Triangular decomposition of semi-algebraic systems

Presented by Marc Moreno Maza¹ joint work with Changbo Chen¹, James H. Davenport², John P. May³, Bican Xia⁴, Rong Xiao¹

¹University of Western Ontario

²University of Bath (England)

³Maplesoft (Canada)

⁴Peking University (China)

Graduate Computational Algebraic Geometry Seminar University of Illinois at Chicago Ocotober 2, 2013

Plan

Solving systems of polynomial equations symbolically

- 2 Triangular decomposition of algebraic systems
- 3 Triangular decomposition of a semi-algebraic system
- 4 Algorithm
- 5 Complexity analysis
- 6 Benchmarks
- 7 Applications
- 8 Concluding remarks

What does solving polynomial systems symbolically mean?

The algebra text book says:

- For $F \subset \mathbf{k}[x_1, \dots, x_n]$ this is simply
 - a primary decomposition of $\langle {\it F} \rangle$ or
 - the *irreducible decomposition* of V(F) (the zero set of F in $\overline{\mathbf{k}}^{n}$).

The computer algebra system does well:

For $F \subset \mathbf{k}[x_1, \dots, x_n]$, with $\mathbf{k} = \mathbb{Z}/p\mathbb{Z}$ or $\mathbf{k} = \mathbb{Q}$,

- computing a *Gröbner basis* of $\langle F \rangle$ or
- computing a triangular decomposition of V(F).

But most scientists and engineers need:

- For F ⊂ Q[x₁,...,x_n], a useful description of the points of V(F) whose coordinates are real.
- For F ⊂ Q[u₁,..., u_d][x₁,..., x_n], the real (x₁,..., x_n)-solutions as a function of the real parameter (u₁,..., u_d).

What does solving polynomial systems symbolically mean?

The algebra text book says:

For $F \subset \mathbf{k}[x_1, \dots, x_n]$ this is simply

• a primary decomposition of $\langle {\cal F} \rangle$ or

• the *irreducible decomposition* of V(F) (the zero set of F in $\overline{\mathbf{k}}^n$).

The computer algebra system does well:

For $F \subset \mathbf{k}[x_1, \dots, x_n]$, with $\mathbf{k} = \mathbb{Z}/p\mathbb{Z}$ or $\mathbf{k} = \mathbb{Q}$,

• computing a Gröbner basis of $\langle F \rangle$ or

• computing a triangular decomposition of V(F).

But most scientists and engineers need:

- For F ⊂ Q[x₁,...,x_n], a useful description of the points of V(F) whose coordinates are real.
- For F ⊂ Q[u₁,..., u_d][x₁,..., x_n], the real (x₁,..., x_n)-solutions as a function of the real parameter (u₁,..., u_d).

What does solving polynomial systems symbolically mean?

The algebra text book says:

For $F \subset \mathbf{k}[x_1, \dots, x_n]$ this is simply

• a primary decomposition of $\langle F \rangle$ or

• the *irreducible decomposition* of V(F) (the zero set of F in $\overline{\mathbf{k}}^{n}$).

The computer algebra system does well:

For $F \subset \mathbf{k}[x_1, \dots, x_n]$, with $\mathbf{k} = \mathbb{Z}/p\mathbb{Z}$ or $\mathbf{k} = \mathbb{Q}$,

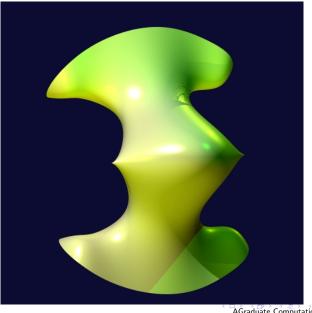
• computing a *Gröbner basis* of $\langle F \rangle$ or

• computing a triangular decomposition of V(F).

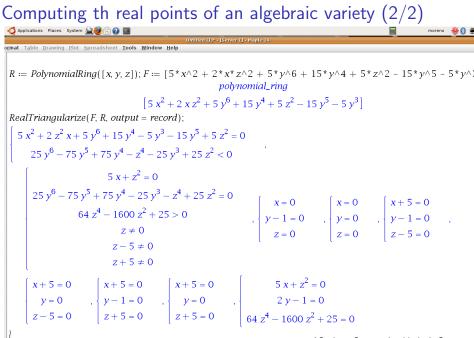
But most scientists and engineers need:

- For F ⊂ Q[x₁,...,x_n], a useful description of the points of V(F) whose coordinates are real.
- For F ⊂ Q[u₁,..., u_d][x₁,..., x_n], the real (x₁,..., x_n)-solutions as a function of the real parameter (u₁,..., u_d).

Computing th real points of an algebraic variety (1/2)



(CDMMXX)



(CDMMXX)

Plan

Solving systems of polynomial equations symbolically

- 2 Triangular decomposition of algebraic systems
- 3 Triangular decomposition of a semi-algebraic system
- 4 Algorithm
- 5 Complexity analysis
- 6 Benchmarks
- 7 Applications
- 8 Concluding remarks

Triangular Set

Definition

 $T \subset \mathbf{k}[x_n > \cdots > x_1]$ is a *triangular set* if $T \cap \mathbf{k} = \emptyset$ and $\operatorname{mvar}(p) \neq \operatorname{mvar}(q)$ for all $p, q \in T$ with $p \neq q$.

Theorem (J.F. Ritt, 1932)

Let $V \subset \mathbf{K}^n$ be an irreducible variety and $F \subset \mathbf{k}[x_1, \dots, x_n]$ s.t. V = V(F). Then, one can compute a (reduced) triangular set $T \subset \langle F \rangle$ s.t. $(\forall \sigma \in \langle \mathbf{F} \rangle)$, prem $(\sigma, T) = 0$

Theorem (W.T. Wu, 1987)

Let $V \subset \mathbf{K}^n$ be a variety and let $F \subset \mathbf{k}[x_1, \dots, x_n]$ s.t. V = V(F). Then, one can compute a (reduced) triangular set $T \subset \langle F \rangle$ s.t.

 $(\forall g \in F) \operatorname{prem}(g, T) = 0.$

Unfortunately, this procedure cannot decide whether $V=\emptyset$ holds or not

(CDMMXX)

Triangular Set

Definition

 $T \subset \mathbf{k}[x_n > \cdots > x_1]$ is a *triangular set* if $T \cap \mathbf{k} = \emptyset$ and $\operatorname{mvar}(p) \neq \operatorname{mvar}(q)$ for all $p, q \in T$ with $p \neq q$.

