Optimizing Algorithms and Code for Data Locality and Parallelism Targeting Multicore Architectures Using Cilk++

Marc Moreno Maza

University of Western Ontario, Canada

University Wilfrid Laurier, Waterloo March 25, 2013

What is this tutorial about?

Optimizing algorithms and code

- Improving code performance is hard and complex.
- Requires a good understanding of the underlying algorithm and implementation environment (hardware, OS, compiler, etc.).

What is this tutorial about?

Optimizing algorithms and code

- Improving code performance is hard and complex.
- Requires a good understanding of the underlying algorithm and implementation environment (hardware, OS, compiler, etc.).

Optimizing for data locality

- Computer cache memories have led to introduce a new complexity measure for algorithms and new performance counters for code.
- Optimizing for data locality brings large speedup factors.

What is this tutorial about?

Optimizing algorithms and code

- Improving code performance is hard and complex.
- Requires a good understanding of the underlying algorithm and implementation environment (hardware, OS, compiler, etc.).

Optimizing for data locality

- Computer cache memories have led to introduce a new complexity measure for algorithms and new performance counters for code.
- Optimizing for data locality brings large speedup factors.

Optimizing for parallelism

- All recent home and office desktops/laptops are parallel machines; moreover "GPU cards bring supercomputing to the masses."
- Optimizing for parallelism improves the use of computing resources.
- And optimizing for data locality is often a first step!

The CPU-Memory Gap

The increasing gap between DRAM, disk, and CPU speeds.

Once upon a time, everything was slow in a computer.

The second space race ...

What are the objectives of this tutorial?

- Understand why data locality can have a huge impact on code performances
- Acquire some ideas on how data locality can be analyzed and improved.
- Output of the concepts of work, span, parallelism, burdened parallelism in multithreaded programming.
- Acquire some ideas on how parallelism can be analyzed and improved in multithreaded programming.

Acknowledgments and references

Acknowledgments.

- Charles E. Leiserson (MIT), Matteo Frigo (Axis Semiconductor) Saman P. Amarasinghe (MIT) and Cyril Zeller (NVIDIA) for sharing with me the sources of their course notes and other documents.
- Yuzhen Xie (Maplesoft) and Anisul Sardar Haque (UWO) for their great help in the preparation of this tutorial.

References.

- *The Implementation of the Cilk-5 Multithreaded Language* by Matteo Frigo Charles E. Leiserson Keith H. Randall.
- *Cache-Oblivious Algorithms* by Matteo Frigo, Charles E. Leiserson, Harald Prokop and Sridhar Ramachandran.
- The Cache Complexity of Multithreaded Cache Oblivious Algorithms by Matteo Frigo and Volker Strumpen.
- *How To Write Fast Numerical Code: A Small Introduction* by Srinivas Chellappa, Franz Franchetti, and Markus Pueschel.
- Models of Computation: Exploring the Power of Computing by John E. Savage.
- http://www.csd.uwo.ca/~moreno/HPC-Resources.html

Plan

Data locality and cache misses

- Hierarchical memories
- Impact on our programs

2 Multicore programming

- Multicore architectures
- Cilk / Cilk++ / Cilk Plus
- The fork-join multithreaded programming model
- Practical issues and optimization tricks

Plan

- Data locality and cache misses
 - Hierarchical memories
 - Impact on our programs
 - 2 Multicore programming
 - Multicore architectures
 - Cilk / Cilk++ / Cilk Plus
 - The fork-join multithreaded programming model
 - Practical issues and optimization tricks

CPU Cache (1/5)

- A CPU cache is an auxiliary memory which is smaller, faster memory than the main memory and which stores copies of the main memory locations that are expectedly frequently used.
- Most modern desktop and server CPUs have at least three independent caches: the data cache, the instruction cache and the translation look-aside buffer.

CPU Cache (2/5)

- Each location in each memory (main or cache) has
 - a datum (cache line) which ranges between 8 and 512 bytes in size, while a datum requested by a CPU instruction ranges between 1 and 16.
 - a unique index (called address in the case of the main memory)
- In the cache, each location has also a tag (storing the address of the corresponding cached datum).

CPU Cache (3/5)

• When the CPU needs to read or write a location, it checks the cache:

- if it finds it there, we have a cache hit
- if not, we have a cache miss and (in most cases) the processor needs to create a new entry in the cache.
- Making room for a new entry requires a replacement policy: the Least Recently Used (LRU) discards the least recently used items first; this requires to use age bits.

CPU Cache (4/5)

- The replacement policy decides where in the cache a copy of a particular entry of main memory will go:
 - fully associative: any entry in the cache can hold it
 - direct mapped: only one possible entry in the cache can hold it
 - N-way set associative: N possible entries can hold it

Data locality and cache misses Hierarchical memories

- Cache Performance for SPEC CPU2000 by J.F. Cantin and M.D. Hill.
- The SPEC CPU2000 suite is a collection of 26 compute-intensive, non-trivial programs used to evaluate the performance of a computer's CPU, memory system, and compilers (http://www.spec.org/osg/cpu2000).

