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Equivalence under a linear change of variables

F~F<+=39cGL(m,C): F(x)=F(g-x)

Example:

o 512 — 2xy + 2y2 is equivalent to x? + y2

under the change of variables

r—x+y, y—y—2T.
Problems:
e Find classes of equivalent polynomials.
e Find invariants which characterize each class.
e Find a ”simple” canonical form in each class.

e Match a given F' with its canonical form.
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Symmetry of Polynomials

g € GL(m) is a symmetry of F' <= F(gx) = F(x)

o 22 + y? is symmetric under any orthogonal map:

(2.4) = (cos(a)x + sin(a)y, — sin(a)z + cos(a)y)
| (—QE, _y)

o 2% + 14x*y* + y® has a sym. group with 192 elements gen. by:

S

(21 40z, (1 +i)y)
(z,y) > ¢ (Li(z +y), %( —y))
\ (iz, y)

Problem: Given F' find its group of symmetries Gg.

Fr~F = Gr=gGrg!
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Why classification of polynomials is difficult?

GL(m,C) ~ C" = GL(m,C) ~ P% =Clz?t,... 2™

P? — a linear space parameterized by {c,} coefficients of
polynomials.

: d _
dim P, = C}, 41
Non-regular action!

e cquivalence classes (orbits) have different dimensions.

e cquivalence classes are not closed subsets of P?.

$

Continuous invariants [(c,) do not distinguish classes.
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Example.

(1) 2*4awz®+2°—y?’z2 A (4) 2°—y’z

1
fore£0: z—=z, y— -y, z—ez:
£

(27 +axz® + 2° —y°2) — (2° +ac’zz® + 527 — y?2),

lin%(x3 +actr? +%2° — ) = 20 — Pz
E—r

(7)(1) D) 0(4).
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Complete classifications of polynomials in m

variables of degree d
(known to us).
e d =2 (quadratics m-ary forms): z% + --- + z7.
e m = 2 (binary forms): d =1, 2,3, 4.
e m = 3 (ternary forms): d = 1,2, 3.

Some references or partial results for cases when m = 2,
d=95,06,7,8 when m =3, d=4; when m =4, d = 3.
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Approaches
e Classical (XIX century) by Aronhold, Gordan, Caley, ...

Computation of covariants (rational invariants 1(x,cy)).

e Hilbert
The rings of covariants and invariants are finitely generated.

Nullcones.

e Algebraic Geometry by Mamford, Kraft, Vinberg, Popov, ...
Description of the algebraic variety that represents the space of

orbits.

e Algebraic computational algorithms by Sturmfels, Derkson,
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Differential Geometry (Moving Frame)

Approach.
by P. Olver.
Main Idea
e Consider the graphs of polynomials u = F(xq,...,x,,) in C™"!
dimensional space. Apply Cartan’s equivalence method for
submanifolds.
U
Algorithms

e To decide whether two polynomials are equivalent.
e If yes find a corresponding linear transformation.

e To find the symmetry group of a given polynomial.
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Implementation

e Computing differential invariants.
differentiation, algebraic operations, multivariate

polynomial elimination by hand (inductive approach of
moving frame [Kogan, 2000])

e Computing the signature variety, parameterized by
differential invariants.
ranking conversions of reqular chains using the PALGIE
algorithm [Boulier, Lemaire, Moreno Maza, 2001]
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Inhomogeneous version

u=f(p,q) = F(p,q,1) <= F(z,y,2) = 2° f(£, %)

['r: u = F(x,y, z) homogeneous poly. in 3 variables of degree 3
gl
[y u=F(axz+By+Az,yx+doy+puz,ax+by+nz),
)
L'g: u = f(p,q) inhomogeneous poly. in 2 variables of degree < 3
g

+Bq+A Yp+dq+
I, u:<&p+bq+n)3f(ozp Bq Yp+dgq u).

ap+bg+n ap+bg+n

10
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' is the graph of u = f(p,q), dim " = 2.
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A u®

r G
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A u®
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Equivalence and symmetry theorems

Theorem 1. (Equivalence)

Computational problem decide if two parameterization
define the same set (elimination).

