Balanced Dense Polynomial Multiplication
on Multicores

Yuzhen Xie
SuperTech Group, CSAIL MIT
joint work with
Marc Moreno Maza
ORCCA, UWO

ACAQ9, Montreal, June 26, 2009

Introduction

Motivation: Multicore-enabling parallel polynomial arithmetic in
computer algebra

» Fast dense polynomial multiplication via FFT

» Multivariate polynomials over finite fields

Introduction

Motivation: Multicore-enabling parallel polynomial arithmetic in
computer algebra

» Fast dense polynomial multiplication via FFT

» Multivariate polynomials over finite fields

Framework:
» Assume 1-D FFT (in particular 1-D TFT) as a black box
» Rely on the modpn C library (shipped with Maple 13):
— for 1-D FFT and 1-D TFT computations,
— for integer modulo arithmetic (Montgomery trick)

» Implement in Cilk-++ targeting multi-cores:
— provably efficient work-stealing scheduling
— ease-of-use and low-overhead parallel constructs:
cilk_for, cilk_spawn, cilk_sync

— Cilkscreen for data race detection and parallelism analysis

FFT-based Multivariate Multiplication
(Algorithm Review)

> Let k be a field and 1, g € k[x1 < -+ < x,] be polynomials.
» Define d; = deg(f, x;) and d’; = deg(g, x;), for all i.

» Assume there exists a primitive s;-th root unity w; € k for all
i, where s; is a power of 2 satisfying s; > d; + d’; + 1.

FFT-based Multivariate Multiplication
(Algorithm Review)

> Let k be a field and 1, g € k[x1 < -+ < x,] be polynomials.
» Define d; = deg(f, x;) and d’; = deg(g, x;), for all i.
» Assume there exists a primitive s;-th root unity w; € k for all
i, where s; is a power of 2 satisfying s; > d; + d’; + 1.
Then fg can be computed as follows.

Step 1. Evaluate f and g at each point P (i.e. f(P),g(P)) of the
n-dimensional grid ((wf',...,w"),0< e < s1,...,0< e, <s,)
via n-D FFT.

FFT-based Multivariate Multiplication
(Algorithm Review)

> Let k be a field and 1, g € k[x1 < -+ < x,] be polynomials.

» Define d; = deg(f, x;) and d’; = deg(g, x;), for all i.

» Assume there exists a primitive s;-th root unity w; € k for all
i, where s; is a power of 2 satisfying s; > d; + d’; + 1.

Then fg can be computed as follows.

Step 1. Evaluate f and g at each point P (i.e. f(P),g(P)) of the
n-dimensional grid ((wf',...,w"),0< e < s1,...,0< e, <s,)
via n-D FFT.

Step 2. Evaluate fg at each point P of the grid, simply by computing
f(P)g(P),

FFT-based Multivariate Multiplication
(Algorithm Review)

> Let k be a field and 1, g € k[x1 < -+ < x,] be polynomials.
» Define d; = deg(f, x;) and d’; = deg(g, x;), for all i.
» Assume there exists a primitive s;-th root unity w; € k for all
i, where s; is a power of 2 satisfying s; > d; + d’; + 1.
Then fg can be computed as follows.

Step 1. Evaluate f and g at each point P (i.e. f(P),g(P)) of the
n-dimensional grid ((wf',...,w"),0< e < s1,...,0< e, <s,)
via n-D FFT.

Step 2. Evaluate fg at each point P of the grid, simply by computing
f(P)g(P),
Step 3. Interpolate fg (from its values on the grid) via n-D FFT.

Performance of Bivariate Interpolation in Step 3

(di = db)
16.00 - Bivariate Interpolation
14.00 -
—-—16383
12.00 1 ——8191
10.00 - =%=4095
=3 —6=2047
>
® 8.00 -
Q
Q.
wv
6.00 -
4.00 4
2.00 =
0.00

0 2 4 6 8 10 12 14 16
Number of Cores

Thanks to Dr. Frigo for his cache-efficient code for matrix transposition!

Performance of Bivariate Multiplication
(dy = dr = df = df)

16.00 Bivariate Multiplication
14.00
12.00
10.00

8.00 A

Speedup

6.00 -

4.00 A

2.00 -

0.00 T T T T T T T 1

0 2 4 6 8 10 12 14 16
Number of Cores

Challenges: Irregular Input Data

16.00 1 Multiplication L’
4
d
14.00 1 - - - Jinear speedup 7
d
—e&— bivariate (32765, 63) 7
12.00 1 g variate (all 4) 7
4-variate (1023, 1, 1, 1023) .~

10.00 - R ‘
a —&— univariate (25427968) ,“
3
D 8.00 -
(7]
Q.
v

6.00 -

4.00 -

2.00 A

0.00 ; ; ; ; : ; ; \

0 2 4 6 8 10 12 14 16

Number of Cores

These unbalanced data pattern are common in symbolic computation.

