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Abstract

Today, most computer algebra systems offer efficient solvers for computing the com-

plex solutions of polynomial systems. Some of them, such as Maple, provide tools for

“identifying” which of those solutions are real. These tools support many applications

in areas like robotics, program verification, and dynamical system analysis, to name

a few.

In this thesis, we investigate parallel algorithms for isolating the real roots of

univariate equations with rational number coefficients. This type of calculation is

fundamental to the computation of the real solutions of polynomial systems. Our

objective is to improve performance of real root isolation on multicore processors in

terms of parallelism and cache complexity, such that harder problems can be tackled

on these architectures.

On multicores, the parallelization of real root isolation reduces to that of Taylor

shift computations, which generalize the Pascal Triangle construction. With respect

to previous works, we provide a more realistic analysis (in terms of work, span,

burdened span, cache complexity) of the parallelization of this method. This leads

us to develop poly-algorithms which can adapt the granularity of their parallelism

dynamically depending on the local amount of work. Experimentation illustrates the

effectiveness of this approach.

Keywords. Real root isolation, Taylor-shift, prefix-sum, blocking, Parallelism, Mu-

ticore architectures.
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Chapter 1

Introduction

Today, most computer algebra systems offer efficient solvers for computing the com-

plex solutions of polynomial systems. Some of them, such as Maple, provide tools

for “identifying” which of those solutions are real, provided that the input system

has finitely many solutions. The case of systems with infinitely many real solutions

has very limited support. This severely limits the utility of computer algebra in the

areas which require exact calculation with real numbers, such as robotics, program

verification, dynamical system analysis.

In “Triangular decomposition of semi-algebraic systems”, C. Chen, J. H. Daven-

port, J. P. May, M. Moreno Maza, B. Xia and R. Xiao [4] propose an algorithm for

solving systems of polynomial equations, inequations and inequalities. Under gener-

icity assumption, this algorithm runs in singly exponential time with respect to the

number of variables; improving on previously established methods. Their implemen-

tation in Maple shows promising results. However, this type of algorithm is highly

demanding of computing resources, which restricts the range of the problems that an

implementation can solve on traditional personal computers. To address this chal-

lenge, our research group is developing a high-performance implementation targeting

clusters of multicores.

This work contributes to this project by investigating and deploying parallel al-

gorithms for isolating the real roots of univariate equations with rational number

coefficients. This type of calculation is at the core of the computation of the real

solutions of polynomial systems and efficient sequential algorithms are available for

this task [18, 19].

We devote our effort to the parallelization of an algorithm, called the Vincent-

Collins-Akritas (VCA) Algorithm [7, 21], for isolating (that is, identifying) the real

roots of a univariate polynomial with rational number coefficients (i.e.Q[x]). As ana-
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lyzed by many researchers [5, 8] the parallelization of the VCA Algorithm reduces to

the parallel calculation of the Taylor shift by 1 of a polynomial. Although there exist

asymptotically fast algorithms (running essentially in linear time with respect to the

size of the input) for this task, these are not suitable for multicore architectures due

to the fine-grained parallelism that these fast algorithms require. In fact, the only

practical parallel algorithmic solutions for Taylor shift computation on multicore ar-

chitectures are based on the construction of the Pascal Triangle.

This latter problem, and more generally the problems of parallel tableau con-

structions, parallel stencil computations are well known challenges in parallel pro-

cessing [12]. One challenge is the low parallelism of these algorithms. More precisely,

for an input polynomial of degree n, in the fork-join parallelism model [11], the best

known complexity estimates for the parallel construction of the Pascal Triangle are

obtained via a blocking strategy. If the block order is B, the work is in Θ(n2) and

the parallelism is in Θ(n/B). Moreover, for an ideal cache of Z words and cache

lines of L words, the cache complexity (of the serial counterpart of this algorithm)

is in Θ(n2/(ZL)), provided that B is well-chosen. Therefore, one can say that the

parallelism is sub-linear, which is generally too low for multicore implementations.

Another scheme for the parallel construction of the Pascal Triangle is based on a di-

vide and conquer approach which has similar cache complexity and has the advantage

of cache obliviousness. However its parallelism is even less than that of the blocking

strategy.

Chapter 2 provides background material on both real root isolation and multicore

programming. Chapter 3 and 4 review (respectively) the blocking strategy and divide

and conquer approaches for Taylor shift computations.

Our objective is to increase the performance of real root isolation on multicore

architectures in terms of parallelism and cache complexity. By increasing the per-

formance of this operation, we expect to tackle harder problems on available parallel

architectures. In fact, this idea has actually been successfully initiated in [5]. More-

over, the parallelization challenges posed by real root isolation algorithms are typical

in symbolic computation. Thus, the solutions developed herein could benefit other

subjects in this area.

The contributions of this thesis are three-fold:

In Chapter 5, we observe that the fork-join parallelism model does not apply to

parallel Taylor shift computation for polynomials of sufficiently large degrees. This is

because the fork-join parallelism model assumes that each strand works in unit time

while the growth of the intermediate coefficients in the Pascal Triangle computation

2



invalidates this assumption. Therefore, we provide a more realistic analysis of parallel

Taylor shift computation for polynomials of large degrees. This analysis shows that

the parallelism is in fact higher than in the näıve analysis, but only by a constant fac-

tor. This analysis also shows that the burdened span grows asymptotically faster than

the non-burdened span, a great surprise to us and which can be seen as an additional

challenge for the parallelization of real root isolation on multicore architectures.

In Chapter 6, we explore the divide and conquer scheme. Based on the study

conducted in Chapter 5, due to the growth of the intermediate coefficients in the

Pascal Triangle construction, we observe that two recursive calls in that scheme are

likely to have different work loads and different amounts of cache misses. We propose

different solutions to cope with this problem and our experimentation illustrates their

benefits.

In Chapter 7, we explore the blocking strategy. Based on the study conducted

in Chapter 5, we turn the original blocking strategy described in [6] into a poly-

algorithm which can adapt the granularity of its parallelism depending on the local

size of the data. Experimentation illustrates the effectiveness of this approach.

3



Chapter 2

Background

We present background material used throughout. Section 2.1 is a brief introduction

to techniques for finding the real roots of univariate polynomials. Descartes’ famous

rule of signs is discussed in Section 2.2. Section 2.3 is a review of Collin-Akritas

Algorithm (VCA) for real root isolation. In Section 2.5, the Taylor Shift operation,

which is the core routine for VCA, is discussed along with Horner’s Method and

Pascal’s Triangle construction. Recall that this work focuses on the parallelization of

Taylor Shift computations targeting multicore architectures. Other techniques could

be considered for the parallelization of the VCA Algorithm and we will leave that for

future works.

This chapter also contains a review of various aspects of multithreaded program-

ming on multicore architectures. A brief discussion on cache memories and cache com-

plexity is given in Section 2.6. Section 2.7 is a review of multicores as our implementa-

tion is based on this architecture. Finally Section 2.8 is a brief overview of the fork-join

parallelism model and Cilk++. For these material on programming and architectures

we follow the lecture notes of the UWO courses CS9624-4435 and CS5635-4402 which

can be found at http://www.csd.uwo.ca/∼moreno/CS9624-4435-1011.html and

at http://www.csd.uwo.ca/∼moreno/CS9535-4402-1112.html, respectively.

2.1 Real root isolation

Given a univariate polynomial f , a root finding algorithm is a numerical method

for computing a value x0 for which f(x0) = 0 holds. Such an x0 is called a root of

the polynomial f . An important observation is that, even if the coefficients of f are

numerical, one may not be able to represent x0 exactly as a floating point number.

For instance if f(x) = x2 − 2 then f has two real roots
√
2 and −

√
2, none of which
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being a rational number. However, for each real root x0 of f it is always possible to

find an interval [s0, t0] with rational end points such that [s0, t0] contains x0 and does

not contain any other real roots of f . Determining such an interval [s0, t0] for each

real root x0 of f is referred as isolating the real roots of f . This leads to the following

definition.

Definition 1. Let f ∈ R[x] be a non-constant polynomial. We say that pairwise

disjoint intervals [s0, t0], [s1, t1], . . . , [se, te] with rational end points isolate the real

roots of f (or form a real root isolation of f) if

1. any real root of f is contained in one of the intervals [s0, t0], . . . , [se, te],

2. each of these intervals contains exactly one real root of f .

Sturm’s Theorem and Descartes’ rule of signs [2] are the building blocks for finding

the real roots location or separating them. Several algorithms are well-known, such as

Vincent-Collins-Akritas Algorithm [7, 21] and Krandick’s Algorithm [17]. Based on

those, several more recent and more sophisticated algorithms have been introduced;

they improve on certain aspects such as arithmetic complexity or memory usage.

In their paper “Efficient isolation of polynomial real roots” [18], Fabrice Rouillier

and Paul Zimmermann discuss memory consumption of sequential algorithms for real

root isolation. These considerations, however, do not apply within the context of

multithreaded programming targeting multicores. Indeed, in a parallel setting, real

root isolation leads to concurrent Taylor shift computations, thus to unavoidable

data duplication, which is what the Authors of [18] try to avoid. In the context

of multicores, the main memory issue that we address is the minimization of cache

complexity, which is not the scope of [18].

2.2 Descartes’ rule of signs

Using Descartes’ rule of signs we derive a bound on the number of positive real roots

of a polynomial. Before stating Descartes’ rule of signs as Theorem 1, we specify how

to count the number of sign changes in a sequence of real numbers in Definition 2.

Definition 2. Let a0, a1, . . . , an be a sequence of (n+1) real numbers. For i, j in the

interval [0, . . . , n], with i < j, we say that there is a sign change from ai to aj if the

following two conditions hold

(i) aiaj < 0 and,

(ii) for all k with i < k < j we have ak = 0.

5



Theorem 1. Let f ∈ R[x] be a polynomial with real coefficients an, an−1, . . . , a0,

written as:

f = an x
n + an−1 x

n−1 + · · ·+ a0

where we assume ana0 6= 0. Let v be the number of sign changes in the sequence

an, an−1, . . . , a0 and let r be the number of positive roots of f . Then, there exists a

non-negative integer m such that we have r = v − 2m.

In particular, when v = 0 or v = 1 holds, we have r = v. This means, when the

number of sign change is 0 or 1, we know the number of positive real roots is 0 or 1,

respectively.

2.3 Vincent-Collins-Akritas Algorithm

Let p ∈ Q[x] be a non-constant polynomial with rational number coefficients and let

]a, b[ be an (non-empty) open interval of Q. In this section, we present an algorithm

for isolating the real roots of p, as specified in Definition 1.

This algorithm, based on the ideas of Vincent [21] and more recently the work

of Collins and Akritas [7], relies on Descartes’ rule of signs. More precisely, this

algorithm uses Descartes’ rule to obtain an upper bound for the number of real roots

of p in ]a, b[. To justify this algorithm, we consider the following two polynomial

functions:

f1 :

{
]a, b[ → R

x 7−→ p(x)
and f2 :

{
]0,∞[ → R

x 7−→ p(x)
(2.1)

where p(x) = (x + 1)dp(u(x)) and u(x) = ax+b
x+1

. Observe that u′(x) = a−b
(x+1)2

. Since

we have a− b < 0, the function u is strictly decreasing on ]0,∞[. Moreover we have:

lim
x→0

u(x) = b and lim
x→+∞

u(x) = a.

Therefore, the function u realizes a 1-to-1 map from ]0,∞[ onto ]a, b[. Next we observe

that p(x) is a polynomial, thanks to the multiplication of p(u(x)) by (x+ 1)d, which

clears out denominators in p(u(x)). Now we note the following relation, for every

x ∈]0,∞[,

p(x) = 0 ⇐⇒ p(u(x)) = 0. (2.2)

Thus x is a positive root of the polynomial p if and only if u(x) is a root of

the polynomial p in ]a, b[. Therefore, by applying Descartes’ rule of signs to the
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polynomial p, we count the number of real roots of p in ]a, b[. This proves the

correctness of Algorithm 1.

Algorithm 1: BoundNumberRootsVCA(p, ]a, b[)

Input: p squarefree polynomial ∈ Q[x] and a ≤ b are in Q.
Output: Number of roots of p in the interval ]a, b[.
p = (x+ 1)dp(ax+b

x+1
) where d is the degree of p;1:

From p determine the coefficient sequence;2:

return the number of sign variations in the coefficient sequence.3:

In Algorithm 1, the call BoundNumberRootsVCA(p, ]a, b[), uses Descartes’ rule to

obtain an upper bound for the number of real roots of p in ]a, b[. In the call

RootIsolateAuxVCA(p, ]a, b[), Algorithm 2 uses Algorithm 1 to determine a real root

isolation (in the sense of Definition 1) of a square free polynomial p ∈ Q[x]. For the

interval ]a, b[, three cases need to be considered for the number of sign variations v:

(i) v = 0, thus no roots in ]a, b[,

(ii) v = 1, thus a single root in ]a, b[ and

(iii) v > 1, in which case we cannot conclude on the number of real roots of p in

]a, b[.

For Case (iii), the interval ]a, b[ is divided into two equal parts and for each of them

Algorithm 2 is called recursively. Also, Algorithm 2 checks whether the mid-point of

the interval m = a+b
2

is itself a root or not.

Algorithm 2: RootIsolateAuxVCA(p, ]a, b[)

Input: p squarefree polynomial ∈ Q[x] and a ≤ b in Q.
Output: An interval decomposition of real roots of p in the range ]a,b[.
v = Number of sign variations;1:

Calculate v from BoundNumberRootsVCA(p, ]a, b[);2:

if v = 0 then3:

return φ4:

else if v = 1 then5:

return ]a,b[6:

else7:

m = a+b
2

res←− φ;8:

if p(m) = 0 then9:

res←− {{m}};10:

return RootIsolateAuxVCA(p, ]a,m[) ∪ res ∪ RootIsolateAuxVCA(p, ]m, b[).11:
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Algorithm 3, RootIsolateVCA(p) is the top-level procedure, which calls Algo-

rithm 2 after determining an initial interval containing all the real roots of the input

polynomial. This initial interval can be obtained from a root bound like the Cauchy

bound.

Algorithm 3: RootIsolateVCA(p)

Input: p squarefree polynomial ∈ Q[x].
Output: An interval decomposition of real roots of p.
Calculate a strict bound H on the absolute value for every roots of p;1:

return RootIsolateAuxVCA(p, ]−H,H[)2:

There are different ways to calculate the strict bound H for a polynomial p =∑d
i=0 cix

i. Cauchy bound gives H = 1
cd

∑d
i=0 |ci|. For more details on root estimates

(bounds, etc.) and for a termination proof of Algorithm 3, see the Phd Thesis of

Jeremy R. Johnson [15].

We summarize some important complexity results on the VCA Algorithm and

related routines. As before, let p ∈ Q[x] be a squarefree polynomial of degree d. Let

L be an upper bound of the bit size of the coefficients of p. In [20], Arnold Schönhage,

with his splitting circle method, proves that isolating the real roots of p could be done

within O∼(Ld3) bit operations. A more practical algorithm, with a slightly higher

complexity of O∼(L2d3), is proposed by Michael Sagraloff in [19]. Finally, in [9], Arno

Eigenwillig, Vikram Sharma and Che K. Yap proved that the depth of the recursion

tree of Algorithm 5 is in O(d(L+ log(d))).