Theorem 2 (Symmetry) ['r is the graph of F'.
dimGr =dimI'yr — dimCp

For a generic F': dimCp = dim['p (maximal) = Gp is
finite and can be computed explicitly:.

16
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Cr is parameterizes by diff. invarinats i1, 29, 73.
A = i3 /i3 is constant on each of the equivalence class!
Example.
The signature Cy for f = p*+¢* +1 (F = 2z (2* + y* + 2?)):
. (p° +¢* +1)° (r* +¢* + 1)
il N 2127
(P> =3+ ¢

ia]p = 270

(P> = 3+¢%)*
. P*+¢@+1) (pP+¢*+3)*—12)
Zg‘f = 180 5 N3
(p? — 3+ ¢?)

Elimination of p and ¢ = equations for 1-dim’l signature
varlety V:
i1 (i3 — i) + 3045 =0, 1045 — i3 = 0.

17
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Classes of ternary cubics:

e Irreducible:
— Regular(elliptic curves): (1)- I-paramteric famaily;
(2); (3).
— Singular: (4); (5).
e Reducible into
— a linear and a quadratic factor: (6); (7).

— three linear factors: (8); binary form is disquise (9),
(10), (11).

18
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Irreducible cubics.
Regular (Elliptic Curves):

(1) F~x3+axz?+2°% —-y?z, f~p3>+ap+1-qg?
non-equivalent for different values of a>;
a#0 (else F'~(3)), a® # —27/4 (else F ~ (5)),

6753 + (10a)3 i3 = 0.

(2) F~x?+x2° —y?z, f~p°+p-q?
Gr| =36 x 3,

19 = 0.

(3) Frx®+2° —y%z, f~p°+1-q?
|GF‘=54><3,

11 = 0.

19
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Application to ternary cubics
F(x,y,z), deg ' =3
e Fast algorithm to determine the class of F.

e An algorithm to compute a change of variables from F'
to its canonical form.

e (Classification of the symmetry groups.

e A geometric description of the equivalence classes,
which depicts information about the size of the
symmetry group and inclusions of the closures of the
classes.

22
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Conclusions

e Differential invariants for polynomials = covariants in
the classical sense.

e The set of differential invariants that parameterize
signature depends only on the group action and the
number of variables, but not on the degree.

e For m=2.3 the complete set of invariants is computed.
Further projects
e new classifications (e. g. for binary forms),

e other group actions,

e other fields (R, finite fields).

23
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More results with moving frames

e Binary forms: F(x,y), deg F' = n (F' is homogeneous).
— complete set of differential invariants (P. Olver).
— algorithm (coded in MAPLE) to compute G (Olver,
Kogan).
e Ternary forms F'(x,y, z), deg F' = n.
— complete set of differential invariants (Kogan).

— necessary and sufficient for F' to be equivalent to
" +y" + 2" (Kogan, thanks to Schost, Lecerf).

24
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Irreducible cubics.
Regular (Elliptic Curves):

(1) F~x3+axz?+2°% —-y?z, f~p3>+ap+1-qg?
non-equivalent for different values of a>;
a#0 (else F'~(3)), a® # —27/4 (else F ~ (5)),

6753 + (10a)3 i3 = 0.

(2) F~x?+x2° —y?z, f~p°+p-q?
Gr| =36 x 3,

19 = 0.

(3) Frx®+2° —y%z, f~p°+1-q?
|GF‘=54><3,

11 = 0.

25
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Singular:

(4) F~x*—y%z, f~p°—q?
Gp~z—z,y—ay z—a 2z (1-dim’l)

i1 =0, is=0.

(5) F~x%(x+2z)—y?z, f~p3(p+1)—q?
|GF‘:6><3

i3 — 1042 = 0.

26
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Reducible cubics:

A linear and an irreducible quadratic factor:

(6) F ~z(x*+yz), f~(p*+q)
G r ~ non-commutative 2-dim’l (affine) group:
r—r+az,y— —2ar+y—a’

r— Bz, y — By, 2 = 2z,

2, 2 — 2,

i1 =0, ig = 0, i3 = 0.