Performance Analysis by VTune

No. Size of Product
Two Input Size
Polynomials

1 81918191 268402689

2 259575x258 268401067

3 63x63x63x63 260144641

4 8vars. of deg. 5 214358881
No. INST_ Clocks per L2 Cache Modified Data Time on
RETIRED. Instruction Miss Rate Sharing Ratio 8 Cores
ANY x10° Retired (x1073) (x1073) (s)
1 659.555 0.810 0.333 0.078 16.15
2 713.882 0.890 0.735 0.192 19.52
3 714.153 0.854 1.096 0.635 22.44
4 1331.340 1.418 1.177 0.576 72.99

Complexity Analysis (1/2)

» Let s = s;---5s,. The number of operations in k for
computing fg via n-D FFT is

g > (I Is)sile(si) + (n+1)s = gs lg(s) + (n+ 1)s.

i=1 j#i

Complexity Analysis (1/2)

» Let s = s;---5s,. The number of operations in k for
computing fg via n-D FFT is

g > (I Is)sile(si) + (n+1)s = gs lg(s) + (n+ 1)s.

i=1 j#i

» Under our 1-D FFT black box assumption, the span of Step 1 is
3 (sulg(st) + -+ sulg(sn)),
and the parallelism of Step 1 is lower bounded by
s/max(si, ..., Sn)- (1)

Complexity Analysis (1/2)

» Let s = s;---5s,. The number of operations in k for
computing fg via n-D FFT is

g > (I Is)sile(si) + (n+1)s = gs lg(s) + (n+ 1)s.

i=1 j#i

» Under our 1-D FFT black box assumption, the span of Step 1 is
3 (sulg(st) + -+ sulg(sn)),
and the parallelism of Step 1 is lower bounded by
s/max(si, ..., Sn)- (1)

» Let L be the size of a cache line. For some constant ¢ > 0,

the number of cache misses of Step 1 is upper bounded by

cs 1 1
= S). 2
nT eSSt) (2)

Complexity Analysis (2/2)

> Let Q(s1,...,5sn) denotes the total number of cache misses
for the whole algorithm, for some constant ¢ we obtain

+1 1 1
T des(E+ o+ 2) ()
S1 Sn

Complexity Analysis (2/2)

» Let Q(s1,...,sn) denotes the total number of cache misses
for the whole algorithm, for some constant ¢ we obtain

+1 1 1
T des(E+ o+ 2) ()
51 Sn

Q(s1y...,8n) < cs

. n 1 1
> Since {; < 5+t we deduce
1

2
Q(sl,...,sn)gncs(z—i—m) (4)

when s; = s1/n holds for all i.

Complexity Analysis (2/2)

> Let Q(s1,...,5sn) denotes the total number of cache misses
for the whole algorithm, for some constant ¢ we obtain

+1 1 1
T des(E+ o+ 2) ()
51 Sn

. n 1 1
> Since {; < 5+t we deduce

1

2
Q(sl,...,sn)gncs(z—i—m) (4)

when s; = s1/n holds for all i.

Remark 1: For n > 2, Expr. (4) is minimized at n = 2 and
s1 = 5, = +/s. Moreover, when n = 2, under a fixed s = s,
Expr. (1) is maximized at s; = s; = +/s.

Our Solutions

(1) Contraction to bivariate from multivariate
(2) Extension from univariate to bivariate

(3) Balanced multiplication by extension and contraction

Solution 1: Contraction to Bivariate from Multivar.
Example. Let f € k[x, y, z] where k = Z/41Z, with d, = d, =1, d, = 3,
and recursive dense representation:

x The coefficients (not monomials) are stored in a contiguous a
* Index monomial xy®z% by e; + (di + 1)ex + (dy + 1)(dy + 1)es.

Solution 1: Contraction to Bivariate from Multivar.
Example. Let f € k[x, y, z] where k = Z/41Z, with d, = d, =1, d, = 3,
and recursive dense representation:

* The coefficients (not monomials) are stored in a contiguous array.
* Index monomial xy®z% by e; + (di + 1)ex + (dy + 1)(dy + 1)es.