Theorem (J.F. Ritt, 1932)

Let $V \subset \mathbf{K}^n$ be an irreducible variety and $F \subset \mathbf{k}[x_1, \dots, x_n]$ s.t. V = V(F). Then, one can compute a (reduced) triangular set $T \subset \langle F \rangle$ s.t. $(\forall g \in \langle \mathbf{F} \rangle) \operatorname{prem}(g, T) = 0.$

Theorem (W.T. Wu, 1987)

Let $V \subset \mathbf{K}^n$ be a variety and let $F \subset \mathbf{k}[x_1, \dots, x_n]$ s.t. V = V(F). Then, one can compute a (reduced) triangular set $T \subset \langle F \rangle$ s.t.

 $(\forall g \in F) \operatorname{prem}(g, T) = 0.$

Unfortunately, this procedure cannot decide whether $V=\emptyset$ holds or not

(CDMMXX)

Triangular Set

Definition

 $T \subset \mathbf{k}[x_n > \cdots > x_1]$ is a *triangular set* if $T \cap \mathbf{k} = \emptyset$ and $\operatorname{mvar}(p) \neq \operatorname{mvar}(q)$ for all $p, q \in T$ with $p \neq q$.

Theorem (J.F. Ritt, 1932)

Let $V \subset \mathbf{K}^n$ be an irreducible variety and $F \subset \mathbf{k}[x_1, \dots, x_n]$ s.t. V = V(F). Then, one can compute a (reduced) triangular set $T \subset \langle F \rangle$ s.t. $(\forall g \in \langle \mathbf{F} \rangle) \operatorname{prem}(g, T) = 0.$

Theorem (W.T. Wu, 1987)

Let $V \subset \mathbf{K}^n$ be a variety and let $F \subset \mathbf{k}[x_1, \cdots, x_n]$ s.t. V = V(F). Then, one can compute a (reduced) triangular set $T \subset \langle F \rangle$ s.t.

 $(\forall g \in F) \operatorname{prem}(g, T) = 0.$

Unfortunately, this procedure cannot decide whether $V = \emptyset$ holds or not.

Regular chain

Definition

Let $T \subset \mathbf{k}[x_n > \cdots > x_1]$ be a triangular set. For all $t \in T$ write $\operatorname{init}(t) := \operatorname{lc}(t, \operatorname{mvar}(t))$ and $h_T := \prod_{t \in T} \operatorname{init}(t)$. The *quasi-component* and *saturated ideal* of T are:

 $W(T) := V(T) \setminus V(h_T) \text{ and } \operatorname{sat}(T) = \langle T \rangle : h_T^{\infty}$

Theorem (F. Boulier, F. Lemaire and M.M.M. 2006)

We have: $W(T) = V(\operatorname{sat}(T))$. Moreover, if $\operatorname{sat}(T) \neq \langle 1 \rangle$ then $\operatorname{sat}(T)$ is strongly equi-dimensional.

Definition (M. Kalkbrner, 1991 - L. Yang, J. Zhang 1991)

- T is a *regular chain* if $T = \emptyset$ or $T := T' \cup \{t\}$ with mvar(t) maximum s.t.
 - T' is a regular chain,
 - init(t) is regular modulo sat(T')

Regular chain

Definition

Let $T \subset \mathbf{k}[x_n > \cdots > x_1]$ be a triangular set. For all $t \in T$ write $\operatorname{init}(t) := \operatorname{lc}(t, \operatorname{mvar}(t))$ and $h_T := \prod_{t \in T} \operatorname{init}(t)$. The *quasi-component* and *saturated ideal* of T are:

 $W(T) := V(T) \setminus V(h_T)$ and $\operatorname{sat}(T) = \langle T \rangle : h_T^{\infty}$

Theorem (F. Boulier, F. Lemaire and M.M.M. 2006)

We have: $\overline{W(T)} = V(\operatorname{sat}(T))$. Moreover, if $\operatorname{sat}(T) \neq \langle 1 \rangle$ then $\operatorname{sat}(T)$ is strongly equi-dimensional.

Definition (M. Kalkbrner, 1991 - L. Yang, J. Zhang 1991)

- T is a *regular chain* if $T = \emptyset$ or $T := T' \cup \{t\}$ with mvar(t) maximum s.t.
 - T' is a regular chain,
 - init(t) is regular modulo sat(T')

Regular chain

Definition

Let $T \subset \mathbf{k}[x_n > \cdots > x_1]$ be a triangular set. For all $t \in T$ write $\operatorname{init}(t) := \operatorname{lc}(t, \operatorname{mvar}(t))$ and $h_T := \prod_{t \in T} \operatorname{init}(t)$. The *quasi-component* and *saturated ideal* of T are:

 $W(T) := V(T) \setminus V(h_T)$ and $\operatorname{sat}(T) = \langle T \rangle : h_T^{\infty}$

Theorem (F. Boulier, F. Lemaire and M.M.M. 2006)

We have: $\overline{W(T)} = V(\operatorname{sat}(T))$. Moreover, if $\operatorname{sat}(T) \neq \langle 1 \rangle$ then $\operatorname{sat}(T)$ is strongly equi-dimensional.

Definition (M. Kalkbrner, 1991 - L. Yang, J. Zhang 1991)

T is a *regular chain* if $T = \emptyset$ or $T := T' \cup \{t\}$ with mvar(t) maximum s.t.

- T' is a regular chain,
- init(t) is regular modulo sat(T')

Regular chain: alternative definition

(CDMMXX)

RealTriangularize

Regular chain: algorithmic properties

Definition

Let $T \subset \mathbf{k}[x_n > \cdots > x_1]$ be a triangular set and $p \in \mathbf{k}[x_n > \cdots > x_1]$. If T is empty then, the *iterated resultant* of p w.r.t. T is res(T, p) = p. Otherwise, writing $T = T_{< w} \cup T_w$

$$\operatorname{res}(T,p) = \begin{cases} p & \text{if } \deg(p,w) = 0\\ \operatorname{res}(T_{< w}, \operatorname{res}(T_w, p, w)) & \text{otherwise} \end{cases}$$

Theorem (P. Aubry, D. Lazard, M.M.M.)

