Efficient Management of Symbolic Computation with
Polynomials

Xin Li

Department of Computer Science

Master of Science

Faculty of Graduate Studies
The University of Western Ontario
London, Ontario
August 2005

© Xin Li 2005

ABSTRACT

Symbolic polynomial computation is widely used to solve many applied or abstract
mathematical problems. Some of them, such as solving systems of polynomial equa-
tions, have exponential complexity. Their implementation is, therefore, a challenging
task.

By using adapted data structures, asymptotically fast algorithms and effective code
optimization techniques, we show how to reduce the practical and theoretical com-
plexity of these computations. Our effort is divided into three categories: integrating
the best known techniques into our implementation, investigating new directions, and
measuring the interactions between numerous techniques.

We chose AXIOM and ALDOR as our implementation and experimentation envi-
ronment, since they are both strongly typed and highly efficient Computer Algebra
Systems (CAS). Our implementation results show that our methods have great po-
tential to improve the efficiency of exact polynomial computations with the selected
CASs. The performance of our implementation is comparable to that of (often out-

performing) the best available packages for polynomial computations.

Keywords: Exact Symbolic Computation, Computer Algebra System, Polynomial

Computations, Axiom, Aldor.

il

I wish to extend my appreciation and gratitude to my supervisor Dr. Marc Moreno
Maza for his guidance, support and encouragement through this entire investigation.
I wish to thank Dr. Stephen Watt for his advice and the opportunity he gave to me
to work in the Ontario Research Center for Computer Algebra.

I would also like to express my thanks to professor Eric. Schost for his great help.

Contents

1 Introduction
1.1 What is the research about 0.
1.2 Motivations Lo
1.3 Related worko
1.4 Objectives and results L

2 Implementation environment
2.1 History e
2.2 OVerview e
2.3 The underlying Lispo
24 The GMP library 0
2.5 Writing code at SPAD, Lisp, C and ASSEMBLY levels

3 Adapted Data Structures I
3.1 Polynomial data representation
3.2 Dense recursive multivariate polynomials at the SPAD level
3.3 Dense recursive multivariate polynomials at the Lisp level

3.4 Experimentation

4 Adapted Data Structures II
4.1 Modular methods and fast arithmetic
4.2 Univariate polynomials over Z/pZ as machine integer arrays

4.3 Bigprimecase.

11
15
15
16

Contents vi
5 Highly optimized low level routines 45
5.1 Imtroductiono 45
5.2 Single precision integer division by floating-point arithmetic 47
5.3 Reducing the overhead of loops and function calls 52
54 Memory traffic oL 56
5.5 Parallelismo oo 60
6 FFT-based univariate polynomial multiplication 62
6.1 Introductiono 62
6.2 The FFT-based univariate multiplication 63
6.3 Efficient algorithm for the FFT 64
6.4 Computing primitive roots of unity 71
6.5 Implementation of the small prime case 72
6.6 Implementation of the big prime case 73
6.7 The FFT in the NTL library 75
6.8 Benchmarks 00 000 75
7 FFT-based multivariate polynomial multiplication 7T
7.1 Introductiono 7
7.2 Kronecker’s substitution 0L, 78
7.3 Fast multivariate multiplication 81
74 Benchmarks o oo 83
8 Memory management 87
81 Generalidea 87
82 Results. 89
8.3 Future work of this chapter 90
9 Conclusions and future work 91

List of Figures

1.1

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5

3.6

4.1

4.2

4.3

4.4
4.5
4.6

Hensel lifting technique for triangular decompositions. 4
AXIOM interactive mode.o 10
AXITIOM graphics. e 11
Hilbert Matrix. 12
Algebraic category hierarchy in AXIOM (partial). 14
Language levels in A XTOM. 16
Sparse and dense polynomial representation. 20
Vector-based multivariate polynomial recursive representation. 31
Principle of the algorithm of van Hoeij and Monagan. 33
The flowchart of van Hoeij and Monagan’s algorithm. 34

Comparison for a fixed total degree and increasing input coefficient
SIZE. .. e e 35

Comparison for a fixed input coefficient size and increasing total degree. 36

Sketch of a modular method using only one prime. 39
Encoding a univariate polynomial over Z/mZ in fixnum-array, small
Prime Case. e e e e 41

Encoding a univariate polynomial over Z/pZ with a fixnum-array,

in the big prime case. L 43
Polynomial addition over Z/pZ. 43
Polynomial addition over Z/pZ in the big prime case. 44
Polynomial multiplication over Z/pZ in the big prime case. 44

Vil

List of Figures viii

5.1 Generic assembly vs. SSE2 version assembly of FFT-based univariate
polynomial multiplication over Z/pZ. 53

5.2 Inlined vs. non-inlined version of FFT-based univariate polynomial
multiplication over Z/pZ. 55

5.3 Inlined vs. non-inlined version of FFT-based univariate polynomial
multiplication over Z/pZ. 56

5.4 Parallelized vs. non-parallelized version of FFT-based univariate poly-

nomial multiplicaiton over Z/pZ. 61
6.1 FFT-based univariate polynomial multiplication over Z/pZ. 63
6.2 Recursive callsforn=38., 67

6.3 FFT-based univariate polynomial multiplicaiton over Z/pZ, GMP

functions vs our specialized double percision integer functions and

CRA-based functions. 74
6.4 Benchmark of FFT with small primes. 76
6.5 Benchmark of FFT with big primes. 76
7.1 FFT-based bivariate polynomial multiplication modulo 5767169. . . . 84
7.2 FFT-based trivariate polynomial multiplication modulo 23068673. . . 85

7.3 FFT-based bivariate polynomial multiplication modulo 18446744073692774401. 85
7.4 FFT-based trivariate polynomial multiplication modulo 18446744073692774401. 86

8.1 Testing the improvement of memory consumption 90

Chapter 1

Introduction

1.1 What is the research about

Symbolic computation is a process of mathematical transformation for symbolic ex-
pressions which are designed to be implemented on computer systems. Our research
area is symbolic computation with polynomials: the automatic transformation of
polynomial systems in an exact way. This is not only an issue of exploring abstract
mathematical theories, but also a subject of investigating methods for high perfor-
mance polynomial computations. Our research work is emphasized on analyzing
the practical and theoretical complexity of these computations, and improving their
performance in a significant manner. Our research work can be divided into three

categories.

1. First, we have studied the best known techniques for symbolic polynomial
computations and integrated them in our implementation environment. This
is a process of analysis and synthesis. It requires a great amount of time to
implement, compare and improve existing algorithms for symbolic polynomial
manipulation, then measure the performance improvement, or even degrada-

tion, after plugging them into our implementation.

2. Second, we have investigated two new directions: exact polynomial computa-

tion modulo big primes and Fast Fourier Transform based multivariate mul-
1

1.2. Motivations 2

tiplication, where no work or little work has been done by others. This is a
process to verify new ideas for efficient implementation. It demands rigorous

proofs and appropriate benchmarks.

3. Third, we also aim at measuring precisely the effectiveness of the techniques we
used and their interactions. Our research produced many interesting results

and we will make detailed comments about this in the following chapters.

1.2 Motivations

The desire of achieving high performance, and supporting new methods for symbolic
polynomial computations, such as multivariate Hensel lifting for solving systems of
equations, are the two main motivations for this study.

As we mentioned above, exact symbolic computation with polynomials usually
consumes a large amount of memory and CPU time. When the size of the problem

is large, which is the usual case, the challenges are

e overcoming computational bottlenecks such as intermediate expression swell

and,
e producing the results within an acceptable length of time.

In fact, expression swell [18] (that is the fact that the size of expressions grows
dramatically during a calculation) is a well known problem in symbolic computation
with polynomials. If this happens during intermediate stages, we call it interme-
diate expression swell. Why does this happen? The reason is simple: symbolic
computations manipulate numbers by using their mathematical definitions rather
than using floating point approximations. Hence, they need to keep exact results
at each step. Consequently, during the middle stages of a calculation, intermediate
expressions can expand substantially, even if the final result is comparatively small.
Computations like polynomial factorization and polynomial greatest common divi-

sor are good examples. We will explain this in Chapter 3, Section 1. Obviously,

1.3. Related work 3

when the size of an expression grows, we need more memory to store it and longer
CPU time to transform it. When the growth becomes exponential, the computer
system will slow down dramatically and the computation is likely not to terminate.
Therefore, computer algebra systems need to control this situation, and this is gen-
erally achieved through modular methods. We will give the definition of modular
methods in the next section. However, in practice for these modular methods to
give their best performance, one needs to use fast polynomial arithmetic as well as
an efficient interface with the machine arithmetic. This is clearly a more difficult
task in an interactive environment.

In addition, most comprehensive computer algebra systems, such as MAPLE,
MAGMA, ALDOR, AXIOM are garbage collected systems. Those systems free
programmers from the tedious tasks of memory management and leave garbage col-
lectors to deal with it. But, when developers intend to write a high performance
package or library, they have to carefully study the general mechanism of garbage
collection, and create sample programs to test in which way the applications could
better use memory through the help of garbage collectors. Hence, high performance
exact symbolic computation with polynomials is a sophisticated topic. It requires
developers to study fast polynomial arithmetic, to be experts on their implementa-
tion environment, including compiler’s optimization and low level support, such as
machine arithmetic and garbage collection.

Besides improving performance for general polynomial computations, we are also
interested in Hensel lifting based modular methods (see Figure 1.1) and fast arith-
metic modulo a polynomial ideal [18]. In these areas, there is still not a satisfactory
solution toward high performance issues. This thesis provides preliminary results

on these questions. We plan to continue investigating them in the near future.

1.3 Related work

A computer algebra system (CAS) by definition is a software program that facilitates

symbolic mathematics.

1.3. Related work 4

FCQXy,..., X Triangular decomposition [27] Triangular
of V(F mod p) decomposition
V(F) equiprojectable (with p big and lucky) over Z/pZ
=
Direct Split-and-merge
computation algorithm [10]
Hensel lifting for v
triangular set [33]
TgQ[Xl7~-~7XIn] Tng/pZ[Xl’-uanJ

+ Rational reconstruction

V(T)=V(F) V(Tp)=V(F mod p)

Figure 1.1: Hensel lifting technique for triangular decompositions.

General purpose CAS such as DERIVE, MACSYMA, MAPLE, MATHEMATICA,
AXIOM, ALDOR and REDUCE intend to provide comprehensive functionalities
which can facilitate mathematicians, scientists, and engineers to conduct their math-
ematical research work. There are also some systems which focus on specific topics,
such as NTL [34], COCOA [5], MAGMA [7], GMP [16] and PARI/GP [6].

Since symbolic computation with polynomials has wide usage, most CAS provide
a symbolic solver for solving systems of equations and other polynomial problems
symbolically. However, not all of them are efficient when dealing with large scale
polynomial computations. Moreover, even those which provide high performance,
still require a continuous effort for improvement. Indeed, computer technology, as
well as mathematical strategies, evolve quickly. A problem which was unsolved
yesterday may become an easy task today.

Similarly, an algorithm which seemed unpractical yesterday may become a stan-
dard routine today. For instance, asymptotically fast methods for exact computa-
tions have been known for a quarter of a century. Unfortunately their impact on

computer algebra systems has been reduced since it was believed that they were

1.4. Objectives and results 5

irrelevant in practice. Let us quote [18] at p. 132: “In practice, depending on the
method of recursion used, the fast method (the univariate multiplication based on
the Fast Fourier Transform) is better than the classical method approximatively for
n + m > 600 where n and m are the degree of the input polynomials.” This myth
died in the recent years and these methods permitted to increase the magnitude of
effective computations in several areas like exact factorization of polynomials. For
instance, for the fast algorithm (FFT-based univariate multiplication) mentioned

above, the cross-over point is today n +m > 64 in [35] p.363-397.

1.4 Objectives and results

As mentioned above, our research work is emphasized on the following aspects.
First, we integrate together known techniques for improving symbolic computations

with polynomials. We summarize them below.

Modular methods. One of the main successes of the computer algebra commu-
nity in the last 30 years is the discovery of algorithms, called modular methods,
that allow to keep the swell of intermediate expressions under control. Mathemat-
ical high-level algorithms with polynomials are generally based on modular meth-
ods through which the size of a problem is reduced. Our implementation results in
Chapter 3 illustrate that the overall performance of the studied problem (computing
polynomial GCDs over algebraic number fields) is improved in a significant manner

by using modular methods.

Adapted Data Representation. Selecting adapted data structures to represent
mathematical objects in memory is crucially important for high performance. Both
time and space complexity have to be taken into account. Moreover, a given family
of mathematical objects, say polynomials or matrices, may require different rep-
resentations for different calculations. Therefore, we need to choose adapted data
representations for each application and develop efficient transformation mechanisms

between those different representations; ideally, such a transformation must run in

1.4. Objectives and results 6

linear time. Our benchmarks of Chapters 3, 4 and 7 illustrate the performance
improvement by using adapted data representations compared to generic data rep-

resentations.

Machine-level optimized implementation. Many efficiency-critical operations
in our implementation are programmed in assembly language and C language. The
purpose is to effectively use machine level arithmetic and the computer architecture.
Certainly, compilers intend to do this for us, but they do not always make use of
the latest features of some computer architectures. Moreover, programmers have a
clear view of their tasks in advance, they should either tune their programs for the
compiler to better optimize them, or explicitly take advantage of a specific computer-
architecture. This is not an easy task, as it requires a good knowledge of low-level

languages and hardware. Our work in this area is reported in Chapter 5.

Fast polynomial arithmetic. We implement fast univariate polynomial multi-
plication over finite fields based on the Discrete Fourier Transform. Theoretically,
this algorithm has lower computational complexity than any other known method.

However, obtaining an efficient implementation is challenging [13,17]. We put
great effort on this algorithm since it is the key for obtaining fast algorithms for
many other polynomial operations, such as division, GCD and others [13]. Our

results are satisfactory.

e Our implementation of the FFT-based univariate polynomial multiplication
over Z/pZ (see Chapter 6) outperforms the most efficient package currently

available, namely NTL [34] when p is a small prime.

e Our implementation of the FFT-based multivariate polynomial multiplication
(see Chapter 7) outperforms the package which, to our knowledge, is the best
one for this task, namely MAGMA.

Based on this work, we plan to develop highly efficient implementation of polynomial

division and GCD in the near future.

1.4. Objectives and results 7

Garbage Collection. Currently, most popular Garbage Collection Systems in
CAS are tracing GC. Typically, tracing GC collects objects that are no longer reach-
able along a path of references starting from a set of root references. As mentioned
above, for a high-performance application which runs in a garbage collected envi-
ronment, the mechanism and effectiveness of the garbage collector need to be con-
sidered. Data structures which are easy to recycle and algorithms which are garbage
collection friendly can enhance the performance in a significant manner. We have
studied the garbage collection system of ALDOR and implemented a package for the
ALDOR compiler. This package collects liveness information of variables and helps
the ALDOR garbage collector reclaim unreachable objects earlier than only using
the information of reachability. By using our package at compile-time, the memory
consumption of many polynomial computations will be reduced at run-time. This
implementation work is presented in Chapter 8.

In this thesis, we have also investigated new strategies for polynomial computa-

tions. We summarize them below.

Developing specific techniques for computations modulo big primes. Mod-
ular computations are well developed for primes that fit in one machine-word [17].
However, certain classes of algorithms, such as Hensel lifting for solving non-linear
multivariate polynomial systems [10] require the use of big primes. Those algorithms

work on a prime field Z/pZ for a large prime number p:
e cither directly by computing with big integers and then reducing modulo p,

e or by computing modulo several small primes and then recombining the results

with the Chinese Remaindering Algorithm.

We study these two approaches in Chapter 6.

Implementing FFT-based arithmetic for multivariate polynomials. FFT-
based techniques are well developed for univariate polynomials [17]. However, very

few solutions have emerged yet for the multivariate case [13,31]. We implemented

1.4. Objectives and results 8

FEF'T-based multivariate multiplication via the Kronecker substitution. We also pro-
vide a theoretical study of this strategy. Our results are reported in Chapter 7. Our
implementation of this strategy outperforms the package which, to our knowledge,

is the best one for this task, namely MAGMA.

Chapter 2

Implementation environment

2.1 History

AXIOM |[22] is a comprehensive Computer Algebra System which has been in de-
velopment since 1971. It was originally developed by IBM under the direction of
Richard Jenks. At that time AXIOM was called Scratchpad. In the 1990s, it was
renamed AXIOM and sold as a commercial software by the Numerical Algorithms
Group (NAG). In 2002, it became a free and open source software, extended and
maintained by a team under the lead of Timothy P. Daly.