Plan

- Data locality and cache misses
 - Hierarchical memories
 - Impact on our programs
 - 2 Multicore programming
 - Multicore architectures
 - Cilk / Cilk++ / Cilk Plus
 - The fork-join multithreaded programming model
 - Practical issues and optimization tricks

A typical matrix multiplication C code

}

```
#define IND(A, x, y, d) A[(x)*(d)+(y)]
uint64_t testMM(const int x, const int y, const int z)
Ł
  double *A; double *B; double *C;
        long started, ended;
        float timeTaken;
        int i, j, k;
        srand(getSeed());
        A = (double *)malloc(sizeof(double)*x*y);
        B = (double *)malloc(sizeof(double)*x*z);
        C = (double *)malloc(sizeof(double)*v*z);
        for (i = 0; i < x*z; i++) B[i] = (double) rand() ;</pre>
        for (i = 0; i < y*z; i++) C[i] = (double) rand() ;</pre>
        for (i = 0; i < x*y; i++) A[i] = 0;
        started = example_get_time();
        for (i = 0; i < x; i++)
          for (j = 0; j < y; j++)
             for (k = 0; k < z; k++)
                    // A[i][i] += B[i][k] + C[k][i];
                    IND(A,i,j,y) \neq IND(B,i,k,z) * IND(C,k,j,z);
        ended = example_get_time();
        timeTaken = (ended - started)/1.f;
  return timeTaken;
```

Issues with matrix representation

• Contiguous accesses are better:

- Data fetch as cache line (Core 2 Duo 64 byte per cache line)
- With contiguous data, a single cache fetch supports 8 reads of doubles.
- Transposing the matrix C should reduce L1 cache misses!

Transposing for optimizing spatial locality

```
float testMM(const int x. const int v. const int z)
ſ
  double *A; double *B; double *C; double *Cx;
        long started, ended; float timeTaken; int i, j, k;
        A = (double *)malloc(sizeof(double)*x*y);
        B = (double *)malloc(sizeof(double)*x*z):
        C = (double *)malloc(sizeof(double)*y*z);
        Cx = (double *)malloc(sizeof(double)*v*z);
        srand(getSeed());
        for (i = 0; i < x*z; i++) B[i] = (double) rand();</pre>
        for (i = 0; i < y*z; i++) C[i] = (double) rand();</pre>
        for (i = 0; i < x*y; i++) A[i] = 0;
        started = example_get_time();
        for(j =0; j < y; j++)</pre>
          for(k=0: k < z: k++)
            IND(Cx, j, k, z) = IND(C, k, j, y);
        for (i = 0; i < x; i++)
          for (j = 0; j < y; j++)
             for (k = 0; k < z; k++)
               IND(A, i, j, y) \neq IND(B, i, k, z) \neq IND(Cx, j, k, z);
        ended = example_get_time();
        timeTaken = (ended - started)/1.f:
  return timeTaken;
}
```

Issues with data reuse

- Naive calculation of a row of A, so computing 1024 coefficients: 1024 accesses in A, 384 in B and $1024 \times 384 = 393, 216$ in C. Total = 394, 524.
- Computing a 32×32 -block of A, so computing again 1024 coefficients: 1024 accesses in A, 384×32 in B and 32×384 in C. Total = 25,600.
- The iteration space is traversed so as to reduce memory accesses.

Blocking for optimizing temporal locality

```
float testMM(const int x, const int y, const int z)
{
        double *A: double *B: double *C:
        long started, ended; float timeTaken; int i, j, k, i0, j0, k0;
        A = (double *)malloc(sizeof(double)*x*y);
        B = (double *)malloc(sizeof(double)*x*z);
        C = (double *)malloc(sizeof(double)*v*z);
        srand(getSeed());
        for (i = 0; i < x*z; i++) B[i] = (double) rand();</pre>
        for (i = 0; i < y*z; i++) C[i] = (double) rand();</pre>
        for (i = 0; i < x*v; i++) A[i] = 0;
        started = example_get_time();
        for (i = 0; i < x; i += BLOCK_X)</pre>
          for (j = 0; j < y; j += BLOCK_Y)
            for (k = 0; k < z; k += BLOCK_Z)
              for (i0 = i: i0 < min(i + BLOCK X, x); i0++)
                for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)</pre>
                   for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)
                        IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,k0,j0,y);
         ended = example_get_time();
         timeTaken = (ended - started)/1.f:
  return timeTaken:
}
```