T is a regular chain iff

 $\{p \mid \operatorname{prem}(p, T) = 0\} = \operatorname{sat}(T)$

Theorem (L. Yang, J. Zhang 1991)

p is regular modulo sat(T) iff

(CDMMXX)

RealTriangularize

Regular chain: algorithmic properties

Definition

Let $T \subset \mathbf{k}[x_n > \cdots > x_1]$ be a triangular set and $p \in \mathbf{k}[x_n > \cdots > x_1]$. If T is empty then, the *iterated resultant* of p w.r.t. T is res(T, p) = p. Otherwise, writing $T = T_{< w} \cup T_w$

$$\operatorname{res}(T,p) = \begin{cases} p & \text{if } \deg(p,w) = 0\\ \operatorname{res}(T_{< w},\operatorname{res}(T_w,p,w)) & \text{otherwise} \end{cases}$$

Theorem (P. Aubry, D. Lazard, M.M.M.) *T is a* regular chain *iff*

$$\{p \mid \operatorname{prem}(p, T) = 0\} = \operatorname{sat}(T)$$

Theorem (L. Yang, J. Zhang 1991)

p is regular modulo sat(T) iff

(CDMMXX)

RealTriangularize

Regular chain: algorithmic properties

Definition

Let $T \subset \mathbf{k}[x_n > \cdots > x_1]$ be a triangular set and $p \in \mathbf{k}[x_n > \cdots > x_1]$. If T is empty then, the *iterated resultant* of p w.r.t. T is res(T, p) = p. Otherwise, writing $T = T_{< w} \cup T_w$

$$\operatorname{res}(T,p) = \begin{cases} p & \text{if } \deg(p,w) = 0\\ \operatorname{res}(T_{< w}, \operatorname{res}(T_w, p, w)) & \text{otherwise} \end{cases}$$

Theorem (P. Aubry, D. Lazard, M.M.M.) *T is a* regular chain *iff*

$$\{p \mid \operatorname{prem}(p, T) = 0\} = \operatorname{sat}(T)$$

 $\operatorname{res}(T,p) \neq 0$

RealTriangularize

Theorem (L. Yang, J. Zhang 1991)

p is regular modulo $\operatorname{sat}(T)$ iff

Triangular decomposition of an algebraic variety

Kalkbrener triangular decomposition

Let $F \subset \mathbf{k}[\mathbf{x}]$. A family of regular chains T_1, \ldots, T_e of $\mathbf{k}[\mathbf{x}]$ is called a Kalkbrener triangular decomposition of V(F) if

 $V(F) = \bigcup_{i=1}^{e} V(\operatorname{sat}(T_i)).$

Wu-Lazard triangular decomposition

Let $F \subset \mathbf{k}[\mathbf{x}]$. A family of regular chains T_1, \ldots, T_e of $\mathbf{k}[\mathbf{x}]$ is called a Wu-Lazard triangular decomposition of V(F) if

 $V(F) = \cup_{i=1}^{e} W(T_i)$

Triangular decomposition of an algebraic variety

Kalkbrener triangular decomposition

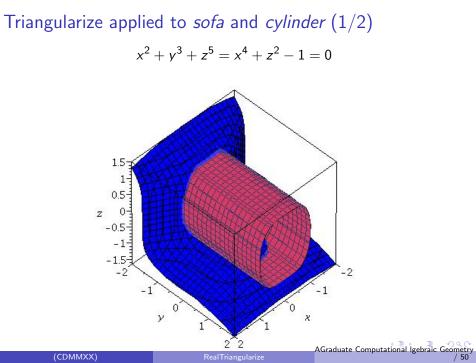
Let $F \subset \mathbf{k}[\mathbf{x}]$. A family of regular chains T_1, \ldots, T_e of $\mathbf{k}[\mathbf{x}]$ is called a Kalkbrener triangular decomposition of V(F) if

 $V(F) = \bigcup_{i=1}^{e} V(\operatorname{sat}(T_i)).$

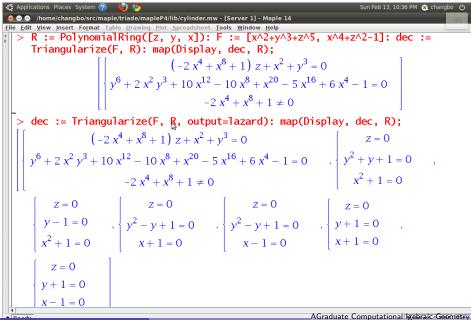
Wu-Lazard triangular decomposition

Let $F \subset \mathbf{k}[\mathbf{x}]$. A family of regular chains T_1, \ldots, T_e of $\mathbf{k}[\mathbf{x}]$ is called a Wu-Lazard triangular decomposition of V(F) if

 $V(F) = \cup_{i=1}^{e} W(T_i)$



Triangularize applied to sofa and cylinder (2/2)



(CDMMXX)

RealTriangularize

Plan

- Solving systems of polynomial equations symbolically
- 2 Triangular decomposition of algebraic systems
- Triangular decomposition of a semi-algebraic system
- 4 Algorithm
- 5 Complexity analysis
- 6 Benchmarks
- 7 Applications
- 8 Concluding remarks

Regular chain: specialization properties

Notation

Let $T \subset \mathbb{Q}[x_1 < \ldots < x_n]$ be a regular chain with $\mathbf{y} := \{ \operatorname{mvar}(t) \mid t \in T \}$ and $\mathbf{u} := \mathbf{x} \setminus \mathbf{y} = u_1, \ldots, u_d$. Hence $\operatorname{sat}(T)$ has dimension d.

- Recall that h_T is the product of the init(t), for $t \in T$.
- Denote by s_T the product of the discrim(t, mvar(t)).

Definition

We say that T specializes well at a point $u \in \mathbb{R}^d$ if $h_T(u) \neq 0$ and the triangular set T(u) is a regular chain generating a radical ideal.

Theorem (X. Hou, B. Xia, L. Yang, 2001)

Define $BP_T := \operatorname{res}(T, h_T) \operatorname{res}(T, s_T)$, the border polynomial of T. Then

- T specializes well at $u \in \mathbb{R}^d$ if and only if $BP_T(u) \neq 0$.
- For each connected component C of BP_T(u) ≠ 0, the number of real solutions of T(u) is constant for u ∈ C.

Regular chain: specialization properties

Notation

Let $T \subset \mathbb{Q}[x_1 < \ldots < x_n]$ be a regular chain with $\mathbf{y} := \{ \operatorname{mvar}(t) \mid t \in T \}$ and $\mathbf{u} := \mathbf{x} \setminus \mathbf{y} = u_1, \ldots, u_d$. Hence $\operatorname{sat}(T)$ has dimension d.

- Recall that h_T is the product of the init(t), for $t \in T$.
- Denote by s_T the product of the discrim(t, mvar(t)).

Definition

We say that T specializes well at a point $u \in \mathbb{R}^d$ if $h_T(u) \neq 0$ and the triangular set T(u) is a regular chain generating a radical ideal.

Theorem (X. Hou, B. Xia, L. Yang, 2001)

Define $BP_T := \operatorname{res}(T, h_T) \operatorname{res}(T, s_T)$, the border polynomial of T. Then

- T specializes well at $u \in \mathbb{R}^d$ if and only if $BP_T(u) \neq 0$.
- For each connected component C of BP_T(u) ≠ 0, the number of real solutions of T(u) is constant for u ∈ C.

