca/~cchen/issac10.txt.

Table 1. Table 1 summarizes the notations used in Tables 2 and 3. Tables 2 and 3 demon-
strate benchmarks running in Maple 15, using an Intel Core 2 Quad CPU (2.40GHz)
with 3.0GB memory. The timings are in seconds and the time-out is 1 hour.

Table 2. The systems in this group involve equations only. We list the running times
for computing a triangular decomposition of the input algebraic variety as well as a
lazy and a full triangular decomposition of the corresponding real variety. We also pro-
vide the running times for computing lexicographical Gröbner bases with the Maple

function Groebner:-Basis. The data illustrate the performance of LazyRealTriangulrize,
RealTriangulrize and SamplePoints.

Table 3. The systems in this table are from quantifier elimination problems. Most of them
involve both equations and inequalities. We provide the timings for computing (1) a lazy
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Table 2 Timings for varieties

system #v/#e/d G T ST LR R S

Hairer-2-BGK 13/11/4 24.64 2.05 2.08 2.96 4.20 5.55

Collins-jsc02 5/4/3 > 1h 0.52 0.52 1.81 560.92 10.82

Leykin-1 8/6/4 101.44 4.00 4.02 4.39 5.46 5.72

8-3-config-Li 12/7/2 110.24 5.96 6.01 7.38 417.90 446.29

Lichtblau 3/2/11 126.35 0.31 0.32 3.55 > 1h > 1h

Cinquin-3-3 4/3/4 64.84 0.70 0.76 2.34 > 1h 57.23

Cinquin-3-4 4/3/5 > 1h 3.47 3.43 15.19 > 1h > 1h

DonatiTraverso-rev 4/3/8 159.95 1.89 2.23 3.34 3.02 2.98

Cheaters-homotopy-1 7/3/7 2498.78 0.65 451.33 > 1h > 1h > 1h

hereman-8.8 8/6/6 > 1h 12.92 22.24 > 1h > 1h 110.34

L 12/4/3 > 1h 0.79 0.80 1.12 14.94 18.16

dgp6 17/19/2 27.38 48.62 49.62 51.75 62.99 70.74

dgp29 5/4/15 85.70 0.20 0.20 0.37 0.38 0.33

Table 3 Timings for semi-algebraic systems

system #v/#e/d T ST LR R S Q

BM05-1 4/2/3 0.28 0.28 0.65 1.15 1.19 8.16

BM05-2 4/2/4 0.29 0.29 3.50 > 1h > 1h FAIL

Solotareff-4b 5/4/3 0.91 0.93 1.98 881.15 14.42 > 1h

Solotareff-4a 5/4/3 0.71 0.74 1.63 4.00 3.12 FAIL

putnam 6/4/2 0.27 0.30 0.76 1.65 1.70 > 1h

MPV89 6/3/4 0.23 0.29 0.89 2.75 2.42 > 1h

IBVP 8/5/2 0.58 0.62 1.26 14.23 13.89 > 1h

Lafferriere37 3/3/4 0.33 0.38 0.69 0.72 0.62 2.3

Xia 6/3/4 0.46 0.46 2.20 209.65 168.49 > 1h

SEIT 11/4/3 0.70 0.71 32.67 > 1h 1355.81 > 1h

p3p-isosceles 7/3/3 0.35 0.35 > 1h > 1h > 1h > 1h

p3p 8/3/3 0.37 0.40 > 1h > 1h > 1h FAIL

Ellipse 6/1/3 0.18 0.19 0.96 > 1h > 1h > 1h

triangular decomposition, (2) a full triangular decomposition and (3) sample points of
the corresponding semi-algebraic systems as well as the timings for solving the quantifier
elimination problem via Qepcad b [6] (in non-interactive mode). Our tools complete the
computations for most of the systems. However, one should note that the output of our
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tools is not a solution to the posed quantifier elimination probem. We note also that our
tools are more effective for systems counting more equations than inequalities.