Transposing and blocking for optimizing data locality

```
float testMM(const int x, const int y, const int z)
{
        double *A: double *B: double *C:
        long started, ended; float timeTaken; int i, j, k, i0, j0, k0;
        A = (double *)malloc(sizeof(double)*x*y);
        B = (double *)malloc(sizeof(double)*x*z);
        C = (double *)malloc(sizeof(double)*y*z);
        srand(getSeed());
        for (i = 0; i < x*z; i++) B[i] = (double) rand();</pre>
        for (i = 0; i < y*z; i++) C[i] = (double) rand();</pre>
        for (i = 0; i < x*y; i++) A[i] = 0;
        started = example_get_time();
        for (i = 0; i < x; i += BLOCK_X)</pre>
          for (j = 0; j < y; j += BLOCK_Y)
            for (k = 0; k < z; k += BLOCK_Z)
              for (i0 = i: i0 < min(i + BLOCK X, x); i0++)
                for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)</pre>
                   for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)
                        IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,j0,k0,z);
        ended = example_get_time();
        timeTaken = (ended - started)/1.f;
        return timeTaken:
```

}

Computing the product of two $n \times n$ matrices on my laptop (Core2 Duo CPU P8600 @ 2.40GHz, L1 cache of 3072 KB, 4 GBytes of RAM)

n	naive	transposed	speedup	64×64 -tiled	speedup	t. & t.	speedup			
128	7	3		7		2				
256	26	43		155		23				
512	1805	265	6.81	1928	0.936	187	9.65			
1024	24723	3730	6.62	14020	1.76	1490	16.59			
2048	271446	29767	9.11	112298	2.41	11960	22.69			
4096	2344594	238453	9.83	1009445	2.32	101264	23.15			
Timings are in millicoconds										

Timings are in milliseconds.

The cache-oblivious multiplication (more on this later) runs within 12978 and 106758 for n = 2048 and n = 4096 respectively.

Other performance counters

Hardware count events

- CPI Clock cycles Per Instruction: the number of clock cycles that happen when an instruction is being executed. With pipelining we can improve the CPI by exploiting instruction level parallelism
- L1 and L2 Cache Miss Rate.
- Instructions Retired: In the event of a misprediction, instructions that were scheduled to execute along the mispredicted path must be canceled.

	СРІ	L1 Miss Rate	L2 Miss Rate	Percent SSE Instructions	Instructions Retired
In C	4.78	0.24	0.02	43%	13,137,280,000
	- 5x	- 2x			− 1x
Transposed	1.13	0.15	0.02	50%	13,001,486,336
	- 3x	- 8x			-0.8x
Tiled	0.49	0.02	0	39%	18,044,811,264

Analyzing cache misses in the naive and transposed multiplication

- Let A, B and C have format (m, n), (m, p) and (p, n) respectively.
- A is scanned one, so mn/L cache misses if L is the number of coefficients per cache line.
- B is scanned n times, so mnp/L cache misses if the cache cannot hold a row.
- C is accessed "nearly randomly" (for m large enough) leading to mnp cache misses.
- Since 2m n p arithmetic operations are performed, this means roughly one cache miss per flop!
- If C is transposed, then the ratio improves to 1 for L.

Analyzing cache misses in the tiled multiplication

- Let A, B and C have format (m, n), (m, p) and (p, n) respectively.
- Assume all tiles are square of order B and three fit in cache.
- If C is transposed, then loading three blocks in cache cost $3B^2/L$.
- This process happens n^3/B^3 times, leading to $3n^3/(BL)$ cache misses.
- Three blocks fit in cache for $3B^2 < Z$, if Z is the cache size.
- So $O(n^3/(\sqrt{Z}L))$ cache misses, if B is well chosen, which is optimal.

Summary and notes

Plan

- Data locality and cache misses
 - Hierarchical memories
 - Impact on our programs
- 2 Multicore programming
 - Multicore architectures
 - Cilk / Cilk++ / Cilk Plus
 - The fork-join multithreaded programming model
 - Practical issues and optimization tricks

• A multi-core processor is an integrated circuit to which two or more individual processors (called cores in this sense) have been attached.

Chip Multiprocessor (CMP)

- Cores on a multi-core device can be coupled tightly or loosely:
 - may share or may not share a cache,
 - implement inter-core communications methods or message passing.
- Cores on a multi-core implement the same architecture features as single-core systems such as instruction pipeline parallelism (ILP), vector-processing, hyper-threading, etc.

Cache Coherence (1/6)

Figure: Processor P_1 reads x=3 first from the backing store (higher-level memory)

Cache Coherence (2/6)

Figure: Next, Processor P_2 loads x=3 from the same memory

Cache Coherence (3/6)

Figure: Processor P_4 loads x=3 from the same memory

Cache Coherence (4/6)

Figure: Processor P_2 issues a write x=5

Cache Coherence (5/6)

Figure: Processor P_2 writes x=5 in his local cache

Cache Coherence (6/6)

Figure: Processor P_1 issues a read x, which is now invalid in its cache

MSI Protocol

- In this cache coherence protocol each block contained inside a cache can have one of three possible states:
 - M: the cache line has been modified and the corresponding data is inconsistent with the backing store; the cache has the responsibility to write the block to the backing store when it is evicted.
 - S: this block is unmodified and is **shared**, that is, exists in at least one cache. The cache can evict the data without writing it to the backing store.
 - I: this block is **invalid**, and must be fetched from memory or another cache if the block is to be stored in this cache.
- These coherency states are maintained through communication between the caches and the backing store.
- The caches have different responsibilities when blocks are read or written, or when they learn of other caches issuing reads or writes for a block.