(CDMMXX)

Regular chain: specialization properties

Notation

Let $T \subset \mathbb{Q}[x_1 < \ldots < x_n]$ be a regular chain with $\mathbf{y} := \{ \operatorname{mvar}(t) \mid t \in T \}$ and $\mathbf{u} := \mathbf{x} \setminus \mathbf{y} = u_1, \ldots, u_d$. Hence $\operatorname{sat}(T)$ has dimension d.

- Recall that h_T is the product of the init(t), for $t \in T$.
- Denote by s_T the product of the discrim(t, mvar(t)).

Definition

We say that T specializes well at a point $u \in \mathbb{R}^d$ if $h_T(u) \neq 0$ and the triangular set T(u) is a regular chain generating a radical ideal.

Theorem (X. Hou, B. Xia, L. Yang, 2001)

Define $BP_T := \operatorname{res}(T, h_T) \operatorname{res}(T, s_T)$, the border polynomial of T. Then

- T specializes well at $u \in \mathbb{R}^d$ if and only if $BP_T(u) \neq 0$.
- For each connected component C of BP_T(u) ≠ 0, the number of real solutions of T(u) is constant for u ∈ C.

Border polynomial and specialization

Example (bad specialization of a regular chain)

$$T := \begin{cases} x_4 x_5^2 + 2x_5 + 1\\ (x_1 + x_2) x_3^2 + x_3 + 1\\ x_1^2 - 1. \end{cases} \quad T_{x_2, x_4 = -1, 1} := \begin{cases} x_5^2 + 2x_5 + 1\\ (x_1 - 1) x_3^2 + x_3 + 1\\ x_1^2 - 1. \end{cases}$$

Example (border polynomial)

 $\operatorname{res}(\operatorname{dis}(t_2), t_1) \operatorname{res}(\operatorname{res}(\operatorname{dis}(t_3), t_2), t_1) \cdot \operatorname{res}(\operatorname{init}(t_2), t_1) \operatorname{res}(\operatorname{res}(\operatorname{init}(t_3), t_2), t_1).$

For the above regular chain, it is

$$(4x_2+3)(4x_2-5)(x_2^2-1)(x_4-1)x_4$$

Border polynomial and specialization

Example (bad specialization of a regular chain)

$$T := \begin{cases} x_4 x_5^2 + 2x_5 + 1\\ (x_1 + x_2) x_3^2 + x_3 + 1\\ x_1^2 - 1. \end{cases} \quad T_{x_2, x_4 = -1, 1} := \begin{cases} x_5^2 + 2x_5 + 1\\ (x_1 - 1) x_3^2 + x_3 + 1\\ x_1^2 - 1. \end{cases}$$

Example (border polynomial)

 $\mathsf{res}(\mathsf{dis}(t_2), t_1) \, \mathsf{res}(\mathsf{res}(\mathsf{dis}(t_3), t_2), t_1). \, \mathsf{res}(\mathsf{init}(t_2), t_1) \, \mathsf{res}(\mathsf{res}(\mathsf{init}(t_3), t_2), t_1).$

For the above regular chain, it is

$$(4x_2+3)(4x_2-5)(x_2^2-1)(x_4-1)x_4$$

Regular semi-algebraic system

Notation

- Let $T \subset \mathbb{Q}[x_1 < \ldots < x_n]$ be a regular chain with $\mathbf{y} := \{ \operatorname{mvar}(t) \mid t \in T \}$ and $\mathbf{u} := \mathbf{x} \setminus \mathbf{y} = u_1, \ldots, u_d$.
- Let P be a finite set of polynomials, s.t. every f ∈ P is regular modulo sat(T).
- Let Q be a quantifier-free formula of $\mathbb{Q}[\mathbf{u}]$.

Definition

We say that $R := [Q, T, P_{>}]$ is a regular semi-algebraic system if:

- (i) Q defines a non-empty open semi-algebraic set S in \mathbb{R}^d ,
- (ii) the regular system [T, P] specializes well at every point u of S
- (iii) at each point u of S, the specialized system $[T(u), P(u)_{>}]$ has at least one real solution.

Define

 $\mathbb{R}(R) = \{(u, y) \mid \mathcal{Q}(u), t(u, y) = 0, p(u, y) > 0 \}$ (CDMMXX)
Real Triangularize

Regular semi-algebraic system

Notation

- Let $T \subset \mathbb{Q}[x_1 < \ldots < x_n]$ be a regular chain with $\mathbf{y} := \{ \operatorname{mvar}(t) \mid t \in T \}$ and $\mathbf{u} := \mathbf{x} \setminus \mathbf{y} = u_1, \ldots, u_d$.
- Let P be a finite set of polynomials, s.t. every f ∈ P is regular modulo sat(T).
- Let Q be a quantifier-free formula of $\mathbb{Q}[\mathbf{u}]$.

Definition

We say that $R := [Q, T, P_{>}]$ is a regular semi-algebraic system if:

- (i) Q defines a non-empty open semi-algebraic set S in \mathbb{R}^d ,
- (ii) the regular system [T, P] specializes well at every point u of S
- (iii) at each point u of S, the specialized system $[T(u), P(u)_{>}]$ has at least one real solution.

Define

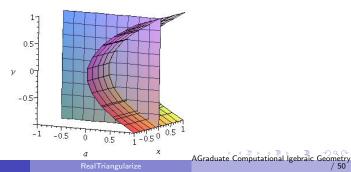
 $Z_{\mathbb{R}}(R) = \{(u, y) \mid \mathcal{Q}(u), t(u, y) = 0, p(u, y) > 0, \forall (t, p) \in T \times P\}.$ (CDMMXX)
RealTriangularize
(CDMMXX)
RealTriangularize
(CDMMXX)
(CDMXX)
(CDMXX)
(CDMXX
(CDMXX)
(CDMXX)
(CDMXX
(CDMXX)
(CDMXX
(CDMX

Example

The system $[Q, T, P_{>}]$, where

$$\mathcal{Q} := a > 0, \ T := \left\{ \begin{array}{l} y^2 - a = 0 \\ x = 0 \end{array} \right., \ P_> := \{y > 0\}$$

is a regular semi-algebraic system.



(CDMMXX)

Triangular decompositions of semi-algebraic systems (1/2)

Proposition

Let $R := [Q, T, P_{>}]$ be a regular semi-algebraic system of $\mathbb{Q}[u_1, \ldots, u_d, \mathbf{y}]$. Then the zero set of R is a nonempty semi-algebraic set of dimension d.