On top of its many UNIX versions, the AXIOM system also has a Windows ver-
sion. The user can download the AXIOM source tree or the pre-compiled binaries
from http://page.axiom-developer.org/. It includes integrated graphics and a
document browser as shown on Figure 2.1 and Figure 2.2.

We chose AXIOM as our implementation and experimentation environment

based on four reasons:

1. AXIOM provides both an interactive interpreter and a high-level language

compiler.

2. AXIOM, with its different implementation levels (see Figure 2.5 p. 16), pro-

vides a unique development environment among all CAS.

2.1. History 10

HyperDox

AXIOM HyperDoc Top Level
. ™
k=g

What would you like to do?
@EBasic Coomands Solve problems by filling in templates.

@Reference Scan on-line documentation for AXIOM.
@ Topics Learn how to use AXI0OM, by topic.
| @Browse Browse through the AXIOM library.
¥ Y gExamples See examples of use of the library.
LAHE
[xl1i96@localhost thesis]$ axiom 2]

AXIOM Conputer Algebra System
Version: Axiom 3.4 (April 2005)
Timestanp: Saturday June 18, 2005 at 00:18:42

Issue Jcopyright to view copyright notices.
Issue Jsummry for a summary of useful system commands.
Issue Jquit to leave AXIOM and return to shell.

Re-reading conpress.daase Re-reading interp.daase
Re-reading operation.daase
Re-reading category.daase
Re-reading browse.daase
L1y =2 E

Figure 2.1: AXIOM interactive mode.

3. As shown in this thesis, AXIOM is well adapted for high performance com-

puter algebra.
4. AXIOM is free and open source.

AXIOM has a very high level programming language called SPAD, the abbreviation
of Scratchpad. It can be compiled into COMMON LiSP by its own built-in compiler.
There is an external stand-alone compiler implemented in C which also accepts the
SPAD language, called ALDOR [2,38]. ALDOR was originally developed by a team
under the direction of Stephen Watt at IBM T.J. Watson Research Center. The
ALDOR compiler has been available as part of the AXIOM system since late 1994,

and is now released as an independent software.

2.2. Overview 11

(v AXIOM 3D = =«]~ NN - =

. Erner] R == 1=

& e Y

4 C LN |

\ 1€ |7 .

] — ax)
"Q *
s T e=T=]|
(3 ::.-.::I fAxes I,.nu.a] Bl Hide
(3 ight [|view Volume || Save Quit
ol e e e e

- 4 rd - L

|drawf surface{x*cos(y),x*sin(y),y*cos(x)), x=-4..4, y=0..2%%pi, varlSteps==40,
\var2Steps==40, title=="Trig Screw')
‘ Conpiling function %N with type (DoubleFloat,DoubleFloat) —»

DoubleFloat
Conpiling function %P with type (DoubleFloat,DoubleFloat) =>

DoubleFloat
Conpiling function %R with type (DoubleFloat,DoubleFloat) >

DoubleFloat
Transmitting data...

| (3) ThreeDinensionalViewport: "Trig Serew” Q

Figure 2.2: AXIOM graphics.

2.2 Overview

AXIOM has both an interactive mode for user interactions and a programming
language for building library modules. In the interactive mode, users can evaluate
arithmetic expressions, declare and define variables, call library functions and define
their own functions. Figure 2.3 shows how to create a Hilbert Matrix in AXIOM’s
interactive mode. The (i,j)-th entry of a Hilbert matrix is given by 1/(i + j + 1).

The user can also collect AXIOM statements and commands into files, called
“input” files, and then run them as scripts in the interactive mode. Actually, any
thing that one can enter directly in the AXIOM interactive mode can be put into an
input file. This provides programmers with a very convenient way to write functions
and large blocks of programs, then test and run them.

AXIOM has an efficient mechanism to compile and execute programs. When

AXIOM can completely determine the type of every object in a program, it trans-

2.2. Overview 12

—+ a:Matrix Fraction Integer:=matrix[[1/(i+j+1) for j in 0..9] for i in 0..9]

(¢ L2 22 2 a3 1]
2 3 4 5 6 7 8 9 10

t 1f 144 v L1y
2 3 4 5 6 7 8 9 10 11
i O O s e o
3 4 5 6 7T 8 9 10 11 12
113131113711
4 5 6 7 8 9 10 11 12 13
111 3111074 1
5 6 7T 8 9 10 11 12 13 14 (1)
112131013771
6 7 8 0 10 11 12 13 14 15
111171311171
Y 8 9 10 11 12 13 14 15 16
1111111713171
8 9 10 11 12 13 14 15 16 17
1 1 1 1 1 1 1

—
=
—
o
—
2]
—_
e
—_
=
—
o
o
(=71
—
b
—
oo
—
L=

Type: Matrix Fraction Integer

Figure 2.3: Hilbert Matrix.

lates SPAD code into CoMMON LiISP or into machine code. To be more precise,
when a program is compilable, it is either compiled into CoMMON LisP and then
interpreted by the COMMON LISP interpreter, or it is further compiled from Cowm-
MON LISP to machine code. This depends on the overhead of further compilation
during run-time. When AXIOM cannot completely determine the type of every
object in each function, the program may still be executed in the interactive mode.
In this mode, each statement is analyzed and executed as the control flow indicates.

The typical way of programming in AXIOM is as follows. The programmer
creates an input file defining some functions for his or her application. Then, the
programmer runs the file and tries the functions. Once everything works well, the
programmer may want to add the functions to the local AXIOM library. To do so,
the programmer needs to integrate his or her code in AXIOM type constructors
and then invoke the compiler.

By definition, an AXIOM type constructor is a function that returns a type
which can be either a category, a domain, or a package. Roughly speaking, a domain
is a class of objects. For example, Polynomial domain denotes polynomials, Matrix

domain denotes matrices. A category is a class of domains which have common

2.2. Overview 13

properties. For example, the AXIOM category Ring designates the class of all
rings with units, any AXIOM domain that has this property belongs to the category

Ring. The source code for the category Ring is shown below.

Ring(): Category == Join(Rng,Monoid,LeftModule(’)) with

--operations

characteristic: () -> NonNegativeInteger
++ characteristic() returns the characteristic of the ring
++ this is the smallest positive integer n such that
++ \spad{n*x=0} for all x in the ring, or zero if no such n
++ exists.
—— We can not make this a constant, since some domains are
-- mutable

coerce: Integer ->
++ coerce(i) converts the integer i to a member of
++ the given domain.

unitsKnown
++ recip truly yields
++ reciprocal or "failed" if not a unit.
++ Note: \spad{recip(0) = "failed"}.

add
n:Integer

coerce(n) == n * 1%$%

From the above AXIOM source code we can observe another important concept:
categories form hierarchies. We can see that Ring is extended from the categories

Rng, Monoid and LeftModule. In addition, we can observe that Ring has
e 2 operations: characteristic, coerce,
e 1 attribute unitsKnown,

e and 1 default implementation for the operation coerce: Integer -> Y.

2.2. Overview 14

The programmer can construct his (her) own categories by extending existing cat-
egories. This requires knowledge of the existing hierarchies. Figure 2.4 shows a

fragment of the hierarchy of the AXIOM algebraic categories.

SetCategory

Ordered OrderedMonoid

Abelian

OrderedSet

SemiGroup
-
AbelianGroup

Ring { OrderedRing

Figure 2.4: Algebraic category hierarchy in AXIOM (partial).

Next to the concept of category, domain is easier to understand. It actually
corresponds to the notion of data type. When a domain is defined, it is asserted to
belong to one or more categories and promises to implement the set of operations
defined in these categories. After a newly defined domain is compiled, it becomes
an AXIOM data type which can be used just like a system-provided data type.
The programmer usually needs to design a lower level data structure to represent
the objects of the domain. When a domain is instantiated, the AXIOM system will
allocate memory for those data structures.

Packages are special cases of domains. Usually, a package is a place to hold a

collection of polymorphic functions that work on many different domain types. In

2.3. The underlying Lisp 15

other words, these polymorphic functions are generic functions that can accept any
data type for one of its parameters. When a package is compiled, its functions are
added to the local library. The user is responsible to load a compiled package into

memory before using its functions.

2.3 The underlying Lisp

As above mentioned, AXIOM has a very high-level programming language called
SPAD. The AXIOM compiler translates SPAD code into CoMMON Lisp, then
invokes the underlying LiSP compiler to generate machine code. There are 3 dis-
tributions of CoMMON Lisp that have had AXIOM builds in the past. AXIOM
was initially built on the CMUCL (Carnegie Mellon University COMMON Lisp) dis-
tribution but was quickly moved to AKCL (Austin Kyoto CoMMmON Lisp). Now
GCL (GNU ComMmoN Lisp) [1] is the underlying Lisp of AXIOM. The design of
GCL makes use of the native C compiler for compiling to native object code. This

provides both good performance and portability [40].

2.4 The GMP library

GCL extensively makes use of functionality from the highly optimized GMP li-
brary (or GNU MP library). The GMP library is a portable library written in C
for arbitrary precision arithmetic on integers, rational numbers, and floating-point
numbers.

Many applications use just a few hundred bits of precision; but some applica-
tions may need thousands or even millions of bits. GMP is designed to give good
performance for both, by choosing algorithms based on the sizes of the operands,
and by carefully keeping the overhead at a minimum. The performance of GMP is

achieved

e by using full machine words for every basic arithmetic type,

e by using fast algorithms,

2.5. Writing code at SPAD, Lisp, C and ASSEMBLY levels 16

e by including carefully optimized ASSEMBLY code,

e and by a general emphasis on speed (as opposed to simplicity or elegance).

2.5 Writing code at SPAD, Lisp, C and ASSEMBLY
levels

As above mentioned, the SPAD code is translated into Lisp code by the SPAD
compiler, then translated into C code by the GCL compiler. Finally, GCL makes
use of a native C compiler, such as GCC, to generate machine code. Since those
compilers can generate fairly efficient code, programmers can concentrate on their
mathematical algorithms and write them in SPAD. However, to achieve higher
performance, our implementation also involves lower level development, see Figure

2.5. Our reasons are as follows.

Implementing abstract

SPAD -

mathematical algorithms

Constructing / manipulating
LISP/C | —=—

underlying data structures

Implementing

ASSEMBLY <— .
efficiency—critical parts

Figure 2.5: Language levels in AXTIOM.

e We are curious about how exactly a compiler can optimize our code, and what

it cannot do for us.

2.5. Writing code at SPAD, Lisp, C and ASSEMBLY levels 17

e Our work is largely motivated by modular methods. High performance for
these methods relies on appropriately utilizing machine arithmetic as well as
carefully constructing underlying data structures. This requires us to look into
machine-level stuff, such as machine integer arithmetic, memory hierarchy, and

processor architecture. At this level, C and ASSEMBLY code is preferred.

e We are also interested in parallel programming which is not available at SPAD
level. Instead, it can be achieved in Lisp and C. We will explain where we
used parallelism programming in Chapter 5. Another reason for our LIsP level
implementation is that, we are willing to directly manipulate these Lisp level
data structures rather than those at the AXIOM level. This will avoid some

potential overhead.

Certainly, we are not going to implement too many things at the intermediate or
low level. In fact, AXIOM’s great strength has been in research and development
of mathematical algorithms. Thus, we have implemented all the high-level abstract
and generic mathematical algorithms in AXIOM, more precisely, in the SPAD

language.

Chapter 3

Adapted Data Structures 1

In order to manipulate mathematical objects in a computer algebra system, we must
represent them in memory by means of data structures. For example, in AXIOM,
a square matrix M of order n with coefficients in some ring R is represented by a
n X n two-dimensional array with entries in R. This representation is called dense,
since all the coefficients of M are encoded. Other representations can be used for
matrices, such as sparse representations, where only the non-zero coefficients are
encoded.

In this chapter, we review sparse and dense representation for univariate and mul-
tivariate polynomials. Then, we describe their implementation in our AXIOM code
combining the Lisp and the SPAD levels. We also explain the C and ASSEMBLY
level implementation for univariate polynomials over finite fields, as presented in
Chapter 4. Finally, we report on experiments that illustrate the benefits of our

multi-level software architecture.

3.1 Polynomial data representation

The source code of each AXIOM domain defines a special local variable, called
Rep. Its value is the data structure used for representing the objects of this domain.
The following code shows a fragment of the source code of the domain constructor

SparseUnivariatePolynomial, abbreviated as SUP.

18

3.1. Polynomial data representation 19

[

SparseUnivariatePolynomial (R: Ring): UnivariatePolynomialCategory(R)
with
outputForm: (%, OutputForm)-> OutputForm
++ outputForm(p, var) converts the SparseUnivariatePolynomial
++ p to an output form printed as a polynomial in the output
++ form variable.
fmecg: (%, NonNegativeInteger, R, %) -> %

++ fmecg(pl, e, r, p2) finds X: Pl - r*Xx*xexp2

© 0 N O O s w N

== PolynomialRing(R, NonNegativeInteger)

-
o

add

[
[y

—-- representations

[EY
N

Term := Record(k: NonNegativelnteger, c:R)

13 Rep := List Term

For a given AXIOM ring R, this domain SUP(R) implements the ring R[x] of uni-
variate polynomials with coefficients in R. The variable x is not specified since R [x]
and R[y] are clearly isomorphic. The representation of these polynomials is sparse,

which means that only non-zero terms are encoded. More precisely,

e cach term is encoded as a record consisting of a non-negative integer, the degree

or the exponent of the term, and an element of R, the coefficient of the term;

e a polynomial p of SUP(R) is represented by a list of terms such that the fol-
lowing conditions hold:
(1) none of these terms has a zero coefficient,
(7i) two different terms have different degrees,
(7i1) the sum of these terms equals p.
It follows that the null polynomial of R[x] is encoded by the empty list.
In addition, the representation of the elements of SUP(R) is canonical, which

means that there is a one-to-one map between the ring R[x] and the representation

of the objects of SUP(R). For a given polynomial p of SUP(R), this canonicity is

3.1. Polynomial data representation 20

achieved by sorting the list of its terms w.r.t their degrees. The SUP constructor
chooses to sort terms by decreasing degrees. Hence, the leading coefficient and
the degree of p are respectively the coefficient and the degree of the first term of
p- As shown in the left frame of Figure 3.1, where R is for instance the ring 7Z
of the integers, the univariate polynomial 72* + 3 has ((4 7)(0 3)) as its sparse
representation. Another possible representation for the univariate polynomials of

R[x] is the dense one where a polynomial p is given by a record consisting of
e a non-negative integer d, which is the degree of p,

e an array a of size d + 1, called the coefficient-array of p, such that its i-th

entry is the coefficient of z* in p, for all 0 <7 < d.

Univariate Multivariate
7X4+3 2YX+5
Sparse: ((4 7) (0 3)) Sparse: (X (1(Y (1 2)) (0O 5))
Dense: (4, [7,0, 0,0, 3]) Dense: (X 1[(Y 11[2,0]), 51)

Figure 3.1: Sparse and dense polynomial representation.

In the left frame of Figure 3.1, we show the dense representation of 7z* + 3. Ob-

serve that, for convenience, the entries of the coefficient-array for p are shown by

3.1. Polynomial data representation 21

decreasing index from left to right. Other representations are used for univariate
polynomials, such as the expression tree of the MAPLE computer algebra system.
We refer to [18] and [41] for comprehensive discussions of polynomial representations
and their implementations in a computer algebra system.

Both the sparse and the dense representations of univariate polynomials can be
used recursively for implementing multivariate polynomials. Indeed, bivariate poly-
nomials of R[x,y] can be viewed as univariate polynomials of R[y] [x] or R[x] [y].
In the right frame of Figure 3.1, we show the sparse and the dense representations
of the bivariate polynomial 2 x y + 5 regarded as a polynomial of R[y] [x]. Observe
that the univariate representations require a slight modification in order to be used
for representing multivariate polynomials: they need to keep track of the variable
in the representation.

Each of these representations (sparse, dense, expression-tree) of univariate or
multivariate polynomials has its strengths and drawbacks. Let us look at two ex-
treme situations for illustrating this fact. Consider first a multivariate polynomial
pn, With many variables X, ..., X, say n = 100, high degrees w.r.t. each of them,

say d = 100 again, but few terms, say

. Xipoi+1 if n>1 1)
XI+1 if n=1
The size of the dense representation of p is in the order of O(nd) elements of the
coefficient ring, whereas the size of the sparse representation is only in O(d).
Consider now a univariate polynomial u of high degree, say d = 1,000, 000, and
with coefficients in Z/pZ (The field of integers modulo the prime number p) for a
small prime p which fits in a machine word. If there is a coefficient at each degree,
the sparse representation of u would consist of a list of d records which may be
scatteredly allocated in memory. Instead, the dense representation of p could be
a block of d consecutive words in memory, allowing much faster access to a given
coefficient.