True Sharing and False Sharing

• True sharing:

- True sharing cache misses occur whenever two processors access the same data word
- True sharing requires the processors involved to explicitly synchronize with each other to ensure program correctness.
- A computation is said to have **temporal locality** if it re-uses much of the data it has been accessing.
- Programs with high temporal locality tend to have less true sharing.

• False sharing:

- False sharing results when different processors use different data that happen to be co-located on the same cache line
- A computation is said to have **spatial locality** if it uses multiple words in a cache line before the line is displaced from the cache
- Enhancing spatial locality often minimizes false sharing
- See Data and Computation Transformations for Multiprocessors by J.M. Anderson, S.P. Amarasinghe and M.S. Lam http://suif.stanford.edu/papers/anderson95/paper.html

Multi-core processor (cntd)

• Advantages:

- Cache coherency circuitry operate at higher rate than off-chip.
- Reduced power consumption for a dual core vs two coupled single-core processors (better quality communication signals, cache can be shared)

• Challenges:

- Adjustments to existing software (including OS) are required to maximize performance
- Production yields down (an Intel quad-core is in fact a double dual-core)
- Two processing cores sharing the same bus and memory bandwidth may limit performances
- High levels of false or true sharing and synchronization can easily overwhelm the advantage of parallelism

Plan

- Data locality and cache misses
 - Hierarchical memories
 - Impact on our programs
- 2 Multicore programming
 - Multicore architectures
 - Cilk / Cilk++ / Cilk Plus
 - The fork-join multithreaded programming model
 - Practical issues and optimization tricks

From Cilk to Cilk++ and Cilk Plus

- Cilk has been developed since 1994 at the MIT Laboratory for Computer Science by Prof. Charles E. Leiserson and his group, in particular by Matteo Frigo.
- Besides being used for research and teaching, Cilk was the system used to code the three world-class chess programs: Tech, Socrates, and Cilkchess.
- Over the years, the implementations of Cilk have run on computers ranging from networks of Linux laptops to an 1824-nodes Intel Paragon.
- From 2007 to 2009 Cilk has lead to Cilk++, developed by Cilk Arts, an MIT spin-off, which was acquired by Intel in July 2009 and became Cilk Plus, see http://www.cilk.com/
- Cilk++ can be freely downloaded at http://software.intel.com/en-us/articles/download-intel-ci
- Cilk is still developed at MIT http://supertech.csail.mit.edu/cilk/

Cilk++ (and Cilk Plus)

- Cilk++ (resp. Cilk) is a small set of linguistic extensions to C++ (resp. C) supporting fork-join parallelism
- Both Cilk and Cilk++ feature a provably efficient work-stealing scheduler.
- Cilk++ provides a hyperobject library for parallelizing code with global variables and performing reduction for data aggregation.
- Cilk++ includes the Cilkscreen race detector and the Cilkview performance analyzer.

Nested Parallelism in Cilk ++

```
int fib(int n)
{
    if (n < 2) return n;
    int x, y;
    x = cilk_spawn fib(n-1);
    y = fib(n-2);
    cilk_sync;
    return x+y;
}</pre>
```

- The named child function cilk_spawn fib(n-1) may execute in parallel with its parent
- Cilk++ keywords cilk_spawn and cilk_sync grant permissions for parallel execution. They do not command parallel execution.

Loop Parallelism in Cilk ++

The iterations of a cilk_for loop may execute in parallel.

Serial Semantics (1/2)

- Cilk (resp. Cilk++) is a multithreaded language for parallel programming that generalizes the semantics of C (resp. C++) by introducing linguistic constructs for parallel control.
- Cilk (resp. Cilk++) is a faithful extension of C (resp. C++):
 - The C (resp. C++) elision of a Cilk (resp. Cilk++) is a correct implementation of the semantics of the program.
 - Moreover, on one processor, a parallel Cilk (resp. Cilk++) program scales down to run nearly as fast as its C (resp. C++) elision.
- To obtain the serialization of a Cilk++ program

```
#define cilk_for for
#define cilk_spawn
#define cilk_sync
```

Serial Semantics (2/2)

Scheduling

A **scheduler**'s job is to map a computation to particular processors. Such a mapping is called a **schedule**.

- If decisions are made at runtime, the scheduler is *online*, otherwise, it is *offline*
- Cilk++'s scheduler maps strands onto processors dynamically at runtime.

The Cilk++ Platform

Benchmarks for the parallel version of the cache-oblivious mm

Multiplying a 4000x8000 matrix by a 8000x4000 matrix

- on 32 cores = 8 sockets x 4 cores (Quad Core AMD Opteron 8354) per socket.
- The 32 cores share a L3 32-way set-associative cache of 2 Mbytes.