2.4 A variant of the VCA Algorithm

It is not hard to see that the dominant cost in the VCA Algorithm is the computation

of the polynomial

p = (x+ 1)dp

(
ax+ b

x+ 1

)
(2.3)

in Algorithm 1. It is, therefore, natural to dedicate one’s effort toward this com-

putation. The polynomial p depends on three parameters, namely: p, a, b. A first

step toward optimizing this computation is to reduce the number of parameters while

maintaining (or reducing) the same algebraic complexity. There is a standard way to

do this, see for instance [18] among other references. With Algorithms 4 and 5, we

follow here the presentation of Changbo Chen, Marc Moreno Maza and Yuzhen Xie

in their paper [5].
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Clearly, the problems of isolating the real roots of p and that of counting of real

roots of p are essentially the same problem. Thus, an algorithm solving one of these

problems can be adapted to solve the other. Since the output of the counting problem

is simpler, Algorithms 4 and 5 solve this counting roots problem.

Algorithm 4: realRoots(p, k)

Input: An univariate squarefree polynomial p ∈ Q[x] of degree d, an integer

k ≥ 0 such that the absolute value of any real root of p is less than or

equal to 2k.

Output: The number of real roots of p.

if x | p then1:

m = 12:

else3:

m = 04:

p1 = p(2kx);5:

p2 = p1(−x);6:

m′ = RootsInZeroOne(p1);7:

m = m+ RootsInZeroOne(p2);8:

return m+m′.9:

In Algorithm 4 we transform the polynomial p(x) into the polynomial p1(x) given

by p1(x) = p(2kx), so that the roots of p(x) in the interval ] − 2k, 2k[ are in 1-to-1

correspondence with the roots of p1(x) in the interval ]− 1, 1[. We prove this fact in

the following way: Consider two polynomial functions

f1 :

{
]− 2k, 2k[ → R

x 7−→ p(x)
and f2 :

{
]0, 1[ → R

x 7−→ p1(x)
(2.4)

where p1(x) = p(u(x)) and u(x) = 2kx. Observe that u′(x) = 2k , thus u is strictly

increasing on ]0, 1[. Moreover we have:

lim
x→0,x>0

u(x) = 0 and lim
x→+1,x<+1

u(x) = 2k.

Therefore, the function u realizes a 1-to-1 map from ]0, 1[ onto ]0, 2k[. Now, we note

the following relation, for every x ∈]0, 1[,

p1(x) = 0 ⇐⇒ p(u(x)) = 0. (2.5)

Thus, some x ∈]0, 1[ is a root of the polynomial p1 if and only if u(x) is a root of
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the polynomial p in ]0, 2k[. Similarly, one can check that x ∈]−1, 0[ is a root of the

polynomial p2 if and only if u(−x) is a root of the polynomial p in ]−2k, 0[. Finally,
x = 0 is a root of p if and only if x divides p. Combining these three observations

proves the correctness of Algorithm 4.

The main subroutine of Algorithm 4 is Algorithm 5. The most expensive operation

is the Taylor shift computation, which substitutes x with x + 1 in p1 at Lines 2 and

7. Section 2.5 is dedicated to the Taylor shift computation.

Algorithm 5: RootsInZeroOne(p)

Input: An univariate squarefree polynomial p ∈ Q[x] of degree d.

Output: The number of real roots of p in ]0, 1[.

p1 = xdp(1/x);1:

p2 = p1(x+ 1) ; /* Taylor shift */2:

Let v be the number of sign variations of the coefficients of p2;3:

if v ≤ 1 then4:

return v5:

p1 = 2dp(x/2);6:

p2 = p1(x+ 1) ; /* Taylor shift */7:

if x | p2 then8:

m = 19:

else10:

m = 011:

m′ = RootsInZeroOne(p1);12:

m = m+ RootsInZeroOne(p2);13:

return m+m′.14:

In Algorithm 5, at Line 1 we define p1(x) := xdp(1/x) so that the roots of p(x)

in the range ]0, 1[ are in a 1-to-1 correspondence with the roots of p1(x) in the range

]1,+∞[. The justification of this is similar to that of Algorithm 4. At Line 2, we

compute p2(x) (the Taylor shift by 1 of p1(x)), so that now the roots of p(x) in the

range ]0, 1[ are in a 1-to-1 correspondence with the roots of p2(x) in the range ]0,+∞[.

Thus we can apply Descartes’ rule to p2(x) in order to estimate the number of real

roots of p in the range ]0, 1[. More precisely, let v be the number of sign changes in

p2(x). We know from Theorem 1 that if v ≤ 1 holds then p admits exactly v real

roots in the range ]0, 1[. This fact is implemented at Line 4. If v > 1 holds, then

we search for real roots of p in ]0, 1/2[, in ]1/2, 1[ at x = 1/2. This is done via the
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polynomials p1(x) and p2(x) (defined at Lines 6 and 7), by two recursive calls (at

Lines 12 and 13) and by testing whether x divides p2 (at Line 8).

2.5 Taylor shift

The Taylor shift is a core routine among real root isolation algorithms. As we saw

before, the VCA Algorithm reduces the problem of isolating the real roots of an

univariate squarefree p(x) ∈ Q(x) to that of computing the coefficients of p(x+ 1) in

the monomial basis. This latter computation is referred to as the Taylor shift of p by

1.

More generally, let p =
∑

0≤i≤n cix
i ∈ Q(x) and let a ∈ Q. Computing the

coefficients of p(x+ a) in the monomial basis, say g0, . . . , gn ∈ Z, such that we have

p(x+ a) =
∑

0≤k≤n

gk x
k,

is refered as the Taylor shift of p by a. The following proposition states an expression

of the coefficients g0, . . . , gn ∈ Q as functions of the coefficients c0, c1, . . . , cn and a.

Proposition 1. With the above notation, we have for each i = 0 · · ·n,

gi =
∑n−i

j=0
ci+j

(
i+ j

i

)
aj. (2.6)

Proof. Recall p(x) =
∑n

i=0 cix
i and g(x) =

∑n
i=0 gix

i where g(x) = p(x + a). We

have:

p(x+ a) = c0 + c1(x+ a) + c2(x+ a)2 + · · ·+ cn(x+ a)n. (2.7)

From the above expression, we can deduce g0, g1, gn:

g0 = c0 + c1a+ c2a
2 + · · ·+ cna

n

g1 = c1 + 2ac2 + 3c3a
2 + · · ·+ ncna

n−1

...

gn = cn

(2.8)

For the general case, that is for gi, we need to understand what is the contribution

of each term from the following expression:

ci(x+ a)i + ci+1(x+ a)i+1 + · · ·+ ci+j(x+ a)i+j + · · ·+ cn(x+ a)n. (2.9)
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Recall the binomial formula:

(u+ v)s =
∑s

k=0

(
s

k

)
ukvs−k. (2.10)

This shows that the coefficient of xi in ci+j(x + a)i+j is ci+j

(
i+j
i

)
aj. Therefore, we

have:

gi =
∑n−i

j=0
ci+j

(
i+ j

i

)
aj. (2.11)

An important special case is a = ±1 [22]. There are classical methods for comput-

ing the coefficients g0, . . . , gn: the famous Horner Method (see Section 2.5.1), Shaw

and Traub’s method (see [22]) and multiplication-free methods such as the Pascal Tri-

angle Method (see Section 2.5.2). This last is at the base of two parallel algorithms

presented in [6] and which we review in Sections 3.1 and 4.1.

2.5.1 Horner’s method for Taylor shift by a

Let p and g be as above. Horner’s rule relies on the following re-combination of terms:

g(x) = p(x+ a)

= c0 + (x+ a) (c1 + · · ·+ cn (x+ a)n−1)
(2.12)

whose purpose is to evaluate any univariate polynomial of degree n within 2n addi-

tions and multiplications. Let us write:

gn(x) = g(x) and gn−1 = c1 + · · ·+ cn (x+ a).

Then we have:

gn(x) = c0 + (x+ a)gn−1(x). (2.13)

Therefore, if gn−1(x) has been expanded on the monomial basis, we can deduce a

monomial basis expansion of gn. The number T (n) of arithmetic operations is thus

given by

T (n) = T (n− 1) + 2n+ n,

which implies that Horner’s rule requires 3/2n2 + 3/2n+ 1 additions and multiplica-

tions. See [22] for details.
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2.5.2 Taylor shift by 1 via Pascal’s Triangle construction

From now on we restrict ourselves to the case a = 1 which is what we need for real

root isolation. Formula ( 2.13) becomes:

gn(x) = c0 + (x+ 1)gn−1(x).

This shows that the term of order i in gn(x) is obtained by adding the term of degree

i from gn−1(x) (if any) and the term of degree i− 1 from gn−1(x). This gives rise to

a multiplication-free algorithm which boils down constructing a Pascal Triangle (see

Figure 2.1). The number of additions necessary to compute g0, . . . , gn is then equal

to the number of entries that are filled in the triangle, which is (n+ 2)(n+ 1)/2.

c3 c3 + c2 c3 + c2 + c1 c3 + c2 + c1 + c0

c3

c3

c3

2c3 + c2 3c3 + 2c2 + c1

3c3 + c2

c3 c2 c1 c0

0

0

0

0

g0

g1

g2

g3

Figure 2.1: Pascal Triangle.

The Pascal Triangle can be computed in different ways. Following [6] we consider

two schemes that we call divide and conquer and blocking. The former is discussed in

Chapters 3 and 6 while the latter in Chapters 4 and 7.

2.6 Cache memories and cache complexity

2.6.1 Cache memories

A cache is a region of relatively small memory used by the central processing unit

(CPU) of a computer. The access time to this cache memory is very fast compared

to the access time of the main memory. Data is brought into the cache memory by

the CPU before it can be used by the CPU registers. Once in cache, data can be
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Figure 2.2: Memory hierarchy in a computer

reused for several computations by the CPU. When a data item required by the CPU

is found in the cache memory, we say that we have a cache hit, otherwise we have

cache miss.

Using cache memory effectively can reduce memory access time spectacularly. C

or FORTRAN programs implementing fundamental operations such as matrix mul-

tiplication can be accelerated by two orders of magnitude1 simply by optimizing the

use of cache memory. Modern desktops and laptops have typically two levels of cache

memory.

L1-cache: The L1-cache is the fastest and it usually comes embedded within the

processor chip itself. The L1 cache typically ranges from 8KB to 64KB and

uses high-speed SRAM (static RAM) instead of the slower and cheaper DRAM

(dynamic RAM) used for main memory.

L2-cache: The L2-cache is bigger than L1-cache and it sits between L1 and RAM.

It is typically 64KB to 4MB.

Multi-level caches generally operate by checking for data in the L1 cache; if found,

the processor proceeds at high speed. If the data is not in L1 cache, the next larger

cache (L2) is checked before main memory is checked.

Data is moved between memory levels in cache lines, also called blocks and which

typically hold 64 to 256 bytes. This implies that when the CPU loads a value (say

1http://www.csd.uwo.ca/ moreno//Publications/SHARCNET Tutorial.pdf
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Figure 2.3: Ideal cache model

an integer of a floating point number) from a lower level memory to a higher level

memory, several variables are actually loaded. This mechanism suggests that there

are two properties for a program to perform well toward avoiding unnecessary and

costly memory operations (loads and stores).

Temporal locality: refers to the reuse of specific data within relatively small time

durations.

Spatial locality: refers to the use of data elements within relatively close storage

locations.

2.6.2 Cache complexity

The ideal cache model, introduced in [10], assumes a computer system with a two-

level memory hierarchy where the first level is an ideal (data) cache of Z words and

the second level is an arbitrarily large main memory. The cache is partitioned into

Z/L cache lines where L is the length of each cache line, in other words, each cache

line can hold L consecutive words which always move together between the cache and

main memory. Cache designers usually use L > 1 to achieve spatial locality. It is

generally assumed that the cache Z is much larger than L. More precisely,

Z = Ω(L2).

This type of cache is called tall cache, which is always the case in practice.
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When a word required by the processor is found in cache, we say (as in the previous

section) that we have a cache hit. Otherwise, we say that we have a cache miss and

the line can be fetched in any available block into in the cache. This mapping from

main memory into the cache is called full associativity. If the cache is full a cache

line must be evicted. In the ideal cache model, the cache line whose next access is

the furthest in the future is replaced [1]: this is called an optimal off-line strategy of

replacing.

For an algorithm with an input of size n, the ideal-cache model uses two complexity

measures:

1. the work complexity W (n), which is its conventional running time in a RAM

model.

2. the cache complexity Q(n;Z,L), the number of cache misses it incurs (as a

function of the size Z and line length L of the ideal cache).

When Z and L are clear from context, we simply write Q(n) instead of Q(n;Z,L).

An algorithm is said to be cache aware if its behavior (and thus performance) can

be tuned (and thus depend on) on the particular cache size and line length of the

targeted machine. Otherwise the algorithm is cache oblivious.

2.7 Multicore architecture

A multi-core processor is an integrated circuit to which two or more individual pro-

cessors (called cores) have been attached. In a many-core processor the number of

cores is large enough that traditional multi-processor techniques are no longer effi-

cient. Cores on a multi-core implement the same architecture features as single-core

systems such as instruction pipeline parallelism (ILP), vector-processing, SIMD, and

multi-threading. Many applications do not yet realize large speedup factor: paral-

lelizing algorithms and software is a major on-going research area.

There are two important issues related to multicore architectures that may signif-

icantly reduce performances.

True sharing cache misses occur whenever two processors access the same data

word. True sharing requires the processors involved to explicitly synchronize to

ensure program correctness. Programs with high temporal locality tend to have

less true sharing.
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Figure 2.4: Multicore architecture

False sharing occurs whenever different processors use different data that happen to

be co-located on the same cache line. Enhancing spatial locality often minimizes

false sharing.

High levels of false or true sharing and synchronization can easily over-

whelm the advantage of parallelism. (See Data and Computation Transforma-

tions for Multiprocessors by J.M. Anderson, S.P. Amarasinghe and M.S. Lam

http://suif.stanford.edu/papers/anderson95/paper.html.)

Another significant cause of poor performance in multi-threaded programs on

multicore architectures is the fact that access to the main memory (RAM) is serialized.

More precisely, the RAMmemory controller can serve only one load or store request at

a time. However, CPUs in a multicore can issue those requests faster than the memory

controller can process them. As a result of this memory contention phenomenon, the

performance of a multi-threaded program can be dramatically reduced up to a point

that the potential benefits of concurrent execution are annihilated.

2.8 The fork-join parallelism model and Cilk++

2.8.1 The Cilk++ concurrency platform

Cilk has been in development since 1994 at the Massachusetts Technology Institute

(MIT) by Prof. Charles E. Leiserson and his research group, in particular by Matteo

Frigo. Besides being used for research and teaching, Cilk was the system used to code

the three world-class chess programs: Tech, Socrates, and Cilkchess. Over the years,
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Cilk has run on computers ranging from networks of Linux laptops to an 1824-nodes

Intel Paragon. From 2007 to 2009 Cilk has lead to Cilk++, developed by Cilk Arts,

an MIT spin-off, which was acquired by Intel in July 2009 and became Cilk Plus, see

http://www.cilk.com/ Today, Cilk++ can be freely downloaded at

http://software.intel.com/en-us/articles/download-intel-cilk-sdk/

Cilk is still developed at MIT by Prof. Charles E. Leiserson and his research group,

see the page:

http://supertech.csail.mit.edu/cilk/

Cilk++ (resp. Cilk) is a small set of linguistic extensions to C++ (resp. C) sup-

porting fork-join parallelism. In the Cilk++ program below, the named child function

cilk spawn fib(n-1) may execute in parallel while its parent executes fib(n-2).