In order to continue our comparison between the spare and the dense representa-

tions, consider the implementation of polynomial addition. Here again, we consider

3.1. Polynomial data representation 22

two extreme situations. First, assume that f and g are two univariate polynomials
such that g consists of a single term of degree greater than that of f. In the sparse
case, one can implement g + f just by creating a list with the term of g as “CAR”
and the terms of f as “CDR”, which amounts to O(1) memory allocations. In the
dense case, one needs to allocate a new array of size deg(g) + 1.

Assume now that our polynomials f and g have large degrees and many non-zero
coefficients. In the sparse case, the implementation of f + g follows the scheme of a
list merging algorithm. In addition, it requires many memory allocations of “small”
pieces of memory (one per new created term). In the dense case, once the coefficient-
array of the result has been allocated, the implementation of f+ ¢ consists a straight

forward loop to walk through the terms, something of the form:

for i in O0..n repeat

r.i::=f.i+ g.i

(r is the sum of f and g) which may clearly run faster than the addition in the sparse
case. Moreover, the dense representation makes the management of the memory
more efficient.

Therefore, the choice between the sparse and the dense representations depends
on the application. If the polynomials involved in some computation remain sparse,
that is, if they have few non-zero terms compared to their degrees, then there is no
point in using a dense representation. On the contrary, if the input polynomials are
dense, or if the computations will “densify” the intermediate polynomials, it makes
more sense to use the dense representation.

A typical algorithm which tends to densify the computations is the Euclidean
Algorithm which is an algorithm for finding the greatest common divisor of two
univariate polynomials over a field(or two integer numbers). Consider for instance

the following input polynomials
ro =2+ 2 +1 and r =2 +2° +1 (3.2)

in the ring Q[z]. The successive remainders of the Euclidean Algorithm applied to

ro and rqy are

3.1. Polynomial data representation 23

o 1y =0 42 4% 4 440 4 410 41

o ra =5 44240 — 3 4222 22 3284221044210 -22845

_ 1 .42, 1 .40 4 34,1 .32, 3 .2 4 .24 2 18 2 .16, 1 10 __
e Ty =T +25x T4+ x4+ = T 55 L 55 T +25a:
138 _ 1
% T T3
_ 1001 .40 29 .38 A6 154 .34 T4 39 23 30 23 98 273 .2
®T5="%p5 T T35 7T +125 625 L 125 T —1—2530 195 Tt G T
121 024, 8 292 8 20 367 518 123 .16 66 .14 _ 66 ,12 | 560 .10 _ 203
625 + i L e T tes Tt 125 Tt 65 T 62s 2%+
6 1.4, 1 124
x 5 T+ g5 2? + 125
_ 525625 .38 , 20000 .36 _ 3750 .34 , 768750 .32 416875 .30 _ 166875 .28
® 76 = 502001 ¥ T 1002001 13013 £~ T 1002001 ¥ 1002001 * Too2001 £ T
2500 ;26 _ 101250 o4 145000 22 | 404375 ,20 _ 184375 18 _ 2166250 ;16 _
11011 91001 1002001 1002001 1002001 1002001
108750 ;14 23750 ;12 60000 .10 _ 2987500 ;8 453125 6, 90625 .4 643750 .2
91091 91091 1002001 1002001 1002001 1002001 1002001
1575625
1002001
_ 511511 36 _ 1439438 .34 | 1088087 .32 | 7007 ,.30 _ 558558 ,.98 | 1924923 ,.26 _
® 7 = 707281 701281 Tt Tor2st Tt 24389 707281 + Zors1 T
861861 .24 19019 .22 | 634634 .20 | 2466464 18 _ 525525 o6, 10010 .14 _ 420420 .12
707281 21389 Tt 7omast L7 tTomast T " 7or2st £ Tassg £ " romaet £ T
4358354 .10 _ 2640638 .8 _ 5005 .6 | 30030 1477476 2 _ 1178177
707281 L Zor2st L~ 21339 T T 2a389 at + “Tor2s1l L 707281
_ 1396901 .34 _ 1306073 .32 31117 252300 ,.28 2249675 ,.26 , 140447 , 24
® T8 = S61121 L 261121 37303 ~ 261121 So1121 Lt 30 TTT
407044 ;22 1982237 20 487780 ,18 65598 .16 802314 ,14 248936 12 102602 10 |
261121 261121 37303 37303 261121 37303 5329
2434695 .8 _ 458345 .6 _ 1977191 .4 _ 1869543 .2 | 932669
261121 * 261121 * 261121 * 261121 L T 61101
_ 51751 .32 | 785018 .30 4 494137 .28 | 91469 .26 _ 1803830 ,.24 | 222796 ,.22
® T9 = 3758921 +a7ms0ar T tavssoar ¥ 1 avssoat L a7ss921 L Tasosin LT
2800989 .20 | 1538110 .18 _ 2954091 .16 | 2020692 .14 | 1194718 .12 | 40369 10 _
2758021 L T 75som1 L 2758921 + 57hsoar £ 1T o7msoar £ T ormsont T
4301598 1421091 .6 , 1051638 .4 _ 811468 .2 _ 2893282
2758921 2%+ 3758021 L T 7ssoar £ amesoal L T a7ssonl
_ 2444992 .30 | 2089538 .98 _ 2219096 .26 _ 22750717 ,.24 | 6844981 ,.22 | 1019854 .20
® 710 = Soriost L T so7izst £ soriast L sorisi L Tsorizst ¥ Tagooazr L+
wxls_%x16+w 14 _ 486673 m12_wxlo_97lﬂm8+
8071281 2690427 896809 071281 8071281 2690427
852132 16 | 191015 ;4 _ 1376969 ;2 _ 18350033
896309 896309 8071281 8071281
__ 821049 28 | 1230153 .26 7537173 ,24 | 1423341 22 804003 .20, 19361415 .18 _
® 711 = 511696 + 135001 L 1083392 + 1083302 T 511696 £ T Tos3z0z ¥
9889521 .16 , 309669 .14 |, 2951799 12 , 12275961 .10 _ 1082421 .8 , 184665 .6
1033302 £ T T3pa24 T T Tosaz02 £ 1 Tosszon L 135004 Tt o0sas T T
71025 4 | 7338303 42 4707557
47104 1083392 1083392

3.1. Polynomial data representation 24

2879600 1I26-—-2819432 24_+_687608 22 1300512 :r20_+_5881560 18 _ 4015064 1I16-%

® T12 = Tg3591 83521 83521 83521 83521 L 83521
681168 .14, 130456 .12, 34SATT6 10 3296176 ,8 | 218224 .6 4 112424 .4 | 2110206 ,.2_
83521 + 83521 +o%831 7 83521 L T3s01 L Ts3mor L T g3pa1 L
1857480
83521
_ 480204629 24 84853001 .22 | 15566407 ,.20 _ 51711050 .18 , 848011833 ,.16
® 713 = 344922500 ¥ 242022500 £ T 122161250 ¢ 18982500 L 1 2ag929500 L
11383099 .14 , 66509593 .12 , 44817253 .10 , 322278061 .8 7199857 .6 2507653 .4
61230625 £ 224920500 £ T 244020500 £ T 122461250 £ 61230625 £ 244922500 L T
1074213 2 | 79874687
244922500 48984500
101577545700 .22 , 367076384000 .20 _ 333608859000 .18 , 272633704600 .16
® 714 = g664m5549721 L T 2866455549721 L 9866455549721 L T 2s6odpspaorar L T
73493401600 .14, 181230098700 12 95624508700 10 70116632400 .8 | 95985644200 6
2866455549721 2866455549721 2866455549721 2866455549721 2866455549721
93781623400 4 _ 233932044800 .2 | 30036190800
2866455549721 2866455549721 2866455549721
_ 179398565293636 .20 _ 54943352709941 18 , 117687363770051 .16 , 9087736866857 .14
® 715 = 70531900693521 3510633564507 T 10531900603521 © 1 10531900693521 © T
2750313958149 12 _ 2031401369681 .10 _ 7870248236452 .8 | 27346806912740 6 | 61025918153235 ;4 _
3510633564507 10531900693521 3510633564507 10531900693521 10531900693521
95570062105008 ;.2 | 2527309767739
10531900693521 1170211188169

® I = 2517066778702173 ;IIS-— 3818112212630217 1I164— 381679883443605 1E14-— 1538892758851425 if12-—
16 — 11227749627077776 11227749627077776 11227749627077776

11227749627077776

388249516683645 10 _ 691018345032231 8 60451575413454 .6 963937271272515 4

5613874813538888 L 2806937406769444 L T 701734351692361 © 11227749627077776 L

170313672155631 :r2 _ 2469351761856789
11227749627077776 11227749627077776

P — 849182055193466800 :Elﬁ%—343702214828429548 :E14#_682224379091263268 ZElQ%—673295990111439292 iElO—%
17 = 601565221018811449 601565221018811449 601565221018811449 601565221018811449

547091169006122260 :t84+7460333296636481632 :r64+7383125215937085648 :E44+7294034834904863988 372‘F
601565221018811449 601565221018811449 601565221018811449 601565221018811449

429248529314696936
601565221018811449

8093646079436159529 JZ14 + 8963514770014081139 1J2 + 36664367930801793141 £U10 _
64225707449292490000 64225707449292490000 64225707449292490000

5166279318582404449 :ES%_1655921845497232367 1¥{+_553008257063777544 1t4—+-5923554723478841499 JZQ-—
12845141489858498000 8028213431161561250 4014106715580780625 64225707449292490000

311063035823698661
32112853724646245000

® 718 =

® I'q — _321061300213427783600 :E12_+_260178685392579511400 :rlo___50329696078066373200 LES—F
19 = 108894438325788541209 36298146108596180403 15556348332255505887

65235764858211154700 :EG%_17696479989822163900 £E4%—34027149119020814900 :EQ—% 49162422013935572500
108894438325788541209 36298146108596180403 36298146108596180403 108894438325788541209

4829115100553781731631 ixlo___2757078265767537479145 :x8_+_2023158681969000162489 itﬁ—%
401242596572878762276 401242596572878762276 802485193145757524552

1601998453967540114703 4I4 + 1613072222486808321189 :xQ + 373138984504746247389
802485193145757524552 802485193145757524552 802485193145757524552

® T2 =

3.1. Polynomial data representation 25

® 'y = — 37302462364041459452987 568+ 2941869220852112384353 CCG— 10204521350404552579523 $4—
21 214155589697125984393929 142770393131417322929286 428311179394251968787858
19661683201604262591215 2 34803628802314892079373

428311179394251968787858 = 428311179394251968787858

Ty = 1062516113981431489446399 ZIZ‘G— 1984430997558975837247707 1.4_ 9998817850051608518344935 a:2_|_
22 55486579353465726911265604 55486579353465726911265604 55486579353465726911265604

13859935515210895384665945
55486579353465726911265604

__ 67553029541578289076276832 1,4+ 6469282280812842012581780 .2 117836407258993771969728352

® 723 = “5271590127845040063150069 1757196709281680021050323 5271590127845040063150969
o 1o, — _ L44803287203662194035203091 2 | 23864545606303620039550371
24 = 7 "20560880907683469568857664 2570110113460433696107208
o 1or — 1474954192646018616432640872
25 — 3982491846600722083699067449
® 7 =0

The same observation is true for the “variants” of the Euclidean Algorithm such as
the Extended Euclidean Algorithm or the Subresultant-GCD Algorithm [17, 18].
Another major observation on the above example is the swell of the size the
intermediate expressions. This problem is usually overcome by the so-called modular
methods. The standard modular approach for the above GCD computation would

be to

e compute the ged g; of the input polynomials rq and r; modulo several primes

pi, fori=1,2,3,...,

keeping only those g; with minimum degree,

recombining them by the Chinese Remainder Algorithm into a polynomial h,

until A = 1 or until A divides both the input polynomials r¢ and 7y,

then return h.

See [17,18] for a precise algorithm.

The “densification” will happen also for the Euclidean Algorithm applied to
Z/pZ[z] for a prime integer p. With the previous input polynomials, consider p =
9001. Then we have

Py T2:I56+2$48+I40+I10+1

3.1. Polynomial data representation 26

o r3 = 52 + 424 + 900023 +222° + 900022* 4 8998218 4 2216 + 4219 + 89992° +- 5

o v, = 72012* + 86412%° + 144023 + 7201232 + 7921226 + 14402%* 4+ 72028 +
720216 + 8641210 + 46802 + 1800

o 5 = 71882 + 1439238 + 6913230 4 581823* + 5328232 + 7212%0 + 1656228 +
6870220 + 1858x2% 4 6121222 + 576220 4+ 7085218 + 29216 + 3243214 + 4752212 +
4451210 4+ 198728 + 2% + 1800x* + 864122 + 73

o 76 = 35302 4 2810230 + 7811234 + 5623232 + 83742 + 7495278 + 721127 +
441122+ 2130272 + 1121220 4 278628 + 280121° + 4071214 + 4924212 + 571210 +
10532® + 44062° + 9192* + 743922 + 1962

o 17 = 4399230 1 657423 + 5271232 + 64332 + 5906228 + 1036220 4 2822224 +
541222 + 2710220 + 173028 + 6331210 + 1892 + 6865212 + 2341210 + 175728 +
44062 + 567x* + 6735x% + 5844

o rg = 606z + 2338232 + 274230 + 78242% + 67572 + 1196x%* + 2859222 +
24242 + 867428 + 8119216 4 3998214 4 2192212 4 729219 4 19072® + 88132° +
65887* + 541022 + 4561

o 1y = 6115232 4 816123° + 5652228 + 2489226 + 275922 + 61272 + 661822 +
52972 + 2736216 + 479521 + 2691212 + 5423210 + 287728 + 427520 + 1052 +
230722 + 3385

o 710 = 8204230 + 1190228 + 2142226 + 6505224 + 979222 + 8554220 + 2875218 +
647320+ 7687214+ 1669224602320+ 651528+ 642725+ 633124+ 74872248033

o 1y = 2411228 + 688122° + 3058224 + 266622 + 23422 + 875928 + 8138216 +
63472 + 123521? + 536210 + 787328 + 697128 + 3473z* + 372022 + 1513

o 715 = 1261220 + 64742 + 1965222 + 7050220 + 374628 + 6858216 4 4743214 +
7247212 + 8181210 4 304528 + 564820 + 24242* + 316222 + 5309

o 713 = 5906x%* + 347222 + 878822 + 37092 + 6619216 + 797514 + 7395212 4
6255219 + 836728 + 414925 + 3955x* + 361822 + 7512

3.1. Polynomial data representation 27

o 1y = 47502%% + 5939220 + 2877218 + 576020 + 8653 + 8488212 + 4333210 +
398128 + 63012° + 5558z* + 80922 + 4201

o 115 = 433622 + 4218 + 118220 + 16632 + 62422 + 5944210 4+ 30528 4+ 307825 +
86852* + 133422 + 2936

o 115 = 605128 + 551216 4 4152 + 1415212 + 479020 + 84682° + 241525 +
7982z* + 682727 + 4702

o 17 = 6024210 + 53942 + 4088212 + 1448210 + 618128 + 41762° + 8815z* +
53252% + 5532

o g = 73032 + 2528212 4 2944210 4 452128 + 605025 + 38042* + 125222 + 5950
o 119 = 541022 + 151420 + 36012° + 4202° + 932* + 685522 + 7966

o 1y = 7529210 + 71162% + 153125 + 78692* + 92422 + 3800

o 7o = 86842% + 343825 + 30462* + 226327 + 5606

® 19 = 34122° + 64172* + 502122 + 5406

® o3 = 518x* + 737122 4+ 3257

o 79y = 86022 4 7762

® 795 = 2682

o o6 =10

Therefore, one should use a dense representation for implementing the Euclidean Al-
gorithm. Moreover, in the case of Z/pZ|z], the coefficients have a bounded size. For
instance, if p fits in a machine word, like above, one can implement the coefficient-
array of every polynomial f € Z/pZ|x] of degree d using an array of d + 1 machine
words. This gives an additional reason for using the dense representation in this

case.

3.2. Dense recursive multivariate polynomials at the SPAD level 28

3.2 Dense recursive multivariate polynomials at
the SPAD level

When we started our work, the AXIOM libraries (written in SPAD) provided only
sparse (univariate and multivariate) polynomials. In our experiments, we used the

AXIOM domain constructors
e SparseUnivariatePolynomial, presented above,

e SparseMultivariatePolynomial, abbreviated as SMP, which provides sparse
multivariate polynomials viewed as univariate polynomials, implemented by

means of SUP.

AXIOM provides other sparse multivariate polynomials. For instance, the domain
constructor DistributedMultivariatePolynomial which implements multivariate
polynomials as lists of terms, where each term consist of a coefficient and a multi-
variate monomial. See [22] for more details.

