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Framework:
» Assume 1-D FFT (in particular 1-D TFT) as a black box
» Rely on the modpn C library (shipped with Maple 13):
— for 1-D FFT and 1-D TFT computations,
— for integer modulo arithmetic (Montgomery trick)

» Implement in Cilk-++ targeting multi-cores:
— provably efficient work-stealing scheduling
— ease-of-use and low-overhead parallel constructs:
cilk_for, cilk_spawn, cilk_sync

— Cilkscreen for data race detection and parallelism analysis



FFT-based Multivariate Multiplication
(Algorithm Review)

> Let k be a field and 1, g € k[x1 < -+ < x,] be polynomials.
» Define d; = deg(f, x;) and d’; = deg(g, x;), for all i.

» Assume there exists a primitive s;-th root unity w; € k for all
i, where s; is a power of 2 satisfying s; > d; + d’; + 1.
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FFT-based Multivariate Multiplication
(Algorithm Review)

> Let k be a field and 1, g € k[x1 < -+ < x,] be polynomials.
» Define d; = deg(f, x;) and d’; = deg(g, x;), for all i.
» Assume there exists a primitive s;-th root unity w; € k for all
i, where s; is a power of 2 satisfying s; > d; + d’; + 1.
Then fg can be computed as follows.

Step 1. Evaluate f and g at each point P (i.e. f(P),g(P)) of the
n-dimensional grid ((wf',...,w"),0< e < s1,...,0< e, <s,)
via n-D FFT.

Step 2. Evaluate fg at each point P of the grid, simply by computing
f(P)g(P),
Step 3. Interpolate fg (from its values on the grid) via n-D FFT.



Performance of Bivariate Interpolation in Step 3
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Thanks to Dr. Frigo for his cache-efficient code for matrix transposition!



Performance of Bivariate Multiplication
(dy = dr = df = df)
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Challenges: Irregular Input Data
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These unbalanced data pattern are common in symbolic computation.



Performance Analysis by VTune

No. Size of Product
Two Input Size
Polynomials

1 81918191 268402689

2 259575x258 268401067

3 63x63x63x63 260144641

4 8vars. of deg. 5 214358881
No. INST_ Clocks per L2 Cache Modified Data Time on
RETIRED. Instruction Miss Rate  Sharing Ratio 8 Cores
ANY x10° Retired  (x1073) (x1073) (s)
1 659.555 0.810 0.333 0.078 16.15
2 713.882 0.890 0.735 0.192 19.52
3 714.153 0.854 1.096 0.635 22.44
4 1331.340 1.418 1.177 0.576 72.99




Complexity Analysis (1/2)

» Let s = s;---5s,. The number of operations in k for
computing fg via n-D FFT is

g > (I Is)sile(si) + (n+1)s = gs lg(s) + (n+ 1)s.
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Complexity Analysis (1/2)

» Let s = s;---5s,. The number of operations in k for
computing fg via n-D FFT is

g > (I Is)sile(si) + (n+1)s = gs lg(s) + (n+ 1)s.

i=1 j#i

» Under our 1-D FFT black box assumption, the span of Step 1 is
3 (sulg(st) + -+ sulg(sn)),
and the parallelism of Step 1 is lower bounded by
s/max(si, ..., Sn)- (1)

» Let L be the size of a cache line. For some constant ¢ > 0,

the number of cache misses of Step 1 is upper bounded by

cs 1 1
= S ). 2
nT eSSt ) (2)



Complexity Analysis (2/2)

> Let Q(s1,...,5sn) denotes the total number of cache misses
for the whole algorithm, for some constant ¢ we obtain
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Complexity Analysis (2/2)

> Let Q(s1,...,5sn) denotes the total number of cache misses
for the whole algorithm, for some constant ¢ we obtain

+1 1 1
T des(E+ o+ 2) ()
51 Sn

. n 1 1
> Since {; < 5+t we deduce

1

2
Q(sl,...,sn)gncs(z—i—m) (4)

when s; = s1/n holds for all i.

Remark 1: For n > 2, Expr. (4) is minimized at n = 2 and
s1 = 5, = +/s. Moreover, when n = 2, under a fixed s = s,
Expr. (1) is maximized at s; = s; = +/s.



Our Solutions

(1) Contraction to bivariate from multivariate
(2) Extension from univariate to bivariate

(3) Balanced multiplication by extension and contraction



Solution 1: Contraction to Bivariate from Multivar.
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* Index monomial xy®z% by e; + (di + 1)ex + (dy + 1)(dy + 1)es.
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Solution 1: Contraction to Bivariate from Multivar.
Example. Let f € k[x, y, z] where k = Z/41Z, with d, = d, =1, d, = 3,
and recursive dense representation:

* The coefficients (not monomials) are stored in a contiguous array.
* Index monomial xy®z% by e; + (di + 1)ex + (dy + 1)(dy + 1)es.