We conclude this section by reporting on an experimental comparison of SamplePoints
versus related software tools. Among the software that we can access, we could find only
one software function with the same specifications as SamplePoints, that is, a function
computing a sample point set, see Definition 5, for an arbitrary semi-algebraic system.
This function is the SemialgebraicComponentInstances command in Mathematica. We
have tested the function SemialgebraicComponentInstances in Mathematica 8 for the
systems (26 in total) listed in Table 2 and Table 3. We have found that this command
succeeded for 9 of them, within the same resource limit and the same machine as described
above, while SamplePoints could solve 19 of those systems. Among the 9 systems that
SemialgebraicComponentInstances could solve, SamplePoints failed on 3 of them.

9. Illustrative examples

We consider examples arising in the study of dynamical systems and program verifica-
tion. We apply the RegularChains library implementation of the algorithms of Section 7.

9.1. Program verification

Recent advances in program verification indicate that various problems, for instance,
termination analysis of linear programs [37], reachability computation of linear hybrid
systems [28], and invariant generation [19, 34] can be reduced to solving semi-algebraic
systems. Tools for real algebraic computation such as REDLOG [23] QEPCAD [18, 25, 6],
and DISCOVERER [42] have therefore been applied to program verification [19, 28].

We consider here Example 3.5 from [28]. This problem reduces to determine the set

{(y1, y2) ∈ R2 | (∃a ∈ R)(∃z ∈ R) (0 ≤ a) ∧ (z ≥ 1) ∧ (h1 = 0) ∧ (h2 = 0)}

where h1 = 3 y1 − 2 a(−z4 + z) and h2 = 2 y2z
2 − a(z4 − 1). In order words, one

wishes to compute the projection of the semi-algebraic set defined by (0 ≤ a) ∧ (z ≥
1) ∧ (h1 = 0) ∧ (h2 = 0) onto the (y1, y2)-plane. This question can be answered by
running the RealTriangularize command on the semi-algebraic set for the variable ordering
a > z > y1 > y2. We obtain the five following regular semi-algebraic systems R1 to R5

(unspecified RP
i and RQ

i are empty):

RT
1 =







(

z4 − 1
)

a− 2 z2y2

4 y2 z
5 + 4 y2 z

4 + (3 y1 + 4 y2 ) z3 + 3 y1 z
2 + 3 y1 z + 3 y1

RQ
1 =







(y1 + y2 < 0) ∧ (y1 < 0) ∧ (0 < y2)

3y5
1 − 6y2y

4
1 − 63y2

2y
3
1 + 192y3

2y
2
1 + 112y4

2y1 + 16y5
2 6= 0

RP
1 =

{

z > 1

RT
2 =



















a

y1

y2

RP
2 =

{

z > 1

RT
3 =



















z − 1

y1

y2

RP
3 =

{

0 < a

RT
4 =































a

z − 1

y1

y2
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RT
5 =



















(

z4 − 1
)

a− 2 z2y2

tz

3 y1
5 − 6 y2 y1

4 − 63 y2
2y1

3 + 192 y2
3y1

2 + 112 y2
4y1 + 16 y2

5

RQ
5 =

{

0 < y2 RP
5 =

{

z > 1

where

tz = (369252163868 y1
4 − 2508200686544 y2 y1

3 + 4300300820416 y2
2y1

2 + 2761812320448 y2
3y1

+ 406754520832 y2
4)z4 + (−180672905280 y2

4 − 1228579249664 y2
3y1 − 1922937082240 y2

2y1
2

+ 1092105551100 y2 y1
3 − 157082832940 y1

4)z3 + (−815128066608 y2
4 − 5538434025360 y2

3y1

− 8644620182000 y2
2y1

2 + 4979116186797 y2 y1
3 − 728379335938 y1

4)z2 + (−316725331280 y2
4

− 276096356865 y1
4 + 1914148321163 y2 y1

3 − 3371008535808 y2
2y1

2 − 2153737071904 y2
3y1 )z

− 1030979306368 y2
4 − 10923966861712 y2

2y1
2 + 6315633355800 y2 y1

3 − 7003676730320 y2
3y1

− 923425115541 y1
4.

The projection on the (y1, y2)-plane of ZR(R2) ∪ ZR(R3) ∪ ZR(R4) is clearly equal to

the (y1, y2) = (0, 0) point. Properties (iii) of Definition 1 implies that the projection on

the (y1, y2)-plane of ZR(R1) is given by ZR(RQ
1 ). For R5, we observe that the polynomial

of RT
5 with main variable y1, say ty1

is delineable above 0 < y2 (By Theorem 1). Using

a sample point we check that ty1
admits a single real root. It follows that the projection

on the (y1, y2)-plane of ZR(R5) is given by:

(0 < y2) ∧ (3 y1
5 − 6 y2 y1

4 − 63 y2
2y1

3 + 192 y2
3y1

2 + 112 y2
4y1 + 16 y2

5 = 0).