The Cilk++ keywords cilk spawn and cilk sync grant permissions for parallel exe-

cution. They do not command parallel execution.

int fib(int n) {

if (n < 2) return n;

int x, y;

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return x+y;

}

2.8.2 The fork-join parallelism model

A simple theoretical model for the parallel execution of a Cilk++ program is a DAG

(directed acyclic graph) where

• each vertex represents a strand, that is, a sequence of consecutive instructions,

to be executed serially and

• each edge indicates a chronological dependency between two strands.
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Figure 2.5: A directed acyclic graph (DAG) representing the execution of a mul-
tithreaded program. Each vertex represents a strand and each edge represents a
dependency between two strands.

This DAG is called an instructions stream DAG. See Figure 2.5 for an example and [3]

for details.

Three performance measures are naturally associated to a Cilk++ and, more gen-

erally, to an instruction stream DAG.

Tp is the minimum running time on p processors

T1 is called the work, that is, the sum of the number of instructions at each vertex

in the DAG,

T∞ is the minimum running time with infinitely many processors, called the span.

Assuming that all strands run in unit time (assuming also no cache issues and no

inter-processor costs) the longest path in the DAG from the initial strand to a final

strand is T∞. For this reason, T∞ is also referred to as the critical path length.

Since, in the best case, p processors can do p work per unit of time, we have:

Tp ≥ T1/p, which is often referred as the work law.

Since Tp < T∞ would contradict the definitions of Tp and T∞, we have Tp ≥ T∞,

which is often referred as the span law.

The quantity T1/Tp is called the speedup on p processors. A parallel program

execution can have:
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• linear speedup: T1/TP = Θ(p),

• superlinear speedup: T1/TP = ω(p) (not possible in this model, though it is

possible in others), and

• sublinear speedup: T1/TP = o(p).

By definition, the parallelism of an instruction stream DAG is the ratio work to span,

namely T1/T∞. This represents the average number of strands which can be run

concurrently along the critical path.

2.8.3 Work-stealing scheduling

The Cilk++ runtime system has a work stealing scheduler which is reliable in the

sense that it can dynamically and automatically exploit an arbitrary number of avail-

able processor cores nearly optimally. When the Cilk++ runtime system starts up,

it allocates as many system threads, called workers for the processors. When any

subroutine is spawned, the activation frame is pushed to the bottom of the stack of

the corresponding processor. When the child is returned to its parent, the parent’s

activation frame is popped off the stack. During the execution of the program, if any

worker runs out of work, it “steals” work from (the top of) another worker’s stack.

Assume that, for an application running with P processors:

• each strand executes in unit time,

• for almost all “parallel step” there are at least P strands to run, and

• each processor is either working or stealing.

Then the Cilk++ work-stealing scheduler achieves an expected running time as

TP ≤ T1/P +O(T∞)

.

If the parallelism T1/T∞ is so large that it sufficiently exceeds P , then this bound

provides a nearly perfect linear speed up. Assuming T1/T∞ ≫ P , or equivalently

T1/P ≫ T∞, the inequality leads to TP ≈ T1/P . Cilk++ estimates Tp as Tp =

T1/p + 1.7Sb where Sb is the burdened span, that is, 15000 instructions times the

number of spawns along the critical path. See Sections 2.8.4 and 2.8.5 for details.
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Figure 2.6: Cilk++ execution model dag.

2.8.4 Cilk++ execution model

This section is essentially adapted from the Cilk++ Programming guide which can be

found at http://software.intel.com/en-us/articles/intel-cilk-plus/. Re-

call that the instruction stream DAG of a Cilk++ program does not depend on the

number of processors. The execution model describes how the runtime scheduler

maps strands to workers. Consider the following Cilk++ program fragment:

do_init_stuff(); // execute strand 1

cilk_spawn func3(); // spawn strand 3 (the "child")

do_more_stuff(); // execute strand 2 (the "continuation")

cilk_sync;

do_final_stuff; // execute strand 4

A DAG for the code is showed in Figure 2.6.

If there are more than one worker available, there are two ways this program may

execute:

1. the entire program may execute on a single worker, or

2. the scheduler may choose to execute strands (2) and (3) on different workers.

If there is a worker available, then strand (2) (the “continuation”, we refer to

this as the continuation since this strand continues from where the parent strand was

spawned) may execute on the current (parent) worker or on a different worker (the

latter situation is referred to as “work stealing”).

In Figure 2.7 we have shown that the work has been stolen from the parent

worker and a second worker will begin executing the continuation, strand (2). The

first worker (parent) will proceed to the synchronization at (B). Here, we indicate the
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Figure 2.7: Cilk++ execution model dag.

Continuation

Burden

Return

Burden

Figure 2.8: Burdened DAG due to continuation and return burden

second worker by illustrating strand (2) with a dotted line. After synchronization,

strand (4) may continue on either worker.

2.8.5 Burdened parallelism

When work is stolen, there is a cost for migrating the stolen task’s work set. There

is also a cost for the continuation and return edges (in the DAG) which reflects

overheads due to scheduling. The performance analyzer Cilkview [13] assumes that,

for each spawn, a burden of 15,000 instruction cycles is created due to locks, malloc,

cache warmup, etc.

Figure 2.5 shows burden on each continuation edge in the DAG. The burdened

span is the longest path in the burdened dag. The migration cost can incorporate

the bound TP ≤ T1/P +O(T∞) as

TP ≤ T1/P + 2δT̂∞

where δ is the span coefficient and T̂∞ is the burdened span while the program is

running on P processor. The burden parallelism is computed by T1/T̂∞. See [13] for

details.
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2.8.6 Cilk for

This section is also essentially repeating the Cilk++ Programming guide which can

be found at http://software.intel.com/en-us/articles/intel-cilk-plus/. A

cilk for loop is a replacement for the normal C++ for loop that permits loop itera-

tions to run in parallel. A Sample cilk for loop is like:

cilk_for (int i = begin; i < end; i += 2){

f(i);

}

Using cilk for is not the same as spawning each loop iteration. In fact, the Cilk++

compiler converts the loop body into a function that is called recursively using a di-

vide and conquer strategy, which allows the Cilk++ scheduler to provide significantly

better performance. The difference between a cilk for and a for loop spawning each

loop iteration can be seen clearly using instruction stream DAGs.

First, the DAG for a cilk for provided in Figure 2.9 (assuming N = 8 iterations).

The numbers labeling the strands indicate which loop iteration is handled by each

strand. Note that at each division of work, half of the remaining work is done by the

the child thread and half by the continuation. Importantly, the overhead of both the

loop itself and of spawning new work is divided evenly along with the cost of the loop

body.

If each iteration takes the same amount of time T to execute, then the span is

log2(N)T , or 3T for 8 iterations. The runtime behavior is well-balanced regardless

of the number of iterations or workers.

But, in the case of spawning loop iterations, the work is not well balanced, because

each child does the work of only one iteration before incurring the scheduling overhead

inherent to entering a sync. For a short loop, or a loop in which the work in the body

is much greater than the control and spawn overhead, there will be little measurable

performance difference. However, for a loop of many cheap iterations, the overhead

cost will overwhelm any advantage provided by parallelism. The DAG for a serial

loop that spawns each iteration is shown in Figure 2.10.
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Figure 2.9: DAG for cilk for.

Figure 2.10: DAG for cilkspawn.
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Chapter 3

Divide and Conquer Taylor shift:

Static approach

Taylor shift computation, based on the Pascal Triangle construction, can be performed

using different schemes. We consider two schemes that we call divide and conquer and

blocking, following [5]. This chapter is dedicated to the former and the next chapter

to the latter. Both chapters recall these schemes and provide complexity estimates

for work, span and cache misses. These results already appear in [5] but with sketches

of proof, whereas we make these proofs more complete.

We say that the algorithms of this chapter and the next one follow a “static ap-

proach” in the sense that they are not able to adapt themselves to the phenomenon of

intermediate expression swell, studied in Chapter 5. On the contrary, the algorithms

of Chapter 6 and 7 are adaptive (or dynamic), as they are able to dynamically change

the granularity of their parallelism in order to improve performance.

3.1 Implementation scheme for static divide and

conquer

Recall from Section 2.5.2 that the Taylor shift by 1 of a polynomial can be obtained

via a Pascal Triangle construction. One can observe from Figure 3.1 that a Pascal

Triangle can be constructed in a recursive manner: first, computing the elements in

the top-left square region, then computing the elements of the two triangular regions.

Moreover, observe that the two triangular regions can be evaluated concurrently.

This recursive way of constructing a Pascal Triangle is called the Divide and Conquer

method. This method uses a base case to determine until which point the triangular
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Figure 3.1: Divide and conquer Taylor shift.

or the square regions will be divided into smaller regions. If this base size remains the

same for the entire computation, then this divide and conquer process can be referred

to as Static divide and conquer. We will focus only on the static approach. Later in

Chapter 6 we discuss the dynamic approach.

Figure 3.1 shows Static divide and conquer in a simplified fashion. The Pascal

Triangle is divided into 3 regions, one tableau (region I) , and two triangles (region

II) . These two triangle regions can work parallel. Tableau region is further divided

into four regions I, II, II, III respectively. For tableau, the regions denoted as II can

be computed concurrently. When they reach to base case, they stop doing division

and everything is computed in a sequential manner. For static divide and conquer,

base case should have to be at least of size 2, means it must contain at least 2 elements

to compute.

3.1.1 Algorithms for static divide and conquer

Let B be the order of a block, B > 0. For a polynomial of degree d, we have n inputs

for the Pascal Triangle, where n = d+ 1.

Algorithm 6, taylorShiftGeneral does the task of recursively dividing each tri-

angle into one square and two triangular regions. If n ≤ B then the whole computa-

tion is done serially shown at Lines 1 and 2. In Line 5, Algorithm 7 is called which

computes the square part. Lines 6 and 7 are two recursive calls with upper and lower

triangles. When the triangles reach the base case this means no further division is

required. Algorithm 9 is then called.

Algorithm 7, tableauConstruction, is for recursively dividing the square region

(Tableau) until base case is reached. Like Algorithm 6, Algorithm 7 is also a recursive

algorithm where a base case is computed by Algorithm 8.

Algorithm 8, tableauBaseInplace works when the square region reaches the base
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Algorithm 6: taylorShiftGeneral(p[0 . . . n− 1], q[0 . . . n− 1], B)

Input: p[0 . . . n− 1] is the coefficient array (dense representation) of an
univariate polynomial p(x) of degree d where n = d+ 1 (a[i] is the
coefficient of the term of degree i); q[0 . . . n− 1] is another array of
length n, where all coefficients are initially zero; both p[0 . . . n− 1] and
q[0 . . . n− 1] are overwritten; B is the base size (threshold).

Output: Coefficient array of the polynomial p(x+ 1) stored in the array
p[0 . . . n− 1] such that a[i] is the coefficient of the term of degree i.

if n ≤ B then1:

taylorShiftBase(p[0, . . . , n− 1], q[0, . . . , n− 1]);2:

else3:

m = n+1
2
;4:

tableauConstruction(p[0 . . .m− 1], q[0 . . . m− 1], B);5:

spawn taylorShiftGeneral(p[0 . . .m− 1], q[m. . . n− 1], B);6:

spawn taylorShiftGeneral(p[m. . . n− 1], q[0 . . . m− 1], B);7:

sync;8:

Algorithm 7: tableauConstruction(p[0 . . .m− 1], q[0 . . . n− 1], B)

Input: Array p[0 . . . n− 1] of size m and array q[0 . . . n− 1] of size n; initially
p[0 . . . m− 1] and q[0 . . . n− 1] contain the input coefficients;
p[0 . . . m− 1] and q[0 . . . n− 1] are overwritten during the
computations; B is the base size (threshold).

Output: Result of right edge of Tableau is stored on array p[0 . . . m− 1] and
down edge of tableau is stored on array q[0 . . . n− 1].

if (m ≤ B) AND (n ≤ B) then1:

tableauBaseInplace(p[0 . . .m− 1], q[0 . . . n− 1]);2:

else3:

i = m+1
2

;4:

j = n+1
2
;5:

tableauConstruction(p[0 . . . i− 1], q[0 . . . j − 1], B);6:

spawn tableauConstruction(p[0 . . . i− 1], q[j . . . n− 1], B);7:

spawn tableauConstruction(p[i . . .m− 1], q[0 . . . j − 1], B);8:

sync;9:

tableauConstruction(p[i . . .m− 1], q[j . . . n− 1], B);10:
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case and no further division is required. Here every computation is done in a serial

manner.

Algorithm 8: tableauBaseInplace(p[0 . . .m− 1], q[0 . . . n− 1])

Input: Array p[0 . . .m− 1] of size m and array q[0 . . . n− 1] of size n; initially
p[0 . . . m− 1] and q[0 . . . n− 1] contain the input coefficients;
p[0 . . . m− 1] and q[0 . . . n− 1] are overwritten during the computation.

Output: The result of right edge of Tableau is stored in array p[0 . . . m− 1]
and down edge of the tableau is stored in array q[0 . . . n− 1].

for i = 0 to n− 1 do2:2:

p[0] = p[0] + q[i];4:4:

for j = 1 to m− 1 do6:6:

p[j] = p[j] + q[j − 1];7:

q[i] = p[m− 1];9:9:

Algorithm 9 taylorShiftBase computes triangles in base case.

Algorithm 9: taylorShiftBase(p[0 . . . n− 1], q[0 . . . n− 1])

Input: Array p[0 . . . n− 1] and array q[0 . . . n− 1] of size n; initially
p[0 . . . n− 1] and q[0 . . . n− 1] contain the input coefficients.

Output: Coefficient array of the polynomial p(x+ 1) stored in the array
p[0 . . . n− 1] such that a[i] is the coefficient of the term of degree i.

for i = 0 to n− 1 do2:2:

p[0] = p[0] + q[i];4:4:

for j = 1 to n− i− 1 do6:6:

p[j] = p[j] + q[j − 1];7:

3.1.2 Cases to consider in divide and conquer

For the example in Figure 3.2, we can see that there are two types of cases for the

Divide and Conquer method, a Regular case (when n is power of 2) and an Irregular

case (when n is not a power of 2). For the both regular and irregular cases, the tableau

(square part) is computed first. For the square part, it is divided into four regions

L1,1, L2,1, L2,2 and L3,1. Region L1,1 will be computed first. Then region L2,1 and

region L2,2 are computed concurrently. After that, region L3,1 is computed. When

a the square region is computed, the smaller triangles can be computed in parallel.

From Figure 3.2, we see that the lower triangle is divided into 3 more regions, the

tableau region L4,1 and 2 triangle regions L5,1 and L5,2. The upper triangle is also
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divided into 3 regions, tableau region L4,2, and two triangles L5,3 and L5,4 respectively.

The square regions for both triangles L4,1 and L4,2 can be found concurrently. Then

the triangle regions L5,1, L5,2, L5,3, L5,4 are computed in parallel.
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(a) Regular case: n is a power of 2 (b) Irregular case: n is not a power of 2

Figure 3.2: Case illustration for implementing Dnc strategy

3.2 Work, span, and parallelism estimates

Our work, span, and parallelism estimates for the divide and conquer approach follow

the fork-join parallelism model discussed in Chapter 2.

Let Ws(n) (resp. WT (n)) denotes the work of the square (resp. triangle) con-

struction and let Ss(n) (resp. ST (n)) denotes the span of the square (resp. triangle)

construction.

