
Balanced Dense Polynomial Multiplication on Multicores

Marc Moreno Maza† and Yuzhen Xie⋆

†Ontario Research Centre of Computer Algebra, University of Western Ontario, London, Canada
⋆Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Overview

We present high-performance techniques for FFT-based dense

polynomial multiplication on multi-cores, with a focus on unbal-

anced input data. We show that balanced data can maximize par-

allel speed-up and minimize cache complexity for bivariate multipli-

cation. Then, we show how multivariate (and univariate) multipli-

cation can be efficiently reduced to balanced bivariate multiplica-

tion. This approach brings in practice dramatic improvements for

unbalanced input data, even if the implementation relies on serial

one-dimensional FFTs. This permits the use of memory efficient

FFT techniques, such as TFT, which is hard to parallelize.

FFT-based Multivariate Multiplication

Let K be a field and f , g ∈ K[x1 < · · · < xn] be polynomials.

Define di = deg(f, xi) and d′i = deg(g, xi), for all i. Assume there

exists a primitive si-th root ωi ∈ K, for all i, where si is a power of

2 satisfying si ≥ di +d′i +1. Then fg can be computed as follows.

Step 1. Evaluate f and g at each point of the n-dimensional grid

((ωe1
1 , . . . , ωen

n), 0 ≤ e1 < s1, . . . , 0 ≤ en < sn) via n-D FFT.

Step 2. Evaluate fg at each point P of the grid, simply by com-

puting f (P)g(P),

Step 3. Interpolate fg (from its values on the grid) via n-D FFT.

Complexity Estimates

•Let s = s1 · · · sn. The number of operations in K for computing

fg based on FFTs is
9

2

n∑

i=1

(
∏

j 6=i

sj)si lg(si) + (n + 1)s =
9

2
s lg(s) + (n + 1)s.

•Assuming serial 1-D FFTs, 9
2 (s1 lg(s1) + · · · + sn lg(sn)) is the

span of Step 1 and the parallelism is lower bounded by

s/max(s1, . . . , sn). (1)

•Let L be the size of a cache line. For some constant c > 0, the

number of cache misses of Step 1 is upper bounded by

n
cs

L
+ cs(

1

s1
+ · · · + 1

sn
). (2)

•Remark: For n ≥ 2, Expr. (2) is minimized at n = 2 and

s1 = s2 =
√

s. Moreover, when n = 2, under a fixed s = s1s2,

Expr. (1) is maximized at s1 = s2 =
√

s.

Contraction to Bivariate

•Example. Let f ∈ K[x, y, z] where K = Z/41Z, with deg(f, x) =

deg(f, y) = 1, deg(f, z) = 3 and recursive dense representation:
f

z0

y0

x0

8

x1

40

y1

x0

7

x1

24

z1

y0

x0

16

x1

0

y1

x0

5

x1

2

z2

y0

x0

21

x1

17

y1

x0

3

x1

37

z3

y0

x0

18

x1

4

y1

x0

29

x1

16

Contracting f (x, y, z) to f ′(u, v) by xe1ye2 7→ ue1+2e2, ze3 7→ ve3:
f ′

v0

u0

8

u1

40

u2

7

u3

24

v1

u0

16

u1

0

u2

5

u3

2

v2

u0

21

u1

17

u2

3

u3

37

v3

u0

18

u1

4

u2

29

u3

16

•Remark. The data is “essentially” unchanged by contraction,

which is a property of recursive dense representation.

•Below, the left figure displays the timing of 4-variate multipli-

cation via 4-D TFT, 1-D TFT by Kronecker substitution and

contraction to balanced 2-D TFT on 1 processor; The right fig-

ure shows the speedups of 4-variate multiplication using 4-D TFT

and contraction to balanced 2-D TFT on 8 and 16 processors.

 512
 640

 768
 896

 1024 512
 640

 768
 896

 1024
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150

Time

Multiplication by 4-D TFT on 1 processor (28.5-148.6 s)
Multiplication by Kronecker substitution of 4-D to 1-D TFT on 1 processor (8.8-37.1 s)

Multiplication by contracting 4-D to 2-D TFT on 1 processor (5.9-25.4 s)

d1, d4 (d2=d3=1) d1’, d4’ (d2’=d3’=1)

Time

 512
 640

 768
 896

 1024 512
 640

 768
 896

 1024
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14

Speedup

Multiplication by contracting 4-D to 2-D TFT on 16 processors (speedup 10.0-13.5)
Multiplication by contracting 4-D to 2-D TFT on 8 processors (speedup 7.1-7.8)

Multiplication by 4-D TFT on 8 processors (speedup 3.5-4.9)
Multiplication by 4-D TFT on 16 processors (speedup 3.2-4.4)

d1, d4 (d2=d3=1) d1’, d4’ (d2’=d3’=1)

Speedup

Extension from Univariate to Bivariate

•Example: Consider f, g ∈ K[x] univariate, with deg(f) = 7

and deg(g) = 8; fg has “dense size” 16. We obtain an integer

b, such that fg can be performed via fbgb using “nearly square”

2-D FFTs, where fb := Φb(f), gb := Φb(g) and

Φb : xe 7−→ ue rem b ve quo b.