We have implemented a domain constructor, called DenseUnivariatePolynomial,
abbreviated as DUP, for univariate polynomials in dense representation over an arbi-
trary AXIOM ring. Based on the DUP, we have implemented a constructor, called
DenseRecursiveMultivariatePolynomial, abbreviated as DRMP, for multivariate
polynomials in dense representation over an arbitrary AXIOM ring.

For a given AXIOM ring R, the domains SUP(R) and DUP(R) provide exactly
the same operations, that is they have the same user interface, which is defined by
the category UnivariatePolynomialCategory(R). But, of course, the implemen-
tation of the operations of SUP(R) and DUP(R) is quite different, as we saw in the
case of the addition. In SUP(R), we are mainly dealing with the data structure
“Linked List”. On the other hand, in DUP(R) we are primarily working with the
data structure “Array”. Similarly, the domains SMP(R) and DRMP(R) both satisfy
PolynomialCategory(R). See [22] for more details.

Another major concern with our implementation of the constructors DUP and

DMPR is to minimize memory consumption. For instance, destructive operations,

3.2. Dense recursive multivariate polynomials at the SPAD level 29

that is, operations which recycle the memory allocated to some of their arguments,
are used intensively. One typical example for this is polynomial division. Consider
two univariate polynomials f = ¥ a;z° and g = X" b;z* of positive degrees and such
that the leading coefficient b,, of ¢ is invertible. The quotient ¢ and the remainder

r in the division of f by ¢ can be computed by the following standard algorithm

n < m = return (0, f)
r.=f
forio=n—m,n—m—1,...,0 repeat

if degr = m + i then
¢; := leadingCoefficient(r) / by,
ro=1r— gy

else ¢; .= 0

q = X5 g’

© oo N O Ot e W NN

return (¢,)

Since the degree of the polynomial r decreases during the execution of the algorithm
one can avoid memory allocation in Step (6) and recycle the space allocated to 7.
Of course, if we do not want to destroy f we must replace Step (2) by r := copy f.

This technique of memory recycling is straightforward to implement in the case
of the polynomial division. Consider now the Karatsuba algorithm for polynomial
multiplication [24]. This is a divide-and-conquer algorithm that we recall below for
the case deg(f) = deg(g) = n. (One can easily reduce the general case to this
case by adding a “zero leading coefficient” to the polynomial of smallest degree.)
It performs O(n'°%2®) operations of the coefficient ring, which is better than the

classical quadratic multiplication algorithm.

1 if n =1 then return agbg
2 p:=[n/2]

3 (f1, fo) := divide(f,z")

4 (g1, 90) := divide(g, z?)

5 low := fogo

3.3. Dense recursive multivariate polynomials at the Lisp level 30

high := fi g1
middle := (f1 — fo)(91 — 90)
maddle := middle — high — low

return high % + middle ¥ + low

O oo N O

Observe that

e Steps (3) and (4) do not need a polynomial division; for each of the polynomials
f and g, they separate the terms of degree less than p from the others, such

that we have f = fiaP+ fo and g = g12P+ go with deg(fy) < p and deg(go) < p.
e Steps (5), (6) and (7) are three recursive calls.

A direct implementation of this algorithm may lead to many memory allocations,
for creating the polynomials fi, fo, g1, go. In our implementation, we do not create
these polynomials explicitly. Instead, we use “markers” (or pointers) in the data
representation of the input polynomials f and ¢g. Note that we do not destroy any

data, we just avoid unnecessary data duplication.

3.3 Dense recursive multivariate polynomials at

the LispP level

The domain constructors SMP and DMP allow the user to construct multivariate poly-
nomials over any AXIOM ring. For this reason, we say that their SPAD code is
generic.

AXIOM supports conditional implementation in the following sense: if the coef-
ficient ring has some properties then a specialized algorithm can be called to speed
up a given operation. For instance, if the coefficient ring is Z/pZ, for a prime p, one
can use formulas such Little Fermat Theorem to speed up exponentiation.

Ideally, one would like to use also conditional data representations. For instance,
if the coefficient ring is Z/pZ, for a small prime p, one would like to use arrays of

machine words for encoding univariate polynomials over Z/pZ, as discussed earlier.

3.3. Dense recursive multivariate polynomials at the Lisp level 31

But the code would become quite complicated, (then harder to optimize from the
compilation point of view) since many tests would be needed for selecting the appro-
priate representation. Moreover, the special case of the coefficient ring R = Z/pZ is
so important (for modular methods) that it deserves an independent treatment.

For these reasons, we have realized a special implementation of dense multivariate
polynomials over Z/pZ, for a prime p (large or small). These polynomials are
implemented at the Lisp level which offers us more flexibility (less type checking,
better support from the machine arithmetic) than at the SPAD level, which is a
strongly-typed language.

Since we restrict ourselves to the coefficient ring R = Z/pZ, we can think of
improving the data representation presented earlier. Indeed, Let R be an AXIOM
ring. Recall that a polynomial f of SMP(R) and DMPR(R) is viewed as a univariate
polynomial constructed by SUP and DUP respectively. More precisely, a coefficient of
f is either another polynomial or an element of R. At the SPAD level, this disjunc-
tion is implemented by a union type. In order to reduce the number of indirections,
we follow the wvector-based approach proposed by Richard J. Fateman [14] where a

polynomial is either a number or a vector, as Figure 3.2 shows.

(3y2 + 5y + 1)x2+2yx+5
degree

s annl 4

variable Y274 [5]3]
M

Figure 3.2: Vector-based multivariate polynomial recursive representation.

In this representation, each constant polynomial is represented by a number
and each non-constant polynomial is represented by a vector. The first slot of a
vector keeps the information of current main variable of this polynomial, and the

second slot keeps the information of the degree of current polynomial respect to

3.4. Experimentation 32

main variable. In addition:

o If a coefficient is a polynomial, then the corresponding slot keeps a pointer

pointing to that polynomial or, say, another vector.

e If a coefficient is a number, then the corresponding slot keeps the pointer to

this number.

We implemented this data representation at LIiSP level, since we can directly use
so-called predicate functions to judge the type of objects. This technique avoids
union types and, thus, makes storage more compact. If we want to implement this
data representation at SPAD level, we have to wrap up those predicate functions
in Lisp and make them available for SPAD. This will introduce extra overhead.
Moreover, if p fits in a machine word, we will tell the compiler to use machine
integer arithmetic. This technique yields significant speed up, as reported in the

next section.

3.4 Experimentation

In order to compare our different polynomial constructors, we choose the algo-
rithm of van Hoeij and Monagan [20]. We recall its specifications. Let K =
Q(ay, ag,...,a.) be an algebraic number field over the field Q of the rational num-

bers. An example of such field is
Q(WV2,V3) = {a+ V2 + V3 +dV2V3 | a,b,ccQ}. (3.3)

Let fi, fo € K[y] be univariate polynomials over K. The algorithm of van Hoeij
and Monagan computes the ged(f1, f2) by using a modular method instead of the
Euclidean Algorithm.

Figure 3.3 gives the principle of the algorithm of van Hoeij and Monagan, which
is very similar to the standard modular approach given above for polynomial GCDs
in Q[y]. Figure 3.4 shows the complete flowchart of the algorithm of van Hoeij and

Monagan.

3.4. Experimentation 33

Input: f1,f2 € Q(ay,...,ae)|y]
Output: GCD(f1, f2)

Modulo several primes

fLf2€ Qlas, ..., ac)y] = f1,f2 € Z/piZ(ay, ..., a.)[y]

P1s--sPm

Euclidean

Direct method algorithm mod p

V Chinese remaindering W V

-~

GCD(f1, f2) + Rational reconstruction |9 € (Z/piZ)(ay, ... a)ly]

Figure 3.3: Principle of the algorithm of van Hoeij and Monagan.

The algebraic expressions in K are encoded with multivariate polynomials. There-

fore, the algorithm involves two polynomial types:

e a multivariate polynomial type for the coefficients of f; and f5, which are in

K

?

e a univariate polynomial type for f; and fo themselves.

As shown on Figure 3.5 p. 35 and Figure 3.6 p. 36, we have used the following

combinations:
Q(a1,az,...,a.) + Kly]
SMP in SPAD + SUPin SPAD
DMPR in SPAD + DUP in SPAD

Dense in Lisp + SUPin SPAD

Dense in Lisp + DUPin SPAD
Observe that

e the first two combinations, that is SMP + SUP and DMPR + DUP involve only
SPAD code,

3.4. Experimentation 34

‘ 1.set n=0, f1=fl/lc(fl) and 2=12/1c(f2) ‘

2. take a prime p that is not lc—bad

I
3. let g be the result of
the Euclidean algorithm
mod p

parej

5. n=0 or deg(g)<deg(G)?

6. deg(g)>deg(G) ?

no

.n is a Fibonacci number? ; - -
7. let G be result of Chinese Remaindering on

G mod m and g mod p,
set m=mp, n=n+1

yes

payrey

9. apply rational reconstruction tq
obtain h from G mod m.
| set G=d, m=p, n=1
10. apply the Euclidean Algorithm one more
prime p to obtain g and testifhmodp=g
if not goto step 4
|
11. Trial division, if h|fl and
h | 2 then return h,
otherwise go back to step 4

Figure 3.4: The flowchart of van Hoeij and Monagan’s algorithm.

e the other two use our dense multivariate polynomials implemented at the Lisp

level and univariate polynomials at the SPAD level.
At this point, we would like to stress the following facts

e the algorithms for addition, multiplication, division of our DMPR and our Lisp-

level dense polynomials are identical,

e none of the above polynomial types uses fast arithmetic (that is algorithms

based on the FFT).
Remember also that
e the SPAD constructors SMP, DMPR, SUP, and DUP are generic constructors, i.e.

they work over any AXIOM ring,

e however, our dense multivariate polynomials implemented at the Lisp level

only work over a prime field, that is a field of the form Z/pZ where p is a

prime number.

3.4. Experimentation 35

Therefore, we are comparing here is the performance of
e sparse representation versus dense representation when computations densify,
e specialized code at the Lisp level versus generic code at the SPAD level.

The benchmarks reported on Figure 3.5 and Figure 3.6 show that

Time (sec)

600
500 ~— non-modular method » Q (al,..,ae) [¥]
- Sparse, SPAD | Sparse. SPAD
modular methods /// == £
400 " .ﬁ“/// —=— | Dense.. SPAD | Dense, SPAD
300 —=— | Dense, Lisp Sparse, SPAD
200 —o— [Dense, Lisp Dense, SPAD
‘._/- Degree of the extension Q[al....an]: 50
100 = Degree of the input polynomials :40
total Degree 40*50=2000
0 L | | | | |

50 60 70 80 90 100 Maximum coefficient size

Figure 3.5: Comparison for a fixed total degree and increasing input coefficient size.

e dense representation in K|y| gives a slight improvement w.r.t. sparse repre-

sentation,

e specialized dense multivariate polynomials lead to a dramatic improvement

w.r.t. generic multivariate polynomials.

3.4. Experimentation

36

Time (sec)

350 M
o | |<@— non-modular method 2 Qa,.,a) [v]
—— | Sparse, SPAD | Sparse. SPAD
250 -
modular methods / / —— | Dense, SPAD | Dense, SPAD
200
\ / / —=— Dense, Lisp Sparse. SPAD
150
/ // —e— | Dense. Lisp Dense, SPAD
100
= / ‘-v-"'.
50 Coefficient size: 75
1 1 1 I | 1 |

0 200 400 600 800 1000 1200 1400 1600 1800 2000 Toatal degree

Figure 3.6: Comparison for a fixed input coefficient size and increasing total degree.

Chapter 4

Adapted Data Structures 11

4.1 Modular methods and fast arithmetic

Symbolic computations manipulate numbers by using their mathematical definitions
rather than using floating point approximations. Consequently, their results are
exact, complete and can be made canonical. However, they can be huge! Moreover,
intermediate expressions may be much bigger than the input and output.

Modular methods help keep the swell of the intermediate expressions under con-

trol. In broad words, a modular method for computing some quantity ¢ in a poly-

nomial ring R[X7,..., X,,] is an indirect way which
e performs the computations in R[Xy,...,X,|/Ty, ..., R[Xy,...,X,]/Zs, for
some ideals 77, ...,Z; in R, obtaining quantities, q1, ..., s,
e and constructs ¢ from ¢, ..., qs.

For a general discussion on modular methods, please refer to [17].

In this thesis, we restrict ourselves to modular methods where R is the ring Z
of the integer numbers and the ideals Z;,...,Z, are generated by prime numbers
Dls- -y Ps-

The simplest and most famous example of modular computation is that of the
determinant. Consider a square matrix A of order n, with integer entries. Let B > 0

be an upper bound for the absolute values of the entries of A and let C' be an upper
37

4.1. Modular methods and fast arithmetic 38

bound for the absolute value of its determinant d. For instance, we can use the

well-known Hadamard bound:

C =n"?B" (4.1)

Consider prime numbers 2 < p; < --- < p, such that their product m is larger
than 2C. Let A; be the image of A modulo p; and let d; be the determinant of
A;, forall i =1,...,s. It is easy to show that d; is also the image of d modulo p;,

for all i = 1,...,s. Let d be the image of d modulo m obtained by the Chinese

Remaindering Algorithm from dy, ..., d,, such that —mT_l <d < mT_l holds. Then,

it is easy to show that d’ = d holds. This approach has the following advantages:

e the running time complexity is better than with a direct exact method, say

Gaussian elimination,

e the size of the intermediate computations is kept under control, since most

numbers are in one of the fields Z/pZ, ..., Z/psZ,
e if the prime numbers py, ..., ps are small, we can use machine arithmetic.

See [17, 18] for the details on the complexity analysis of this approach.

On top of the Chinese Remaindering Algorithm, there is also another popular
way of reconstructing the desired result, namely Hensel lifting, which uses only one
prime number p;. Figure 4.1 shows the scheme of a modular method using only one
prime. Again, we refer to [17, 18] for more details.

Quite often, modular methods lead to perform computations in a polynomial ring
of the form Z/pZ[X;, ..., X,], where p is a prime number. This has an additional
advantage: for “good primes” p, one can use fast arithmetic, that is algorithms for

multiplication, division, polynomial GCD that are nearly optimal. These algorithms
e are generally based on the Fast Fourier Transform (FFT, for short),
e and generally reduce multivariate computations to univariate ones.

See chapter 6 and 7 for examples of fast algorithms over prime fields. In addition,

see [17] for an extensive discussion on fast arithmetic.

4.2. Univariate polynomials over 7Z/pZ as machine integer arrays 39

Problem over Modulo a prime Problem over
—
7 number p Z]pZ
Direct Modular
computation Computation

y y

Solution over Reconstruction Solution over
-
Z (eg. Hensel lifting) Z[pZ

Figure 4.1: Sketch of a modular method using only one prime.

Therefore, it is a main concern to realize a highly efficient implementation of the
univariate polynomial rings Z/pZ[X]. This is the topic of this chapter. Two cases

need to be discussed:
e p is a small prime, that is, p fits in a machine word,
e p is a large prime.

The first case can obviously be optimized. But the second case is important for

situations where small primes cannot be used.

4.2 Univariate polynomials over Z/pZ as machine
integer arrays

The dense polynomial representation is suitable for the class of algorithms in which
polynomials are generally densified such as the Euclidean Algorithm. This is also
true for our modular methods, which usually make use of variants of the Euclidean

Algorithm. As discussed in the previous chapter, a dense univariate polynomial is

4.2. Univariate polynomials over 7Z/pZ as machine integer arrays 40

represented by an array where each entry keeps a coefficient. If coefficients belong
to a prime field Z/pZ, then they are encoded by an integer in the range 0---p — 1.
If the prime number p is small, then every coefficient fits in a machine word. This
property allows us to use C-like arrays to encode the polynomials of Z/pZ[z].

As discussed in Chapter 2, the SPAD language is a Lisp-based language. So, a
SPAD array type is actually a Lisp array type. The underlying GCL provides us
with a special array type called fixnum-array. Following code shows the definition

of fixnum-array in GCL.

1 struct fixarray{

2 FIRSTWORD;

3 object fixa_displaced; /* displaced */

4 short fixa_rank; /* array rank */

5 short fixa_elttype; /* element type */

6 fixnum * fixa_self; /* pointer to the array */
7 short fixa_adjustable /* adjustable flag */

8 short fixa_offset; /* not used x/

9 int fixa_dim; /* dimension */

10 int * fixa_dims; /* table of dimensions */
11}

The field fixa_self is a pointer. The user can allocate a block of memory with
consecutive entries of fixnum, then let this pointer point to this block of memory.

Using fixnum-array for representing polynomials of Z/pZ[x] has three benefits.