The work Ws(n) required for filling in the tableau satisfies

Ws(n) = 4WS(n/2) + Θ(1) (3.1)

where, n > 1. Applying the Master Theorem1 which implies

Ws(n) = Θ(n2) (3.2)

for same construction the span becomes

Ss(n) = 3Ss(n/2) + Θ(1) (3.3)

1http://en.wikipedia.org/wiki/Master theorem
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where n > 1 and applying Master Theorem which leads to

Ss(n) = Θ(nlog23) (3.4)

For a Pascal Triangle, the work WT (n) is

WT (n) = 2WT (n/2) +WS(n/2) (3.5)

Applying the Master Theorem yields

WT (n) = Θ(n2) (3.6)

And span satisfies

ST (n) = ST (n/2) + Ss(n) (3.7)

which implies

ST (n) = Θ(nlog23) (3.8)

Therefore, for both constructions the parallelism is about Θ(n0.45). For more

details see [5]

3.3 Space complexity estimate

Consider first the sequential algorithm. One can observe that, at any point of the

construction of the Pascal’s Triangle, the knowledge of 2n, and only 2n, integers

(with n = d+ 1) is needed in order to continue the construction until its completion.

Moreover, the whole algorithm can be executed in place within the space allocated

to the 2n input integers. At completion, the n output integers are located in this

allocated space, most likely in its first n slots.

The same property is easy to prove for the divide and conquer approach. To do so,

first establish by induction a similar property for the two-way tableau construction,

see Figure 3.1. Then prove by induction the desired property for the divide-and-

conquer approach of the Pascal’s Triangle depicted by Figure 3.1.

Finally, we conclude that the divide and conquer approach can be executed in

place using an aggregate of 2n integers. Observe that, in order to obtain a bit size

complexity estimate, one would need to take the growth of the intermediate coeffi-

cients into account, see Chapter 5. If we assume that each input coefficient has bit

size H or less, then one can verify that the whole Pascal’s Triangle construction is
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done within 2n(H + n) bits. Indeed, each output coefficient is computed from the

input coefficients by n additions.

3.4 Cache complexity estimate

In their paper, Changbo Chen, Marc Moreno Maza and Yuzen Xie established the

following proposition [5]. (Note that the assumption is realistic only when n and the

coefficients of the input polynomial are small enough.)

Proposition 2. Assume that each input, output or intermediate coefficient is stored

in constant space. In the ideal cache model [10], Algorithm 7 incurs Θ
(
n
L
+ n2/(ZL)

)

cache misses, which is optimal.

Proof. Suppose, the cache size is Z words and each cache line has L words. Given an

input array of length n we need a cache complexity upper bound for the two routines

sketched by Figure 3.1. Let QT (n) and QS(n) be the number of cache misses incurred

by the triangle and square routines.

Since Algorithm 7 can be run in space 2n, we deduce that, for n small enough,

the whole computation fits into cache (i.e. only cold misses occur). Therefore, there

exists a real constant α > 0 such that

QT (n) ≤
{

2n/L+ 1 if n ≤ αZ

2QT (
n
2
) +QS(n) otherwise,

(3.9)

and

QS(n) ≤
{

2n/L+ 1 if n ≤ αZ

4QS(
n
2
) + Θ(1) otherwise.

(3.10)

We first solve Equation (3.10). Expanding this formula, we have

Qs(n) ≤ 4

(
4Qs(

n
4
) + Θ(1)

)
+Θ(1)

≤ 4

(
4

(
4Qs(

n
8
) + Θ(1)

)
+Θ(1)

)
+Θ(1).

(3.11)

Expanding shows that there exists an integer k such that we have

QS(n) ≤ 4k
(
2αZ

L
+ 1

)
+
∑k−1

j=0
4jΘ(1), (3.12)

where k is the smallest number of “recursive levels” necessary, such that each sub-
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problem fits into cache. This number k is given by

k = ⌈log2
( n

αZ

)
⌉. (3.13)

The
∑k−1

j=0 4
jΘ(1) of Equation (3.17) can be simplified using the well-known iden-

tity:

1 + q + q2 + · · ·+ qe−1 =
−1 + qe

−1 + q
.

So,
∑k−1

j=0 4
jΘ(1) becomes Θ(4k) and thus the Equation (3.17) becomes

QS(n) ≤ 4k
(

2αZ
L

+ 1

)
+Θ(4k)

≤ Θ(4k)

(
2αZ
L

+ 2

) (3.14)

From Equation (3.13) we obtain the value of k and replace it in Equation (3.14),

thus we have

Qs(n) ∈ O

(
4log2(

n
αZ

)

(
2αZ
L

+ 2

))

∈ O

(
( n
αZ

)2
(

2αZ
L

+ 2

))

∈ O

(
2n2

αZL
+ 2n2

α2Z2

)
.

(3.15)

After simplification we obtain

QS(n) ∈ O

(
n2

ZL
+

n2

Z2

)
. (3.16)

Now we solve for QT (n) using Equation 3.9. We proceed in the same way just like

Equation 3.10, after simplification we get

QT (n) ≤ 2kQT

(
n
2k

)
+
∑k−1

j=0 2
jQS

(
n
2j

)

≤ 2k
(

2αZ
L

+ 1

)
+
∑k−1

j=0 2
j

(
n
2j

)2(
1
ZL

+ 1
Z2

)

≤ n
αZ

(
2Z
L

+ 1

)
+
∑k−1

j=0 2
−j

(
n2

ZL
+ n2

Z2

)

≤ n
αZ

(
2Z
L

+ 1

)
+ 2

(
n2

ZL
+ n2

Z2

)

≤ 2n
αL

+ n
αZ

+ 2

(
n2

ZL
+ n2

Z2

)
.

(3.17)
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Which is actually

Qs(n) ∈ O
(

n
L
+ n

Z
+ n2

ZL
+ n2

Z2

)
. (3.18)

Using the tall cache assumption, that is, Z ∈ Ω(L2), the above expression becomes

Qs(n) ∈ O
(

n
L
+ n2

ZL

)
. (3.19)

The optimality of this cache complexity result follows from the bound of

J.W. Hong and H.T. Kung in their STOCS’81 paper “I/O complexity: the red-blue

pebble game” [14].
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Chapter 4

Blocking Taylor shift: Static

approach

In this chapter, we describe a blockingmethod which is an alternate way of performing

a Taylor shift computation. Section 4.1 is an informal presentation of this method.

Implementation schemes with algorithms are discussed in Section 4.2 while work, span

and parallelism are analyzed in Section 4.3. Space complexity and cache complexity

results are provided in Section 4.4 and Section 4.5 respectively.

4.1 Blocking strategy

The divide and conquer strategy suffers a relatively low parallelism. If we recall

Figure 3.1, we see that the computations in the two triangle regions do not start until

the square region I is completed. But the square region parts of small triangular

regions can be started before the completion of region I. Figure 4.1 gives an idea

of computing a Pascal Triangle by a blocking method instead of proceeding with a

divide and conquer strategy.

For clarity, let us recall Figure 3.2 and observe that region L3,1 (which located in

the bottom-right corner of the tableau) is computed before region L4,1 and L4,2 (which

are the square regions of upper and lower triangles). But here we can compute all

three regions concurrently since these three regions become essentially available for

computing in parallel at the same time. To be benefited, a new approach is introduced

called the blocking method.

In their paper [6] Changbo Chen, Marc Moreno Maza and Yuzhen Xie discuss a

blocking strategy, where the entire Pascal Triangle is partitioned into square blocks,

all of the same format, say B×B. Those blocks are traversed one band after another,
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Figure 4.1: Blocking Strategy in Pascal Triangle

where a band consists of blocks on the same segment perpendicular to the principal

diagonal. On Figure 4.1, “1”, “2, 2”, “3, 3, 3” form consecutive blocks. We refer to

this strategy as the static blocking strategy.

4.2 Implementation scheme for the static blocking

strategy

As in Section 2.5, let d be the degree of the input polynomial and define n = d+1. Two

cases have to considered: the block order B divides n, that we call the regular case

and B does not divide n, that we call the irregular case. The example in Figure 4.2(a),

where n = 9 and B = 3, illustrates the regular case. Here the computation can be

done in three steps. First step: tableau L1,1 is computed. Second step: two tableau

L2,1 and L2,2 are computed in parallel. Lastly: three small Pascal Triangles L3,1, L3,2,

L3,3 are computed concurrently.

Regarding the irregular case we consider n = 10 and B = 3, see Figure 4.2(b).

After two diagonal rows of the blocks from the top left corner of triangle, a special

case occurs, we call it the polygonCase. From Figure 4.2 we see that three polygons

P3,1 , P3,2, P3,3 (we call these special shapes polygon as their shape neither looks like

a ‘Tableau’ nor a ‘Triangle’) occur after the square blocks are done. In the last step,

four Pascal Triangles are computed concurrently.

Figure 4.2 shows both cases for the blocking strategy.

4.2.1 Regular case

When the degree of a polynomial n is divisible by B, the regular case Algorithm 10

will work. Here, Line 6 to Line 12 computes the tableau regions in parallel. Once the
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Figure 4.2: Case illustration for implementing the blocking strategy

tableau part is done, Line 13 to Line 16 is calculates the triangle regions concurrently.

All computations here are done in 2n space. (Thus the results are overwritten on input

space.)

Figure 4.3 shows both the tableau and the triangle regions. For the both regions,

each of the smaller blocks inside them is computed by adding inputs from left and

top edge of each block. After addition each of the smaller blocks containing result

becomes input of their right side and downside blocks. Finally, when all these smaller

blocks are computed, the outputs for the tableau block become available on its right

edge and down edge (for triangle it is on its diagonal edge).
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Figure 4.3: Tableau and triangle block
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Algorithm 10: staticBlockingRegular(a[0 . . . n− 1], n, B)

Input: a[0 . . . n− 1] is the coefficient array (dense representation) of a
univariate polynomial p(x) of degree d where n = d+ 1 (a[i] is the
coefficient of the term of degree i); B is the base size (threshold).

Output: Coefficient array of the polynomial p(x+ 1) stored in the array
a[0 . . . n− 1] such that a[i] is the coefficient of the term of degree i.

m = 2n;1:

b[0, . . . , n− 1] = a[0, . . . , n− 1];2:

b[n, . . . ,m− 1] = 0;3:

k = n
B
;4:

if k > 1 then5:

tableauBaseBlock(b[n−B . . . n], B);6:

for i = 2 to k − 1 do7:

for j = 0 to i− 2 do8:

t = n+ (2j − i)B;9:

spawn tableauBaseBlock(b[t . . . t+ B], B);10:

spawn tableauBaseBlock(b[n+ (i− 2)B . . . n+ iB −B], B);11:

sync;12:

for i = 0 to k − 2 do13:

spawn taylorBaseBlock(b[2iB . . . 2iB + B], B);14:

spawn taylorBaseBlock(b[2(k − 1)B . . . 2kB − B], B);15:

sync;16:

/* copy results from b to a */

for i = 0 to k − 1 do17:

for j = 0 to B − 1 do18:

a[j + iB] = b[j + 2iB];19:

The pseudocode for computing the tableau regions is shown in Algorithm 11. In

this algorithm, Line 2 and 3 compute the first row of the tableau region. Line 4 to

Line 7 computes the middle rows. Finally, last rows of the tableau are computed at

line 8 to Line 10. Results of the tableau are overwritten on input array, thus, the

whole computation is done in 2n space.
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Algorithm 11: tableauBaseBlock(a[0, . . . , n− 1], n)

Input: a[0 . . . n− 1] is an array of size n containing input of left and top edge

of each tableau, shown in Figure 4.3 (a).

Output: Array a[0 . . . n− 1] overwritten by the outputs which act as input for

right side and downside tableau blocks, see Figure 4.3 (a).

m = 2n;1:

/* first row */

for i = n to m− 1 do2:

a[i] = a[i] + a[i− 1];3:

/* middle rows */

for i = n− 2 to 1 do4:

for j = 0 to n− 1 do5:

a[i+ j + 1] = a[i+ j] + a[i+ j + 2];6:

i = i− 1;7:

/* first element of last row */

a[0] = a[0] + a[2];8:

/* rest element of last row */

for i = 1 to n− 1 do9:

a[i] = a[i− 1] + a[i+ 2];10:

/* first element of first row */

a[n] = a[n− 1];11:

Algorithm 12, taylorBaseBlock is showing the procedure for triangle block com-

putation. The picture for a single triangle block is shown in Figure 4.3 (b). Just like

tableau block, here also all the computations are done in place, within an aggregate

of 2n integer coefficients.
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Algorithm 12: taylorBaseBlock(a[0, . . . , n− 1], n)

Input: a[0 . . . n− 1] is an array of size n containing input of left and top edge

of each triangle, shown in Figure 4.3 (b).

Output: Array a[0 . . . n− 1] overwritten by the outputs. Outputs become

available on the diagonal edge of each triangle, see Figure 4.3 (b).

for i = 0 to n− 1 do2:2:

a[n− 1] = a[n− 1] + a[n+ i];4:4:

for j = n− 2 to i do6:6:

a[j] = a[j] + a[j + 1];7:

j = j − 1;8:

4.2.2 Irregular case

Algorithm 13 works for static blocks for irregular cases (n is not divisible by B). In

this algorithm, Line 8 to Line 15 computes the tableau regions in parallel. When the

tableau part is done, Line 16 to Line 20 calculates the special regions which we have

named Polygon regions. At the end, Line 21 to Line 24 computes triangle regions

concurrently. Every computation is done here in place so the result overwrites the

input array.
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Algorithm 13: staticBlockingIrregular(a[0 . . . n− 1], n, B)

Input: a[0 . . . n− 1] is the coefficient array (dense representation) of a

univariate polynomial p(x) of degree d where n = d+ 1 (a[i] is the

coefficient of the term of degree i); B is the base size (threshold).

Output: Coefficient array of the polynomial p(x+ 1) stored in the array

a[0 . . . n− 1] such that a[i] is the coefficient of the term of degree i.

r = n mod B;1:

q = n
B
;2:

m = 2n;3:

k = B − r − 1 ;4:

k = (k > 0)?k : 1;5:

b[0, . . . , n− 1] = a[0, . . . , n− 1];6:

b[n, . . . ,m− 1] = 0;7:

if q > 1 then8:

tableauBaseBlock(b[n−B . . . n], B);9:

for i = 2 to q − 1 do10:

for j = 0 to i− 2 do11:

t1 = n+ (2j − i)B;12:

spawn tableauBaseBlock(b[t1 . . . t1 + B], B);13:

spawn tableauBaseBlock(b[n+ (i− 2)B . . . n+ iB −B], B);14:

sync;15:

for i = 0 to q − 2 do16:

t2 = n+ (2i− q)B;17:

spawn polygonBase(b[t2 . . . t2 + B], B, r, k);18:

spawn polygonBase(b[n+ (q − 2)B . . . n+ qB −B], B, r, k);19:

sync;20:

for i = 0 to q − 1 do21:

spawn taylorBaseBlock(b[2iB . . . 2iB + r], r);22:

spawn taylorBaseBlock(b[2qB . . . 2qB + r], r);23:

sync;24:

Copy results from b[0 . . . n− 1] to a[0 . . . n− 1];25:

return a[0 . . . n− 1] ;26:

In Algorithm 14 describes the polygon construction. The special shape, which is

neither a tableau, nor a triangle is handled by this algorithm. This type of special
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shape, which looks more like combination of “Rectangle” and “Trapezoid”, can be

divided into two areas. One is a rectangular area at the top of the polygon and the

other is trapezoidal area. Figure 4.4 shows the picture of a polygon block. Each of the

smaller blocks inside the polygon is computed in the same way like tableau blocks.

Finally, outputs become available on right edge, down edge and on the diagonal edge

of the polygon.
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Figure 4.4: Polygon block.

In Algorithm 14, Line 2 to Line 7 calculates the rectangle rows or the top rows of

the polygon. Rows with trapezoidal shape are computed from Line 8 to Line 12. The

last row of polygon is computed at Line 13 to Line 15. Here results also overwrite

the input array, thus doing calculation in place.
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Algorithm 14: polygonBase(a[0, . . . , n− 1], n, r, k)

Input: a[0 . . . n− 1] is an array of size n containing input of left and top edge

of each smaller block inside polygon, shown in Figure 14; r is the

remainder of (n mod B), k is the number of trapezoidal rows in

polygon.