Contracting f(x,y, z) to p(u, v) by x®y® s yertldte e e

Solution 1: Contraction to Bivariate from Multivar.
Example. Let f € k[x, y, z] where k = Z/41Z, with d, = d, =1, d, = 3,
and recursive dense representation:

* The coefficients (not monomials) are stored in a contiguous array.
* Index monomial xy®z% by e; + (di + 1)ex + (dy + 1)(dy + 1)es.

Contracting f(x,y, z) to p(u, v) by x®y® s yertldte e e

Remark 2: The coefficient array is “essentially” unchanged by contraction,
which is a property of recursive dense representation.

Performance of Contraction (timing)

45

40

35

Time (second)
= N N w
w o v o

=
o

4-variate Multiplication
degrees= (1023, 1, 1, 1023)

—8—4D-TFT method, size =
2047x3x3x2047

—4&—Balanced 2D-TFT method,
size = 6141x6141

= r 3 —h

2 4 6 8 10 12 14 16

Number of Cores

Performance of Contraction (speedup)

32.00 -
30.00 -
28.00 -

4-variate Multiplication
degrees = (1023, 1, 1, 1023)

26.00 - —a—Balanced 2D-TFT method,

24.00 A size = 6141x6141
22.00 - —8—4D-TFT method, size =

20.00 - 2047x3x3x2047
=>=Net speedup
2 18.00 -

D 16.00 -

& 14.00 -
12.00 -
10.00 -
8.00 -
6.00 -
4.00 -
2.00 -
0.00 T T T T T T T "

0 2 4 6 8 10 12 14 16
Number of Cores

e

Performance of Contraction for a Large Range of Problems

(timing on 1 processor)

X

4-D TFT method on 1 core (43.5-179.9 s)

Kronecker substitution of 4-D to 1-D TFT on 1 core (35.8- s)

+
o}

86.2 s)

Contraction of 4-D to 2-D TFT on 1 core (19.8

180

160

140

120
Time 100 -

Performance of Contraction for a Large Range of Problems
(speedup)
Contraction of 4-D to 2-D TFT on 16 cores (8.2-13.2x speedup, 15.9-29.9x net gain)

Contraction of 4-D to 2-D TFT on 8 cores (6.5-7.7x speedup, 12.8-16.5x net gain) +
4-D TFT method on 16 cores (2.7-3.4x speedup) x

16

14 +

12

10

Speedup

Solution 2: Extension from Univariate to Bivariate

Example: Consider f, g € k[x] univariate, with deg(f) =7 and
deg(g) = 8; fg has “dense size” 16.

» We compute an integer b, such that fg can be performed via
fogp using “nearly square” 2-D FFTs, where f, := ®,(f),
8p ‘= d>b(g) and

q)b - oxe u rem b € duo b.

Solution 2: Extension from Univariate to Bivariate

Example: Consider f, g € k[x] univariate, with deg(f) =7 and
deg(g) = 8; fg has “dense size” 16.

» We compute an integer b, such that fg can be performed via
fogp using “nearly square” 2-D FFTs, where f, := ®,(f),
8p ‘= d>b(g) and

q)b - oxe u rem b € duo b.

* Here b = 3 works since deg(fpgp, u) = deg(fpgp, v) = 4;
moreover the dense size of frgp is 25.

Solution 2: Extension from Univariate to Bivariate

Example: Consider f, g € k[x] univariate, with deg(f) =7 and
deg(g) = 8; fg has “dense size” 16.

» We compute an integer b, such that fg can be performed via
fogp using “nearly square” 2-D FFTs, where f, := ®,(f),
8p - — q>b(g) and

(Db - oxe u rem b € duo b.

* Here b = 3 works since deg(fpgp, u) = deg(fpgp, v) = 4;
moreover the dense size of frgp is 25.

Proposition: For any non-constant f, g € k[x], one can always
compute b such that |deg(fpgp, u) — deg(fpgp, v)| < 2 and the
dense size of fpgp is at most twice that of fg.

Extension of f(x) to f,(u, v)
in Recursive Dense Representation

Extension of f(x) to f,(u, v)
in Recursive Dense Representation

Conversion to Univariate from the Bivariate Product

» The bivariate product: deg(fpgp, u) = 4, deg(fpgp, v) = 4.

Conversion to Univariate from the Bivariate Product

» The bivariate product: deg(fpgp, u) = 4, deg(fpgp, v) = 4.

Conversion to Univariate from the Bivariate Product

» The bivariate product: deg(fpgp, u) = 4, deg(fpgp, v) = 4.