#core	Elision (s)	Parallel (s)	speedup
8	420.906	51.365	8.19
16	432.419	25.845	16.73
24	413.681	17.361	23.83
32	389.300	13.051	29.83

So does the (tuned) cache-oblivious matrix multiplication

Plan

- Data locality and cache misses
 - Hierarchical memories
 - Impact on our programs
- 2 Multicore programming
 - Multicore architectures
 - Cilk / Cilk++ / Cilk Plus
 - The fork-join multithreaded programming model
 - Practical issues and optimization tricks

The fork-join parallelism model

We shall also call this model **multithreaded parallelism**.

Work and span

We define several performance measures. We assume an ideal situation: no cache issues, no interprocessor costs:

- T_p is the minimum running time on p processors
- T_1 is called the **work**, that is, the sum of the number of instructions at each node.
- $T_\infty\,$ is the minimum running time with infinitely many processors, called the ${\rm span}$

The critical path length

Assuming all strands run in unit time, the longest path in the DAG is equal to T_{∞} . For this reason, T_{∞} is also referred to as the **critical path length**.

Work law

• We have: $T_p \ge T_1/p$.

• Indeed, in the best case, p processors can do p works per unit of time.

Span law

- We have: $T_p \geq T_\infty$.
- Indeed, $T_p < T_{\infty}$ contradicts the definitions of T_p and T_{∞} .

Speedup on p processors

- T_1/T_p is called the speedup on p processors
- A parallel program execution can have:
 - linear speedup: $T_1/T_P = \Theta(p)$
 - superlinear speedup: $T_1/T_P = \omega(p)$ (not possible in this model, though it is possible in others)
 - sublinear speedup: $T_1/T_P = o(p)$

Series composition

- Work?
- Span?

Series composition

- Work: $T_1(A \cup B) = T_1(A) + T_1(B)$
- Span: $T_{\infty}(A \cup B) = T_{\infty}(A) + T_{\infty}(B)$

Parallel composition

- Work?
- Span?

Parallel composition

- Work: $T_1(A \cup B) = T_1(A) + T_1(B)$
- Span: $T_{\infty}(A \cup B) = \max(T_{\infty}(A), T_{\infty}(B))$

Some results in the fork-join parallelism model

Algorithm	Work	Span
Merge sort	Θ(n lg n)	Θ(lg³n)
Matrix multiplication	Θ(n ³)	Θ(lg n)
Strassen	Θ(n ^{lg7})	Θ(lg²n)
LU-decomposition	Θ(n ³)	Θ(n lg n)
Tableau construction	Θ(n ²)	$\Omega(n^{lg3})$
FFT	Θ(n lg n)	Θ(lg²n)
Breadth-first search	Θ(Ε)	Θ(d lg V)

We shall prove those results in the next lectures.

For loop parallelism in Cilk++

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \longrightarrow \begin{pmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix}$$

The iterations of a cilk_for loop execute in parallel.

Implementation of for loops in Cilk++

Up to details (next week!) the previous loop is compiled as follows, using a **divide-and-conquer implementation**:

```
void recur(int lo, int hi) {
    if (hi > lo) { // coarsen
        int mid = lo + (hi - lo)/2;
        cilk_spawn recur(lo, mid);
        recur(mid+1, hi);
        cilk_sync;
    } else
        for (int j=lo; j<hi; ++j) {</pre>
            double temp = A[hi][j];
            A[hi][j] = A[j][hi];
            A[j][hi] = temp;
        }
    }
```

Analysis of parallel for loops

Here we do not assume that each strand runs in unit time.

- Span of loop control: $\Theta(\log(n))$
- Max span of an iteration: $\Theta(n)$
- Span: $\Theta(n)$
- Work: $\Theta(n^2)$
- Parallelism: $\Theta(n)$

For loops in the fork-join parallelism model: another example

```
cilk_for (int i = 1; i <= 8; i ++){
    f(i);
}</pre>
```

A $cilk_{-}for$ loop executes recursively as 2 for loops of n/2 iterations, adding a span of $\Theta(\log(n))$.

Figure: DAG for a *cilk_for* with 8 iterations.

The work-stealing scheduler (1/11)

The work-stealing scheduler (2/11)

The work-stealing scheduler (3/11)

The work-stealing scheduler (4/11)

The work-stealing scheduler (5/11)

The work-stealing scheduler (6/11)

The work-stealing scheduler (7/11)

The work-stealing scheduler (8/11)

The work-stealing scheduler (9/11)

The work-stealing scheduler (10/11)

The work-stealing scheduler (11/11)

Performances of the work-stealing scheduler

Assume that

- each strand executes in unit time,
- for almost all "parallel steps" there are at least p strands to run,
- each processor is either working or stealing.