Fast memory allocation. Like other GCL data types, fixnum-array uses the
GCL allocator system to allocate memory. Our experimentation results show
that GCL’s allocator is faster than malloc, the default allocater in C. So, we

usually let GCL create a new fixnum-array instead of invoking malloc in C.

Mimicking big integers. Both Fuclidean domains Z and K[z, where K is a field,

share many properties. The implementation of Z and that of dense univariate

4.3. Big prime case 41

polynomials over a field (in particular over a prime field) are also similar (see
Chapter 2 in [17]). Indeed, both can be encoded with radix representations.
Hence, adapting a code for big integers in order to obtain a code for univariate
polynomials over a prime field is a natural idea. Observe also that Kronecker’s
substitution can be used in order to perform univariate polynomial multipli-

cation via big integer multiplication.

GC friendly. GCL’s garbage collector is a tracing GC which traces reachable ob-
jects by pointers. Because a fixnum-array has no pointers within its data

fields, it can be recycled easily.

Figure 4.2 gives an example of a coefficient array implemented with fixnum-array,

in the small prime case. The big prime case deserves its own section, which follows.

Prime=1031

2
616X + 13X + 175

616| 13| 175

Figure 4.2: Encoding a univariate polynomial over Z/mZ in fixnum-array, small

prime case.

4.3 Big prime case

Most CAS provide multi-precision number arithmetic, also called big integer arith-
metic. Such numbers can be arbitrarily big as long as there is sufficient memory to

encode them.

4.3. Big prime case 42

Let f and g be two univariate polynomials in Z[x] such that every coefficient of
fy g, f+g, fglies in the range —m - - - m where numbers can be encoded by pairwise

different machine words. Then:
e cach of f and g can be encoded by an array of machine words, and

e cach of f+ g and fg can be computed exactly (that is without losing any

precision) by means of machine arithmetic.

Clearly, this will be faster than using big integer arithmetic for the coefficients of
fy g9, [+ g, fg. Ideally, we would like to turn all polynomial computations into
univariate polynomial computations over a small prime field in order to minimize
the use of big integer arithmetic. Unfortunately, this is impossible. Indeed, some
modular methods, for instance for solving systems of non-linear multivariate equa-
tions, require the use of big primes, since small primes would not be able to preserve
enough information from the input system and, thus, would make reconstruction
unsuccessful [10].

Currently, the open source AXIOM, and more precisely, the underlying GCL
employs the GNU Multi-Precision library (GMP) [16] for its big integer arithmetic.
So, every AXIOM integer is a GMP integer. (Former versions of AXIOM, in
particular the ones commercialized by NAG, did not have these properties.)

As mentioned above, for the modular methods considered in this thesis, all in-
teger coefficients of a polynomial are bounded by a prime number p. Based on this
observation, we still use fixnum-array as the data representation for dense univari-
ate polynomials with coefficients in Z/pZ for a big prime p. To do this, we just use
[log,;(p)| 4+ 1 machine words per coefficient, where M is the largest positive integer
which can be encoded in a machine word. Figure 4.3 shows a polynomial over such
a prime field, encoded with a fixnum-array. Besides faster allocation and easier
garbage collection, can this data representation help us write more efficient code?
The answer is yes. Using this data representation, we can accomplish tasks, such
as univariate polynomial addition, in ASSEMBLY code in a very efficient manner. In

fact, we just pass the pointers of our coefficient array to our ASSEMBLY functions

4.3. Big prime case 43

Prime=1844673709551667

1844673709551616 X + 6808310837013X + 542075307530175

~
1844673709551616] 6808310837013 |542075307530175

Figure 4.3: Encoding a univariate polynomial over Z/pZ with a fixnum-array, in

the big prime case.

and return the result to AXIOM (as shown in the Figure 4.4).

result| | | s | \l/ | S s ses | |

I _J_)w carry

pg]y] | | | e | * | ses sue ses | |

+ =
poly2 | [|| [N N [wwomoen | |
mod 5

p I:I:El:l n machine words encode
e i big integer.
Figure 4.4: Polynomial addition over Z/pZ.

Figure 4.5 and Figure 4.6 show benchmarks between

e The SUP constructor (from the SPAD level, described in Chapter 3) instanti-

ated over a big prime field
e UMA, our dense univariate polynomials written in Lisp, C and ASSEMBLY code.

In the case of univariate polynomials over Z/pZ, for a big prime p, Figure 4.5
and Figure 4.6 clearly illustrate the benefits of our implementation combining Lisp,

C and ASSEMBLY code.

4.3. Big prime case

0.025 :
SUP
UMA
0.02 | |
_ 0015} |
g
°
=
& o1} 1
0.005 | 1
0 I Il 1 1
0 5000 10000 15000 20000 25000 30000

Degree

Figure 4.5: Polynomial addition over Z/pZ in the big prime case.

90

"SUP ——
UMA

60

50 -

Time [sec]

30

0 T | . . .
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Degree

Figure 4.6: Polynomial multiplication over Z/pZ in the big prime case.

Chapter 5

Highly optimized low level

routines

5.1 Introduction

As previously discussed, selecting adapted data structures and fast algorithms is one
of the dominant factors for high performance of exact polynomial computations. In
this chapter, we would like to focus on another factor which is less obvious but
indispensable: understanding the efficiency of compiled code.

Traditionally, the main responsibility of a compiler is to translate programs from
source language to native machine language. This process is called code generation.
Nowadays, a compiler’s development work is more focused on code optimization.
In other words, the compiler tries to remove the inefficiency introduced by source
programs and optimize the performance of the compiled code (primarily speeding
up the code). It's undeniable that many modern compilers can generate highly
efficient code even if a source program is not written in a performance-oriented way.
However, this not saying we can ignore the basic knowledge of compilation, if we
are pursuing the goal of high performance. The reasons are as follows.

First, compilers cannot understand the program’s behavior as clearly as pro-
grammers do. They usually optimize the code in a very precautious way so as not

to change any correct code behavior. A highly complicated program will constrain
45

5.1. Introduction 46

the compiler to apply some more aggressive optimization techniques. Therefore, it
is the programmer’s responsibility to write neat code which is easier for a compiler
to understand and optimize. For our code, we check the compiled code to under-
stand which kind of optimization techniques the compiler already applied and which
additional improvement we can implement. Then, we tune our source code for the
compiler to better optimize it, and modify the compiled code if necessary.

Second, some compilers do not always use all the latest features of a computer
architecture. Omne possible reason is that some new features do not have a wide
applicability (they are only attractive to some special usage). Another reason is
that the compiler has not been updated to use those new features, yet. Let us quote
Randal E. Bryant and David O’Hallaron “ a number of formats and instructions
have been added to IA32 for manipulating vectors of small integers and floating
point numbers... Unfortunately, current versions of GCC will not generate any
code that uses these new features” [3].

Therefore, if programmers want to enhance the performance further, they need to
consider "machine dependent” implementations besides the generic versions. This
requires to study modern computer architecture. In this case, programmers can
directly make use of any feature in a hardware system, even if the compiler has no
knowledge about it.

During our development, we first try to write “compiler friendly code”, then
implement the optimizations that the compiler cannot do for us. To make sure that
our efforts lead indeed to performance improvement rather than degradation, we
have benchmarked any modified version with the pervious one. These comparisons
may also inspire new ideas for later development work.

In this chapter we will focus on discussing our C and ASSEMBLY level imple-
mentations which support our AXIOM level implementation. At the C level, we
care about how to write compiler friendly code. At the ASSEMBLY level, we have
implemented architecture specific routines which the GCC compiler cannot gener-
ate. In the following sections, we will give specific examples to illustrate the ideas

mentioned in this introduction.

5.2. Single precision integer division by floating-point arithmetic 47

5.2 Single precision integer division by floating-
point arithmetic

Our fast polynomial arithmetic is mainly based on modular methods to reduce
the size of problems. Modular methods use modular arithmetic or, say remainder
arithmetic, at each step. Therefore, the most frequently used operation in our
implementation is integer division.

Unfortunately, integer division by its mathematical characteristics is a very ex-
pensive operation. Although hardware designers already put tons of efforts to refine
division algorithms and organize the division hardware such as divisor registers,
quotient registers and remainder registers in the most efficient way, division is still
much slower than multiplication, addition and subtraction. For example, one single
precision integer division on a Pentium machine is several times slower than multi-
plication and tens of times slower than subtraction and addition [19]. So, improving
the performance of integer division is one of the key issues in our implementation.
Following [34], for the single precision integer division case, we replace the division
by a combination of a few cheaper operations such as multiplication, addition, and
subtraction.

For instance, a computation such as (a + b) mod p where a and b belongs to
Z/pZ is easy to implement without integer division. Indeed, let us assume that the
elements of Z/pZ are encoded by the integers in the interval [0,p — 1]. (This is the
case in our implementation.) So, for 0 < a,b < p, if the sum a + b exceeds p — 1 we
subtract p from a + b.

Let us give another example which appears in the FFT of a univariate, see
Chapter 6. For 0 < a, b, c < p, assume that a + bc mod p is known and that we are

looking for @ — bc mod p. The relation
a—bc=2a—(a+bc) modp

allows us to compute a — be mod p via addition, subtraction and sign checking,

avoiding again an integer division.

5.2. Single precision integer division by floating-point arithmetic 48

We also have saved some computational time by doing the division after several
steps instead of at each step. For example, when we compute (a + bc) mod p, we
first compute a + be then we reduce the result modulo p. Our assembly code for this

operation shows as follows:

1 mull %ebx

2 addl %edi, Y%eax
3 jnc L(nocarry)
4 addl $1, Y%edx

5 L(nocarry):

6 divl %ecx

In this code a, b, ¢ are all machine integers. So, we know that by adding a to
the product of be, no carry is needed on the high word of this product.

There are also some special cases that allow us to do modular reductions without
using division. For example, let p > 2 and let e be such that 2°+1 > p holds and p
divides 2¢ + 1. Then, we have

2°4+1=p—1 mod p.

Another frequent special case is when the divisor d (in an Euclidean division of some
integer n by d) is a power of 2. Then, we can compute the remainder by only using
shift and add/sub operations [37].

We implement the single precision modular reduction by means of floating point

arithmetic, based on the following formula

a=a—|al/p|p

The rational number 1/p is approximated by a floating point number (of type double
float in C). Next, following the above formula, we compute two products and one
subtraction instead of one division. Note that the final result needs to be Adjusted
by adding p or subtracting p. This idea is already implemented in C+-+ by the
NTL library.

5.2. Single precision integer division by floating-point arithmetic 49

With modular methods, a prime number p can be used through the whole algo-
rithm or at least used repeatedly. Hence, we can assume that the inverse of p has
been pre-computed.

In order to pursue even higher performance, we have also implemented this
idea in ASSEMBLY language for the Pentium [A-32 with SSE2 support. SSE2 is
an instruction set designed by Intel. Instructions in this set are all in the format
of Single Instruction Multiple Data (SIMD) and their operands are eight 128-bit
XMM registers. The set of instructions supports 64-bit double-precision floating
point arithmetic (including some 64, 32, 16 and 8-bit integer operations). In fact,
SSE2 is an extension of SSE (Streaming SIMD Extensions). The instruction set of
SSE only supports 32-bit single-precision floating point operations which uses the
same set of registers as SSE2. Before we talk about SSE/SSE2 further, let’s see
an example how GCC compiles C code that contains floating point arithmetic.

Here is a very simple C program. It computes the sum of two "double float”

numbers:

1 main(){

2 double a=1.0, b=2.0, c;
3 c=a+b;}

By using the command “ cc -S float.c 7, we can check the Assembly code gener-

ated by GCC for “float.c”.

1 .file "float.c"

2 .def ___main; .scl 2; .type 32; .endef
3 .section .rdata,"dr"

4 .align 8

5 LC1:

6 .long O

7 .long 1073741824

8 .text

9 .globl _main

5.2. Single precision integer division by floating-point arithmetic 50

10 .def _main; .scl 2; .type 32; .endef
11 _main:

12 pushl %ebp

13 movl %esp, %ebp

14 subl $40, %esp

15 andl $-16, %esp

16 movl $0, %eax

17 addl $15, %eax

18 addl $15, Yeax

19 shrl $4, Y%eax

20 sall $4, Yeax

21 movl Y%eax, -28(%ebp)
22 movl -28(%ebp), %eax
23 call __alloca

24 call ___main

25 fld1l

26 fstpl -8(%ebp)

27 £1dl1 LC1

28 fstpl -16(%ebp)

29 f1dl -8(%ebp)

30 faddl -16(%ebp)

31 fstpl -24(%ebp)

32 leave

33 ret

In the above ASSEMBLY code, we can observe that the generated code uses the
traditional FPU instruction set, even on our machine, which has the most advanced
SSE/SSE2 technology. Actually, neither the current version of Microsoft Visual
C/C++ nor the GCC compiler makes use of SSE/SSE2 at all.

As we mentioned already, the SSE/SSE2 instruction sets use XMM registers.

These registers are of 128 bits. Each register can pack 2 double precision floating

5.2. Single precision integer division by floating-point arithmetic 51

point numbers or 4 single precision floating point/integer numbers. This mecha-
nism allows the SSE/SSE2 instructions to compute with multiple data packed in
one register in parallel. This is the reason why Intel call these instructions SIMD.
Consequently, if programmers know how to use these instructions, faster code may
be achieved. This is what we have been doing in our implementation. Following

code computes (a *b) mod p with SSE2 instructions.

1 movl PARAM_RPTR, %edx
2 movl PARAM_WD1,%eax
3 movl PARAM_WPD1,%ecx
4 movq (%edx) ,%mmO

5 movups (%eax) ,%xmml
6 cvtpi2pd %mmO, %xmmO
7

8 movups (%ecx) ,%kxmm2
9 movl PARAM_PD,%eax
10 mulpd %xmmO,%xmm1

11 mulpd %xmmoO,%xmm?2

12 movups (%eax) ,%xmm0
13 cvttpd2pi %xmm2, %mm2
14 cvtpi2pd %mm2, %xmm2
15

16 mulpd %xmm?2,%xmmO

17 subpd %xmmO , %xmm1

18 cvttpd2pi Y%xmmi, %mmi
19 movq %mml, (%edx)

20

21 emms

22 ret

In this example, we also used another set of registers MMX (MMO0..MMT7), so

5.3. Reducing the overhead of loops and function calls 52

called MultiMedia eXtensions. MM X instructions support 64-bit integer operations.
One thing worthy to mention here is that each of the eight MMX 64-bit registers
is physically equivalent to the low-order 64-bit of each of the FPU’s registers. So
it is not a good idea to mix FPU and MMX instructions in the same computation
sequence.

Actually, in GMP, there is a set of library functions that heavily use MMX
instructions to do big integer arithmetic, when they are available. We have also
used the same strategy for our big prime arithmetic. We will discuss this in detail
in Chapter 6.

Figure 5.1 illustrates the performance difference between

e the generic ASSEMBLY code using integer arithmetic and,

e the SSE2 ASSEMBLY code using floating point arithmetic.

The benchmark data of Figure 5.1 are obtained with our implementation of FFT-
based univariate polynomial multiplication over Z/pZ.
This benchmark shows that our SSE2-based implementation is significantly

faster than our generic ASSEMBLY version.

5.3 Reducing the overhead of loops and function
calls

Many algorithms operating on dense polynomials have an iterative structure. One
major overhead in implementing such algorithms is loop indexing and loop condition
testing. We can reduce this overhead by replicating the loop body. This is a well
known technique, called loop unrolling.

Optimizing compilers usually put a lot of their effort on loops and provide sup-
port for loop unrolling. For example, when we set up the flag “-funroll-loops” on
the command line of GCC, it will perform loop unrolling automatically.

However, one thing is subtle: how many iterations a compiler will unroll for a

loop? There is a tradeoff. On one hand, unrolled loops require less loop indexing

5.3. Reducing the overhead of loops and function calls 53

time (sec)
0.09

0.08

0.07

0.06

SSE2
0.05 B FPU

0.04

0.03

0.02

0.01
0 [—'-.l--_..’—.

1000 2000 4000 8000 16000 32000 degree

Figure 5.1: Generic assembly vs. SSE2 version assembly of FFT-based univariate

polynomial multiplication over Z/pZ.

and less loop condition testing. On the other hand, unrolled loops suffer from code
size growth. This will aggravate the burden of instruction caching. If the loop body
consists of branching statement, increased number of branches in each iteration will
have a negative impact on branch prediction.

Therefore, compilers usually do static or even run-time analysis to decide how
much to unroll a loop. However, the analysis may not be precise when loops become
complex and nested. Moreover, compilers are very precautious when removing small
loops by unrolling them, since this may change the original program’s data depen-
dency. Moreover, optimizing compilers usually do not check if there is a possibility
to combine unrolled statements together for better performance.