Here b = 3 works since deg(fbgb, u) = deg(fbgb, v) = 4; moreover
the dense size of fbgb is 25. Extending f (x) to fb(u, v) gives

f

x0

32

x1

13

x2

5

x3

7

x4

8

x5

11

x6

40

x7

35

=⇒

fb

v0

u0

32

u1

13

u2

5

v1

u0

7

u1

8

u2

11

v2

u0

40

u1

35

u2

0

•Proposition: For any non-constant f, g ∈ K[x], one can always

compute b such that |deg(fbgb, u) − deg(fbgb, v)| ≤ 2 and the

dense size of fbgb is at most twice that of fg.

•Example (ctnd): Computing the bivariate product fbgb:

fbgb

v0

u0

c00

u1

c01

u2

c02

u3

c03

u4

c04

v1

u0

c10

u1

c11

u2

c12

u3

c13

u4

c14

v2

u0

c20

u1

c21

u2

c22

u3

c23

u4

c24

v···

u···

· · ·

Converting back to fg from fbgb requires only to traverse the
coefficient array once and perform at most deg(fg, x) additions.

fg

x0

c00

x1

c01

x2

c02

x3

c03 + c10

x4

c04 + c11

x5

c12

x6

c13 + c20

x7

c14 + c21

x8

c22

x9,··· ,15

· · ·

Balanced Multiplication

•Definition. A pair of bivariate polynomials p, q ∈ K[u, v] is

balanced if deg(p, u) + deg(q, u) = deg(p, v) + deg(q, v).

•Algorithm. Let f, g ∈ K[x1 < . . . < xn]. W.l.o.g. one can

assume d1 >> di and d1
′ >> di for 2 ≤ i ≤ n (up to variable

re-ordering and contraction). We obtain fg by

Step 1. Extending x1 to {u, v}.

Step 2. Contracting {v, x2, . . . , xn} to v.

Determine the above extension Φb such that fb, gb is (nearly) a

balanced pair and fbgb has dense size at most twice that of fg.

•The left figure shows the timing of univariate multiplication via

1-D TFT and extension to balanced 2-D TFT on 1, 2, 8, 16

processors; The right one shows timing of our balanced multipli-

cation for an unbalanced 4-variate case on 1, 2, 8, 16 processors

vs the method based on 1-D TFT via Kronecker substitution.

 8.12646
 16.2529

 24.3794
 32.5059

 8.12646
 16.2529

 24.3794
 32.5059

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Time

Multiplication by extending 1-D to 2-D TFT on 1 processor (2.1-83.7 s)
Multiplication by 1-D TFT on 1 processor (1.8-66.1 s)

Multiplication by extending 1-D to 2-D TFT on 2 processors (1.2-41.9 s)
Multiplication by extending 1-D to 2-D TFT on 8 processors (0.3-10.9 s)
Multiplication by extending 1-D to 2-D TFT on 16 processors (0.2-6.3 s)

df x 106
dg x 106

Time

 16384
 20480

 24576
 28672

 32768 16384
 20480

 24576
 28672

 32768
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

Time

Multiplication by ext.+contr. of 4-D to 2-D TFT on 1 processor (4.95-10.67 s)
Multiplication by Kronecker substitution of 4-D to 1-D TFT on 1 processor (3.34-7.08 s)

Multiplication by ext.+contr. of 4-D to 2-D TFT on 2 processors (2.50-5.40 s)
Multiplication by ext.+contr. of 4-D to 2-D TFT on 8 processors (0.70-1.50 s)

Multiplication by ext.+contr. of 4-D to 2-D TFT on 16 processors (0.40-1.00 s)

d1 (d2=d3=d4=2) d1’ (d2’=d3’=d4’=2)

Time

Acknowledgements. This work was supported by NSERC and MITACS
NCE of Canada, and NSF Grants 0540248, 0615215, 0541209, and 0621511.
We are very grateful for the help of Professor Charles E. Leiserson at MIT, Dr.
Matteo Frigo and all other members of Cilk Arts.