Then, the randomized work-stealing scheduler is expected to run in

 $T_P = T_1/p + O(T_\infty)$

Overheads and burden

- Many factors (simplification assumptions of the fork-join parallelism model, architecture limitation, costs of executing the parallel constructs, overheads of scheduling) will make T_p larger in practice than $T_1/p + T_{\infty}$.
- One may want to estimate the impact of those factors:
 - by improving the estimate of the *randomized work-stealing complexity result*
 - by comparing a Cilk++ program with its C++ elision
 - by estimating the costs of spawning and synchronizing
- Cilk++ estimates T_p as $T_p = T_1/p + 1.7$ burden_span, where burden_span is 15000 instructions times the number of continuation edges along the critical path.

Cilkview

- Cilkview computes work and span to derive upper bounds on parallel performance
- Cilkview also estimates scheduling overhead to compute a burdened span for lower bounds.

The Fibonacci Cilk++ example

```
Code fragment
long fib(int n)
{
    if (n < 2) return n;
    long x, y;
    x = cilk_spawn fib(n-1);
    y = fib(n-2);
    cilk_sync;
    return x + y;
}</pre>
```

Fibonacci program timing

The environment for benchmarking:

- model name : Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz
- L2 cache size : 4096 KB
- memory size : 3 GB

	#cores = 1	#cores = 2		#cores = 4	
n	timing(s)	timing(s)	speedup	timing(s)	speedup
30	0.086	0.046	1.870	0.025	3.440
35	0.776	0.436	1.780	0.206	3.767
40	8.931	4.842	1.844	2.399	3.723
45	105.263	54.017	1.949	27.200	3.870
50	1165.000	665.115	1.752	340.638	3.420

Quicksort

```
code in cilk/examples/gsort
void sample_qsort(int * begin, int * end)
{
   if (begin != end) {
         --end;
        int * middle = std::partition(begin, end,
            std::bind2nd(std::less<int>(), *end));
        using std::swap;
        swap(*end, *middle);
        cilk_spawn sample_qsort(begin, middle);
        sample_gsort(++middle, ++end);
        cilk_sync;
    }
```

Quicksort timing

Timing for sorting an array of integers:

	#cores = 1	#cores = 2		#cores = 4	
# of int	timing(s)	timing(s)	speedup	timing(s)	speedup
10×10^6	1.958	1.016	1.927	0.541	3.619
50×10^6	10.518	5.469	1.923	2.847	3.694
100×10^6	21.481	11.096	1.936	5.954	3.608
$500 imes 10^6$	114.300	57.996	1.971	31.086	3.677

Matrix multiplication

Code in cilk/examples/matrix

Timing of multiplying a 687×837 matrix by a 837×1107 matrix

	iterative			recursive		
threshold	st(s)	pt(s)	su	st(s)	pt (s)	su
10	1.273	1.165	0.721	1.674	0.399	4.195
16	1.270	1.787	0.711	1.408	0.349	4.034
32	1.280	1.757	0.729	1.223	0.308	3.971
48	1.258	1.760	0.715	1.164	0.293	3.973
64	1.258	1.798	0.700	1.159	0.291	3.983
80	1.252	1.773	0.706	1.267	0.320	3.959

st = sequential time; pt = parallel time with 4 cores; su = speedup

The cilkview example from the documentation

Using cilk_for to perform operations over an array in parallel:

```
static const int COUNT = 4;
static const int ITERATION = 1000000;
long arr[COUNT];
long do_work(long k){
 long x = 15;
  static const int nn = 87;
  for (long i = 1; i < nn; ++i)
    x = x / i + k \% i:
  return x;
}
int cilk_main(){
  for (int j = 0; j < ITERATION; j++)</pre>
    cilk_for (int i = 0; i < COUNT; i++)</pre>
      arr[i] += do_work( j * i + i + j);
}
```

1) Parallelism Profile

Work : 6,480,801,250 ins 2,116,801,250 ins Span : Burdened span : 31,920,801,250 ins Parallelism : 3.06 Burdened parallelism : 0.20 Number of spawns/syncs: 3,000,000 Average instructions / strand : 720 Strands along span : 4,000,001 Average instructions / strand on span : 529 2) Speedup Estimate 2 processors: 0.21 - 2.004 processors: 0.15 - 3.060.13 - 3.068 processors: 0.13 - 3.0616 processors: 32 processors: 0.12 - 3.06

A simple fix

```
Inverting the two for loops
int cilk_main()
{
    cilk_for (int i = 0; i < COUNT; i++)
    for (int j = 0; j < ITERATION; j++)
        arr[i] += do_work( j * i + i + j);
}</pre>
```

1) Parallelism Profile

	Work :	5,295,8	301,529 ins
	Span :	1,326,8	301,107 ins
	Burdened span :	1,326,8	330,911 ins
	Parallelism :		3.99
	Burdened parallelism :		3.99
	Number of spawns/syncs	:	3
	Average instructions /	strand :	529,580,152
	Strands along span :		5
	Average instructions /	strand on span:	265,360,221
2)	Speedup Estimate		
	2 processors:	1.40 - 2.00	
	4 processors:	1.76 - 3.99	
	8 processors:	2.01 - 3.99	
	16 processors:	2.17 - 3.99	
	32 processors:	2.25 - 3.99	