Theorem

Every semi-algebraic system S can be decomposed as a finite union of regular semi-algebraic systems such that the union of their zero sets is the zero set of S. We call it a (full) triangular decomposition of S.

Triangular decompositions of semi-algebraic systems (2/2)

Notation

Let $S = [F, N_{\geq}, P_{>}, H_{\neq}]$ be a semi-algebraic system of $\mathbb{Q}[\mathbf{x}]$. Let c be the dimension of the constructible set of \mathbb{C}^{n} corresponding to S.

Definition

A finite set of regular semi-algebraic systems R_i is called a lazy triangular decomposition of S if

- for each i, $Z_{\mathbb{R}}(R_i) \subseteq Z_{\mathbb{R}}(\mathcal{S})$ holds, and
- there exists $G \subset \mathbb{Q}[\mathbf{x}]$ such that

$$Z_{\mathbb{R}}(\mathcal{S})\setminus \left(\cup_{i=1}^{t}Z_{\mathbb{R}}(R_{i})
ight)\subseteq Z_{\mathbb{R}}(\mathcal{G}),$$

where the complex zero set V(G) has dimension less than c.

A detailed example

Original problem

Consider the following question (Brown, McCallum, ISSAC'05): when does $p(z) = z^3 + az + b$ have a non-real root x + iy satisfying xy < 1.

The equivalent quantifier elimination problem

$$(\exists x \in \mathbb{R})(\exists y \in \mathbb{R})[f = g = 0 \land y \neq 0 \land xy - 1 < 0]$$
, where

•
$$f = \operatorname{Re}(p(x + iy)) = x^3 - 3xy^2 + ax + b$$

•
$$g = \text{Im}(p(x+i))/y = 3x^2 - y^2 + a$$

The semi-algebraic system to solve

$$\mathcal{S} := \left\{ egin{array}{ll} f=0,\ g=0,\ y
eq 0,\ xy-1 < \end{array}
ight.$$

(CDMMXX)

RealTriangularize

0

A lazy triangular decomposition

The command LazyRealTriangularize([$f, g, y \neq 0, xy-1 < 0$], [y, x, b, a]) returns the following:

 $\begin{cases} [\{t_1 = 0, t_2 = 0, 1 - xy > 0\}] & h_1 > 0, h_2 \neq 0 \\ \\ \% LazyRealTriangularize([t_1 = 0, t_2 = 0, f = 0, \\ h_1 = 0, 1 - xy > 0, y \neq 0], [y, x, b, a]) & h_1 = 0 \\ \\ \% LazyRealTriangularize([t_1 = 0, t_2 = 0, f = 0, \\ h_2 = 0, 1 - xy > 0, y \neq 0], [y, x, b, a]) & h_2 = 0 \\ [] & otherwise \end{cases}$

where

$$t_1 = 8x^3 + 2ax - b, t_2 = 3x^2 - y^2 + a,$$

$$h_1 = 4a^3 + 27b^2,$$

$$h_2 = -4a^3b^2 - 27b^4 + 16a^4 + 512a^2 + 4096.$$

(CDMMXX)

A full triangular decomposition

Evaluate the output with the value command, which yields

$$[\{t_1 = 0, t_2 = 0, 1 - xy > 0\}] \quad h_1 > 0, h_2 \neq 0$$

$$[] \qquad h_1 = 0$$

$$[\{t_3 = 0, t_4 = 0, h_2 = 0\}] \qquad h_2 = 0$$

$$[] \qquad \text{otherwise}$$

where

$$t_3 = (2a^3 + 32a + 18b^2)x - a^2b - 48b$$

$$t_4 = xy + 1$$

$$h_1 = 4a^3 + 27b^2,$$

$$h_2 = -4a^3b^2 - 27b^4 + 16a^4 + 512a^2 + 4096$$

Plan

- 1 Solving systems of polynomial equations symbolically
- 2 Triangular decomposition of algebraic systems
- 3) Triangular decomposition of a semi-algebraic system
- 4 Algorithm
- 5 Complexity analysis
- 6 Benchmarks
- 7 Applications
- 8 Concluding remarks

Outline of the algorithm

Definition

Let [T, P] be as before and $B \subset \mathbb{Q}[\mathbf{u}]$. We say that $[B_{\neq}, T, P_{>}]$ is a pre-regular semi-algebraic system of $\mathbb{Q}[\mathbf{u}, \mathbf{y}]$ if [T, P] specializes well at every point of $B(\mathbf{u}) \neq 0$.

Computation in complex space

$$Z_{\mathbb{R}}(F, N_{\geq}, P_{>}, H_{\neq})$$

$$\downarrow$$

$$\bigcup Z_{\mathbb{R}}(B_{\neq}, T, P_{>})$$

Computation in real space

$$\begin{array}{c} [B_{\neq}, T, P_{>}] \\ \downarrow \\ \mathcal{Q} := \exists \mathbf{y} \left(B(\mathbf{u}) \neq 0, T(\mathbf{u}, \mathbf{y}) = 0, P(\mathbf{u}, \mathbf{y}) > 0 \right) \\ \downarrow \\ \text{output } [\mathcal{Q}, T, P_{>}], \text{ where } \mathcal{Q} \neq \begin{array}{c} false \\ \text{AGraduate Computational brehavior Group} \end{array}$$

(CDMMXX)

RealTriangularize

Fingerprint polynomial set

Definition

Let $R := [B_{\neq}, T, P_{>}]$. Let $D \subset \mathbb{Q}[\mathbf{u}]$. Let dp and b be the product of D and B. We call D a *fingerprint polynomial set* (FPS) of R if:

(i) for all
$$\alpha \in \mathbb{R}^d$$
, $b \in B$: $dp(\alpha) \neq 0 \Rightarrow b(\alpha) \neq 0$,

(ii) for all
$$\alpha, \beta \in \mathbb{R}^d$$
 with $\alpha \neq \beta$ and $dp(\alpha) \neq 0$, $dp(\beta) \neq 0$, if for $p \in D$, $sign(p(\alpha)) = sign(p(\beta))$, then $R(\alpha)$ has real solutions iff $R(\beta)$ does.