Contracting f(x,y, z) to p(u, v) by x®y® s yertldte e e

Remark 2: The coefficient array is “essentially” unchanged by contraction,
which is a property of recursive dense representation.



Performance of Contraction (timing)
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Performance of Contraction (speedup)
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Performance of Contraction for a Large Range of Problems

(timing on 1 processor)
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Performance of Contraction for a Large Range of Problems
(speedup)
Contraction of 4-D to 2-D TFT on 16 cores (8.2-13.2x speedup, 15.9-29.9x net gain)

Contraction of 4-D to 2-D TFT on 8 cores (6.5-7.7x speedup, 12.8-16.5x net gain)  +
4-D TFT method on 16 cores (2.7-3.4x speedup)  x
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Solution 2: Extension from Univariate to Bivariate

Example: Consider f, g € k[x] univariate, with deg(f) =7 and
deg(g) = 8; fg has “dense size” 16.

» We compute an integer b, such that fg can be performed via
fogp using “nearly square” 2-D FFTs, where f, := ®,(f),
8p ‘= d>b(g) and

q)b - oxe u rem b € duo b.
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Solution 2: Extension from Univariate to Bivariate

Example: Consider f, g € k[x] univariate, with deg(f) =7 and
deg(g) = 8; fg has “dense size” 16.

» We compute an integer b, such that fg can be performed via
fogp using “nearly square” 2-D FFTs, where f, := ®,(f),
8p - — q>b(g) and

(Db - oxe u rem b € duo b.

* Here b = 3 works since deg(fpgp, u) = deg(fpgp, v) = 4;
moreover the dense size of frgp is 25.

Proposition: For any non-constant f, g € k[x], one can always
compute b such that |deg(fpgp, u) — deg(fpgp, v)| < 2 and the
dense size of fpgp is at most twice that of fg.



Extension of f(x) to f,(u, v)
in Recursive Dense Representation
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Conversion to Univariate from the Bivariate Product

» The bivariate product: deg(fpgp, u) = 4, deg(fpgp, v) = 4.




Conversion to Univariate from the Bivariate Product

» The bivariate product: deg(fpgp, u) = 4, deg(fpgp, v) = 4.




Conversion to Univariate from the Bivariate Product

» The bivariate product: deg(fpgp, u) = 4, deg(fpgp, v) = 4.




Conversion to Univariate from the Bivariate Product

» The bivariate product: deg(fpgp, u) = 4, deg(fpgp, v) = 4.




Conversion to Univariate from the Bivariate Product

» The bivariate product: deg(fpgp, u) = 4, deg(fpgp, v) = 4.




Conversion to Univariate from the Bivariate Product

» The bivariate product: deg(fpgp, u) = 4, deg(fpgp, v) = 4.




Conversion to Univariate from the Bivariate Product

» The bivariate product: deg(fpgp, u) = 4, deg(fpgp, v) = 4.

Remark 4: Converting back to fg from fpgp requires only to traverse
the coefficient array once, and perform at most deg(fg, x) additions.



Remark 3

Our extension technique provides an alternative to the
Schonage -Strassen Algorithm for handling problems which
sizes are too large for the available primitive roots of unity, a
limitation with FFTs over finite fields.
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Performance of Extension (speedup)
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Performance of Extension for a Large Range of Problems
(timing)
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Solution 3: Balanced Multiplication

Definition. A pair of bivariate polynomials p, g € k[u, v] is
balanced if deg(p, u) + deg(q, u) = deg(p, v) + deg(q, v).
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Solution 3: Balanced Multiplication

Definition. A pair of bivariate polynomials p, g € k[u, v] is
balanced if deg(p, u) + deg(q, u) = deg(p, v) + deg(q, v).

Algorithm. Let f, g € k[x; < ... < x,]. W.l.o.g. one can assume
di >>d;and di’ >> djfor2<i<n (up to variable re-ordering
and contraction). Then we obtain fg by

Step 1. Extending x; to {u, v}.
Step 2. Contracting {v, x2,...,x,} to v.
Remark 5: The above extension @, can be determined such that

fp, gp is (nearly) a balanced pair and f,g, has dense size at most
twice that of fg.



Performance of Balanced Multiplication for a Large Range of
Problems (timing)
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Conclusion

Summary and future work:
» We have obtained efficient techniques and implementations
for dense polynomial multiplication on multicores:
- use balanced bivariate multiplication as a kernel,
- contract mutivariate to bivariate,
- extend univariate to bivariate,
- combine contraction and extension.
» Our work-in-progress include normal form, GCD /resultant and
a polynomial solver via triangular decompositions.
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