Conversion to Univariate from the Bivariate Product

» The bivariate product: deg(fpgp, u) = 4, deg(fpgp, v) = 4.

Conversion to Univariate from the Bivariate Product

» The bivariate product: deg(fpgp, u) = 4, deg(fpgp, v) = 4.

Conversion to Univariate from the Bivariate Product

» The bivariate product: deg(fpgp, u) = 4, deg(fpgp, v) = 4.

Conversion to Univariate from the Bivariate Product

» The bivariate product: deg(fpgp, u) = 4, deg(fpgp, v) = 4.

Remark 4: Converting back to fg from fpgp requires only to traverse
the coefficient array once, and perform at most deg(fg, x) additions.

Remark 3

Our extension technique provides an alternative to the
Schonage -Strassen Algorithm for handling problems which
sizes are too large for the available primitive roots of unity, a
limitation with FFTs over finite fields.

(seco

Tim

Performance of Extension (timing)

Univariate Mupltiplication
degree = 25427968

—0—1D-TFT method, size =
50855937

1 —#—Balanced 2D-TFT method,

J size = 10085x10085

0 2 4 6 8 10 12 14 16
Number of Cores

Speedup

Performance of Extension (speedup)

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

Univariate Multiplication
degree = 25427968

—8—1D-TFT method, size =
50855937

—&—Balanced 2D-TFT method,
size = 10085x10085

=><Net speedup

2 4 6 8 10 12 14 16

Number of Cores

Time

Performance of Extension for a Large Range of Problems
(timing)

Extension of 1-D to 2-D TFT on 1 core (2.2-80.1 s)

1-D TFT method on 1 core (1.8-59.7 s)

Extension of 1-D to 2-D TFT on 2 cores (1.96-2.0x speedup, 1.5-1.7x net gain)
Extension of 1-D to 2-D TFT on 16 cores (8.0-13.9x speedup, 6.5-11.5x net gain)

80 |
70
60 r
50
40
30

X &+ 0

Solution 3: Balanced Multiplication

Definition. A pair of bivariate polynomials p, g € k[u, v] is
balanced if deg(p, u) + deg(q, u) = deg(p, v) + deg(q, v).

Solution 3: Balanced Multiplication

Definition. A pair of bivariate polynomials p, g € k[u, v] is
balanced if deg(p, u) + deg(q, u) = deg(p, v) + deg(q, v).

Algorithm. Let f, g € k[x; < ... < x,]. W.l.o.g. one can assume
di >>d;and di’ >> djfor2<i<n (up to variable re-ordering
and contraction). Then we obtain fg by

Step 1. Extending x; to {u, v}.

Step 2. Contracting {v, x2,...,x,} to v.

Solution 3: Balanced Multiplication

Definition. A pair of bivariate polynomials p, g € k[u, v] is
balanced if deg(p, u) + deg(q, u) = deg(p, v) + deg(q, v).

Algorithm. Let f, g € k[x; < ... < x,]. W.l.o.g. one can assume
di >>d;and di’ >> djfor2<i<n (up to variable re-ordering
and contraction). Then we obtain fg by

Step 1. Extending x; to {u, v}.
Step 2. Contracting {v, x2,...,x,} to v.
Remark 5: The above extension @, can be determined such that

fp, gp is (nearly) a balanced pair and f,g, has dense size at most
twice that of fg.

Performance of Balanced Multiplication for a Large Range of
Problems (timing)

X
+
&
(0]

14.1s)

10.3x net gain)

,6.2-

11.3x speedup

Ext.+Contr. of 4-D to 2-D TFT on 1 core (7.6-15.7 s)

Kronecker substitution of 4-D to 1-D TFT on 1 core (6.8
Ext.+Contr. of 4-D to 2-D TFT on 2 cores (1.96x speedup, 1.75x net gain)

Ext.+Contr. of 4

D TFT on 16 cores (7.0

D to 2-

Conclusion

Summary and future work:
» We have obtained efficient techniques and implementations
for dense polynomial multiplication on multicores:
- use balanced bivariate multiplication as a kernel,
- contract mutivariate to bivariate,
- extend univariate to bivariate,
- combine contraction and extension.
» Our work-in-progress include normal form, GCD /resultant and
a polynomial solver via triangular decompositions.

Acknowledgements:

This work was supported by NSERC and MITACS NCE of Canada, and
NSF Grants 0540248, 0615215, 0541209, and 0621511. We are very
grateful for the help of Professor Charles E. Leiserson at MIT, Dr.
Matteo Frigo and all other members of Cilk Arts.

Thanks to all who have been supporting!