Open projection operator (Brown-McCalumn operator)

Let A be a squarefree basis in $\mathbb{Q}[u_1 < \cdots < u_d]$. Define

$$\operatorname{oproj}(A, u_d) := \bigcup_{f \in A} \operatorname{lc}(f, u_d) \cup \bigcup_{f \in A} \operatorname{discrim}(f, u_d) \cup \bigcup_{f, g \in A} \operatorname{res}(f, g, u_d).$$

Theorem

For $A \subset \mathbb{Q}[u_1, \ldots, u_d]$, let $oaf(A) = der(A, u_d) \cup oaf(oproj(der(A, u_d), u_{d-1}))$. If $R := [B_{\neq}, T, P_{>}]$ is a PRSAS, then, oaf(B) is a fingerprint polynomial

(CDMMXX)

Fingerprint polynomial set

Definition

Let $R := [B_{\neq}, T, P_{>}]$. Let $D \subset \mathbb{Q}[\mathbf{u}]$. Let dp and b be the product of D and B. We call D a *fingerprint polynomial set* (FPS) of R if:

(i) for all
$$\alpha \in \mathbb{R}^d$$
, $b \in B$: $dp(\alpha) \neq 0 \Rightarrow b(\alpha) \neq 0$,

(ii) for all
$$\alpha, \beta \in \mathbb{R}^d$$
 with $\alpha \neq \beta$ and $dp(\alpha) \neq 0$, $dp(\beta) \neq 0$, if for $p \in D$, $sign(p(\alpha)) = sign(p(\beta))$, then $R(\alpha)$ has real solutions iff $R(\beta)$ does.

Open projection operator (Brown-McCalumn operator)

Let A be a squarefree basis in $\mathbb{Q}[u_1 < \cdots < u_d]$. Define

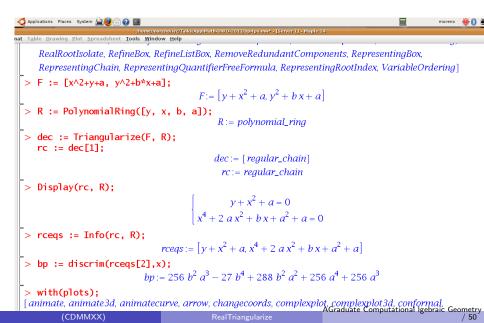
$$\operatorname{oproj}(A, u_d) := \bigcup_{f \in A} \operatorname{lc}(f, u_d) \cup \bigcup_{f \in A} \operatorname{discrim}(f, u_d) \cup \bigcup_{f, g \in A} \operatorname{res}(f, g, u_d).$$

Theorem

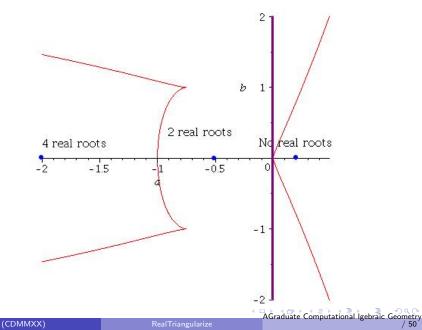
For $A \subset \mathbb{Q}[u_1, \ldots, u_d]$, let $oaf(A) = der(A, u_d) \cup oaf(oproj(der(A, u_d), u_{d-1}))$. If $R := [B_{\neq}, T, P_{>}]$ is a PRSAS, then, oaf(B) is a fingerprint polynomial A Graduate Computational lgebraic Geometry.

(CDMMXX)

A detailed example (1/3)



A detailed example (2/3)



A detailed example (3/3)

လို့ Applications Places System မြူဖို့ြ ကြူ စာ Format Taple prawing Plot Spreadsneet Joois ဘူးကဝဟ မျူးမှာ	📰 moreno 🔑 🖇 🛒 🍂 tri 4 Feb. :						
f poynemic_mg							
$[x^2 + y + a, y^2 + bx + a]$							
dec := $Triangularize(F, R)$: $rc := dec[1]$: $Display(rc, R)$;							
$\begin{cases} y + x^2 + a = 0\\ x^4 + 2ax^2 + bx + a^2 \end{cases}$)						
$x^4 + 2 a x^2 + b x + a^2$	+a=0						
LazyRealTriangularize(F, R, output = record);							
$y + x^2 + a = 0$							
$x^4 + 2 a x^2 + b x + a^2 + a = 0$							
256 $b^2 a^3 - 27 b^4 + 288 b^2 a^2 + 256 a^4 + 256 a^3 < 0$							
$a \neq 0$							
$\int y + x^2 + a = 0$							
$x^4 + 2 a x^2 + b x + a^2 + a = 0$, %LazyRealTriangularize($[a = 0, y + x^2 + a]$						
$256 \ b^2 \ a^3 - 27 \ b^4 + 288 \ b^2 \ a^2 + 256 \ a^4 + 256 \ a^3 > 0$							
<i>a</i> < 0							
$= 0, y^{2} + bx + a = 0, x^{4} + 2ax^{2} + bx + a^{2} + a = 0], polynomial_ring, output = record),$							
%LazyRealTriangularize([$y + x^2 + a = 0, y^2 + bx + a = 0, 256 b^2 a^3 - 27 b^4 + 288 b^2 a^2 + 256 a^4 + 256 a^3$							
$= 0, x^{4} + 2 a x^{2} + b x + a^{2} + a = 0], polynomial_ring, output = record)$							
. <u>XI</u>							
	AGraduate Computational Igebraic Geometry						

Plan

- 1 Solving systems of polynomial equations symbolically
- 2 Triangular decomposition of algebraic systems
- 3 Triangular decomposition of a semi-algebraic system
- 4 Algorithm
- 5 Complexity analysis
- 6 Benchmarks
- 7 Applications
- 8 Concluding remarks

LazyRealTriangularize for a system of equations

```
Algorithm 1: LazyRealTriangularize(S)Input: a semi-algebraic system S = [F, \emptyset, \emptyset, \emptyset]Output: a lazy triangular decomposition of S\mathcal{T} := \text{Triangularize}(F)for T_i \in \mathcal{T} doBp_i := \text{BorderPolynomial}(T_i, \emptyset)solve \exists \mathbf{y}(Bp_i(\mathbf{u}) \neq 0, T_i(\mathbf{u}, \mathbf{y}) = 0),and let Q_i be the resulting quantifier-free formulaif Q_i \neq false then output [Q_i, T_i, \emptyset]
```

AGraduate Computational Igebraic Geometr

Complexity results (1/2)

Assumptions

(H_0) V(F) is equidimensional of dimension d,

- (**H**₁) x_1, \ldots, x_d are algebraically independent modulo each associated prime ideal of the ideal generated by F in $\mathbb{Q}[\mathbf{x}]$,
- (H₂) F consists of m := n d polynomials, f_1, \ldots, f_m .