Based on these observations, in our implementation, we have unrolled some loop
structures by hand, and recombined the related statements into small ASSEMBLY

functions. This allows us to keep some values in registers or evict those unwanted

5.3. Reducing the overhead of loops and function calls 54

ones. The following code is a fragment of our implementation of the FFT-based

univariate polynomial multiplication, detailed in Chapter 6.

#include "fftdfttab_4.h"
typedef void (* F) (long int *, long int, long int,
long int *, long int, int);
typedef void (* G) (long int *, long int *,
long int *, long int, int);
inline void
fftdftTAB_4(long int * a, long int * b, long int * w,

long int p, F £, G gl, G g2)

{
long int wO=1, wd=w[4];
long int * w8=w+8;
f(a, w0, wd, a+2, p, 8);
g2(a+d, w8, a+8, p, 4);
g2(a+12, w8, a+l6, p, 4);
gi(a+8, w8, a+16, p, 8);
f(b, w0, w4, b+2, p, 8);
g2(b+4, w8, b+8, p, 4);
g2(b+12, w8, b+16, p, 4);
gl(b+8, w8, b+16, p, 8);
return;

}

This function is dedicated to compute the case where n = 4 in the FF'T algorithm.
The functions £, g1(), g2() are small ASSEMBLY functions which recombine
related statements for higher efficiency. We also developed similar functions from
the case n = 5 to the case n = 8. However, when n is bigger than 6, these specialized
straight-line functions are less efficient than the version which uses nested loops.

There are two main reasons. First, loop unrolling augments the size of binaries which

5.3. Reducing the overhead of loops and function calls 55

increases the cost of their management in the memory. Secondly, more instructions
need to be cached, which increases memory traffic and degrades performances.

Figure 5.2 shows that for small degrees, the inlined version may gain about 10%
running time. This is in fact a significant improvement. Indeed, our experiments
show that 50% is already spent in performing the integer divisions.

Time(sec)
0. 00008¢

0. 00007F

0. 00006F |

0. 00005

0. 00004F H Inlined

B Non—inlined

0. 00003F

0. 00002

0. 00001F

0
7 15 31 63 Degree

Figure 5.2: Inlined vs. non-inlined version of FFT-based univariate polynomial

multiplication over Z/pZ.

Another frequently used technique in our implementation is function inlining.
For instance, in our C code, by declaring inline a function f, we tell GCC to
replace any call to £ by the function body of £. This replacement happens during
compilation, if we set up an appropriate optimization level. Obviously, function
inlining will reduce the overhead caused by a function call, such as stack allocation
and restoring the environment after this function call.

However, this is not saying that we can do function inlining as much as we want.
Again, we need to consider the aspect of instruction cache. Too much function

inlining may result in poor instruction cache behavior. To find the cutoff, we need

5.4. Memory traffic 56

Time (sec)
0.005 ¢

0.004

0.003

] Inlined

0.002 B Non-inlined

0.001

127 255 511 1023 2047

Figure 5.3: Inlined vs. non-inlined version of FFT-based univariate polynomial

multiplication over Z/pZ.

to try a small test data set first and benchmark the impact after applying this to
the whole application.

For both loop unrolling and function inlining, we should also consider the size
of binary code. Larger binary code usually triggers more paging, and the data
replacement between memory and secondary storage is extremely expensive. The
Figure 5.3 shows that after some certain point, the inlined code becomes slower
than the non-inlined code. Therefore, we only unroll small loops and inline small

functions.

5.4 Memory traffic

One bottleneck of modern computer architectures is the mismatched speed between
slower memory accessing and faster CPU processing. The usual case is when the
CPU is idle for a while, waiting for data from memory. If we keep the data available
as soon as the CPU needs it, we can speed up our applications significantly. This is

especially true for our polynomial computations which access memory intensively.

5.4. Memory traffic 57

We need to tune our programs for less memory traffic and better CPU usage. This
requires us to understand the memory hierarchy.

In a modern computer architecture, CPU registers stay at the top level of the
memory hierarchy, the cache system is at the middle level, main memory is at the
low level and secondary storage such as hard disk is at the bottom level. The higher
level is tens of times faster than the lower level.

According to the characteristics of this hierarchy, we use the following strategies
to improve the performance of our implementation.

First, since we only have a very limited number of registers to use (for IA-32,
we only have 4 general data registers, 5 general addressing registers, 8 floating
point registers), we need to carefully design the algorithm and data structure for
better utilizing the fastest and precious registers. We also need to avoid unnecessary
exchange of data between registers and cache or main memory. One reason is that
the exchanging operation itself is expensive. Another fact is that the absence of
required data from registers will stall CPU pipeline.

Although optimizing compilers devote special efforts to make good use of the
target machine’s register set, this effort can be constrained by numerous factors,

such as:

1. difficulty to estimate the execution frequencies of all parts of the program,
2. difficulty to allocate or evict ambiguous values,

3. difficulty to take advantage of some new hardware features on specific plat-

forms.

Therefore, a high performance-oriented application requires programmers to bet-
ter exploit the power of registers on a target machine. In fact, we have spent a great
effort in this direction in our implementation.

First, we directly program the efficiency-critical parts in ASSEMBLY language in
order to explicitly manipulate data in registers. For example, we write the classical

univariate polynomial multiplication algorithm in both C and ASSEMBLY language,

5.4. Memory traffic 58

where the polynomials are over Z/pZ for a prime number p. The ASSEMBLY version
is faster than the C version since we explicitly put the value of index variables in
registers instead of a memory location. Although, the optimizing C compilers claim
to do that for us, our benchmark results show that our ASSEMBLY implementation
is faster than the C compiler compiled code. This avoids extra memory accessing,
and saves many CPU cycles at each iteration. In C we can declare a variable v to
be of “register” type in order to ask the compiler to put v into a register. However,
defining such a register variable does not garantee that the register is reserved for
this variable; the register remains available for other uses in places where flow control
determines the value of v is not live. According to our benchmark result, our explicit
register allocation method is always faster than the C compiler’s optimization.

Besides generic assembly version of univariate polynomial addition, we also im-
plemented the MM X-based version, where polynomials are over Z/pZ. In the latter
version, we regard the polynomial coefficient array as a big integer, and use MMX
registers to perform integer arithmetic. This not only reduces the number of ma-
chine operations, but it also reduces the frequency of memory accessing, since we
have more registers to manipulate data.

We should be fully aware of one fundamental property of memory accessing
—locality of reference. In fact, this property consists of two aspects: temporal
locality and spatial locality. The temporal locality refers to the phenomenon that
once one memory location is accessed, it is very likely to be accessed again in a very
short time. Spatial locality refers to the phenomenon that once a memory location
is accessed, its nearby locations are very likely to be accessed soon.

According to these observations, hardware designers introduced one type of small
and fast memory called cache. Cache memory is located between CPU registers and
main memory. The most recently used data and instructions are stored in cache,
since they are likely to be reused in the near future. Nearby instructions and data are
also constantly pre-fetched into cache for faster accessing when the CPU needs them.
Because cache has very limited space, the least recently used data or instructions

will be evicted into memory when new stuff comes in. After understanding this

5.4. Memory traffic 59

hardware level design concept, we have tried to write cache-friendly code to speed
up the whole applications.

As discussed in Chapter 3, our univariate polynomials over finite fields are en-
coded as machine integer arrays. For this kind of data structure, we can expect to
write cache friendly code. One reason is that the coefficients of a polynomial are
stored in a machine integer array and, thus, consecutively located in memory.

When we visit the terms of univariate polynomials by increasing (or decreasing)
degree, we may hope to produce good code for spatial locality. Similarly, when
we conduct several operations on a coefficient, we may hope to produce good code
for temporal locality. However, this may not be sufficient as pointed by [23]. This
is an area that we aim to further study, especially for the algorithms discussed in
Chapters 6 and 7.

Usually, caching is processed by hardware. However, for some new hardware
technology, such as Intel SSE/SSE2, several new instructions provide programmers
with some level of control on cache. For example, if we know that some data or

instructions will no longer be used,

e we can force them back to main memory without passing through the cache

or,

e we can bring some data or instructions directly into registers without the risk

of polluting the cache.

We experimented these new instructions in our implementation. Unfortunately, we
didn’t observe obvious performance improvement. We hope to find a more effective
way of using those new features in later implementation work.

Finally, we should also consider the paging mechanism in the virtual memory
system. For example, if a page fault occurs in a low-memory situation, the virtual
memory system may need to reclaim some of the application’s memory pages to
make room for another process. Moreover, if these reclaimed pages have been modi-
fied, the system must first write the modifications to disk. As we know, writing data

back to disk will consume a significant amount of time compared to memory access-

5.5. Parallelism 60

ing. Therefore, as programmer we should try to reduce the overhead introduced by
paging. For instance, some data structures may be more suitable for implementing

large polynomials when we consider the overhead of paging.

5.5 Parallelism

Parallelism is a fundamental technique used to achieve high speed on a modern
computer architecture. There are two levels of parallelism: macroscopic and micro-
scopic.

The examples of microscopic parallelism are within processors. As we know, a
register is implemented by a separate digital circuit. Parallel hardware is used to
move data between general-purpose registers and the ALU. Memory system also
transfers data word by word instead of bit by bit. A typical modern computer has
a bus that is either thirty-two or sixty-four bits wide, which means that thirty-two
or sixty-four bits of data can be transferred across the bus in parallel.

Macroscopic parallelism refers to the use of parallelism across multiple large-scale
components. For instance, dual processors or multiple processors can independently
work in one computer. When more than one physical processor is available, compu-
tations can be conducted in parallel in each processor.

It is the compiler or programmer responsibility to discover the parallelizable
parts in software application and let them run simultaneously based on hardware
parallelism. For example, in the FFT-based polynomial multiplication, the DFT
of the input polynomials are independent, hence, they can be computed simultane-
ously. Another example is the (standard) Chinese remaindering algorithm, where
the computations w.r.t. each modulo can be performed simultaneously.

In fact, under the Linux environment, we directly use the native Posix Thread
Library to conduct parallel programming, since AXIOM’s compiler is not able to
provide this kind of optimization. This part is relatively simple but we have not
completed yet extensive benchmarks. However, we have observed that the paral-

lelized version of the FFT-based multiplication is 7 to 10 percent faster than the

5.5. Parallelism 61

non-parallelized version on our dual CPU machine as shown by Figure 5.4.

T

O Non—parallelized

0.03 B Parallelized

1000 2000 4000 BOOD 16000 32000 Degree
Figure 5.4: Parallelized vs. non-parallelized version of FFT-based univariate poly-

nomial multiplicaiton over Z/pZ.

Chapter 6

FFT-based univariate polynomial

multiplication

6.1 Introduction

The Fourier transform converts a signal representation from the time-domain to the
frequency domain. The Discrete Fourier Transform (DFT) is a Fourier transform
which operates on a discrete function instead of a continuous function. The Fast
Fourier Transform (FFT) is a fast algorithm for calculating the DFT of a function.
This algorithm was essentially known to Gauss and was reinvented by Cooley and
Turkey in 1965. See [17] for more historical details.

In symbolic computations, the FFT algorithm has many applications [13]. The
most famous one is the fast multiplication of polynomials. Even if the principles
of these calculations are quite simple, their practical implementations are still an
active area of investigation. This chapter and the next one describe our contribution
to this area. Respectively, these chapters treat the univariate and the multivariate
cases. Our experimental results show that our implementation of the FFT-based
symbolic polynomial multiplication competes with, and often outperforms, the best

known comparable packages.

62

6.2. The FFT-based univariate multiplication 63

6.2 The FFT-based univariate multiplication

The principles of the FFT-based univariate polynomial multiplication are sketched

on Figure 6.1.

-
Classical multiplication
A, B € Z/pZ[x] . C=A*B
). Time: O (nY)
FET Evalutation Interpolation 1
Time: O (n log n) Time: O (nlog n) FFT
i g o
A(®°), B(®) cC(®°)
A(o'), B(o’) Pointwise multlpllcatlo.ll c(® 1)
’ Time: O (n)
A((’)Zn-‘f)’ B((DZH-‘i) c (0) 2n-1)
" = Y J

Figure 6.1: FFT-based univariate polynomial multiplication over Z/pZ.

In this chart, we consider two polynomials f = Ziig_lakxk and g = ﬁig_lbkxk

over some field K. We do not need to assume that they have the same degree; if

4

they do not have the same degree, we add a “zero leading coefficient” to the one of

k=2n—2

smaller degree. We want to compute the product fg = > ,—0" “c¢x. The classical

algorithm would compute the coefficient ¢, of fg by

i=k
Cr = Zizoaibk—i (61)
for k=0,...,2n — 2, amounting to O(n?) operations in K.

The first idea in the FFT-based univariate polynomial multiplication is as follows:
if the values of f and g are known at 2n — 1 different points of K, say xg, ..., ZTo,_2
then we can obtain fg by computing f(x¢)g(xo),. .., f(Z2n—2)g(Z2,_2) amounting
to O(n) operations in K.

The second idea is to use points g, ..., T2,_1 in K such that

(1) evaluating f and g at these points can be done in nearly linear time cost, such

as O(nlog(n)),

6.3. Efficient algorithm for the FFT 64

(17) interpolating the values f(zg)g(xo), - .., f(22n—2)g(22,_2) can be done in nearly

linear time, that is O(nlog(n)) again.

Such points zg, . .., T2,_2 do not always exist in K. However, there are techniques to
overcome this limitation (essentially by considering a field extension of K where the
desired points can be found). In the end, this leads to an algorithm for FFT-based
univariate polynomial multiplication which runs in O(nlog(n)log(log(n))) operations
in K [4]. This is the best known algorithm for arbitrary K. Recall that the Karat-
suba’s algorithm runs in O(n'°8®3)/1°€(2)) " See [17] for more details.
In this thesis, we restrict ourselves to the case where we can find points xg, . .., T2, 2

in K satisfying the above (i) and (7). Most finite fields possess such points for n
small enough. (Obviously n must be at most equal to the cardinality of the field.)
More precisely, for n, p > 1, where p is a prime, the finite field Z/pZ has a primitive
m-th root of unity if and only if m divides p — 1. (Recall that w € K is a primitive
m-th root of unity of the field K if and only if w™ = 1 and w* # 1 for 0 < k < m.)

If Z/pZ has a primitive m-th root of unity w,
e then we use 2, = w* for k =0,...,2n — 2,
e Step (i) is the FFT of f and g at w (to be detailed in the next section),
e Step (i) is the FFT of L2 at w™'.

Again, we refer to [17] for more details.

6.3 Efficient algorithm for the FFT

The theoretical complexity of the FFT-based univariate multiplication is nearly opti-
mal. However, in order to obtain an efficient code, one needs to carefully implement
the FFT calculations. The FFT algorithm is a divide-and-conquer algorithm. Its
presentation in [17] is recursive and not suitable for producing an optimized code.
In this section, we reproduce the iterative presentation of [28] (which appears in

other places) and discuss an efficient implementation of the FFT. This leads us to

6.3. Efficient algorithm for the FFT 65

change the notation a little bit, w.r.t. the previous section. Our input polynomial

becomes

A(.T) = 20§i<n a; .Ti (62)

with degree at most n/2 — 1. Let w € K be a primitive n-th root of unity. We

assume that n = 2" is a power of 2. We aim at computing the FFT of A at w, that

is to evaluate A at the points w* for k = 0,...,n — 1. We define
Az) = ag+ ayr + agx? + -+ ap_ox™? ! 6.3)
All(z) = a4+ asz +as2® + -+ a,_12™?? .
such that we have
A(z) = AO(2?) + 2 AW (2?). (6.4)
Hence evaluating A at 1,w,w?,...,w" ! is reduced to evaluating Al’! and A at
1, w2 w, ..., w? 2 But this second sequence of powers of w consists of two identical
sequences of length n/2. Indeed, for every integer k we have
(wk+n/2)2 — (wk)Q (65)
Since w*(1 — w™?) # 0 holds, we obtain
whtn/2 = _k (6.6)
Hence we only need to evaluate A% and Al at
Lw? wh . w2 (6.7)
This provides us directly with the values of A at
Lw,w?, ... w2t (6.8)
and the values of A at
w2 WM (6.9)

by using the fact that numbers are respectively equal to

1, —w, —w?,..., -, (6.10)

? ? Y ?

6.3. Efficient algorithm for the FFT 66

To summarize, for 0 < i <n/2 — 1 we have

A(a}i) — A[O](w2i)+wiA[1](w2i)

. [| (6.11)
Aw*?) = AP — Wi Al (%)

Algorithm 1

n—l]

C oy — _ 2-1
Input: n = 2", A = [ag,ay,...,a™*', ... a an

array for the coefficient of the polynomial, 2 =

n—l]

lw,...,w"* 1w an array of the powers

of a primitive n-th root of unity w.