Timing

	#cores = 1	#cores = 2		#cores = 4	
version	timing(s)	timing(s)	speedup	timing(s)	speedup
original	7.719	9.611	0.803	10.758	0.718
improved	7.471	3.724	2.006	1.888	3.957

Plan

- Data locality and cache misses
 - Hierarchical memories
 - Impact on our programs
- 2 Multicore programming
 - Multicore architectures
 - Cilk / Cilk++ / Cilk Plus
 - The fork-join multithreaded programming model
 - Practical issues and optimization tricks

Example 1: a small loop with grain size = 1

```
Code:
    const int N = 100 * 1000 * 1000;
    void cilk_for_grainsize_1()
    {
    #pragma cilk_grainsize = 1
        cilk_for (int i = 0; i < N; ++i)
            fib(2);
    }
```

Expectations:

- Parallelism should be large, perhaps $\Theta(N)$ or $\Theta(N/\log N)$.
- We should see great speedup.

Speedup is indeed great...

... but performance is lousy

Recall how cilk_for is implemented

Source:

```
cilk_for (int i = A; i < B; ++i)
BODY(i)</pre>
```

Implementation:

```
void recur(int lo, int hi) {
    if ((hi - lo) > GRAINSIZE) {
        int mid = lo + (hi - lo) / 2;
        cilk_spawn recur(lo, mid);
        cilk_spawn recur(mid, hi);
    } else
        for (int i = lo; i < hi; ++i)
            BODY(i);
}</pre>
```

recur(A, B);

Default grain size

```
Cilk++ chooses a grain size if you don't specify one.
void cilk_for_default_grainsize()
{
    cilk_for (int i = 0; i < N; ++i)
    fib(2);
}</pre>
```

Cilk++'s heuristic for the grain size:

grain size = min
$$\left\{ \frac{N}{8P}, 512 \right\}$$

• Generates about 8P parallel leaves.

• Works well if the loop iterations are not too unbalanced.

Speedup with default grain size

Large grain size

```
A large grain size should be even faster, right?
```

```
void cilk_for_large_grainsize()
{
#pragma cilk_grainsize = N
    cilk_for (int i = 0; i < N; ++i)
    fib(2);
}</pre>
```

Actually, no (except for noise):

Grain size	Runtime	
1	8.55 s	
default (= 512)	2.44 s	
$N (= 10^8)$	2.42 s	

Speedup with grain size = N

Trade-off between grain size and parallelism

Use Cilkview to understand the trade-off:

Grain size	Parallelism
1	6,951,154
default (= 512)	248,784
$N (= 10^8)$	1

In Cilkview, P = 1:

default grain size = min
$$\left\{ \frac{N}{8P}, 512 \right\} = \min \left\{ \frac{N}{8}, 512 \right\}$$
.

Lessons learned

- Measure overhead before measuring speedup.
 - Compare 1-processor Cilk++ versus serial code.
- Small grain size \Rightarrow higher work overhead.
- Large grain size \Rightarrow less parallelism.
- The default grain size is designed for small loops that are reasonably balanced.
 - You may want to use a smaller grain size for unbalanced loops or loops with large bodies.
- Use Cilkview to measure the parallelism of your program.

Example 2: A for loop that spawns

```
Code:
    const int N = 10 * 1000 * 1000;
    /* empty test function */
    void f() { }
    void for_spawn()
    {
        for (int i = 0; i < N; ++i)
            cilk_spawn f();
    }
```

Expectations:

- I am spawning N parallel things.
- Parallelism should be $\Theta(N)$, right?

"Speedup" of for_spawn()

Insufficient parallelism

PPA analysis:

- PPA says that both work and span are $\Theta(N).$
- Parallelism is ≈ 1.62 , independent of N.
- Too little parallelism: no speedup.

```
Why is the span \Theta(N)?
```


Alternative: a cilk_for loop.

```
Code:
    /* empty test function */
    void f() { }
    void test_cilk_for()
    {
        cilk_for (int i = 0; i < N; ++i)
            f();
    }</pre>
```

PPA analysis:

The parallelism is about 2000 (with default grain size).

- The parallelism is high.
- As we saw earlier, this kind of loop yields good performance and speedup.

Lessons learned

- cilk_for() is different from for(...) cilk_spawn.
- The span of for(...) cilk_spawn is $\Omega(N)$.
- For simple flat loops, cilk_for() is generally preferable because it has higher parallelism.
- (However, for(...) cilk_spawn might be better for recursively nested loops.)
- Use Cilkview to measure the parallelism of your program.

Example 3: Vector addition

Expectations:

- Cilkview says that the parallelism is 68,377.
- This will work great!

Speedup of vector_add()

Bandwidth of the memory system

A typical machine: AMD Phenom 920 (Feb. 2009).