Geometrical formulation

Hypotheses (\mathbf{H}_0) and (\mathbf{H}_1) are equivalent to the existence of regular chains T_1, \ldots, T_e of $\mathbb{Q}[x_1, \ldots, x_n]$ such that

• x_1, \ldots, x_d are free w.r.t. each T_i

•
$$V(F) = V(\operatorname{sat}(T_1)) \cup \ldots \cup V(\operatorname{sat}(T_e)).$$

Complexity results (2/2)

Notation

Let *n*, *m*, δ , \hbar be respectively the number of variables, number of polynomials, maximum total degree and height of polynomials in *F*.

Proposition

Within $m^{O(1)}(\delta^{O(n^2)})^{d+1} + \delta^{O(m^4)O(n)}$ operations in \mathbb{Q} , one can compute a Kalkbrener triangular decomposition E_1, \ldots, E_e of V(F), where each polynomial of each E_i

- has total degree upper bounded by $O(\delta^{2m})$,
- has height upper bounded by $O(\delta^{2m}(m\hbar + dm\log(\delta) + n\log(n)))$.

From which, a lazy triangular decomposition of F can be computed in $\left(\delta^{n^2} n 4^n\right)^{O(n^2)} \hbar^{O(1)}$ bit operations.

Plan

- 1 Solving systems of polynomial equations symbolically
- 2 Triangular decomposition of algebraic systems
- 3 Triangular decomposition of a semi-algebraic system
- 4 Algorithm
- 5 Complexity analysis
- 6 Benchmarks
- Applications
- 8 Concluding remarks

Notations

Table 1 Notions for Tables 2 and 3

symbol	meaning
#e	number of equations in the system
#v	number of variables in the equations
d	max total degree of the equations
G	Groebner:-Basis (with plex order) in $MAPLE 13$
Т	Triangularize in REGULARCHAINS library of MAPLE
LR	lazy RealTriangularize implemented in Maple
R	complete RealTriangularize implemented in Maple
Q	Qepcad b
> 1h	the examples cannot be solved in 1 hour
FAIL	$\operatorname{QePCAD}\operatorname{B}$ failed due to prime list exhausted

Timings for algebraic varieties

system	#v/#e/d	G	Т	LR
		-	•	
Hairer-2-BGK	13/11/4	25	1.924	2.396
Collins-jsc02	5/4/3	876	0.296	0.820
Leykin-1	8/6/4	103	3.684	3.924
8-3-config-Li	12/7/2	109	5.440	6.360
Lichtblau	3/2/11	126	1.548	11
Cinquin-3-3	4/3/4	64	0.744	2.016
Cinquin-3-4	4/3/5	> 1h	10	22
DonatiTraverso-rev	4/3/8	154	7.100	7.548
Cheaters-homotopy-1	7/3/7	3527	174	> 1h
hereman-8.8	8/6/6	> 1h	33	62
L	12/4/3	> 1h	0.468	0.676
dgp6	17/19/ 2	27	60	63
dgp29	5/4/15	84	0.008	0.016

Table 2 Timings for algebraic varieties

Timings for semi-algebraic systems

		–		D	<u> </u>
system	#v/#e/d	Т	LR	R	Q
BM05-1	4/2/3	0.008	0.208	0.568	86
BM05-2	4/2/4	0.040	2.284	> 1h	FAIL
Solotareff-4b	5/4/3	0.640	2.248	924	> 1h
Solotareff-4a	5/4/3	0.424	1.228	8.216	FAIL
putnam	6/4/2	0.044	0.108	0.948	> 1h
MPV89	6/3/4	0.016	0.496	2.544	> 1h
IBVP	8/5/2	0.272	0.560	12	> 1h
Lafferriere37	3/3/4	0.056	0.184	0.180	10
Xia	6/3/4	0.164	2.192	230.198	> 1h
SEIT	11/4/3	0.400	33.914	> 1h	> 1h
p3p-isosceles	7/3/3	1.348	> 1h	> 1h	> 1h
р3р	8/3/3	210	> 1h	> 1h	FAIL
Ellipse	6/1/3	0.012	0.904	> 1h	> 1h

Table 3 Timings for semi-algebraic systems

Plan

- 1 Solving systems of polynomial equations symbolically
- 2 Triangular decomposition of algebraic systems
- 3 Triangular decomposition of a semi-algebraic system
- 4 Algorithm
- 5 Complexity analysis
- 6 Benchmarks
- 7 Applications
- 8 Concluding remarks

Laurent's model for the mad cow disease (1/4)

The dynamical system ruling the transformation

The normal form PrP^{C} is harmless, while the infectious form $PrP^{S_{c}}$ catalyzes a transformation from the normal form to the infectious one.

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} &= k_1 - k_2 x - a x \frac{(1+by^n)}{1+cy^n} \\ \frac{\mathrm{d}y}{\mathrm{d}t} &= a x \frac{(1+by^n)}{1+cy^n} - k_4 y \end{cases}$$

where $x = [PrP^{C}]$, $y = [PrP^{S_{c}}]$ and where b, c, n, a, k_{4}, k_{1} are biological constants which can be set as follows:

$$b = 2$$
, $c = 1/20$, $n = 4$, $a = 1/10$, $k_4 = 50$ and $k_1 = 800$.

The dynamical system to study

$$\begin{cases} \frac{dx}{dt} &= \frac{16000 + 800y^4 - 20k_2x - k_2xy^4 - 2x - 4xy^4}{20 + y^4} \\ \frac{dy}{dt} &= \frac{2(x + 2xy^4 - 500y - 25y^5)}{20 + y^4} \end{cases}$$

(CDMMXX)

Laurent's model for the mad cow disease (2/4) The semi-algebraic system to be solved $S := \begin{cases} 16000 + 800y^4 - 20k_2x - k_2xy^4 - 2x - 4xy^4 = 0\\ 2(x + 2xy^4 - 500y - 25y^5) = 0\\ k_2 > 0 \end{cases}$

Computations (1/5)

LazyRealTriangularize to this system, yields the following regular semi-algebraic system (and unevaluated recursive calls)

$$\left\{\begin{array}{c}(2y^4+1)x-500y-25y^5=0\\(k_2+4)y^5-64y^4+(20k_2+2)y-32=0\\(k_2>0)\ \land\ (R_1\neq 0)\end{array}\right.$$

where

 $R_{1} = 100000k_{2}^{8} + 1250000k_{2}^{7} + 5410000k_{2}^{6} + 8921000k_{2}^{5} - 9161219950k_{2}^{4} \\ - 5038824999k_{2}^{3} - 1665203348k_{2}^{2} - 882897744k_{\text{Radulat}} 1099528405056_{\text{cometry}} \\ (\text{CDMMXX}) \qquad \text{Real Triangularize} \qquad (50)$

Laurent's model for the mad cow disease (3/4)

Computations (2/5)

Through the computation of sample points, we easily obtain the following observation. Whenever $R_1 > 0$ holds, the system has 1 equilibrium, while $R_2 < 0$ implies that the system has 3 equilibria.