Output: Array a[0 . . . n− 1] overwritten by the outputs. Outputs become

available on the right edge, down edge and diagonal edge of each

polygon, see Figure 4.4.

m = 2n;1:

/* first row */

for i = n to m− 1 do2:

a[i] = a[i] + a[i− 1];3:

/* rectangle rows */

for i = n− 2 to k do4:

for j = 0 to n− 1 do5:

a[i+ j + 1] = a[i+ j] + a[i+ j + 2];6:

i = i− 1;7:

/* trapezoid starts */

for i = k − 1 to 1 do8:

a[k + 1] = a[k + 1] + a[i];9:

for j = k + 2 to n+ i do10:

a[j] = a[j] + a[j − 1];11:

i = i− 1 ;12:

/* first element of last row */

a[0] = a[0] + a[k + 1];13:

/* rest element of last row */

for i = 1 to r do14:

a[i] = a[i− 1] + a[i+ k + 1];15:

4.3 Work, span, and parallelism estimates

Let B be the order of a block. Then the work for each block is Θ(B2). If the number

of elements is n, then there will be n/B “parallel steps” or we can say n/B bands (or

diagonal rows) from the upper left corner of a triangle. Each of these bands have at
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most n/B blocks. Thus, we have Θ(n/B)2 block. Hence the work for computing the

Pascal Triangle is:

WB(n) ∈ Θ(B2)×Θ((n/B)2)

∈ Θ(n2).
(4.1)

As the span for each block is Θ(B2), the span for the whole algorithm is:

SB(n) ∈ Θ(B2)× n/B

∈ Θ(Bn).
(4.2)

The resulting parallelism is Θ(n2/(Bn)), which is Θ(n/B).

4.4 Space complexity estimate

For a B × B block, the computation is sequential and is done in place within 2B

integers. At the k -th parallel step there are k blocks which requires 2kB integers in

total. Therefore, the whole algorithm can be run with an aggregate of 2n integers

(letting k = n/B). We observe that this analysis does not take into account the

growth of the intermediate coefficients. See Section 3.3 and Chapter 5 for more

details on this.

4.5 Cache complexity estimate

Let α be the constant introduced in the cache complexity analysis of the divide and

conquer approach. Assume that B = αZ. Then, the number of cache misses for each

block is 2B/L+ 1 and the total number of cache misses is

Q(n) = Θ((n/B)2(2B/L+ 1)) = Θ(n2/(BL)) = Θ(n2/(ZL)).

Therefore, provided that B = αZ, we retrieve the optimal cache complexity result

established for the divide and conquer approach.
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Chapter 5

Analysis of Workload in the Case

of Integer Coefficients

In the fork-join parallelism model, the work of each strand is assumed to have an

unit cost. Under this assumption, the analyses that we conducted in the previous

chapters show that the work for constructing Pascal’s Triangle is quadratic in order

n. As long as all necessary additions can be performed correctly with machine integer

arithmetic, this assumption is realistic. However, for n large enough, software integer

arithmetic is required and this assumption is no longer acceptable.

More generally, this phenomenon invalidates our complexity analyses of the divide

and conquer approach, and the blocking strategy for Taylor shift computations. To

understand this, let us consider the divide and conquer approach for the Taylor shift,

as described in Section 3.2. We revisit Figure 3.1 below.

I
II

III

0 0 0 0 0 0

an

a0

an/2

.

.

.

.

Figure 5.1: Pascal Triangle.

Under the assumption that each strand has unit work, Regions II and III in

Figure 5.1 have the same work and span. Suppose now that we are using a machine
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of 2-bit machine word. Then Region II requires more work (in terms of machine word

operations) than Region III.

1
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Figure 5.2: Example figure of DnC in Pascal Triangle

Suppose from now on that we are using a machine of b-bit machine word, for an

arbitrary integer b > 1. Consider two positive integers A and B in radix b represen-

tation

A =
s−1∑

i=0

Aib
i and B =

t−1∑

i=0

Bib
i,

with As−1 6= 0, 0 ≤ Ai < b and Bt−1 6= 0, 0 ≤ Bi < b. The integers s and t are called

the sizes of A and B, denoted (respectively) by #(A) and #(B). We clearly have

max(#(A),#(B)) ≤ #(A+ B) ≤ max(#(A),#(B)) + 1.

If A and B are random (with an uniform distribution), we have #(A + B) =

max(#(A),#(B)) + 1 with probability 1/2. This explains the growth of the coef-

ficients in the Pascal Triangle and thus, for n large enough, the unbalanced work

between the two recursive calls in the divide and conquer construction of the Pascal

Triangle.

The next two sections are dedicated to an analysis of this phenomenon and its

impact on the work and span of parallel Taylor shift computations by means of the

blocking strategy. We focus, indeed, on this scheme since its parallelism is higher

than that of the divide and conquer strategy. In fact, the goal of this section is to

obtain complexity estimates that will support an improved implementation of this

scheme, reported in Section 7.

In Section 5.3, we analyze the parallelization overheads of the blocking strategy,

which, in our opinion, bring some interesting and unexpected results. Finally, in Sec-

tion 5.4, we turn our attention to locality issues. We establish formulas for choosing
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an initial block order B, and, if appropriate, changing this block order during the

computations, so as to minimize cache misses.

5.1 Work for the blocking strategy

We consider a triangular grid as in Figure 3.1, where the top left corner is the origin,

with Cartesian coordinates (0, 0). The coefficient in the grid with coordinates (k, ℓ)

(where k is the row index and ℓ is the column index) is denoted by ck,ℓ. The grid has

n rows and n columns.

Initially, the coefficients satisfying either k = 0 or ℓ = 0 are known and called the

initial coefficients. The other coefficients are given by

ck,ℓ = ck−1,ℓ + ck,ℓ−1.

We denote by H the maximum size of the absolute value of an initial coefficient. We

denote by sk,ℓ the size of the absolute value of ck,ℓ. For k > 0 and ℓ > 0, we clearly

have

sk,ℓ ≤ H + k + ℓ− 1. (5.1)

Since this upper bound of sk,ℓ is quite pessimistic, we introduce a constant p ∈ [0, 1]

such that Sk,ℓ (below) is expectedly a sharper upper bound of sk,ℓ

Sk,ℓ = H + p(k + ℓ− 1). (5.2)

For instance if all initial coefficients are positive and have size H, we can take p = 1/2

and Sk,ℓ is actually the expected value of sk,ℓ. As we shall see, this parameter p has

little impact on the key results. However, not using this parameter through our

calculations would imply that all our other estimates would rely on quite pessimistic

estimates, which would be questionable.

Recall that we are interested in the blocking strategy. Let B > 1 be the block

order, we assume that B divides n. Consider a square B × B block whose top left

corner has coordinates (k, ℓ). We assume that all ck,ℓ+j for j = 0 · · ·B and all ck+i,ℓ

for i = 0 · · ·B are known. The work CB,k,ℓ for computing all the other coefficients of

the block is given by

CB,k,ℓ =
B∑

i=1

B∑

j=1

Sk+i,ℓ+j. (5.3)

Indeed the work required for adding two numbers is in the order of the size of their
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sum. Then, elementary calculations yield

CB,k,ℓ = B2(H + p(k + ℓ+ p)). (5.4)

Similarly, we obtain the work TB,k,ℓ of a triangular B×B block whose top left corner

has coordinates (k, ℓ):

TB,k,ℓ =
B∑

i=1

B+1−i∑

j=1

Sk+i,ℓ+j =
1

6
B(B + 1)(2Bp+ p+ 3pk + 3H + 3pℓ). (5.5)

We are now ready to compute the work W (n) required for calculating all coefficients

(except the initial ones) in the Pascal Triangle.

Proposition 3. We have

W (n) =
1

6
n(n+ 1)(3H + 2 p n+ p). (5.6)

Proof ⊲ We first observe that two square (resp. triangular) B×B blocks with top

left corner (k, ℓ) and (k′, ℓ′) have the same work if and only if they are on the same

band, that is, whenever k+ ℓ = k′+ ℓ′ holds. Secondly, we observe that the j-th band

of square B × B blocks, for 0 ≤ j ≤ n/B − 2, has j + 1 blocks. Thirdly, the band of

triangular B ×B blocks has n/B blocks. This leads to

W (n) =

n/B−2∑

j=0

(j + 1)CB,j B,0 +
n

B
TB,(n/B−1)B,0. (5.7)

Elementary calculations lead to the conclusion. ⊳

The formula of Proposition 3 shows that the work is cubic in n. It is also inde-

pendent of B, which was naturally expected. When p = 0, we retrieve the quadratic

case of Section 4.

5.2 Span for the blocking strategy

We are now interested in the span S(n) required for calculating all coefficients (except

the initial ones) by means of the blocking strategy.

Proposition 4. We have

S(n) =
1

6
B(6Hn− 3HB + 3pn2 − pB2 + p+ 3H + 3pn). (5.8)
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Proof ⊲ The span of each band (of square or triangular B × B blocks) is equal

to the work of a block on that band. Indeed, each block is computed serially. Thus,

following the proof of Proposition 3, we have

S(n) =

n/B−2∑

j=0

CB,j B,0 + TB,(n/B−1)B,0. (5.9)

Elementary calculations lead to the conclusion. ⊳

The formula of Proposition 4 shows that the span is quadratic in n and cubic in B.

When p = 0, we have S(n) = BH
2
(2n− B + 1) and thus, in this case, the parallelism

is
n(n+ 1)

B(2n−B + 1)
, (5.10)

which is asymptotically equal1 to n
2B

for a fixed B.

When p = 1, we have

S(n) =
B

6
(6Hn− 3HB + 3n2 −B2 + 3H + 3n+ 1), (5.11)

and thus, in this case, the parallelism is

n(n+ 1)(3H + 2 p n+ p)

B(6Hn− 3HB + 3n2 − B2 + 3H + 3n+ 1)
. (5.12)

which is asymptotically equal 2n3

3Bn2 = 2n
B
, for a fixed B and a fixed H. Finally, when

p = 1/2, similar calculations yield a parallelism which is asymptotically equal to 2n
3B

.

The above results show that taking into account the growth of the coefficients

in Pascal’s Triangle construction (or in Taylor shift computation) by the blocking

strategy increases the parallelism by a factor which is at most 4.

5.3 Estimating parallelization overheads

In this section, we estimate the burdened span Sb(n) incurred for calculating all coef-

ficients (except the initial ones) by means of the blocking strategy. Recall that, in the

fork-join parallelism model (thus assuming that all strands run in unit time) the bur-

dened span is the maximum number of continuations (thus cilk spawn statements)

along a critical path. The instruction stream DAG of the blocking strategy consists

of n/B binary tress T0, T1, . . . , Tn/B−1 such that

1For the notion of asymptotically equal, see http://en.wikipedia.org/wiki/Big O notation.
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• Ti is the instruction stream DAG of the cilk for loop executing the i-th band,

and

• each leaf of Ti is connected by an edge to the root of Ti+1.

Consequently, we have

Sb(n) =
∑n/B

i=1 log(i)

= log(
∏n/B

i=1 i)

= log(Γ
(
n
B
+ 1)

)
.

(5.13)

Using Stirling’s Formula, we deduce the following.

Proposition 5. We have

Sb(n) ∈ Θ
( n

B
log(

n

B
)
)
. (5.14)

This result implies that the burdened parallelism (that is, the ratio work to bur-

dened span) is sublinear. Another way to interpret this negative result is as follows.

When B is replaced by its half, the (non-burdened) span is essentially multiplied by

2 while the burdened span is multiplied by a factor greater than 2. In other words,

considering the (non-burdened) span only, the replacement of B by its half seems like

a good idea while it is a bad idea from the burdened span point of view.

5.4 Choosing the block order

We turn our attention to locality issues. More precisely, for an ideal cache of size Z

and cache-line L, we ask how to choose the block order B so as to minimize cache

misses.

We first determine the space requirement R(B, k, ℓ) for computing a square B×B

block whose top left corner has coordinates (k, ℓ). As before, we assume that all

ck,ℓ+j for j = 0 · · ·B and all ck+i,ℓ for i = 0 · · ·B are known. We assume that the

largest coefficients in that block will be at ck+B,ℓ+j for j = 0 · · ·B and at ck+i,ℓ+B for

i = 0 · · ·B. Those coefficients are actually the result of computing our block rooted

at (k, ℓ). Indeed, we assume that the space used for the other coefficients of the block

is recycled for storing the output coefficients. Thus we have

R(B, k, ℓ) =
B−1∑

i=0

Sk+i,ℓ+B +
B∑

j=0

Sk+B,ℓ+j. (5.15)
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Then, elementary calculations yield

R(B, k, ℓ) = 2HB +H + 2pBk + pk + 3pB2 − pB + 2pBℓ+ pℓ− p. (5.16)

In particular, we have

R(B, 0, 0) = 2HB +H + 3pB2 − pB − p. (5.17)

Since each block is processed by one thread, and assuming that each thread has

a private (Z,L)-ideal cache, we should always have

R(B, k, ℓ) ≤ Z. (5.18)

Experience shows that R(B, k, ℓ) should a portion α of Z. In our computations,

α = 1/4 yields the best results. Given H, p, α, Z one can solve for B the equation

R(B, 0, 0) = αZ. We obtain

B =
p− 2H +

√
13p2 − 16Hp+ 4H2 + 12pαZ

6p
. (5.19)

Fixing α = 1/4, H = 1000, Z = 32Kb, which are realistic values, and letting p be

successively 0, 1/2 and 1, we obtain B = 30.85, B = 31.53, B = 31.89. For the

α,H,Z, Figure 5.3 plots the block order B as a function of the probability p. We

observe that p has a little impact on the value of B.

From now on we assume α = 1/4. Formula (5.19) tells us how to choose the initial

block order. However, due to the potential growth of the coefficients in the successive

bands, we consider replacing B by its half after s steps. The number s is such that

R(B, s, 0) = Z, that is, after s rows, we can no longer compute a square B×B block

without incurring cache misses other than cold misses.

We solve the system of equations and inequalities





R(B, 0, 0) = αZ

R(B, s, 0) = Z

B > 1, H > 1, Z > 0, s > 0, 1 > p > 0.

(5.20)

Using the RealTriangularize command of the RegularChains library in Maple
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we obtain the following defining expressions for B and s, as functions of H,Z, p:

{
(2Bp+ p)s+H − p− Z + (2H − p)B + 3pB2 = 0

12pB2 + (−4p+ 8H)B + 4H − 4p− Z = 0.
(5.21)

We take advantage of these estimates in the algorithms of the next chapters. Fixing

α = 1/4, H = 1000, Z = 32Kb, Figure 5.4 plots the row number s as a function of

the probability p. We observe that p has a large impact on the value of s.

Figure 5.3: B as a function of p.
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Figure 5.4: s as a function of p.
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Chapter 6

Divide and Conquer Taylor shift:

Dynamic approach

This chapter describes implementation techniques for Taylor shift computations using

the divide and conquer scheme. Based on the study conducted in Section 5, we know

that two recursive calls in the scheme are likely not to have the same work load due

to the growth of the coefficients. In Chapter 3, we were using a fixed base case in the

divide and conquer scheme, thus not taking into account that the work load can be

different for two square (or triangular) regions of the same size. Two techniques to

overcome this limitation are discussed in this chapter.