To conclude, we have completed the projection of the semi-algebraic set onto the (y1, y2)-

plane, which can be simplified as (y1 < 0 ∧ y2 > 0 ∧ y1 + y2 < 0) ∨ (y1 = 0 ∧ y2 = 0).

9.2. Dynamical systems

In [29], Laurent proposed a model for the dynamics of diseases of the central nervous

system caused by prions, such as scrapie in sheep and goat, and “mad cow disease” or

Creutzfeldt-Jacob disease in humans. The model is based on the protein-only hypothesis,

which assumes that infection can be spread by particular proteins (prions) that can exist

in two isomeric forms. The normal form PrPC is harmless, while the infectious form

PrPSC catalyzes a transformation from the normal form to itself.

The dynamical system system ruling this transformation is given by

dx

dt
= k1 − k2x− ax

(1 + byn)

1 + cyn

dy

dt
= ax

(1 + byn)

1 + cyn
− k4y

where x and y are respectively the concentrations of PrPC and PrPSC . The symbols

b, c, n, a, k4, k1 are biological constants which can be set as follows: b = 2, c = 1/20,

n = 4, a = 1/10, k4 = 50 and k1 = 800. Hence, we obtain a dynamical system with only
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one (positive) parameter k2:

dx

dt
=

16000 + 800y4 − 20k2x− k2xy
4 − 2x− 4xy4

20 + y4

dy

dt
=

2(x+ 2xy4 − 500y − 25y5)

20 + y4
(4)

Since 20 + y4 is always positive, the semi-algebraic system describing the equilibria is:

S :=



















16000 + 800y4 − 20k2x− k2xy
4 − 2x− 4xy4 = 0

2(x+ 2xy4 − 500y − 25y5) = 0

k2 > 0

Applying LazyRealTriangularize to this system, yields the following regular semi-algebraic
system (and unevaluated recursive calls)



















(2y4 + 1)x− 500y − 25y5 = 0

(k2 + 4)y5 − 64y4 + (20k2 + 2)y − 32 = 0

(k2 > 0) ∧ (R1 6= 0)

where

R1 = 100000k8
2 + 1250000k7

2 + 5410000k6
2 + 8921000k5

2 − 9161219950k4
2

− 5038824999k3
2 − 1665203348k2

2 − 882897744k2 + 1099528405056.

Through the computation of sample points, we easily obtain the following observation.
Whenever R1 > 0 holds, System (4) has 1 equilibrium, while R1 < 0 implies that
System (4) has 3 equilibria.

Now we study the stability of those equilibria. To this end, we consider the two Hurwitz
determinants of S, which are (forgetting their denominators (20 + y4)2):

∆1 = 54y8 + 40k2y
4 + 2082y4 − 312xy3 + 20040 + k2y

8 + 400k2,

a2 = 20000k2 + 2000 + 50k2y
8 + 200y8 + 2000k2y

4 − 312k2xy
3 + 4100y4.

Adding to S the constraints {∆1 > 0, a2 > 0} we obtain a new semi-algebraic system
S ′. Applying LazyRealTriangularize to S ′ in conjunction with sample point computations
brings the following conclusion. If R1 > 0, then System (4) has 1 asymptotically stable
hyperbolic equilibria; If R1 < 0 and R2 6= 0, then System (4) has 2 asymptotically stable
hyperbolic equilibria, where R2 is

10004737927168k9
2 + 624166300700672k8

2 + 7000539052537600k7
2 + 45135589467012800k6

2

− 840351411856453750k5
2 − 50098004352248446875k4

2 − 27388168989455000000k3
2

− 8675209266696000000k2
2 + 102960917356800000000k2 + 5932546064102400000000.