Cache level	daxpy bandwidth
L1	19.6 GB/s per core
L2	18.3 GB/s per core
L3	13.8 GB/s shared
DRAM	$7.1\mathrm{GB/s}$ shared

daxpy: x[i] = a*x[i] + y[i], double precision.

The memory bottleneck:

- A single core can generally saturate most of the memory hierarchy.
- Multiple cores that access memory will conflict and slow each other down.

How do you determine if memory is a bottleneck?

Hard problem:

- No general solution.
- Requires guesswork.

Two useful techniques:

- Use a profiler such as the Intel VTune.
 - Interpreting the output is nontrivial.
 - No sensitivity analysis.
- Perturb the environment to understand the effect of the CPU and memory speeds upon the program speed.

How to perturb the environment

- Overclock/underclock the processor, e.g. using the power controls.
 - If the program runs at the same speed on a slower processor, then the memory is (probably) a bottleneck.
- Overclock/underclock the DRAM from the BIOS.
 - If the program runs at the same speed on a slower DRAM, then the memory is not a bottleneck.
- Add spurious work to your program while keeping the memory accesses constant.
- Run P independent copies of the serial program concurrently.
 - If they slow each other down then memory is probably a bottleneck.

Perturbing vector_add()

```
const int N = 50 * 1000 * 1000;
double A[N], B[N], C[N];
void vector_add()
ł
    cilk_for (int i = 0; i < N; ++i) {
        A[i] = B[i] + C[i];
        fib(5); // waste time
    }
}
```

Speedup of perturbed vector_add()

Interpreting the perturbed results

The memory is a bottleneck:

- A little extra work (fib(5)) keeps 8 cores busy. A little more extra work (fib(10)) keeps 16 cores busy.
- Thus, we have enough parallelism.
- The memory is *probably* a bottleneck. (If the machine had a shared FPU, the FPU could also be a bottleneck.)

OK, but how do you fix it?

- vector_add cannot be fixed in isolation.
- You must generally restructure your program to increase the reuse of cached data. Compare the iterative and recursive matrix multiplication from yesterday.
- (Or you can buy a newer CPU and faster memory.)

Lessons learned

- Memory is a common bottleneck.
- One way to diagnose bottlenecks is to perturb the program or the environment.
- Fixing memory bottlenecks usually requires algorithmic changes.

Example 4: Nested loops

```
Code:
    const int N = 1000 * 1000;
    void inner_parallel()
    {
        for (int i = 0; i < N; ++i)
            cilk_for (int j = 0; j < 4; ++j)
            fib(10); /* do some work */
}
```

Expectations:

- The inner loop does 4 things in parallel. The parallelism should be about 4.
- Cilkview says that the parallelism is 3.6.
- We should see some speedup.

"Speedup" of inner_parallel()

Interchanging loops

```
Code:
    const int N = 1000 * 1000;
    void outer_parallel()
    {
        cilk_for (int j = 0; j < 4; ++j)
            for (int i = 0; i < N; ++i)
                 fib(10); /* do some work */
}
```

Expectations:

- The outer loop does 4 things in parallel. The parallelism should be about 4.
- Cilkview says that the parallelism is 4.
- Same as the previous program, which didn't work.

Speedup of outer_parallel()

Parallelism vs. burdened parallelism

Parallelism:

The best speedup you can hope for.

Burdened parallelism:

Parallelism after accounting for the unavoidable migration overheads.

Depends upon:

- How well we implement the Cilk++ scheduler.
- How you express the parallelism in your program.

Cilkview prints the burdened parallelism:

- 0.29 for inner_parallel(), 4.0 for outer_parallel().
- In a good program, parallelism and burdened parallelism are about equal.

What is the burdened parallelism?

Code:

```
A();
cilk_spawn B();
C();
D();
cilk_sync;
E();
```

Burdened critical path:

The **burden** is $\Theta(10000)$ cycles (locks, malloc, cache warmup, reducers, etc.)

The burden in our examples

```
Θ(N) spawns/syncs on the critical path (large burden):
void inner_parallel()
{
    for (int i = 0; i < N; ++i)
        cilk_for (int j = 0; j < 4; ++j)
        fib(10); /* do some work */
}
</pre>
```

```
Θ(1) spawns/syncs on the critical path (small burden):
void outer_parallel()
{
    cilk_for (int j = 0; j < 4; ++j)
    for (int i = 0; i < N; ++i)
        fib(10); /* do some work */
}</pre>
```

Lessons learned

- Insufficient parallelism yields *no speedup*; high burden yields *slowdown*.
- Many spawns but small parallelism: suspect large burden.
- Cilkview helps by printing the burdened span and parallelism.
- The burden can be interpreted as the number of spawns/syncs on the critical path.
- If the burdened parallelism and the parallelism are approximately equal, your program is ok.

Summary and notes

We have learned to identify and (when possible) address these problems:

- High overhead due to small grain size in cilk_for loops.
- Insufficient parallelism.
- Insufficient memory bandwidth.
- Insufficient burdened parallelism.