Output: An array y = [yo,...,Yn—1] such that y; is
A(w?) by calling DFT (n, A,).

DFT(n,A,Q) ==

step = #(2)/n

if n = 1 return [fy]

Al = [ag, as, ..., ay_s]

Al = [ay,as,. .., an 1]

yll .= DFT(n/2, A% Q)

yW .= DFT(n/2, AN Q)

for k:=0---n/2 — 1 repeat
s := step k
t:=0, y!

Y = y/[{m +1

0
Yk+n/2 1= y;E] —t

return y

The validity of Algorithm 1 follows from the two following observations.
e Formulas (6.11).

e If wis a primitive 2%-root of unity, with s > 1, then w? is a primitive 2°~!-root

of unity.

6.3. Efficient algorithm for the FFT 67

=] B —
-

2 4 6 1 3 5 7|
2

\1;153V7I

'

| 4

Figure 6.2: Recursive calls for n = 8.

Observe that the recursive calls of DFT(n, A, Q) define an ordering of the coefficients
of A shown on Figure 6.2 for n = 8. Let us call this ordering the DFT ordering of
A.

Observe that if the input array A is sorted w.r.t. this DFT ordering, one can
describe easily the recursive calls with a binary tree. If this tree is traversed bottom-
up, from left to right, we are led to an iterative algorithm working in place!

described in Algorithm 2.

Algorithm 2

6.3. Efficient algorithm for the FFT 68

Input: n = 2", A the array for the coefficient of the polynomial
sorted by the DFT ordering. Q = [1,w,...,w™? 1, .. w7}

an array of the powers of a primitive n-th root of unity w.

Output: An array y = [y, ..., ¥n_1] such that y; is A(w?) by call-
ing DFT(n, A, Q).

DFT(n,A,Q) ==
r = logs(n)
for s :=1---r repeat
'Traversing the tree, bottom-up.
m = 2°
for £ :=0---n —1 by m repeat
for each internal node from left to right
for j =0---m/2 — 1 repeat
combine its two children
ti=Qjm Alk+j+m/2]
u:= Alk + j]
Ak +j] =u+t
Alk+j+m/2] ==u—t

return A

We conclude this section with an observation regarding code optimization. For

n = 8, assuming that the input array A is
| ao [as | az [ag|ay|as|as|az|,

we obtain the desired result in A using the following straight-line program:

1. a:=ag
2. b:=qa
3. ap:=a-+bd

6.3. Efficient algorithm for the FFT

69

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

a = ag
b:= a3
as:=a+b
az:=a—2>b
a:=ay
b := as
ag:=a+b
as:=a—>b
a = ag
b:= a7
ag:=a-+b
ar:=a—2>b
a = ag
b:=ay
c:=ag
d:= as
ag ‘=a+c
az :=a—c
a1 := b+ wd
ag :=b—wd

a = a4
b = Q5
C 1= Qg

6.3. Efficient algorithm for the FFT 70

28. d:=ar

29. ap:=a+c

30. ap:=a—c¢

31. a1 :=b+wd

32. ag:=b—wd

33. a:=aqg

34. b=

36. d:= a3
37. e :=ay
38. f:=uas
39. g = ag
40. h := a7

41. ag :=a+e

42. a1 :=b+wf
43. ap := c+ W2 f
44. a3 = d+w>h
45. a4 :=a+e

46. a5 :=b—wf
47. ag = c — w2 f
48. a7 :=d — w3h

More generally, for small values of n, we can implement Algorithm 2 by a straight-

line program. This appears in practice to be an important optimization.

6.4. Computing primitive roots of unity 71

6.4 Computing primitive roots of unity

A preliminary step of the FFT-based multiplication is to find primitive n-th roots
of unity. We explain in this section how to compute such numbers in K = Z/pZ. Of
course, we assume that n divides p — 1. Hence, there exists an integer ¢ such that
p = gn + 1 holds. According to little Fermat’s theorem, for all o € K, with a # 0
and a # 1, we have

a7t =1, (6.12)
Therefore, we obtain

a® = 1. (6.13)

It follows that a? is a candidate for being a primitive n-th root of unity. If a? is not

a primitive n-root root of unity then:

e the sequence of the a? for k = 0,...,n — 1 is periodic, with a period dividing

n, and
e in particular a?/? = 1 holds.

Since a2 equals either 1 or —1, we have the following.

Proposition 1 Let p > 2 be a prime number and let n,q be integers such that n
is a power of 2p =nq+ 1. Let a € Z/pZ different from 0 and 1. Then, a? is a

primitive n-th root of unity if and only if a®/?> = —1 holds.

This proposition is very easy to implement and provides an efficient way to
compute primitive roots of unity in practice. It avoids the construction of tables of
primitive roots of unity, which was a usual approach, see [28|. The code below shows

our SPAD code implementing a probabilistic algorithm based on this proposition.

1 getNthRoots (nth: Integer)==

2 theroots:=ARRAYFIX(nth)$Lisp

3 k:PositivelInteger:=((p-1) quo nth)
4 n2:PositiveInteger:=(nth quo 2)

6.5. Implementation of the small prime case 72

5 root:R

6 repeat

7 root:=random()$R --Z/pZ

8 if not((root=0) or (root=1)) then

9 xroot:R:=(root*x*k)

10 not (one? (xroot**n2))=> break
11 GETROOTS(theroots, p, xroot, nth)$Lisp

12 [theroots, xroots]$REC

6.5 Implementation of the small prime case

Following the discussion of Chapter 4, our implementation of the FFT-based uni-

variate polynomial multiplication distinguishes two cases:
e the small prime case, presented in this section,
e the big prime case, discussed in the next one.

We implement Algorithm 2 using the strategies presented in Chapter 5, such as

reducing memory traffic. In addition, we use the following techniques.

e As illustrated above, for n small, we “pre-compute strait line programs” and
use them instead of a direct implementation of Algorithm 2 (which contains
nested loops). Experiments show that there is a “cut-off” point for this strat-
egy, that is, a value ngy such that for n > nq this strategy should not be used,

since it generates too large strait line programs.

e We pre-compute the DFT ordering for the coefficient array input of Algo-

rithm 2.

e We unroll some inner loops and inline some small and frequently used func-

tions.

6.6. Implementation of the big prime case 73

e We write both generic and MMX/SSE2 ASSEMBLY code for the crucial mod-

ular arithmetic operations:

e (a,b,p) — a+b mod p,
® (avbvp)'—>a_b mOdp7

e (a,b,p) — ab mod p.

6.6 Implementation of the big prime case

Two strategies are possible in this case.

Using GMP. One can directly implement Algorithm 2 by adapting the code of
the small prime case to the big prime case. This implies using big integer
(= multiple precision) arithmetic from the GMP library for the coefficients
of the polynomials, as described in Chapter 4. In some sense, this is a bit

contradictory with the spirit of modular computations.

Using the CRA approach. Alternatively, one can proceed as follows, as sug-

gested by several authors [17,35].

1. View the input polynomials f, g € Z/pZ[zx] as polynomials over Z. Let n
be the smallest power of 2 greater than the degree of the product fg.

2. Using Formula (6.1), obtain an upper bound C for the coefficients of fg

(viewed over Z).

3. Choose small primes 2 < p; < ... < ps such that their product m exceeds
2C" and such that for all i = 1,..., s the field Z/p;Z admits primitive n-th

root of unity. (In practice, one can always find such primes, see [17].)

4. Compute fg € Z/p;Z|z] for all i = 1,...,s and combine the results
termwise, with the Chinese Remaindering Algorithm, such that the co-
efficients of fg are in the symmetric range —m...m. This gives the

product fg in Z[x].

6.6. Implementation of the big prime case 74

5. Reduce each coefficient of this product modulo p.

Figure 6.3 shows an experimental comparison between these two approaches.
We also put an intensive effort on the double precision big prime case. We
rewrote some GMP low-level functions and implement high-performance Assembly

versions of CRA for this special case.

time (sec)
0.7

0.6

0.4 - | GMP
0.3 — | Specialized
0.2 _ |CJCRA

500 1000 2000 4000 8000 16000 32000 degree

Figure 6.3: FFT-based univariate polynomial multiplicaiton over Z/pZ, GMP func-

tions vs our specialized double percision integer functions and CRA-based functions.

Figure 6.3 shows that our specialized double precision big prime functions and
CRA-based approaches are faster than the generic GMP functions. The CRA re-
combination part spends 0.06 to 0.07 percent of the time in the whole FFT algorithm

which is negligible.

6.7. The FFT in the NTL library 75

6.7 The FFT in the NTL library

NTL is a high-performance, portable C++ library providing data structures and
algorithms for calculating with signed, arbitrary length integers, and for manipulat-
ing vectors, matrices, and polynomials over the integers and over finite fields. [34]
The principal author of NTL is Dr. Victor Shoup.

The FFT-based univariate polynomial multiplication in N'TL is one of best
known implementations which is based on the Schoenhage-Strassen approach and
uses small prime numbers during computation. The Schoenhage-Strassen’s multipli-
cation algorithm works for any arbitraryrRing. This requires constructing " virtual”
roots of unity.

The Figure 6.4 and the Figure 6.5 are two benchmarks. In these two bench-
marks, we used dense univariate represenation for every input polynomial. These
input polynomials in AXIOM and MAGMA are randomly generated. And every
term in a polynomial is non-zero.

Our implementation is faster than NTL over small prime case, however, slower
than N'TL over big primes (Our implementation is faster than MAGMA and other
known CAS in both small and big primes). The main reason we believe is that NTL
re-arranges the computations in a more “cache-friendly” way than our implementa-
tion. However, we are implementing Truncated Fourier Transform(TFT) [21] and
developing cache-friendly code for this TFT by using the strategies from [23]. We

expect that our new TFT implementation will be faster than NTL’s FFT.

6.8 Benchmarks

In the Figure 6.4 input polynomials are unvariate over prime number 65535. In the

Figure 6.5 input polynomials are unvariate over big prime numbers

6.8. Benchmarks

76

time (sec)
0.16
0.14
0.12
0.10 |@ AXIOM
0.08 Bl NTLV54
1 Magma V2.11-2
0.06
0.04
0.02
————1
1000 2000 4000 8000 16000 30000
degree
Figure 6.4: Benchmark of FFT with small primes.
time (sec) degree=2000
0.7 -
0.6
0.5 |_-
[i
08 NTL V5.4
0.3 — 1 —~ |H AXIOM
[0 Magma V2.11-2
0.2 E pe
0.1 — N
0 Bl | size of prime
2 3 4 7 (n*32 bits)

Figure 6.5: Benchmark of FFT with big primes.

Chapter 7

FFT-based multivariate

polynomial multiplication

7.1 Introduction

In the previous chapter, we discussed FFT-based univariate polynomial multipli-
cation. This is a very important issue since most fast algorithms for polynomial
arithmetic rely directly or indirectly on it. In this chapter, we discuss multivariate
polynomial multiplication. We reduce this to the univariate case through Kro-
necker’s substitution [17]. We restrict again to coefficient fields of the form Z/pZ,
where p is a prime, since one of our main objectives is to provide highly efficient
support for implementing modular methods. Using our code for the FFT-based uni-
variate polynomial multiplication, described in Chapter 6, we obtain a very efficient
implementation of the multivariate polynomial multiplication, which outperforms
the computer algebra system MAGMA. This chapter is a joint work with my su-
pervisor, Marc Moreno Maza and Eric Schost (Ecole Polytechnique, France). It is

based on a preprint article [26].

7

7.2. Kronecker’s substitution 78

7.2 Kronecker’s substitution

Let A be a commutative ring with one. Let X; < X5 < --- < X,, be n ordered
variables and let aq, as, ..., a, be n positive integers with a; = 1. We consider the
ideal Z of A[X7, Xo, ..., X,] generated by X, — X712, X5— X%, ..., X,,— X{". Define
a = (ag,09,03,...,0,). Let W, be the canonical map from A[X;, Xs, ..., X,,] to
A[X1, X, ..., X,,]/Z, which substitutes the variables Xo, X3, ..., X,, with X2, X
..., X7{™ respectively. We call it the Kronecker map of . This map transforms a
multivariate polynomial of A[X7, X5, ..., X,] into a univariate polynomial of A[X}].

It has the following immediate property.

Proposition 2 The map U, is a ring-homomorphism (see [18] p. 153 for this
term). In particular, for all a,b € A[Xy, Xo, ..., X,] we have

U, (ab) = W, (a) V(). (7.1)

Therefore, if the product ¥, (a)¥,(b) has only one pre-image by V¥,, one can
compute the product of the multivariate polynomials a and b via the product of
the univariate polynomials W, (a) and W, (b). This is advantageous, when one has at
hand a fast univariate multiplication. In order to study the pre-images of ¥, (a)W, ()
we introduce additional material.

Let dy,ds, ..., d, be non-negative integers. We write d = (dy,ds, ..., d,) and we
denote by A, the set of the n-tuples e = (e, ea,...,e,) of non-negative integers

such that e; < d; for all e =1,...,n. We define
511 = dl + O[gdg + o4 Oéndn and 5(] = 0, (72)

and we consider the map 14 defined by

¢d . An e [0,5n] (73>

<617€27---7€n) — e+ ey + -+ ape,

that we call the packing exponent map.

7.2. Kronecker’s substitution 79

Proposition 3 The packing exponent map g is an one-to-one map if the following
relations holds:
Qg = 1+ d17

Qg3 =].+d1 +062d2,

i=n—1
Qy = 1+ Zi:l aidiv
that we call the packing relations.

Proor. We proceed by induction on n > 1. For n = 1, we have d; = d; and
a(er) = ey for all 0 < e; < d;. Thus, the packing exponent map 14 is clearly an
one-to-one map in this case. Since the packing relations trivially hold for n = 1, the
property is proved in this case.

We consider now n > 1 and we assume that the property holds for n — 1. We
look for necessary and sufficient conditions for 1q to be an one-to-one map. We

observe that the partial function

Ay — [0, 5n—1]
V(dy,ordnr) (7.4)

(61, €9,... ,€n,1) — wd(el, €2,...,€n_1, O)
of 1,4 needs to be an one-to-one map for ¥, to be an one-to-one map. Therefore, by

induction hypothesis, we can assume that the following relations hold

Qo —].+d1,

a3 = 1+di+ axds,

i=n—2
Ap—1 = 1+ Zi:l O[ZdZ
Observe that the last relation writes
(67 1+ (Sn_g. (75)

We consider now f € [0,4,]. Let ¢ and r be the quotient and the remainder r of the

Euclidean division of f by a,. Hence, we have

f=qa,+7r and 0<r < a,. (7.6)

7.2. Kronecker’s substitution 80

Moreover, the couple (g,r) is unique with these properties. Assume that «, =

1+ 6,_1 holds then f has a unique pre-image in A,, by zb;l which is

G = Wk a (). 0). (7.7)

If o, > 1+ 9,-1 holds, then f = 1+ 4,,_1 has no pre-images in A,, by zp;l. If

a, <14 6,1 holds, then f = «a,, has two pre-images in A,,, namely

0,...,0,1) and 1/)(;1 a1y (Cn)- (7.8)

Finally, the map 14 is one-to-one if and only if the packing relations hold. [

Proposition 4 Let e = (ey,€a,...,€,) be in A, and X = X7 X5*--- X2 be a
monomial of A[X1, Xo, ..., X,]. We have

U, (X) = XV (7.9)
Moreover, for all f =3 x.q cxX

Val(f) =D o x¥a(X) (7.10)
where S is the support of f, that is the set of the monomials occurring in p.

PROOF. Relation (7.9) follows easily from the definition of ¥,. Relation (7.10)
follows from Proposition 2. O]
We denote by A[A,] the set of the polynomials p € A[X7, Xo, ..., X,] such that
for every X = X' X5?--- X2 in the support of p we have (e, es,...,¢e,) € A,. The
set A[A,,] is not closed under multiplication, obviously. Hence it is only a A-module
(see [12] p. 317). The same remark holds for the set A[d,,] of univariate polynomials

over A with degree less than or equal to 9,,.

Proposition 5 Assume that packing relations hold. Then, the map V¥, defines an
A-module isomorphism between A[A,] and Ao,)].

PrRoOOF. The fact that ¥, defines an A-module homomorphism from A[A,,]

to A[d,] follows immediately from Proposition 2. The fact that, this A-module

7.3. Fast multivariate multiplication 81

homomorphism is surjective, is also clear. Indeed, it follows from Proposition 3
that every monomial of A[d,] has a (unique) monomial pre-image in A[A,,]. Now,
let f,g € A[A,]. Assume that V,(f) = ¥,(g) holds. Since ¥, is an A-module
homomorphism, we have W, (f — g) = 0. Observe that the image of every non-zero

polynomial of A[A,] is non-zero. Hence, we must have f = g. O

7.3 Fast multivariate multiplication

We use the same notations and hypothesis as in Section 7.2. Although the restriction
of the map V¥, to A[A,] is not a ring isomorphism, it can be used for multiplying
multivariate polynomials as follows.

