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Overview

We present high-performance techniques for FFT-based dense

polynomial multiplication on multi-cores, with a focus on unbal-

anced input data. We show that balanced data can maximize par-

allel speed-up and minimize cache complexity for bivariate multipli-

cation. Then, we show how multivariate (and univariate) multipli-

cation can be efficiently reduced to balanced bivariate multiplica-

tion. This approach brings in practice dramatic improvements for

unbalanced input data, even if the implementation relies on serial

one-dimensional FFTs. This permits the use of memory efficient

FFT techniques, such as TFT, which is hard to parallelize.

FFT-based Multivariate Multiplication

Let K be a field and f , g ∈ K[x1 < · · · < xn] be polynomials.

Define di = deg(f, xi) and d′i = deg(g, xi), for all i. Assume there

exists a primitive si-th root ωi ∈ K, for all i, where si is a power of

2 satisfying si ≥ di +d′i +1. Then fg can be computed as follows.

Step 1. Evaluate f and g at each point of the n-dimensional grid

((ωe1
1 , . . . , ωen

n ), 0 ≤ e1 < s1, . . . , 0 ≤ en < sn) via n-D FFT.

Step 2. Evaluate fg at each point P of the grid, simply by com-

puting f (P )g(P ),

Step 3. Interpolate fg (from its values on the grid) via n-D FFT.

Complexity Estimates

•Let s = s1 · · · sn. The number of operations in K for computing

fg based on FFTs is
9

2

n∑

i=1

(
∏

j 6=i

sj)si lg(si) + (n + 1)s =
9

2
s lg(s) + (n + 1)s.

•Assuming serial 1-D FFTs, 9
2 (s1 lg(s1) + · · · + sn lg(sn)) is the

span of Step 1 and the parallelism is lower bounded by

s/max(s1, . . . , sn). (1)

•Let L be the size of a cache line. For some constant c > 0, the

number of cache misses of Step 1 is upper bounded by

n
cs

L
+ cs(

1

s1
+ · · · + 1

sn
). (2)

•Remark: For n ≥ 2, Expr. (2) is minimized at n = 2 and

s1 = s2 =
√

s. Moreover, when n = 2, under a fixed s = s1s2,

Expr. (1) is maximized at s1 = s2 =
√

s.

Contraction to Bivariate

•Example. Let f ∈ K[x, y, z] where K = Z/41Z, with deg(f, x) =

deg(f, y) = 1, deg(f, z) = 3 and recursive dense representation:
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Contracting f (x, y, z) to f ′(u, v) by xe1ye2 7→ ue1+2e2, ze3 7→ ve3:
f ′
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•Remark. The data is “essentially” unchanged by contraction,

which is a property of recursive dense representation.

•Below, the left figure displays the timing of 4-variate multipli-

cation via 4-D TFT, 1-D TFT by Kronecker substitution and

contraction to balanced 2-D TFT on 1 processor; The right fig-

ure shows the speedups of 4-variate multiplication using 4-D TFT

and contraction to balanced 2-D TFT on 8 and 16 processors.
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Extension from Univariate to Bivariate

•Example: Consider f, g ∈ K[x] univariate, with deg(f ) = 7

and deg(g) = 8; fg has “dense size” 16. We obtain an integer

b, such that fg can be performed via fbgb using “nearly square”

2-D FFTs, where fb := Φb(f ), gb := Φb(g) and

Φb : xe 7−→ ue rem b ve quo b.

Here b = 3 works since deg(fbgb, u) = deg(fbgb, v) = 4; moreover
the dense size of fbgb is 25. Extending f (x) to fb(u, v) gives
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•Proposition: For any non-constant f, g ∈ K[x], one can always

compute b such that |deg(fbgb, u) − deg(fbgb, v)| ≤ 2 and the

dense size of fbgb is at most twice that of fg.

•Example (ctnd): Computing the bivariate product fbgb:
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Converting back to fg from fbgb requires only to traverse the
coefficient array once and perform at most deg(fg, x) additions.
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Balanced Multiplication

•Definition. A pair of bivariate polynomials p, q ∈ K[u, v] is

balanced if deg(p, u) + deg(q, u) = deg(p, v) + deg(q, v).

•Algorithm. Let f, g ∈ K[x1 < . . . < xn]. W.l.o.g. one can

assume d1 >> di and d1
′ >> di for 2 ≤ i ≤ n (up to variable

re-ordering and contraction). We obtain fg by

Step 1. Extending x1 to {u, v}.

Step 2. Contracting {v, x2, . . . , xn} to v.

Determine the above extension Φb such that fb, gb is (nearly) a

balanced pair and fbgb has dense size at most twice that of fg.

•The left figure shows the timing of univariate multiplication via

1-D TFT and extension to balanced 2-D TFT on 1, 2, 8, 16

processors; The right one shows timing of our balanced multipli-

cation for an unbalanced 4-variate case on 1, 2, 8, 16 processors

vs the method based on 1-D TFT via Kronecker substitution.
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