To further investigate the number of asymptotically stable hyperbolic equilibria on the
hypersurface R2 = 0 and the equilibria when R1 = 0, one can apply SamplePoints on S ′,
which produces 14 points. From those, all the possible equilibrium configurations of the
dynamical system can be determined.
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10. Discussion and concluding remarks

Given a semi-algebraic system S the algorithm RealTriangularize (resp. LazyRealTrian-

gularize), as stated in Section 7, returns a full (resp. lazy) triangular decomposition of
S. Consider R = [Q, T, P>] an output regular semi-algebraic system and assume that
T admits x1 < · · · < xd as free variables, for d > 0. Let C be a connected compo-
nent of the semi-algebraic set defined by Q in Rd. Theorem 1 states that, above C, the
set ZR(R) consists of finitely many disjoint graphs of continuous functions where each
of these graphs is locally homeomorphic to the hypercube (0, 1)d. Therefore R can be
regarded as a parameterization of ZR(R).

This situation is similar to that of triangular decomposition of algebraic sets. Indeed,
consider an input polynomial system F ∈ k[x], for a field k, to which the algorithm
Triangularize is applied. Consider also an output regular chain T with x1 < · · · < xd as
free variables, for d > 0. Then T represents a generic zero for each irreducible component
of V (sat(T )); moreover each of these irreducible components has dimension d.

The complexity results of Sections 4 and 6 together with the experimental results of
Section 8 suggest that the notions and algorithms presented in this paper are promising
tools for manipulating semi-algebraic sets symbolically. In the sequel of this section,
we would like to address the following natural question: would there be an alternative
and competitive algorithm implementing the specifications of LazyRealTriangularize while
relying on existing tools from the literature?

One direct approach for computing a lazy triangular decomposition of the semi-
algebraic system S could be the following.

(i) Decompose S into pre-regular semi-algebraic systems, using Algorithm 2.
(ii) For each output pre-regular semi-algebraic system [B6=, T, P>] compute a CAD of

the complement of the hypersurface defined by B in the parameter space, where
this CAD produces for each cell a sample point s and a Tarski formula Φ defining
that cell.

(iii) For each [B6=, T, P>] for each (s,Φ) associated with [B6=, T, P>], if the specialized
system [T (s), P>(s)] has real solutions then output [Φ, T, P>].

In our approach we modify Step (ii) (and Step (iii)) and avoid the computation of a full
CAD by reducing to the following quantifier elimination problem:

∃y(B(u) 6= 0, T (u,y) = 0, P (u,y) > 0).

See Section 5 for details. When B is a fingerprint polynomial set, we solve this problem by
computing (at least) one sample point in each connected component of the complement
of the hypersurface defined by B in the parameter space. Then, the properties of an FPS

yield the Tarski formulas from the polynomials in the FPS. When B is not a fingerprint
polynomial set, we replace B by a superset D of B, which is an FPS.

A first advantage of our approach is that the concept of an FPS is independent of
the elimination procedure (CAD or other). Actually, we have described two strategies for
FPS construction: one based on open augmented projection (Section 5) and one based
on generalized discriminant sequences (Section 6). A second advantage is that when T
is in generic position, an FPS of [B6=, T, P>] can be computed in singly exponential time
w.r.t. the number of variables. It is worth noticing that this case occurs very frequently
in practice. Another important practical observation is the fact that, often, a fairly small
subset of the theoretical FPS (the set oaf(B) in Theorem 5 and the setD in Proposition 4)
is already an FPS. We take advantage of this latter observation in our implementation.
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Regarding the construction and the use of an FPS, we conclude with two remarks.
First, in our implementation and as suggested by Algorithm 3, an FPS is constructed
by an incremental process starting from B. A related procedure appears in [4] where
a CAD augmented projection is computed incrementally so as to produce a projection-
definable CAD. One difference is that, in the FPS construction based on open augmented
projection, the considered cells (in the space of the free variables of T ) are all open. In the
case of the augmented projection construction [4] cells of lower dimension may need to be
considered as well. Secondly, we observe that, in principle, Algorithm 4 may be replaced
by any procedure computing at least one rational point per connected component of the
complement of a hypersurface. Despite of its doubly exponential running time, we have
verified experimentally that our implementation of Algorithm 4 is competitive with other
tools, such as Maple’s command RootFinding:- WitnessPoints.
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[20] X. Dahan, A. Kadri, and É. Schost. Bit-size estimates for triangular sets in positive di-
mension. Technical report, University of Western Ontario, 2009.
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