Let f,g € A[X1, Xs,...,X,] and let p be their product. For all 1 <i < n we
choose

d; = deg(f, X;) + deg(g, X;), (7.11)

that is the sum of the partial degrees of f and g w.r.t. X;. Observe that for all
1 <1 <n we have

deg(p, X;) < deg(f, X;) + deg(g, X;). (7.12)

It follows that the three polynomials f, g, p belong to A[A,]. Moreover, from Propo-

sition 2, we have

Therefore, we can compute p using the following simple algorithm:

Algorithm 3

7.3. Fast multivariate multiplication 82

Input: f,g € A[A,] such that fg € A[A,] holds.
Output: fg

1 Uf = \Ifa(f)

2wy, = V,(9)

3 Uy = upuy

4 p=, (up)

5 returnp

Let us assume that we have at hand a quasi-linear algorithm for multiplying in
A[X1], that is an algorithm such that the product of two polynomials of degree less
that k can be computed in O(k'*€) operations in A, for all ¢ > 0. Such algorithm

exists over any ring A [4]. Tt follows that step 3 of the above algorithm can be

1+e)

performed in O(6, for every € > 0. Therefore, we have:

Proposition 6 For every ¢ > 0, Algorithm 3 runs in O((dy + n)---(d, + 1))**)

operations in A.

Proor. First, we observe that each one of the Steps 1, 2, 4 and 5 performs
in O(d,,) operations in A. Hence, the cost of Algorithm 3 is that of its third step.

Next, we observe that for n > 1 we have

5n = Odldl + Oégdz + -+ Odndn
= 511—1 + Cyndn
= 5n—1 + (571—1 + l)dn

= (dp+ 1), 1+ d,.

Now, we prove by induction on n > 1 that the relation below holds
dy---d, <6, <(dy+n)---(d, +1). (7.14)

This is clearly true for n = 1. Let n > 1 and assume that the relation holds for

7.4. Benchmarks 83

n — 1. Hence, we have
dy--dy 1 <01 <((dy+n—1)---(dp_q1+1).
We deduce
(dn+1)dy-vdp1+dy <6, < (di+n—1) - (dp1+1)(dy + 1) + d.

We obtain:
dndl o 'dn—l S 5n S (dl + n) Tt (dn—l + 1)(dn + 1),

as claimed. Therefore, Step 3 performs O(((d; + n) - - (d, + 1))*¢) operations in
A. O

Is 6,, independent of the variable ordering X; < X, < --- < X,,7 The answer is

yes! Indeed, the following result shows that d,, is a symmetric function of (dy, ..., d,).

Proposition 7 Forn > 1 we have

k=n
5TL B Zk:l Zl§i1<i2<---<ik§n dil o dlk (715)

ProOF. This follows by induction from é,, = (d,, + 1)d,,—1 + d,,. O

7.4 Benchmarks

We have realized benchmarks between the computer algebra system MAGMA and

our code:
Figures | n P Variable
7.1 2 5767169 On,
7.2 3 23068673 On,
7.3 2 | 18446744073692774401 On
7.4 3 | 18446744073692774401 On
where d here stand for the maximum of the partial degrees dy,...,d,. ¢ repre-

sents the number of expanding terms after Kronecker substitution.
In these benchmarks, we used dense representations for the randomly generated

input polynomials. Every term in each input polynomial is non-zero. We have

7.4. Benchmarks 84

checked every input polynomial in both AXIOM and MAGMA to make sure that
we are comparing the same thing.

According the benchmark results, our FFT-based multivariate polynomial mul-
tiplication over Z/pZ outperforms MAGMA’s counterpart in any case. From the
Figure 7.1 we can observe that when MAGMA is in the “classical multiplication”
stage, our FFT-based implementation is already faster. From Figures 7.2, 7.3, and
7.4 we can observe that both our FF'T and MAGMA'’s FFT are showing staircase-
like curves. This is the characteristic of FFT algorithm. And our implementation is

2 times faster than MAGMA'’s implementation.

0.16

Magma‘ I
AXIOM mmmm

0.14

0.12

0.1

0.08 |

Time [sec]

0.06

0.04 |

0.02 |

-2000 0 2000 4000 6000 8000 10000 12000

delta™n

Figure 7.1: FFT-based bivariate polynomial multiplication modulo 5767169.

7.4. Benchmarks

85
0.25 —
Magma m—
AXIOM

02}
_ 015t
g
o
£
= o}

0.05 |

0

1000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

delta®n
Figure 7.2: FF'T-based trivariate polynomial multiplication modulo 23068673.

I
£
[_1

-2000 0 2000 4000 6000 8000 10000 12000

delta”n
Figure 7.3: FFT-based bivariate polynomial multiplication modulo

18446744073692774401.

7.4. Benchmarks

86

Time [sec]

-5000 0 5000 10000 15000 20000 25000 30000 35000
delta®n

Figure 7.4: FFT-based trivariate polynomial multiplication

18446744073692774401.

modulo

Chapter 8

Memory management

8.1 General idea

Many popular computer algebra systems have a garbage collector (GC) environ-
ment. Therefore, analyzing the efficiency of GC systems is another important issue
in our research. We have chosen ALDOR as our experimental environment to study
the impact of liveness information on the performance of a GC.

ALDOR’s GC is one kind of tracing GC which employs the mark-and-sweep
algorithm. Typically, a tracing GC collects objects that are no longer reachable on
any path of references. This path of references starts from a set of roots, such as
machine registers, run-time stacks, global variables and instruction pointers. It is
well known that liveness information may aid in earlier reclamation of objects. It
may help to reduce the set of root references, or remove dead references from the
heap graph as soon as possible.

In this part of our work, we have concentrated on computing liveness information
of all the local variables and parameters for each FOAM program (FOAM [39] is the
intermediate language for ALDOR). Hence, this process is performed at compile-
time in order to improve the memory management performance at run-time. The
principle of our strategy is to modify the intermediate code as follows. When one
local variable or parameter dies, we nullify it by explicitly assigning the null value

to it. Thus, those ALDOR objects referenced by null could be identified at run-time
87

8.1. General idea 88

as unreachable and garbage collected soon.

According to [8], in order to compute the liveness information, an optimizing
compiler can annotate each node n (or basic-block n) in the Control Flow Graph
(CFG) (see [8] p. 439 for this notion) with a set called LiveOut(n). This LiveOut(n)
set contains the names of all variables which are still alive when the control flow

exits from the node n. A live-out set is defined by the following data-flow equations:

o LiveOut(ns) = () where ny is the exit node of the CFG

o LiveOut(n) =J,, (UEVar(m) |J (LiveOut(m)\Gen(m))) where m runs over

the successors of n.

where

e UEVar(m) contains the upward-exposed variables in m, that is the set those

variables that are used in m before any redefinition happens,
e Gen(m) set contains the variables that are defined in m.

The above equations encode the definition in an intuitive way. The set LiveOut(n)
is just a union of those variables that are still alive when exiting the basic block n
(see [8] p. 440). By saying “alive” we mean a variable that will be referenced later
in one or more paths.

Computing the LiveOut sets is performed by a three-step algorithm.

1. Building the CFG of the program. (This is already implemented in the ALDOR

compiler.)

2. Gathering the initial information for each basic-block; this involves computing

the UEVar and Gen sets.

3. Using an iterative fixed-point algorithm to propagate information around the
CFG. In each iteration, this algorithm evaluates the data-flow equations. It

halts when the information stops changing.

8.2. Results 89

After obtaining the LiveOut sets for each basic-block, it is easy to deduce the so-
called CanKill(m) set at each node m. At node m, the set CanKill(m) consists of
the variables that are dead in the basic block m. After computing the the ClanKill
sets, we can insert the “assign-null” statements immediately at the corresponding

locations.

8.2 Results

We have added the option —Qcankill to the the ALDOR compiler in order to ac-
tivate our transformation of the FOAM code described above. We give below an
example of FOAM code transformation. The file Fun01.as is the original ALDOR
source program and Fun01.fm (part) corresponds to a fragment of the FOAM code

optimized by our transformation.

FunO1.as FunO1.fm (part)
#include "aldor" (If(Cast Bool (Par O test))0)
import from Integer, (Set(Loc 0 b)(Loc 1 a))
Boolean; (Set(Loc 0 b) (Nil)) <- assign-null statment
f(test: Boolean): Integer== (Label 1)
{ (Return (Loc 1 a))
a:=0; b:=1; (Label 0)
if(test) then a:=b; (Set(Loc 1 a)(Loc 0 b))
else b:=a; (set(Loc 0 b)(Nil)) <- assign-null statement
a; (Goto 1))))

Figure 8.1 illustrates the memory consumption without and with our package
implementing the FOAM code transformation described above.

We can observe that the memory consumption is improved by our package.

8.3. Future work of this chapter

90

225

1.75

memory consunption (%)
5

Testl Test2

. tmproved

B before

(sm_dmp0.test.as) (sm_polring.test.as)

Figure 8.1: Testing the improvement of memory consumption

8.3 Future work of this chapter

To further improve the efficiency of our package, we:

e should use Reverse Post Order traversal (see

LiveOut information.

[8] in P. 446) to propagate

e should compute dominance information (see [8] in P. 457) to reduce the overall

workload of data-flow analysis.

Chapter 9

Conclusions and future work

We have investigated and developed fast techniques for producing highly efficient
polynomial arithmetic in AXIOM.
We have

1. combined high-level generic code and low-level machine dependent code in a

transparent way for the high-level end-user,
2. developed adapted underlying data representations and algorithms,

3. implemented asymptotically fast polynomial arithmetic based on the Fast

Fourier Transform,
4. investigated the impact of the garbage collection system on our applications.

For further improving the performance and competing with other efficient CAS

such as MAGMA and NTL, we have also
1. studied the compilers’ code optimization technique and its restrictions,
2. considered the hierarchy of the memory system,
3. used new features in IA-32 Intel Architecture.

4. employed parallel programming including instruction-level pipelining.

91

Chapter 9. Conclusions and future work 92

Our implementation results are satisfactory compared with other known CAS. Our
implementation work can be ported to other CAS with a reasonable amount of effort.

In the near future, We will continue to adapt our polynomial packages to coef-
ficient rings that are not necessarily fields but direct products of fields, [29] [30]
and interface our Assembly code and C libraries with other CAS or languages, such

MAPLE and ALDOR.

Bibliography

The AXTIOM developers web site. http://page.axiom-developer.org.
aldor.org. The ALDOR distribution website. http://www.aldor.org.

Randal E. Bryant and David O’Hallaron. Computer Systems. Pearson Educa-
tion, Inc., 2003.

David G. Cantor and Erich Kaltofen. On fast multiplication of polynomials
over arbitrary algebras. Acta Informatica, 28:693-701, 1991.

The CoCoA team. The CoCoA Computer Algebra System.

http://cocoa.dima.unige.it/.

Henri Cohen and his co workers. PARI/GP.

http://pari.math.u-bordeaux.fr/.

The Computational Algebra Group in the School of Mathematics
and Statistics at the University of Sydney. The MAGMA Com-
putational Algebra System for Algebra, Number Theory and Geometry.

http://magma.maths.usyd.edu.au/magma/.

Keith D. Cooper and Linda Torczon. Engineering A Compiler. Morgan Kauf-
mann, 2004.

Martin Cracauer. CMUCL: a high-performance, free Common Lisp implemen-

tation. http://www.cons.org/cmucl/.

93

Bibliography 94

[10]

[11]

[14]

[15]

[16]

[17]

[18]

Xavier Dahan, Marc Moreno Maza, Eric Schost, Wenyuan Wu, and Yuzhen
Xie. Lifting techniques for triangular decompositions. In Proc. ISSAC’05.
ACM Press, 2005.

David A. Cox, John B. Little and Donald O’Shea. Ideals, varieties, and algo-
rithms: an introduction to computational algebraic geometry and commutative

algebra. Springer, 1997.

David S. Dummit and Richard M. Foote. Abstract algebra. Simon and Schuster,
1993.

Toannis Z. Emiris and Victor Y. Pan. Fast fourier transform and its applica-
tions. In Mikhail J. Atallah, editor, Handbook of Algorithms and Theory of
Computations. CRC Press Inc, 1999.

Richard J. Fateman. Vector-based polynomial recursive representation arith-

metic. 1990. http://www.norvig.com/1td/test/poly.dylan.

Richard J. Fateman. Can you save time in multiply-
ing polynomials by encoding them as integers? 2005.

http://http.cs.berkeley.edu/~fateman/papers/polysbyGMP.pdf.

Free Software Foundation. GNU Multiple Precision Arithmetic Library.
http://swox.com/gmp/.

Joachim von zur Gathen and Jurgen Gerhard. Modern Computer Algebra.

Cambridge University Press, 1999.

K.O. Geddes, S.R. Czapor, and G. Labahn. Algorithms for Computer Algebra.
Kluwer Academic Publishers, 1992.

Linley Gwennap. Intel’s p6 uses decoupled superscalar design. In Microproces-

sor Report, Vol. 9, Issue 2, February 1995.

Bibliography 95

[20] Mark van Hoeij and Michael B. Monagan. A modular ged algorithm over
number fields presented with multiple extensions. In Teo Mora, editor, Proc.

ISSAC02, pages 109 116. ACM Press, July 2002.

[21] Joris van der Hoeven. Truncated fourier transform. In Proc. ISSAC°04. ACM
Press, 2004.

[22] Richard D. Jenks and Robert S. Sutor. AXIOM the Scientific Computation
System. Springer-Verlag, 1992.

23] Jeremy R. Johnson, Werner Krandick, and Anatole D. Ruslanov. Architecture-
aware classical Taylor shift by 1. In Proc. ISSAC°05. ACM Press, 2005.

[24] A. Karatsuba and Yu. Ofman. Multiplication of multidigit numbers on au-

tomata. Soviet Physics Doklady, (7):595 596, 1963.

[25] Grégoire Lecerf and Eric Schost. Fast multivariate power series multiplication in
characteristic zero. SADIO FElectronic Journal on Informatics and Operations

Research, 5(1), September 2003.

[26] Xin Li, Marc Moreno Maza, and Eric Schost. Fast multivariate polynomial

multiplication. 2005. preprint.

[27] Marc Moreno Maza. On triangular decompositions of algebraic varieties. Tech-
nical Report TR 4/99, NAG Ltd, Oxford, UK, 1999. Presented at the MEGA-
2000 Conference, Bath, England.

[28] Marc Moreno Maza. CS 874 advanced computer algebra:
asymptotically fast methods for exact computations. 2002.

http://www.csd.uwo.ca/~moreno//MainPages/CS874-2003.html/index.html.

[29] Marc Moreno Maza and Cosmin Oancea. On polynomial geds over products of
fields presented by towers of simple extensions. Technical report, University of

Western Ontario, January 2004.

Bibliography 96

[30] Marc Moreno Maza and Renaud Rioboo. Polynomial ged computations over

towers of algebraic extensions. In Proc. AAECC-11. Springer, 1995.

[31] Victor Y. Pan. Simple multivariate polynomial multiplication. J. Symb. Comp.,
18(3):183-186, 1994.

[32] William F. Schelter. AKCL: The Austin Kyoto Common LISP compiler.
http://hpux.connect.org.uk/hppd/hpux/Languages/akcl-1.619/.

[33] E. Schost. Complexity results for triangular sets. .J. Symb. Comp., 36(3-4):555-
594, 2003.

[34] Victor Shoup. NTL: A Library for doing Number Theory.

http://www.shoup.net/ntl/.

[35] Victor Shoup. A new polynomial factorization algorithm and its implementa-

tion. J. Symb. Comp., 20(4):363 397, 1995.

[36] Richard M. Stallman and the GCC developement team. the GNU Compiler
Collection, includes front ends for C, C++, Objective-C, Fortran, Java, and

Ada. http://gcc.gnu.org/.
[37] Henry S. Warren, Jr. Hacker’s Delight. Pearson Education, Inc., 2003.

[38] Stephen M. Watt. A# language reference v0.35. Technical Report RC 19530,
IBM Research, 1994.

[39] Stephen M. Watt. FOAM: A first order abstract machine. Technical report,
IBM Research, 1994.

[40] Taiichi Yuasa, Masami Hagiya, and William F. Schelter. GNU Common Lisp.

http://www.gnu.org/software/gcl.

[41] Richard Zippel. Effective Polynomial Computation. Kluwer Academic Press,
1993.