Computations (3/5)

Now we study the stability of those equilibria. To this end, we consider the two Hurwitz determinants.

Adding to S the constraints $\{\Delta_1 > 0, a_2 > 0\}$

$$\Delta_1 = 54y^8 + 40k_2y^4 + 2082y^4 - 312xy^3 + 20040 + k_2y^8 + 400k_2,$$

$$a_2 = 20000k_2 + 2000 + 50k_2y^8 + 200y^8 + 2000k_2y^4 - 312k_2xy^3 + 4100y^4.$$

we obtain a new semi-algebraic system \mathcal{S}' .

Laurent's model for the mad cow disease (4/4)

Computations (4/5)

Applying LazyRealTriangularize to S' in conjunction with sample point computations brings the following conclusion. If $R_1 > 0$, then the system has 1 asymptotically stable hyperbolic equilibria.

Computations (5/5)

If $R_1 < 0$ and $R_2 \neq 0$, then System has 2 asymptotically equilibria, where R_2 is given by:

- $R_2 = 10004737927168k_2^9 + 624166300700672k_2^8 + 7000539052537600k_2^7$
 - $+\,45135589467012800 k_2^6-840351411856453750 k_2^5-50098004352248446875 k_2^4$
 - $-\ 27388168989455000000 k_2^3 8675209266696000000 k_2^2$
 - $+\,10296091735680000000\,k_2+5932546064102400000000.$

To further investigate the number of asymptotically stable hyperbolic equilibria on the hypersurface $R_2 = 0$ and the equilibria when $R_1 = 0$, one can apply SamplePoints on S', which produces 14 points Computational Igebraic Geometry (CDMMXX) Real Triangularize 50

Program verification: an example from Lafferriere (1/4)

Reachability computation

This problem reduces to determine the set

 $\{(y_1,y_2)\in\mathbb{R}^2\ \mid\ (\exists a\in\mathbb{R})(\exists z\in\mathbb{R})\ (0\leq a)\wedge(z\geq 1)\wedge(h_1=0)\wedge(h_2=0)\}$

where

$$h_1 = 3 y_1 - 2 a(-z^4 + z)$$
 and $h_2 = 2 y_2 z^2 - a(z^4 - 1)$.

The semi-algebraic system to be solved

One wishes to compute the projection of the semi-algebraic set defined by

$$(0 \leq a) \land (z \geq 1) \land (h_1 = 0) \land (h_2 = 0)$$

onto the (y_1, y_2) -plane. For the variable ordering $a > z > y_1 > y_2$. we obtain the five following regular semi-algebraic systems R_1 to R_5

(CDMMXX)

Program verification: an example from Lafferriere (2/4)

The triangular decomposition (1/3)

The projection on the (y_1, y_2) -plane of $Z_{\mathbb{R}}(R_2) \cup Z_{\mathbb{R}}(R_3) \cup Z_{\mathbb{R}}(R_4)$ is clearly equal to the $(y_1, y_2) = (0, 0)$ point.

Program verification: an example from Lafferriere (3/4)

The triangular decomposition (2/3)

$$R_{1}^{T} = \begin{cases} (z^{4} - 1) a - 2 z^{2} y_{2} \\ 4 y_{2} z^{5} + 4 y_{2} z^{4} + (3 y_{1} + 4 y_{2}) z^{3} + 3 y_{1} z^{2} + 3 y_{1} z + 3 y_{1} \\ R_{1}^{Q} = \begin{cases} (y_{1} + y_{2} < 0) \land (y_{1} < 0) \land (0 < y_{2}) \\ 3 y_{1}^{5} - 6 y_{2} y_{1}^{4} - 63 y_{2}^{2} y_{1}^{3} + 192 y_{2}^{3} y_{1}^{2} + 112 y_{2}^{4} y_{1} + 16 y_{2}^{5} \neq 0 \\ R_{1}^{P} = \begin{cases} z > 1 \end{cases}$$

The projection on the (y_1, y_2) -plane of $Z_{\mathbb{R}}(R_1)$ is given by $Z_{\mathbb{R}}(R_1^{\mathcal{Q}})$.

AGraduate Computational Igebraic Geometry

Program verification: an example from Lafferriere (4/4)

The triangular decomposition (3/3)

$$R_5^T = \begin{cases} (z^4 - 1) a - 2 z^2 y_2 \\ t_z \\ 3 y_1^5 - 6 y_2 y_1^4 - 63 y_2^2 y_1^3 + 192 y_2^3 y_1^2 + 112 y_2^4 y_1 + 16 y_2^5 \\ R_5^Q = \begin{cases} 0 < y_2 \\ R_5^P = \begin{cases} z > 1 \end{cases} \end{cases}$$

where t_z is a large polynomial of degree 4 in z. The polynomial with main variable y_1 , say t_{y_1} is delineable above $0 < y_2$. Using a sample point we check that t_{y_1} admits a single real root.

Conclusion

It follows that the projection on the (y_1, y_2) -plane of $Z_{\mathbb{R}}(R_5)$ is given by:

$$(0 < y_2) \wedge (3 y_1^5 - 6 y_2 y_1^4 - 63 y_2^2 y_1^3 + 192 y_2^3 y_1^2 + 112 y_2^4 y_1 + 16 y_2^5).$$

Plan

- 1 Solving systems of polynomial equations symbolically
- 2 Triangular decomposition of algebraic systems
- 3 Triangular decomposition of a semi-algebraic system
- 4 Algorithm
- 5 Complexity analysis
- 6 Benchmarks
- 7 Applications
- 8 Concluding remarks

Conclusion

- We have proposed adaptations of the notions of regular chains and triangular decompositions in order to solve semi-algebraic systems symbolically.
- We have shown that any such system can be decomposed into finitely many *regular semi-algebraic systems*.
- We propose two specifications of such a decomposition and present corresponding algorithms:
- Under some assumptions, one type of decomposition (LazyRealTriangularize) can be computed in singly exponential time w.r.t. the number of variables.
- We have implemented both types of decompositions and reported on comparative benchmarks.
- Our experimental results suggest that these approaches are promising.

(CDMMXX)

Recent work

- We have obtained geometrical invariants for the notion of border polynomial.
- We have improved the performances of our algorithms by avoiding unnecessary recursive calls
- We have developed an incremental algorithms for decomposing semi-algebraic systems
- We have procedures for performing set theoretical operations on semi-algebraic sets.
- As a consequence we can produce decomposition free of redundant components.

Thank you!

AGraduate Computational Igebraic Geometry / 50