(7) F~az(x®+y?+2%), f~p?+q®+1
G ~ rotation in the zy plane (1-dim’l)
i1(i3 —i2) + 30i3 = 0, 1043 — i3 = 0.

27
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Three linear factors:

(8) non-coplaner <= F ~ xyz, f ~ pq;
Gr ~R?: {z — azx,y— By, 2 — O%Bz}

i1 = 90, iy = 270, i3 = 180.

(9) different, coplaner & F ~xy(x+y),f ~pq(p+q)

Gr ~ 3-dim’l {z — ax + By + 72} X Gay(aty):

(Goy(zty) ~ S3 X Z3 C GL(2,C) ~ (x,y) preserves xy(r +y).
(10) two repeated & F ~ x?y, f ~ p3q

Gp ~ 4-dim’l: {z - azx, y— éy, z—=>Br+vyy+0z}
(11) three repeated & F ~ x3, f ~ p3.

Gp ~ 4-dim’'l GL(2,C) x Z3 (GL(2,C) ~ (y,2) and Zs ~ x).

(9), (10) and (11) are binary forms in disquise.

28



Canonical Forms of Ternary Cubics ISSAC 2002 — July 09 — Lille

An example

Parameterization of Cg:

(

0 = Bp+4)(—qg+p)(g+p)3p° + 2p* + 3pg® — 2¢*) — 6(—3pg® — ¢° + p*)?
0 = (—q+p)(g+p)(BLp° +972p°¢* + 72p° + 1269p"¢° + 32p™" — 144p°¢°+
+972p%¢* + 1107p¢* — 64p*q* + 72pq* + 135¢° + 32¢%)
—6(—3pq® — ¢* + p*)°I2
0 = (16p®+ 72p° + 108p* + 54p° — 16> + 72pq° + 81p*q*+
+27p%¢% 4+ 27¢*)(—q + p)*(q + p)* — 9(=3pq® — ¢* + p*)’Is

\

Cartesian equation of Cp:

7200112 —1692112—5041112 —37801; 15— 12152 — 1801513 — 675152 +14401; +40I5-+30(

29
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Ranking conversions

eForR=z>y>z>s>tand R=t> s>z >y >z we have:

p
x — 3

palgle(< Yy — 82 - 1 7R7 ﬁ)

\

4
st — z

(xy +x)s — 2°

6 2

2 3 2 2 2
| 2z — st | 27— 2%y — 327y —3x"y —«x
We R = Uy > Uy >U> -+ > Upy > Uzy > Uyy > Uz > Uy > U We have:
( ( 2
_ AUVy — (Ug Uy + Uz Uy U — Vg — 20
pardi( 4 , v~ (s ty oy U) R,R) = < y;;
uy —4u Vy Vzy — Vgyy + Uyy
2 4 2 2
| uy —2u | Uyy — 20y, — 20y + 1

30
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PARDI, PODI, PALGIE
Input: In k[X]

o two rankings R, R over X,

o a R-triangular C set such that Sat(C') is prime.
Output: a R-triangular set C' such that de Sat(C) = Sat(C).

Algo: three cases:

PALGIE: Prime ALGebraic IdFEal implemented in Aldor, C
and Maple,

PODI: Prime Ordinary Differential Ideal, implemented in C,

PARDI: Prime pARtial Differential Ideal, implemented in
Maple.

31
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P:=C;C:=1{
H = {init(p,R) for p € C'}
while (P # ()) repeat
p = first P; P := rest P
p = red(p, C)
(p, P', H') := ensureRank(p, R, C)
(P,H) := (PUP,HUH)
p = 0 — iterate

v := mvar(p)
if (Vg € C) mvar(q) # v then

C:=CuU{p}
else
(g ) = ng<p7€’U76’lj7C)
(P, ) (PUP',HUH")
C:=C\{Cu} U{g}
C := saturate(C, H)
return C
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