A first approach, presented in Section 6.1, is to dynamically determine the base

case, that is, the order of a square (resp. triangular) region below which the recur-

sive division stops. A second approach, proposed in Section 6.2 is to compute the

triangular regions with heavy work load as the “sum” if two triangular regions with

half of the work load each. We named this second technique partial sum. We also

consider the combination of these two techniques, that we call combo. Experimental

results based on these techniques are reported in Section 6.3.

6.1 Divide and conquer scheme with dynamic base

case

Let p(x) ∈ Q[x] be a polynomial of degree d (where n = d+ 1) whose coefficients are

stored in an array p[0 . . . n − 1], where a[i] is the coefficient of the term of degree i.

Let q[0 . . . n−1] be another array of length n, where all coefficients are zero. Let α be

a portion of the L1 cache, typically equal to 1/4, for the reasons noted in Section 5.4.
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Algorithm 15: taylorShiftGeneralDynamic(p[0 . . . n− 1], q[0 . . . n− 1], α)

Input: p[0 . . . n− 1] is the coefficient array (dense representation) of an
univariate polynomial p(x) of degree d where n = d+ 1 (a[i] is the
coefficient of the term of degree i); q[0 . . . n− 1] is another array of
length n, where all coefficients are initially zero; both p[0 . . . n− 1] and
q[0 . . . n− 1] are overwritten; α is a portion of the L1 cache, typically
equal to 1/4.

Output: Coefficient array of the polynomial p(x+ 1) stored in the array
p[0 . . . n− 1] such that a[i] is the coefficient of the term of degree i.

Randomly choose 10 coefficients from p;1:

Randomly choose 10 coefficients from q;2:

Find the largest coefficient among them;3:

H = Bit size of largest coefficient;4:

B = 1
2
− H

3
+ (−3+4H2+3αZ)

1
2

6
5:

if B ≤ Bmin then6:

B = Bmin7:

;8:

if n ≤ B then9:

taylorShiftBase(p[0 . . . n− 1], q[0 . . . n− 1]);10:

else11:

m = n+1
2
;12:

tableauConstruction(p[0 . . .m− 1], q[0 . . . m− 1], B);13:

spawn taylorShiftGeneralDynamic(p[0 . . .m− 1], q[m. . . n− 1], α);14:

spawn taylorShiftGeneralDynamic(p[m. . . n− 1], q[0 . . . m− 1], α);15:

sync;16:

Algorithm 15 applied to (p, q, α) computes and stores the coefficients of p(x + 1) in

the array p[0 . . . n − 1]. Algorithm 15 is based on the divide and conquer scheme

discussed in Chapter 3. However, and to the contrary of Algorithm 6, the base case

(or threshold) B is determined dynamically.

The idea is to use Formula (5.19) from Chapter 5 in order to decide whether the

current square (or triangular) region should be divided or not. When B is too small,

we know from Formula (5.14) that the burdened span can be significantly larger

than the span, thus reducing performances. We have determined experimentally

that B should not be smaller than 25. This value should not be seen as a “Voodoo

parameter”. It is directly imposed by the parallelization overheads (number of cycles

for cilk span, etc.), see Sections 2.8.3 and 2.8.5. In our algorithms we refer to this

as Bmin.

In the context of Algorithm 15, we use Formula (5.19) as follows: We do not
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compute the maximum absolute valueH of an initial coefficient, that is, the maximum

absolute value of a coefficient among those of p and q. Indeed, this would increase

the work and the span of Algorithm 15 in a non-acceptable way. (Think about the

recursive calls!) For this reason, we use a statistical approach: we pick randomly 10

coefficients in p and 10 coefficients in q, then use them to estimate H.

6.2 Dynamic divide and conquer scheme with par-

tial sum

As in Chapter 5, we view the Pascal Triangle as a triangular grid, where the top left

corner is the origin, with Cartesian coordinates (0, 0). The coefficient in the grid with

coordinates (k, ℓ) (where k is the row index and ℓ is the column index) is denoted by

P (k, ℓ) The grid has n rows and n columns.

Computing all the coefficients P (k, ℓ) in a parallel fashion can be done in different

ways, in particular using a divide and conquer scheme. Let us recall this scheme.

Suppose that n is even and let q = n/2. We partition the Pascal Triangle P in three

regions that we denote by C, P+, and P− and that are defined as follows:

• for 0 ≤ k, ℓ ≤ q − 1 we have C(k, ℓ) = P (k, ℓ) (which is a square region, often

called a tableau),

• for q ≤ ℓ ≤ n−1 and k+ℓ ≤ n−1, we have P+(k, ℓ) = P (k, ℓ) (this is top-right

triangle),

• for q ≤ k ≤ n−1 and k+ℓ ≤ n−1, we have P−(k, ℓ) = P (k, ℓ) (this is down-left

triangle).

Observe that computing the elements of P+ and P− require the knowledge of those

of C. However, one can compute the coefficients of P− in three stages:

1. Assuming that P (q − 1, ℓ) = 0 for 0 ≤ ℓ ≤ n− q, compute P− and call P−
0 the

result,

2. Assuming that P (q − 1, ℓ) is known for 0 ≤ ℓ ≤ n − q and setting ck = 0 for

q ≤ k ≤ n− 1, compute P− and call P−
1 the result,

3. add P−
0 and P−

1 element-wise to deduce P−.
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Figure 6.1: Pascal Triangle.
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Figure 6.2: Lower triangle P− computed in two steps: P−
0 and P−

1 .

We call this approach the partial sum trick. Figure 6.1 and Figure 6.2 show how the

partial sum trick is applied to a down-left triangle.

Let us denote by WP ,WC ,WP− ,WP+ ,WP−

0
, and WP−

1
the work (bit opera-

tions) for computing P , C, P+, P−, P−
0 , and P−

1 . Similarly, let us denote by

SP , SC , SP− , SP+ , SP−

0
, and SP−

1
the span (bit operations) for computing P , C, P+,

P−, P−
0 , and P−

1 .

If the partial sum trick is not applied, then the parallelism of the divide and

conquer is given by:

T1/T∞ =
WC +WP− +WP+

SC +max(SP+ , SP−)
. (6.1)

If the partial sum trick is applied, then the parallelism becomes:

T1/T
′
∞ =

WC +WP− +WP+

max(SC , SP−

0
) + max(SP+ , SP−

1
)
. (6.2)

In the above, we are neglecting the work overhead and the span overhead in the third
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stage of the partial sum trick. This is because, in practice, we only care about the

diagonal elements of P , that is, the coefficients P−(k, ℓ) for ℓ+ k = n− 1.

In order to further compare the parallelism of the two variants, we make two

following genericity assumptions. We assume that we have:

• SP−

1
≥ SP+ and

• SC ≥ SP−

0
.

For instance, these assumptions hold if all ci’s are equal. Under these assumptions,

we have
T1/T∞

T1/T ′
∞

=
max(SC , SP−

0
) + max(SP+ , SP−

1
)

SC +max(SP+ , SP−)
=

SC + SP−

1

SC + SP−

. (6.3)

Therefore, for the partial sum trick to improve the parallelism of the original divide

and conquer approach we need SC to be relatively small compared to SP−

1
, which itself

should be small compared to SP− . The first condition is likely, but the second one

is not. Indeed, SP− is likely to be essentially SP−

1
, unless the coefficients cn−1, . . . , cq

are significantly larger than cq−1, . . . , c0.

Algorithm 16 implements the partial sum trick.
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Algorithm 16: taylorShiftpartialSum(p[0 . . . n− 1], r[0 . . . s− 1], B, α)

Input: Array p[0 . . . n− 1] of size n; an auxiliary array r[0 . . . s− 1] of size

s = 2n; initially p[0 . . . n− 1] and r[0 . . . n− 1] contain the input

coefficients; p[0 . . . n− 1] and r[0 . . . s− 1] are overwritten during the

computations; B is the base size (threshold) and α is a portion of the

L1 cache, typically 1/4.

Output: Coefficient array of the polynomial p(x+ 1) stored in the array

p[0 . . . n− 1] such that a[i] is the coefficient of the term of degree i.

if n ≤ B then1:

taylorShiftBase(p[0 . . . n− 1], r[0 . . . n− 1]);2:

else3:

m = n
2
;4:

spawn tableauConstruction(p[0 . . .m− 1], r[0 . . . m− 1], B);5:

spawn taylorShiftpartialSum(p[m. . . n− 1], r[n . . . s− 1], B, α);6:

sync;7:

for i = n to s− 1 do8:

r[i]← 0;9:

spawn taylorShiftGeneralDynamic(p[0 . . .m− 1], r[m. . . n− 1], B, α);10:

spawn taylorShiftpartialSum(r[0 . . .m− 1], r[n . . . s− 1], B, α);11:

sync;12:

addVector(p[m. . . n− 1], r[0 . . . m− 1]) ; /*This is just vector13:

addition*/

Algorithm 17 combines the techniques of Algorithms 15 and 16 into a single

method that we call Combo. The idea is to modify the scheme of Algorithm 15

as follows. When the input coefficients p[m] . . . p[m + 9] are sufficiently large com-

pared to the coefficients p[0] . . . p[9], the partial sum trick is applied, otherwise we

follow the original scheme of Algorithm 15. This criterion is based on the estimates

of Formula (6.3).
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Algorithm 17: taylorShiftCombo(p[0 . . . n− 1], q[0 . . . n− 1], α)

Input: p[0 . . . n− 1] is the coefficient array (dense representation) of a

univariate polynomial p(x) of degree d where n = d+ 1 (a[i] is the

coefficient of the term of degree i); q[0 . . . n− 1] is another array of

length n, where all coefficients are initially zero; both p[0 . . . n− 1] and

q[0 . . . n− 1] are overwritten; α is a portion of the L1 cache, typically

equal to 1/4.

Output: Coefficient array of the polynomial p(x+ 1) stored in the array

p[0 . . . n− 1] such that a[i] is the coefficient of the term of degree i.

Randomly choose 10 coefficients from p;1:

Randomly choose 10 coefficients from q;2:

Find the largest coefficient among them;3:

H = Bit size of largest coefficient;4:

B = 1
2
− H

3
+ (−3+4H2+3αZ)

1
2

6
;5:

m = (n+1
2
);6:

Aa = Average size of 10 coefficients p[0] . . . p[9] in bits;7:

Ab = Average size of 10 coefficients p[m] . . . p[m+ 9] in bits;8:

if B ≤ Bmin then9:

B = Bmin10:

;11:

if n ≤ B then12:

taylorShiftBase(p[0 . . . n− 1], q[0 . . . n− 1]);13:

else14:

if Aa + 2 ∗m < Ab then15:

tableauConstruction(p[0 . . .m− 1], q[0 . . . m− 1], B);16:

spawn taylorShiftCombo(p[0 . . .m− 1], q[m. . . n− 1], α);17:

spawn taylorShiftCombo(p[m. . . n− 1], q[0 . . . m− 1], α);18:

sync;19:

else if Aa + 2 ∗m ≈ Ab then20:

Introduce array r of size s = 2n;21:

r[0 . . . n− 1] = q[0 . . . n− 1];22:

r[n . . . s− 1] = 0;23:

taylorShiftpartialSum(p[0 . . . n− 1], r[0 . . . s− 1], B, α);24:
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6.3 Experimental results

We have conducted the experiments on the implementation of our various par-

allelization of Taylor shift computations and VCA Algorithm on the cluster

stegosaurus.csd.uwo.ca. This machine has one head and 13 compute nodes,

called node-0-0 to node-0-12. We have used node-0-0 whose configuration is: AMD

Opteron(tm) Processor 6168, L1 cache size 64KB, L2 cache size 512 KB, number of

processors: 48, CPU family: 16, Model: 9, CPU MHz: 800.

We have run both static and dynamic divide and conquer schemes on different

polynomial families such as BND [16], CND [16], PSnd, Chebyshev, Mignotte etc. for

Taylor shift computation. BND and CND are well known experimental polynomial

families introduced by Jeremy R. Johnson Werner Krandick and Anatole D. Ruslanov

in their paper [16]. Let d be the degree of a polynomial in one of those families. The

definition of BND can be given as:

Bnd(x) = dxn + dxn−1 + · · ·+ dx+ d.

The definition of CND is:

Cnd(x) = xn + d.

The Mignotte polynomial is (assuming n >= 2):

xn − 2(5x− 1)2.

We define a Chebyshev polynomial as follows. If, T0 = 1, T1 = x then Tn = 2Tn−1 −
Tn−2.

We have introduced three other example polynomial families. The definition of

PSnd can be given as:

PSnd(x) = 2 + 22 + · · ·+ 22(n−1) + 22n.

Another example polynomial family PolynomialEx1 is defined as:

Pex1(x) = 1 + · · ·+ dxn/2 + · · ·+ dxn.

The last example polynomial family that we have introduced is PolynomialEx2, de-

fined as:

Pex2(x) = 1 + · · ·+ dxk + · · ·+ xn.
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where, 2n/3 ≤ k < n.

6.3.1 Divide and conquer: static vs dynamic

We have run both the static and dynamic divide and conquer schemes for the different

polynomial families defined above. We measured their timings for both 1 processor

and 48 processors, then calculated speed up. The results are shown in the Table 6.1.

By static and dynamic approaches we mean Algorithms 6 and 17, respectively.

From Table 6.1, we see that, for different degree polynomials in different poly-

nomial families, the dynamic approach is faster (in terms of running time) than the

static approach. Moreover, it has better speed up than the static method.

To show the comparative results in a better way, we provide a plot, see Fig-

ure 6.3 which shows a comparison speedup and parallelism for the static and dynamic

approaches, for the input CND polynomial of degree 25000, running on our AMD

machine.
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Figure 6.3: Speedup and parallelism comparison of static and dynamic divide and
conquer for degree 25000 Cnd polynomial.

From Figure 6.3 it is clearly seen that the dynamic approach has better speed up

comparing to the static method. Although the parallelism (which is a theoretical mea-

sure) seems higher for static divide and conquer, more cache hits bring comparatively

better performance to the dynamic method.

From Figure 6.4 it is clearly seen that for different number of processors the wall
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Polynomial family Method n k Processor(s) Speedup
48-Processors 1-Processor

Bnd [16] Static DnC 5000 5000 1.193 2.184 1.83
Dynamic DnC 5000 5000 1.160 2.187 1.88
Static DnC 10000 10000 5.391 16.774 3.11

Dynamic DnC 10000 10000 5.433 16.799 3.09
Static DnC 25000 25000 44.161 250.16 5.66

Dynamic DnC 25000 25000 43.188 250.942 5.81
Cnd [16] Static DnC 5000 5000 0.966 0.939 0.97

Dynamic DnC 5000 5000 0.893 0.984 1.10
Static DnC 10000 10000 4.39 6.285 1.43

Dynamic DnC 10000 10000 3.978 6.646 1.67
Static DnC 25000 25000 32.523 88.158 2.71

Dynamic DnC 25000 25000 29.356 90.631 3.08
PSnd Static DnC 5000 NA 0.976 0.94 0.96

Dynamic DnC 5000 NA 0.903 0.994 1.10
Static DnC 10000 NA 4.435 6.334 1.42

Dynamic DnC 10000 NA 4.008 6.672 1.66
Static DnC 25000 NA 31.576 88.363 2.79

Dynamic DnC 25000 NA 30.352 91.015 2.99
Chebyshev Static DnC 5000 NA 0.951 2.063 2.16

Dynamic DnC 5000 NA 0.982 2.082 2.12
Static DnC 10000 NA 4.737 15.306 3.23

Dynamic DnC 10000 NA 4.734 15.224 3.21
Mignotte Static DnC 5000 NA 1.000 0.93 .93

Dynamic DnC 5000 NA 0.906 0.988 1.09
Static DnC 10000 NA 4.488 6.29 1.40

Dynamic DnC 10000 NA 3.974 6.628 1.66
PolynomialEx1 Static DnC 5000 5000 1.037 1.166 1.12

Dynamic DnC 5000 5000 1.000 1.163 1.16
Static DnC 10000 10000 4.467 8.202 1.83

Dynamic DnC 10000 10000 4.436 8.16 1.83
Static DnC 25000 25000 32.629 116.977 3.58

Dynamic DnC 25000 25000 31.874 117.56 3.68
PolynomialEx2 Static DnC 5000 5000 1.004 0.932 0.92

Dynamic DnC 5000 5000 0.869 0.984 1.13
Static DnC 10000 10000 4.586 6.292 1.37

Dynamic DnC 10000 10000 4.106 6.642 1.61
Static DnC 25000 25000 33.097 88.183 2.66

Dynamic DnC 25000 25000 30.478 90.771 2.97

Table 6.1: Taylor shift computation (timings in seconds) [Platform:stegosaurus cluster
node-0-0, Static base size=50].

time of the dynamic divide and conquer approach is better than for one processor. To

generate this graph, we took trial results generated by Cilkview for 1 to 48 Processor(s)

for input CND polynomial (degree 25000) running on our AMD machine.
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Figure 6.4: Real timing comparison between static and dynamic divide and conquer
for degree 25000 Cnd polynomial.

6.3.2 Comparative results: Partial sum vs divide and con-

quer

We have stated in Section 6.2 that there are examples where we have significantly

large polynomial coefficients at the end of the Pascal Triangle calculation. In those

cases we will gain better performance if we follow the partial sum trick. To justify

this, we have made a special polynomial family, (we named it PSnd) for which we

have made a comparative study between the static divide and conquer approach, the

dynamic divide and conquer approach and the divide and conquer approach using

the partial sum trick.

The comparative results for partial sum, static and dynamic divide and conquer

for PSnd polynomials of different degree are shown in Table 6.2. We have run the

experiment on 1 processor and 48 processors of our AMD node.

Figure 6.5 shows the comparison graph for speedup between static divide and

conquer, dynamic divide and conquer and partial sum for PSnd polynomial of degree

25000. From the graph it is clearly seen that partial sum trick has better speedup for

this polynomial family.
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Polynomial family Method n k Processor(s) Speedup
48-Processors 1-Processor

PSnd Static DnC 5000 5000 0.976 0.94 0.96
Dynamic DnC 5000 5000 0.903 0.994 1.10
Partial sum 5000 5000 0.808 1.288 1.59
Static DnC 10000 10000 4.435 6.334 1.42

Dynamic DnC 10000 10000 4.008 6.672 1.66
Partial Sum 10000 10000 3.731 8.487 2.27
Static DnC 25000 25000 31.576 88.363 2.79

Dynamic DnC 25000 25000 30.352 91.015 2.99
Partial sum 25000 25000 28.441 113.484 3.99

Table 6.2: Taylor shift computation (timings in seconds) [Platform:stegosaurus cluster
node-0-0, Static base size=50].
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Figure 6.5: Speedup comparison between static divide and conquer, dynamic divide
and conquer and Partial sum for degree 25000 PSnd polynomial.
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Polynomial family Method n Processor(s) Speedup
48-Procs 12-Procs 1-Proc 12-Procs 48-Procs

Chebyshev Static DnC 400 23.411 24.846 134.821 5.42 5.76
Dynamic DnC 400 23.584 24.977 135.035 5.40 5.73
Static DnC 500 45.524 62.788 413.009 6.58 9.07

Dynamic DnC 500 43.722 62.526 413.439 6.61 9.46
Mignotte Static DnC 400 73.092 79.138 206.636 2.61 2.82

Dynamic DnC 400 73.673 79.242 206.738 2.60 2.81

Table 6.3: Real root isolation (timing in seconds) [Platform:stegosaurus cluster node-
0-0, Static base size=50].

Polynomial family Method n Processor(s) Speedup
48-Procs 12-Procs 1-Proc 12-Procs 48-Procs

Hilbert 16 Static DnC 426 163.094 200.484 1119.02 5.58 6.86
Dynamic DnC 426 162.13 200.068 1120.19 5.60 6.91

Table 6.4: Real root isolation Hilbert-16 (timing in seconds) [Platform:stegosaurus
cluster node-0-0, Static base size=50].

6.3.3 Root isolation results

We have tried root isolation for the well known polynomials Chebyshev and Mignotte

on the same cluster node. The real root isolation results for Chebyshev and Mignotte

polynomials (of different degrees) for the static divide and conquer and Dynamic

divide and conquer are shown in Table 6.3.

From the above table we can see that the dynamic divide and conquer brings

better speedup for isolating real roots of the Chebyshev polynomial when degree is

high (say, 500). One can observe from the same table that we have reached our

maximum speedup when we utilize 12 processors.

6.3.4 Root isolation results: Hilbert-16 polynomial family

In addition, we have used our software to isolate the real roots of a well known large

polynomial called Hilbert-16. This polynomial has degree 426, and the bit size of its

coefficients is 1900. It is available at http://www.orcca.on.ca/~cchen/ammcs2011.

txt. Experimental results are shown in Table 6.4.

From Table 6.4 we can see that, for the Hilbert 16 polynomial, the dynamic divide

and conquer approach performs better than the static one.
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Chapter 7

Blocking Taylor shift: Dynamic

approach

This chapter describes implementation techniques for Taylor shift computations using

the blocking scheme. In Chapter 4, our algorithms were using a block of fixed order

B throughout the entire computation of the Pascal Triangle. Moreover, this order

was the same for all test examples in the experiment of [6], namely 50.

Based on the results of Chapter 5, in particular Section 5.4, we believe that

1. by virtue of Formula (5.19), the initial order B should be calculated from the

maximum size H of the coefficients of the input polynomial and the L1 cache

size Z, and

2. the order B of the blocks can be reduced, say divided by 2, after s/B bands,

where s is given by Formula (5.21).

However, from Proposition 5, one should be aware that dividing the block order in-

creases the burdened span faster than it increases the non-burdened span. Roughly

speaking, this means that, parallelization overheads may grow faster than the paral-

lelization benefits.

Sections 7.1 and 7.2 describe algorithms which implement the above two tech-

niques. Experimental results based on these techniques are reported in section 7.3.

7.1 Dynamic granularity in blocking strategy

Repeating from Chapter 4, where we have discussed blocking methods for Taylor

shift, where we did not consider the growth of the coefficients and had fixed base size
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Figure 7.1: Simple static blocking strategy.

for the entire process. This method has several limitations, for instance, this method

is not cache friendly and there is room for gaining more parallelism.

We would like to consider the following issues:

1. the growth rate of coefficients,

2. making the blocks more cache friendly (so that it has less cache misses), and

3. gaining more parallelism.

Our plan is to modify static block method so that the blocks become cache aware.

For convenience, we rephrase our definitions that we gave in Chapter 6. Let

p(x) ∈ Q[x] be a polynomial of degree d (where n = d + 1) whose coefficients are

stored in an array a[0 . . . n − 1], where c[i] is the coefficient of the term of degree i.

We denote H as coefficient size in bits. Let us denote the cache as Z and α be a

portion of the L1 cache, typically equal to 1/4, for the reasons noted in Section 5.4.

From the explanation noted in Section 5.1, we observed that at the beginning of

computation, if H is small then we can take many coefficients of size H inside a block

without any cache misses. That makes our B bigger, the explanation can be found

in Section 5.4. During the computation H grows and size of B needs be reduced to

avoid cache misses. There is a more detailed discussion on Section 7.2. While our

block size is getting smaller, we are gaining more parallelism.

In this picture, we show that a region can be divided into 4 regions, where the

region I is of size 20 and region II and III is of size 22. Here, by ‘size’, we mean

work in that region. Assume that each of the regions have n coefficients. Region I

has small coefficients. Region II and region III have bigger coefficients which make

them 4 times larger than region I.
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Figure 7.2: New blocking strategy.

According to the static blocking strategy, only region II works in parallel. But we

can see here, we can divide region II and region III into 4 more blocks.

We can see from Figure 7.1 that 4 blocks were completed in 3 steps and we can

use at most 2 workers in parallel for region II. But, we have the opportunity to

introduce more workers if we follow the strategy shown in Figure 7.2.

Figure 7.2 shows that region II and region III are divided into 4 more blocks.

The whole problem now has 13 blocks and they are computed in 6 parallel steps,

where step II can be computed with 2 workers, step III with 4 workers, step IV

with 3 workers and step V with 2 workers. So, this technique gives us opportunity

to introduce more workers and achieve more parallelism.

7.2 Cache friendly dynamic blocking

In this section we discuss implementation techniques for cache friendly dynamic block-

ing.

• At first we compute B based on initial H and the L1 cache size of underlying

machine architecture we are working on. The function to compute B is already

discussed in Chapter 5 as Formula (5.19).

• If B is bigger than n, then the whole problem fits inside the cache and it can

be treated as just one triangle. There is no need to divide it into blocks. The

entire problem is computed serially inside the cache.

• If B is smaller than n, then we will find the number of diagonal rows we can

proceed with this B before B needs to be reduced. Because B×B ensures block
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of inputs can be loaded without any cache miss except cold miss and we want

to know the number of rows s, after that we can no longer compute a square

block without incurring cache misses other than cold misses. For a given B, H,

and L1 the process to get s is given by formula 5.21. We continue computation

with block order B until s/B bands. From now on we will call these bands

Steps.

• Just like static blocking, there are two cases in dynamic blocking, Regular case

and Irregular Case. Regular case means there will be only tableau and triangle

blocks whereas the irregular case, there will be special block like trapezoid. This

will only happen when n is not divisible by B.

• If we multiply B by the number of steps, that gives us the number of inputs we

can proceed with block B and at which point we need to change B. If steps

multiplied by B is bigger than n, then we can say that entire calculation does

not need to reduce B and each block will fit inside cache.

• We always know in those steps that, there is a final step which will be triangle

(Taylor), one possible step for trapezoid (Polygon) (if n ∤ B) and other steps

should be square (Tableau).

• There is a serious implementation challenge for dynamic blocks, namely, we

can not tell at beginning of dynamic block if it will have polygon blocks or

not. Indeed, in the static block we could detect the presence of polygons at

the very beginning. The reason is, the presence of a polygon in the program

strongly depends on change of B. As an example, for input size n = 7 and

Base size B = 2, we initially guess for static block that there are two steps of

tableau of base 2, one step of polygon of base 2 and 1 step of triangle of base

1. But for dynamic blocking strategy, if the base size becomes 1 after 2 steps of

tableau, then the polygon part vanishes and instead of the polygon there will

be 2 steps of tableau of base 1 and one final step of triangle. Figure 7.3 shows

how the polygon parts P1,1, P1,1 and P1,3 of sub-figure (a) change to 2 steps of

tableau parts T3,1, T3,2, T3,3 and T4,1, T4,2, T4,3, T4,4, T4,5, and T4,6 in sub-figure(b).

We resolve this issue by checking for polygon’s presence at the point when we

change B.

• We proceed, doing tableau from beginning until the point the predicted number

of steps says we should reduce our B. When we reach that point, we check if
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we really need to reduce B or not. If current H still fits inside cache, then we

are fine and we do not need to bother reducing B. But if H does not fit inside

cache then we reduce our B to B/2.

• With this reduced B we again find out the number of steps.

We will continue to do the same process until the entire computation is done.
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Figure 7.3: Case illustration for dynamic blocking strategy.

The following algorithms show the way to implement a dynamic block. Algo-

rithm 18 and Algorithm 19 are the main controlling part. Algorithm 21 works if B

remains unchanged. Whether B should be reduced or not is decided by Algorithm 22.

Algorithm 23 returns the number of steps that can be continued before a change on

B. When B is reduced Algorithm 20 controls the computation. After a tableau is

completed, Algorithm 24 controls final steps such as polygons and triangles. A calcu-

lation procedure for polygon is controlled by Algorithm 25 and triangles are controlled

by Algorithm 26.

Algorithm 18 applied to (a, n, α) computes and stores the coefficients of p(x+ 1)

in the array a[0 . . . n− 1]. Algorithm 18 is based on the blocking scheme discussed in

Chapter 4. However, and on the contrary to the static block algorithm, the base case

(or threshold) B is determined dynamically. Algorithm 18 introduces a new array

b[0 . . . m− 1] of size m = 2n. In the context of Algorithm 18, we use Formula (5.19)

and like we have discussed in Section 6.1, we do not compute the maximum absolute

value H of an initial coefficient, that is, the maximum absolute value of a coefficient

in b. Rather we use a statistical approach: pick randomly some coefficients (say 100)

in b[0 . . . n− 1], then use them to estimate H.
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We know from Formula (5.14) that, when B is too small, the burdened span can

be significantly larger than the span, thus reducing performances. In Algorithm 18,

we refer to this minimum value of B as Bmin.

Before calling the dynamic block procedure, which is, basically, implemented in

Algorithm 19, Algorithm 18 uses context from Section 5.4 to find the number of steps

after that a square B × B block will have cache misses.

Algorithm 18: dynamicBlock(a[0 . . . n− 1], n, α)

Input: a[0 . . . n− 1] is the coefficient array (dense representation) of a

univariate polynomial p(x) of degree d where n = d+ 1 (c[i] is the

coefficient of the term of degree i); a[0 . . . n− 1] is overwritten during

computation and α is a portion of the L1 cache, typically equal to 1/4.

Output: Coefficient array of the polynomial p(x+ 1) stored in the array

a[0 . . . n− 1], such that c[i] is coefficient of term of degree i.

m = 2n;1:

b[0, . . . , n− 1] = a[0, . . . , n− 1];2:

b[n, . . . ,m− 1] = 0;3:

Pickup some coefficients from b and get average size of them;4:

H = Average coefficient size in bit;5:

B = 1
2
− H

3
+ (−3+4H2+3αZ)

1
2

6
;6:

if B < Bmin then7:

B = Bmin;8:

if n <= B then9:

B = n;10:

taylorBaseBlock(b[0 . . . n− 1], B);11:

a[0, . . . , n− 1] = b[0, . . . , n− 1] ; /*copy results from b to a*/12:

else13:

S = findSteps(B,H, α);14:

dynamicSubBlock(b[0 . . .m− 1], n, B, S);15:

return a[0 . . . n− 1] ;16:

Algorithm 19 makes all required decisions to implement a dynamic blocking

scheme. With the number of steps provided to it by Algorithm 18, it proceeds com-

puting blocks by calling Algorithm 21. Whenever it reaches the last step, it makes

a decision about reducing B by calling Algorithm 22. If B is reduced, computation

gets a little bit tricky and Algorithm 20 is called to do this job.
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Algorithm 19: dynamicSubBlock(b[0 . . .m− 1], n, B, S)

Input: b[0 . . . m− 1] is the array containing coefficients of an univariate

polynomial p(x) of degree d (n = d+ 1), where b[i] (0 ≤ i ≤ n− 1), is

the coefficient of the term of degree i ; B is the base size (threshold)

and S is the number of steps.

Output: Take decision on calling different sub-functions and calls

Algorithm 20, 21, 22 and 24.

B = B;1:

w = 0;2:

e = 0;3:

/* e is the number of blocks at each step */

n = n;4:

while TRUE do5:

j = 1;6:

if n >= SB then7:

S = S;8:

else9:

S = n
B
;10:

if B = B
2
then11:

newBaseHalved(b[0 . . .m− 1], n, B, S, w, e);12:

/* this condition works when base size is reduced */

B = B;13:

else14:

baseUnchanged(b[0 . . .m− 1], n, B, S, w, e);15:

/* this condition works when base size is unchanged */

w = w + S;16:

/* w says how many steps are done. */

n = n− (SB);17:

/* number of inputs that are left to do */

if S 6= S then18:

break;19:

else20:

baseDecrementDecision(b[0 . . .m− 1], w,B, α);21:

/* this function returns new base size and new S */

finalCases(b[0 . . .m− 1], n, w, n,B, e, S,B);22:
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Algorithm 20: newBaseHalved(b[0 . . .m− 1], n, B, S, w, e)

Input: b[0 . . . m− 1] is an array of size m; b[0 . . . m− 1] is overwritten during

computation; w is the number of computed steps; B is the base size

(threshold); number of steps S and e is the number of blocks at

current step.

Output: Updated array b[0 . . . m− 1] and e (the number of blocks at current

step).

for j = 1 to S do1:

if j = 1 then2:

i = 4;3:

else4:

i = 2;5:

if j = 2 then6:

e = 2e;7:

else8:

e = e+ 1;9:

for i = 0 to e− 1 do10:

t = n− w − (jB) + (iBi);11:

spawn tableauBaseBlock(b[t . . . t+ B], B);12:

sync;13:

return b[0 . . . m− 1], e ;14:
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Algorithm 21: baseUnchanged(b[0 . . .m− 1], n, B, S, w, e)

Input: b[0 . . . m− 1] is an array of size m; b[0 . . . m− 1] is overwritten during

computation; w is the number of computed steps; B is the base size

(threshold); number of steps S and e is the number of blocks at

current step.

Output: Updated array b[0 . . . m− 1] and e (the number of blocks at current

step).

for j = 1 to S do1:

e = e+ 1;2:

for i = 0 to e− 1 do3:

t = n− w − (jB) + (2iB);4:

spawn tableauBaseBlock(b[t . . . t+ B], B]);5:

sync;6:

return b[0 . . . m− 1], e;7:

For tableau construction of a block we follow the Algorithm 11,

tableauBaseBlock, discussed in Chapter 4.
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Figure 7.4: Dynamic blocking strategy.
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Algorithm 22: baseDecrementDecision(b[0 . . .m− 1], w,B, α)

Input: b[0 . . . m− 1] is an array of size m; w is the number of steps until which

computation is done; B is the block order (threshold); α is a portion of

the L1 cache, typically equal to 1/4.

Output: Updated B (block order) and S (number of steps).

Choose the 100 most recently computed coefficients and 100 input coefficients1:

and find the largest one;

H = largest coefficient in bitsize ;2:

s′ = findSteps(B,H, α);3:

if s′ ≤ 0 then4:

/* it means current block size can not contain H size

coefficients without cache misses. */

B = B
2
;5:

S = findSteps(B,H, α);6:

else7:

B = B;8:

/* with current block size current coefficients fits inside

cache */

S = s′;9:

return B, S;10:

Algorithm 23: findSteps(B,H, α)

Input: B is the block order, H is coefficient size in bits, α is a portion of the

L1 cache, typically equal to 1/4.

Output: Number of steps S until which a B ×B block will fit inside cache.

S = 0;1:

h = 2HB −H + 3B2 − 3B + 1;2:

while h < αZ do3:

S = S + 1;4:

h = 2HB −H + 2SB2 − SB + 3B2 − 3B + 1;5:

return S;6:
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Algorithm 24: finalCases(b[0 . . .m− 1], n, w, n,B, e, S,B)

Input: b[0 . . . m− 1] is an array of size m; b[0 . . . m− 1] is overwritten during

computation; w is the number of steps until which computation is

done; n is the number of inputs that are left to compute; B is the block

order (threshold); e is the number of blocks at current step; S is the

number of steps proceeded with B; and B is size of base before change.

Output: Calls Algorithm 25 and Algorithm 26 to do last steps of Pascal

Triangle.

r = n mod B;1:

if S = 1 AND B = B
2
then2:

e = 2e;3:

else4:

e = e+ 1;5:

if r > 0 then6:

/* when there is reminder, special case like polygons happen

*/

polygonCase(b[0 . . .m− 1], n, w,B, r, e);7:

else8:

triangleCase(b[0 . . .m− 1], B, e);9:

/* when r=0 */

When all the square regions are computed and only the last steps like polygons or

triangles are left to do, then Algorithm 24 is called. This algorithm makes a decision

on whether to do polygons or triangles for last steps and calls Algorithm 25 and

Algorithm 26 accordingly. Algorithm 25 computes last steps if there are polygons

present. Algorithm 26 works if there are only triangles at the last step.
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Algorithm 25: polygonCase(b[0 . . .m− 1], n, w,B, r, e)

Input: b[0 . . . m− 1] is an array of size m; b[0 . . . m− 1] is overwritten during

computation; w is the number of steps until which computation is

done; B is the block order (threshold); e is the number of blocks for

polygon step; r is the size of triangles at last step and e is number of

blocks at polygon step.

Output: Coefficient array of the polynomial p(x+ 1) stored in the array

a[0 . . . n− 1] such that c[i] is the coefficient of the term of degree i.

k = B − r − 1;1:

if k > 0 then2:

k = k;3:

else4:

k = 1;5:

/* polygon */

for i = 0 to e− 1 do6:

t = n− w + (2iB);7:

spawn polygonBase(b[t . . . t+ B], B, r, k);8:

sync;9:

/* triangle */

for i = 0 to e do10:

spawn taylorBaseBlock(b[2iB . . . 2iB + r], r);11:

sync;12:

/* copy triangle */

for i = 0 to e do13:

for j = 0 to r − 1 do14:

a[j + iB] = b[j + 2iB];15:

/* copy polygons */

for i = 0 to e do16:

for j = 0 to B − r − 1 do17:

a[iB − j] = b[2iB − j];18:

a[(i− 1)B + r] = b[2((i− 1)B + r)];19:

return a[0 . . . n− 1];20:
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Algorithm 26: triangleCase(b[0 . . .m− 1], B, e)

Input: b[0 . . . m− 1] is an array of size m; b[0 . . . m− 1] is overwritten during

computation and e is the number of blocks for triangle step.

Output: Coefficient array of the polynomial p(x+ 1) stored in the array

a[0 . . . n− 1] such that c[i] is the coefficient of the term of degree i.

for i = 0 to e− 1 do1:

spawn taylorBaseBlock(b[2iB . . . 2iB + B], B);2:

sync;3:

/* copy from b to a */

for i = 0 to e− 1 do4:

for j = 0 to B − 1 do5:

a[j + iB] = b[j + 2iB];6:

return a[0 . . . n− 1] ;7:

For computing the triangle case, we will follow Algorithm 12.

7.3 Experimental results

We conducted the experiments for the implementation of our blocking method of Tay-

lor shift computations and VCA Algorithms on the cluster stegosaurus.csd.uwo.ca.

We already have described about this machine and configuration of one of its com-

pute node-0-0 in Section 6.3. For our experimentation we have also used another

node node-0-2 whose configuration is: Intel(R) Xeon(R) CPU X5650 with 2.67GHz

processor, L1 cache size 32KB, L2 cache size 12288 KB, Number of Processors: 24,

CPU family: 6, Model: 44, CPU MHz: 1600.

7.3.1 Block: static vs dynamic

We have run both static and dynamic block schemes on different polynomial fam-

ilies such as BND [16], CND [16], PSnd, Chebyshev, Mignotte etc. for the Taylor

shift computation. Definitions of these polynomial families are already specified in

Section 6.3. We measure their timings for both 1 processor and 48 processors and cal-

culate speed up for both AMD and Intel machines. By static and dynamic approaches

we refer to Algorithms 10 and 18, respectively. Experimental results running on the

Intel machine are shown in Table 7.1.

Experimental results running on the AMD machine are shown in Table 7.2.
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Polynomial family Method n k Processor(s) Speedup
12-Procs 1-Proc

Bnd [16] Static block 5000 5000 0.506 1.505 2.97
Dynamic block 5000 5000 0.493 1.505 3.05
Static block 10000 10000 2.406 11.372 4.72

Dynamic block 10000 10000 2.223 11.378 5.11
Static block 25000 25000 23.551 162.654 6.90

Dynamic block 25000 25000 21.102 162.546 7.70
Cnd [16] Static block 5000 5000 0.401 0.628 1.56

Dynamic block 5000 5000 0.401 0.63 1.57
Static block 10000 10000 1.832 4.361 2.38

Dynamic block 10000 10000 1.705 4.262 2.49
Static block 25000 25000 14.277 60.769 4.25

Dynamic block 25000 25000 13.493 59.743 4.42
PSnd Static block 5000 NA 0.427 0.637 1.49

Dynamic block 5000 NA 0.401 0.635 1.58
Static block 10000 NA 1.798 4.381 2.43

Dynamic block 10000 NA 1.699 4.288 2.52
Static block 25000 NA 15.319 60.897 3.97

Dynamic block 25000 NA 12.971 59.2 4.56
Chebyshev Static block 5000 NA 0.403 1.392 3.45

Dynamic block 5000 NA 0.363 1.391 3.83
Static block 10000 NA 1.964 10.735 5.46

Dynamic block 10000 NA 1.712 10.742 6.27
Mignotte Static block 5000 NA 0.406 0.638 1.57

Dynamic block 5000 NA 0.393 0.632 1.60
Static block 10000 NA 1.902 4.335 2.27

Dynamic block 10000 NA 1.765 4.249 2.40
PolynomialEx1 Static block 5000 5000 0.414 0.788 1.90

Dynamic block 5000 5000 0.406 0.779 1.91
Static block 10000 10000 1.941 5.699 2.93

Dynamic block 10000 10000 1.865 5.571 2.98
Static block 25000 25000 15.65 78.68 5.02

Dynamic block 25000 25000 14.422 77.371 5.36
PolynomialEx2 Static block 5000 5000 0.384 0.627 1.63

Dynamic block 5000 5000 0.399 0.63 1.57
Static block 10000 10000 1.847 4.37 2.36

Dynamic block 10000 10000 1.748 4.248 2.43
Static block 25000 25000 14.793 61.074 4.12

Dynamic block 25000 25000 12.788 59.821 4.67

Table 7.1: Taylor shift computation (timings in seconds) [Platform:stegosaurus cluster
node-0-2, Static block order=25].

From both Table 7.1 and Table 7.2, we can see that, for different degree polyno-

mials in different polynomial families, the dynamic blocking method is faster than

the static approach (in terms of running time). Moreover, it has better speed up than

the static method.

To show the comparative results in a better way, we provide a plot, see Figure 7.5
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Polynomial family Method n k Processor(s) Speedup
12-Procs 1-Proc

Bnd [16] Static block 5000 5000 1.893 2.447 1.29
Dynamic block 5000 5000 1.703 2.461 1.44
Static block 10000 10000 8.269 18.819 2.27

Dynamic block 10000 10000 8.018 18.877 2.35
Static block 25000 25000 77.925 287.137 3.68

Dynamic block 25000 25000 66.038 286.979 4.34
Cnd [16] Static block 5000 5000 1.392 1.004 0.72

Dynamic block 5000 5000 1.388 1.112 0.80
Static block 10000 10000 6.996 6.976 0.99

Dynamic block 10000 10000 5.641 7.363 1.30
Static block 25000 25000 49.911 98.978 1.98

Dynamic block 25000 25000 48.153 99.959 2.07
PSnd Static block 5000 NA 1.472 1.005 0.68

Dynamic block 5000 NA 1.261 1.111 0.88
Static block 10000 NA 6.643 6.994 1.05

Dynamic block 10000 NA 6.597 7.423 1.12
Static block 25000 NA 56.534 99.808 1.76

Dynamic block 25000 NA 48.286 99.909 2.06
Chebyshev Static block 5000 NA 1.332 2.266 1.70

Dynamic block 5000 NA 1.459 2.272 1.55
Static block 10000 NA 6.673 17.168 2.57

Dynamic block 10000 NA 5.818 17.144 2.94
Mignotte Static block 5000 NA 1.508 0.984 0.65

Dynamic block 5000 NA 1.474 1.094 0.74
Static block 10000 NA 6.367 6.954 1.09

Dynamic block 10000 NA 6.868 7.355 1.07
PolynomialEx1 Static block 5000 5000 1.552 1.259 0.81

Dynamic block 5000 5000 1.445 1.325 0.91
Static block 10000 10000 7.153 9.048 1.26

Dynamic block 10000 10000 6.028 9.386 1.55
Static block 25000 25000 57.467 131.709 2.29

Dynamic block 25000 25000 52.915 132.713 2.50
PolynomialEx2 Static block 5000 5000 1.483 0.988 0.66

Dynamic block 5000 5000 1.364 1.087 0.79
Static block 10000 10000 6.343 6.908 1.08

Dynamic block 10000 10000 6.95 7.371 1.06
Static block 25000 25000 50.193 98.866 1.96

Dynamic block 25000 25000 47.27 99.505 2.10

Table 7.2: Taylor shift computation (timings in seconds) [Platform:stegosaurus cluster
node-0-0, Static block order=50].

which shows a comparison of speedup and parallelism for the static and dynamic

approaches, for input 25000 degree BND polynomial running on our AMD machine.

Figure 7.6 shows wall timing comparison between 1-processor and 12-processors

on AMD machine for different degree BND polynomials.
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7.3.2 Root isolation results

We have tried root isolation for well known polynomials Chebyshev and Mignotte on

AMD machine. The root isolation results for Chebyshev and Mignotte polynomials

(of different degree) for static and dynamic block method are shown in Table 7.3.
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Polynomial family Method n Processors Speedup
12-Processors 1-Processor

Chebyshev Static block 400 36.413 152.304 4.18
Dynamic block 400 35.361 152.439 4.31
Static block 500 90.348 472.776 5.23

Dynamic block 500 88.024 473.903 5.38
Mignotte Static block 400 183.73 241.376 1.31

Dynamic block 400 183.104 241.244 1.32

Table 7.3: Root isolation (timings in seconds) [Platform:stegosaurus cluster node-0-0,
Static block order=50].

Polynomial family Method n Processors Speedup
12-Procs 1-Proc

Hilbert 16 Static Block 426 465.227 1438.91 3.09
Dynamic Block 426 455.388 1439.54 3.16

Table 7.4: Root isolation Hilbert-16 (timings in seconds) for Static vs Dynamic Block
[Platform:stegosaurus cluster node-0-0, Static block order=50]

From the above table we can see that dynamic divide and conquer brings very

good speedup for isolating roots of Chebyshev polynomials.

7.3.3 Root isolation results: Hilbert-16 polynomial family

We also experimented isolating the real roots of a well known large polynomial called

Hilbert-16. We are repeating the specification of this polynomial from Section 6.3.4. It

has degree 426, and the bit size of its coefficients is 1900. It is available for download at

http://www.orcca.on.ca/~cchen/ammcs2011.txt. Experimental results are shown

in Table 7.4.

From Table 7.4 we can see that, for the Hilbert 16 polynomial, the dynamic block

performs better than the static one.
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Chapter 8

Conclusion

In this thesis, we investigated implementation techniques for multi-threaded real root

isolation of univariate polynomials targeting multi-core architectures.

We have improved previous complexity analyses (work, span, burdened span,

cache) by taking into account the growth of the intermediate coefficients. This has

lead us to develop poly-algorithms which can adapt the granularity of their parallelism

dynamically depending on the local size of the data. Experimentation illustrates the

effectiveness of this approach.

Despite of these positive results, we believe that we have reached the limit of what

can be done to improve multi-threaded real root isolation on multi-cores. Indeed, for

this type of algorithm, as input size grows, parallelization overheads on multi-cores

increase faster than parallelization benefits!
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